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In this paper we investigate the global asymptotic behavior of the scalar delay difference equation 

We give conditions under which there are periodic solutions and conditions under which the non 
negative solutions converge either to the non trivial fixed p in t  of this equation or to one of the above 
periodic solutions. 

Keywords: Global attractivity; ppulat~on dynamics; aifierence equations 

Clarsificotion Categories: 39A 10,92D25 

I .  INTRODUCTION 

An important class of population dynamics models, which has applications in 
fisheries problems, is the class of density-dependent models. Such models were 
introduced in fisheries problems to understand intra-specific competition pro- 
blems. Here, we consider the discrete time model employed by Beverton and 
Holt [I], Ricker 1221, and Shepherd [25]. This model is also a particular case of 
the Liu and Cohen [19] model, which is obtained by discretizing a continuous 
time model of age structured populations. 

We denote by xi(t) the number of females with age in the interval [i - 1, i 
[at time t, i - 1,2, ..., n. We will say that xi(t)  represents the number of females in 
the age class i at time t. For i = 1,2, ..., n - 1, let pi E [0, 11 be the transition pro- 
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68 P. MAGAL 

bability from age class i to age i + 1. Define bi as the average number of off- 
spring produced by females of age class i ,  and let po(t) be the fraction surviving 
to recruitment from time t to time t + 1. We assuine that po(t) is of the form 

The function h  is assumed to be a strictly decreasing continuous function with 
range, the interval 10, I], and domain [0, w [  and we assume that 

h(O)=I,  and lim h ( x ) = O .  
x++m 

The dynamics may then be completely described by the system for r = 0, 1, ... 

with initial condition 

The local asymptotic behavior of this model has been investigated by Gucken- 
heimer e: a:. [3] ,  Levh a 6  Goobyear [18], and Silva and Hallam [26]. Fisher 
and Goh i7j study the giobai stability of a speciai matrix modei in which oniy 
individuals in the oldest age group are reproductive. 

We need to introduce some notations. Throughout this paper, we denote by N 
the set of all the non negative integers, by R (resp: R+) the set of all the real num- 
bers (resp: non negative real numbers), and by Rn(resp: Mn((W)) the set of all the 
n-dimensional real vectors (resp: n by n real matrices). Moreover if V E Rn, we 
will denote by Vi (for 1 5 i 5 n) the irh component of V. We denote by 

IW; ={V€iW" :V i>OVi=  1, ..., n), 

and by 

The set Mn(R+) is usually called the set of non negative matrices. Throughout 
this paper, we will use the classical notions and properties of non negative matri- 
ces. For this, we refer to the books by Gantmacher [8], by Horn and Johnson 
[ l l ] ,  and Minc [21]. 
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DISCRETE POPULATION MODEL 

1 .I. Problem Transformation 

Consider the system of equations ( I ) ,  and remark that 

So denoting x(r) = xl(r  + n)  for all t 2 -n, the system of equations 61) can be 
rewritten as the following scalar delay difference equation 

with initial condition 

x ( - i )  =x- i  L O V i =  1 ,..., n, 

where 

Denote by 

Then, in the case where R I i ,  since h is strictly decreasing and h(0) - 1, by using 
the lemma 5 in the paper by Magal and Pelletier [20] ,  one has that all the non 
negative solutions of equation ( 2 )  converge to zero as t goes to infinity. Now, let 
R  > 1 be fixed, and denote by 

f ( x )  = Rxh(Rx) V  x 2 0 ,  (3) 

and 

Then, with these notations, equation ( 2 )  can be rewritten as 

with initial condition 

x ( - i ) = x - i E ! R + , V i = l ,  ..., n. 
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For convenience in the sequel, we introduce a system of equations, which is 
equivalent to the delay difference equation (4). This system is the following one 

X ( t  + I )  = F ( X ( t ) ) ,  V t  E N ( 5 )  

with initial condition 

X ( 0 )  = Xo E IR;, 

where F: R", + R"+ is defined by 

F ( X )  = 

This system is connected with the delay equation (4) in the following manner, 
X l ( t )  = x(t  - l ) ,  X2(t )  = x( t  - 2 )  ,..., Xn(t )  = x(t  - n) ,  for t 2 0. 

Here, we will say that a fixed point (resp: an equilibrium solution) is non tri- 
vial, if it is not equal to zero. Now, since we have fixed R > 1, one can prove, by 
using the intermediate value theorem, that the map f in  equation (3) has a unique 
non trivial fixed point, that we denote by 

x > 0. 

Equivalently, this fixed point corresponds also to the unique non trivial equili- 
brium solution of equation (3, and to the unique non trivial fixed point X E R," 
of the map F in equation ( 6 ) ,  which are 

1.2. Problem Statement and Main Results 

The goal of this paper is to describe the global asymptotic behavior of the diffe- 
rence equation ( 5 )  with F defined by ( 6 ) .  The main idea here is to divide the 
study into two parts: 1)  the study of the nonlinear part, which corresponds to the 
following one dimensional difference equation 

x ( t  + 1) = f ( x ( t ) )  v t  > 0, (7) 
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DISCRETE POPULATION MODEL 

with initial condition 

40 )  = xo E k 7 

and, 2) the study of the linear part, which corresponds to the linear difference 
equation 

X ( r +  1) = L X ( r ) V r  E N. 

with initial condition 

where 

Without loss of generality, we may assume that 

R, > 0. 

Otherwise, we can aiways repiace n  by the iargest integer n?  in (1, ..., n )  such that 
R,, > 0 ,  and the problem is unchanged. Moreover, under this assumption the 
matrix L is irreducible. We refer to the book by Caswell [2] for this result. 

Prior to stating the main results of the paper, a few definitions are in order. 
Tinroughout h e  paper, the topoiogy in 8" jresp: 8: is the topoiogy associated to 
an arbitrary norm on Rn, denoted by 11.11 (resp: to the metric defined by d(X, Y )  = 

Jw - 41 for all X, Y E R,R ). 
Let G: R: [W: (m E N - (0)) be a map. In the sequel, we will denote by 

GP for p 2 0 ,  the functions defined by 

We will say that {V,, V2, ..., V k )  is a k-periodic solution (k 2 1) of G  if 

G )  V  V i  l k -  1, and G(Vk) = V l ,  

with 

V i # V j V i ,  j =  1 , . . . ,  k with i #  j. 

The following definitions can be found in Hale [lo]. A subset A of R," is said 
to be stable if for every neighborhood V  of A in R,R , there exists a neighborhood 
V C V  of A in R: such that Gm(V') C V  V m  2 0. Moreover, A is said to attract a 
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subset B of R: under G if, for any & > 0, there exists an mo = ?no(&, A, B) such 
that Gm(B) belongs to the &-neighborhood of A for m 2 mo, that is 

6(Gm(B),A)= sup inf/IX-YII<&, foral lm>mo. 
Y E G ~ ( B ) X E A  

Here, we investigate the case where the non trivial fixed point i off attracts 
the points of 10, +-[ underf. 

The case where the dimension n - 2 is investigated by Fisher and Goh [7]. In 
their paper, the authors consider the case where the map f has a convex Liapunov 
function (i.e. there exists a continuous and convex map v: R+ + R+ such that 
v(Ax)) 5 V(X) for all x E R+ and v(Ax)) - v(x) i - x or O), and the matrix L is 
primitive, that is when n = 2 and 

R1 > 0, and Ri > 0. 
- 

With these assumptions, they show that the non trivial fixed point X of F attracts 
the points of R: - (0) under F. Here, we prove that the result holds only by sup- 
posing that the non trivial fixed point ; attracts the points of 10, +m[ underf. In 
particular, this allows us to disregard the problem of existence of a convex 
Liapunov function. 

In its generality, the problem is much more involved. Here, we present an 
attempt to extend the above results to a case where no obvious Liapunov function 
can be determined. As mentioned in the beginning, our approach is in two steps: 
first, we study a non linear scalar equation. This is done in section 2. Then, we 
turn our attention to a linear system equations. Finally, in section 4 putting 
together the results for the non linear and linear "parts" we determine the global 
asymptotic behavior of the n dimensional problems. 

In section 2 of this paper, we will investigate the case where i attract the points 
of the interval 10, +-[ under f. This problem was already investigated by several 
authors Cull [3], [4], [5 ] ,  Huang [12], [13], [14], [15], and Rosenkranz [23]. We 
also refer to the book by Kocic and Ladas [16] for a nice survey on this question. 

We will make the following assumption on5  

i) f is continous and satisfies f (0) = 0, and f (x) > 0 V x > 0. 
ii) f has a non trivial fixed point f > 0. 

The following Theorem is partially proved by Huang [14], except the stability of 
the nontrivial fixed point which was proved by Sharkovsky et al. [24]. Moreover, 
we also obtain the fact that the non trivial fixed point i attracts the compact sub- 
set of 10, +m[. This last property will be essential in the proof of theorem 1.4. In 
section 2, we prove both results by using very elementary arguments and a very 
general result on dissipative systems. 
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DISCRETE POPULATION MODEL 73 

THEOREM 1.1 Let$ R+ -+ R+ be a map, satisfying (HI). Then, the three fol- 
lowing assertions are equivalent. 

a. For each m = 1,2, ... 

c. .i attracts the points of 10, +m[ under $ 

Moreover, under anyone of the three conditions, i is stable and attracts the 
compact sets of]O, +m[, 

This theorem is a direct application of Theorem 2.4.2 p:17 in Hale [lo], and 
Lemma 1 p:48 in Sharkovsky et al. [24]. 

Remark If the assumptions made by Fisher and Goh [7] on equation (7) hold, 
then in particular x attracts the points of 10, +w[. This remark is important 
because it shows that existence of a convex Liapunov function can be replaced 
by the condition (b) of Theorem 1.1 (see Corollary 1.5). 

As a simple consequence of Theorem 1.1, we also have the following theorem. 

THEOREM 1.2 Let$ R+ + R+ be a map satisfying (HI). If in addition we sup- 
pose that 

f(x) > x f o r a l l O < x < f  and f(x) <xforal lx>X, 

then i f  the nontrivial fixed point i is unstable, or i f  the nontrivial fixed point x 
does not attract the points of 10, +m[ under j f has a non trivial 2-periodic solu- 
tion. 

Remark I We may observe that .i being unstable implies that i does not attract 
the points of 10, +w[ under$ 

Remark 2 From theorem 1.2, we also have the following equivalence. If fi 
R+ + R+ is a map satisfying (Hl), if in addition we suppose that 

f (x) > x for all 0 < x < f and f (x) < x for all x > f .  

then the assertion c) of theorem 1.1 is equivalent to the following assertion: 

This equivalence was proved by Cull in [3], [4], and by Rosenkranz in [23]. 
In section 3, we investigate some properties of the linear part. This will lead us 

to the two following results, which are, as we will see in section 3, consequences 
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of some general results on irreducible non negative markovian matrices, see 
Theorem 3.1 and Lemma 3.2. 

PROPOSITION 1.3 Suppose that assumption ( H I )  holds. Then, if the mutrix L is 
non primitive, and has exactly p (with 2 I p 5 n )  eigenvalues in the peripheral 
spectrum of L (i.e.. of maximum modulus), equation (5) has at least one periodic 
solution with orbit C = {CI, C p . .  C d  in the set 

and period k, 2 5 k I p. 
Moreover, every k-periodic solution of equation (5)  in E satisfies 

In section 3 corollary 3.4, we wiil prove a result, which gives a different argu- 
ment for proving the main result of this paper. Corollary 3.4 says essentially that 
if {X(t))t,N is a sn!utjnn of equation (5) with X(Oj = X9 $0: then for aii t E N 
large enough we have the following property: 

If Xl(t + 1) > 0 then for each j = 1 ,  ..., n such that R, > 0 we have Xj(t)  > 0. 

This is in fact a direct consequence of a general result on irreducible non nega- 
tive matrices, see Theorem 3.3. 

Finally, in section 4, we will prove the following theorem, whicn is the main 
result of this pzpi. 

THEOREM 1.4 Under assumption (HI ), and suppose that 

Let fl(t)},,N be a solution of equation ( 5 )  with X(0) = Xo # 0.  Then, there are 
two cases. 

Either, for some to E N, 

X( to )€  I n t ( q ) = { x ~ R :  : X i > O V i = l ,  ..., n ) .  

In this case, 

X ( t )  + X as r + + o x  

Or, the sequence f l ( t ) ) , , ~  takes its values in 

= q - Int(R:). 

Then, the solution f l ( t ) } , , ~  is asymptotically k-periodic and approaches the 
orbit of a k-periodic solution C = {C,, C2, ..., C d  of equation (5). with 

C C E  = { X ~ a ( l w ; ) - { o , x ) : x ~ = 2 0 r O ,  V i =  1, ..., n )  
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DISCRETE POPULATION MODEL 

and 

2 < k l p l n ,  

where p is the number of eigenvalues in the peripheral spectrum of the matrix L 
(i.e.,  of maximum modulus). 

Remark In the case where the matrix L is non primitive, one can see that the 
only k-periodic solutions of equation (5) are those described in proposition 1.3. 
Moreover, one can see from Theorem 1.4 that these periodic solutions are unsta- 
ble, besause all the solutions starting in Int ( Q  ) converge to the non trivial fixed 
point X . 

- 
COROLLARY 1.5 With the same assumptions as  in theorem 1.4, X is stable and 
grrmcrs rhe compacr sets of Int (E: j under F If in addition, L is primitive, then 
X attracts the poinrs of R," - {O) under F. 

Remark This corollary, w i ~ h  remxk foilowing Theorem 1.1, yields a gene- 
ralization of result by Fisher and Goh [7]. Because the result given by Fisher and 
Goh [7] is based on the existence of a convex Liapunov function, so with the 
remark following theorem 1.1, we know that the assumptions of theorem 1.4 
hold. 

Examples In order to apply Theorem 1.4 and Corollary 1.5 one must verify the 
following conditioii 

A situation where this condition holds, is the Beverton and Holt [ l ]  model 
which corresponds to 

with B > 0. 
In this case for all R > 1, the map f is defined by 

Rx 
f ( 4  = - 

1 + PRx 
, for all x 2 0, 

and the condition is verify (because this map is monotone increasing). Another 
example where this condition holds, is the Ricker [22] model, which corresponds 
to 

h(x) = exp(-$x), for all x 2 0, 
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In this case for all R > 1, the map f  is defined by 

f ( x )  = Rx exp(-BRx), for all x 2 0, 

and it is proved (see appendix 2 p: 154 in the paper by Fisher and Goh [7]) that if 

1 < R 5 exp(2), 

then the non trivial fixed ;is stable and attracts the points of 10, +cu[ under5 So 
in this case, the condition hold. 

In this two examples, when R > 1 for the Beverton and Holt [ l ]  model, and when 1 < 
R < exp (2) for the Ricker [22] model, theorem 1.4 and corollary 1.5 can be applied. 

Interpretation of the Results for the Population Model 

Let us come back to the population model. First, we remark that, since we have 
supposed R, > U and Rn = I / R lnb,, we must have 

(because 1, = p l p ~ . . . p ~ - ~  ). 

From this remark, we deduce that for all i = 1 ,..., n 
bi > 0 if &id only if Ri > 0. 11 \"I 1 1  

From (10) and (1 1) we deduce that the matrix L defined by (9) is primitive if and 
only if the Leslie matrix defined by 

f bl bZ ... .. .  b" \ 
p ,  0 ... ... 0 1 r; 1:: 

J is primitive. 

. . . 0 Pn-1  

Moreover, the primitivity property of the matrix L defined by (9), depends only 
on the reproduction structure (i.e. on the strict positivity of the fertility rate bi). 
For example, the matrix L will be primitive, when two consecutive age classes 
have a positive fertility rate (i.e. bi > 0 and bi+l > 0 for some i E (1, ..., n - 1 )), 
see Demetrius [6] for a proof of this result. 

Now we can give an interpretation of the results for the population. 
Let us first consider the case where only the first age class is reproductive, 

that is 

X I  ( t  + 1) = f (xi  (r)) ,  for all t = 0,1 , .  . . . 
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DISCRETE POPULATION MODEL 77 

In this situation, we know that from the remark 2 following Theorem 1.2, that the 
condition 

f2(x) > x f o r a l l ~ < x < f  and f2(x) < x f o r a l l x > f ,  (1 2) 

means that f has no 2-periodic solution, and under this condition the non trivial 
fixed point 

is stable, and attracts the points of 10, +m[. 

Under the condition (12) on f, Theorem 1.4 and Corollary 1.5 extend the one 
dimensional case to the case where the number of reproducing age classes is 
arbitrary. More precisely, we see from Corollary 1.5 that, if the structure of the 
reproduction gives a Leslie matrix L which is primitive, then the population 
approaches the steady-state age distribution, which is given by 

Let us now consider the case where the matrix L is non primitive. A model for 
this situation is the case where for all r = 0, 1, 2, ... 

Then 

is a 2-periodic solution of equation (13). 
From Theorem 1.4 we see that even in the case where L is non primitive, if the 

age classes of the population become all positive for some finite time, then the 
population also approaches the steady-state age distribution. 

Otherwise, the population becomes periodic, in the sense that the reproduction 
becomes periodic and the number of females of the class i (for i E (1, ..., n)) 
approaches periodically either 0 or l i i  . 

2. ONE DIMENSIONAL CASE 

In this section we will prove theorem 1.1 and 1.2. The next lemma provides a 
necessary condition for x to attract the points of 10, +m[. 
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78 P. MAGAL 

LEMMA 2.1 Under (HI) ,  assertion (c)  of theorem 1.1 implies ( a )  of the same 
theorem. 

Proof We prove the result for m = 1, and as (Hl) also holds for f with m 2 1 
the lemma will follow. First we remark that, since i attracts the points of 10, +m[ 

under f, i must be the only fixed point off in 10, +w[. Now suppose there exists 
y E 10, +w[ - {i ) such that 

Suppose for example that 0 < y < i , the case y > .i is similar, Since, we cannot have 

because i attract the points of ] 10, +=[, there must exist z such that 

Now, by the intermediate value theorem, we have a contradiction, with the fact 
that x is the only fixed point o f f  in 10, +w[. 0 

Lemma 2.1 proves (c )  3 (a). On the other hand, (a )  3 (b )  is trivial. Now we 
will prove the main part of the theorem 1 .l ,  which is (b )  = (c).  In fact, the prin- 
ciple of the proof is essentially the same as the proof of theorem 2.1 p:47 in 
Shxkovsky et a!, [24!: The main difference here is that we obtain from a general 
result on dissipative systems (see theorem 2.4.2 p: 17 in Hale [ lo ] ) ,  first a global 
result, and also the stability of the non trivial fixed point, and the fact that the non 
trivial fixed point attracts the compact sets of 10, +w[. Here we state only the part 
of  theorem 2.4.2 p: 17 in Hale I101 that we are interested in. 

THEOREM 2.2 (HALE [ l o ] )  If T: X + X is a continuous map on X, a complete 
metric space, and there is a non empty compact set K that attracts the compact 

sets of X and A = n P K ,  then A is compact, invariant (i.e. A = T(A)), stable, 
m 2 O  

and attracts the compact sets ofX.  
By using this theorem, we obtain the following lemma. 

LEMMA 2.3 Under (HI) ,  and assertion (b)  of theorem 1 . I ,  there exists J = [a, b] 
(with 0 < a I b),  a closed bounded interval which is invariant (i.e., J =f(J)) ,  sta- 
ble, and attracts the compact sets of]O, +w[ in R. 

Proof First under the assumptions made onf, it is not difficult to prove that we 
must have 
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DISCRETE POPULATION MODEL 79 

As each compact set in 10, +a [  is included in some closed bounded interval of 
10, +a[ ,  to apply theorem 2.2 to f, we will find a closed bounded interval K = 

[c, 4 0 < c 5 d, such that 

f (K) C K ,  

and for all closed bounded interval L C 10, +a[  there exists rn E N such that 

jC"(L) C K. 

Then we will applied theorem 2.2 to f l K  and we will obtain the result. By conti- 
nuity off, and sinceKO) = 0, there exists E E 10, 2 [ such that 

f(x) < ~ V X E  [ o , ~ ] .  

Then, we take 

c- = E. 

Now, denote by 

If h, = i , then by continuity off, and sincefli) = i , there exists 6 > 0 such that 

fix) > E'V'X t [.i?,.i?+ti]. 

Now we take 

d = x + 6 ,  andK=[c,d].  

Now by construction, we have 

f ( K )  C K.  

I fbo> i ,  we take 

d = bo, and K = [c,d]. 

Then by construction we must have 

f (K) C K 

Otherwise, there must exist some zl E I;, i + 6[ satisfying Kzl) < E, and by 
construction of d, there must exists some Z,, E ]E, i [ satisfyingfi~) = 21, but this 
contradicts the hypothesis, because then 

Now we prove that K attracts the compact intervals of 10, +m[. Let LI  = [a,, b,] 
(with 0 < a1 I b l )  be a closed bounded interval of 10, +.or. If 6, > d, let us consi- 
der the following sequence of intervals 

L, = [a,,b,] = f m ( L l )  Vrn > 1. 
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80 P. MAGAL 

And remark that, if brn > d for some m 2 1 then by construction of K 

bm= max f ( y ) =  max f ( y ) ,  
Y E L ~  i yE.L-1 and y>d 

(because fix) < d V x  E [0, i ] and fix) < x Vx > i ). 

Now, suppose that 

b , > d V m ~ N - ( 0 ) .  

Then for each m E N there exists x(m) E Id, b l ]  such that 

By compactness of [d, b l ] ,  we can always suppose that 

x(m) + Pas  n? -4 t o o .  

Now, by using the continuity off we must have 

-J L * I + ~ / Z )  K +-77[.fl c,.- ~ i i  - c KG 
U 1 J \A) 2 J \ A ]  1"' a" r r ' .  L L Y .  

Soy(.; ) -+ y as m -+ +w, with 

f(y) = y a n d y L d  > f .  

This is a contradiction, so there exists mg E N such that 

b,<dVm>mo.  

Now, by applying the same method one can show that, if a,- < E there exists ml 
U 

2 mo such that 

..I - w . - 1 -  
t. 1 Urnl V I l l  " L I  

And, finally, Vm Z ml 

Now, one can apply theorem 2.2, and we deduce that, then the set J = n f ( K )  
rn > 0 

is compact, invariant (i.e. flJ) = J),  stable and attract the compact set of 10, +m[. 

It remains to prove that J is an interval, but this is clear because J = n f ( K )  is 
r n 2 O  

the intersection of a non increasing sequence of intervals. 0 
Now to complete the proof of (b) a (c) ,  it remains to show that J = { i ). For 

this, we will apply the following lemma, which can be found in Sharkovsky et al. 
[24] (Lemma 1 p:48). 

LEMMA 2.4 (SHARKOVSKY ET AL. [24]) Let K c [W be a closed hounded interval 
distinct fiom a point and let$ K K K be a continuous map with J K )  = K. Then the 
interval K contains at least twofied points or afiedpoint and a 2-periodic solution. 
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DISCRETE POPULATION MODEL 8 1 

From this lemma, we see that under assertion (b) of theorem 1.1, the closed 
bounded invariant interval J determined in lemma 2.3 is necessarily reduced to 
J = {i ). This completes the proof of theorem 1.1. 

Proof (of theorem 1.2) From theorem 1.1 we see that, if the nontrivial fixed point 
i is unstable, or does not attract the points of 10, +.or (that is to say, (c) is not satis- 
fied), then by using the assertion (b) there exists yo E 10, +00[ - {X ) such that 

(f2(yo> I YO and 0 < YO < 3) or (f2(yo) L YO and f < YO). 

Now by using the fact that f (0) = 0 and continuity off,  it is not difficult to 
prove that for yl E 10, ; [ small enough we have 

f2(y1) > Y* 

(iwcauseA0) = 0 and by assumption of theorem 1.2,fTy) > y for ally E 10, i jj. 
By denoting 

M = sup f ( x )  
x€lOzJ 

we have for all y2 E ]M, +m[ 

f2(Y2) < Y2, 

(because fly) > y for all y E I;, -[), 
Finally, by applying the intermediate value theorem either between yo and y, 

(if yo < i ), or between yo and y2 (if yo > .i ), we obtain a non trivial Zperiodic 
solution off: Theorem 1.2 is proved. 0 

3. STUDY OF THE LINEAR PART 

We start this section by some notations. 
Let A E M,(R) be a real matrix, we denote by o (A) the spectrum of A, r(A) the 

spectral radius of A (i.e. the maximum modulus of all the eigenvalues of A), and 
by oo(A) the peripheral spectrum of A (i.e. the set of all the eigenvalues of A with 
modulus equal to r(A)). We also denote by 

lRk = ( l , l ,  ..., l ) T ~ i @ ( f ~ r k z  1). 

With these notations, A E Mn (R,) a non negative matrix is said to be markovian if 
AIRn = lRn. 

Now, we state a result on irreducible non negative matrices, from which we will 
deduce all the results of this section. 

THEOREM 3.1 Let A E Mn (R,) be an irreducible non negative matrix. 
If there are precisely p E {I  ,.. . , n} eigenvalues of A in o,(A) (i.e.. of maximum 
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82 P. MAGAL 

modulus) counting the algebraic multiplicity, then there exists a permutation of 
the canonical basis of Rn. such that: 

in the permuted basis, where for all i = I,.... p the block-matrix Ai, E Mni (R,) is 
primitive. 

Pmof To prove this result one can use the Frobenius form of the irreducible non 
negative matrix (see the book by Minc [21] theorem 3.1 p:51 for this result). By 
computing the prh power of the matrix under this form theorem 3.1 is obtained. 
We will mi detai: ht lher  the prwf of this resu!t. 

LEMMA 3.2 Let A = {ai$ E M,, (R+) be an irreducible non negative markovian 
matrix, and !PI. V E RRf he a vector satisfying 

O L V j <  l ;V  j =  1, ..., n 

and sq?pne there e.xirt~ jG E { I  *. ..; n)  such that 

O<Vj, - - < 1. 

Then for all m E N - {U) there exists j,,, E {I ,  .... nj  such that 

O < ( r iV j j , , ,  < 1 .  

Proof Let V E R," be a non negative vector satisfying the assumptions of 
lemma 3.2 and let jo E (1 ,..., n )  be an integer such that 

0<Vj0  < 1. 

Since A is irreducible for all j E (1, ..., n )  there exists i E (1 ,..., n )  such that 
aij > 0. 

So, for j = jo there exists io E (1, ..., n )  satisfying 

aio jo > 0. 

This implies that, with the fact that A is markovian, 

O < (AV)io = f: U j o  jvj = f: ai0 jVj + u ; ~ ; ~ V ~ ~  < I 
j= 1 j= 1 und j# io 

Moreover, by using again the fact that A is markovian, we obtain: 

O<(AV),< 1 V j =  1, ..., n. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 R

iv
er

si
de

 L
ib

ra
ri

es
] 

at
 2

1:
13

 1
5 

O
ct

ob
er

 2
01

4 



DISCRETE POPULATION MODEL 

Now, introduce the sequence 

v ( ~ '  = AmV. 

By repeating the above argument, one can see that 

o<v :~ )  5 lvi= 1 ,  ..., n, 

and for some j E (1, ..., n) 

0 5 vjm' 5 1. 

Lemma 3.2 is proved. 0 
From theorem 3.1, and lemma 3.2, we now can prove proposition 1.3. 

Proof (of proposition 1.3) Since ( H l )  holds, and since we consider the k-periodic 
soiutions in E, we can always repiace the map F' in equation (6) by the matnx L of 
equation (8 j, and look for the periodic solutions in E of the following equation 

X ( r + l ) = L X j t ) t / t ~ N  (! 4) 

with initial condition 

X ( t )  = X o  E !q. 
Now, we shew existence of such periodic solutions. Since L is an irreducible non 
n p o ~ v p  ---a--- - - m&x, we cm qp!y &eererr? 3.1. Se, &ere exists a pe,mutatim ~f the 
canonical basis of iWn andp E (1, ..., n) such that 

0 0 '.. '. 

. . 0 
0 ... ... 

in the permuted basis, where the block matrices Aii E M, (R+) are primitive 
I 

for all i = 1, ..., p, andp is the number of eigenvalues of L in oo (L). Denote for all 
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84 P. MAGAL 

Since L is markovian, LP is also markovian and we have for all j E {,..., n )  

L P V ( j )  = V ( j ) .  

Moreover p > 1 because L is non primitive. Thus for all j E (1 ,..., p )  the finite 
sequence { V O ,  LVO), ..., LP-'VO) contains a k-periodic solution of equation (14) 
with 1 5 k I p. Now, from the fact that L is irreducible and markovian, we must 
have 

LV = V H V = h l W n  (A. E R), 

and so k > 1. Moreover, if there exists jo E (1 ,..., p )  such that {V(io), LVCjo) ,..., 
LP-' V( jO))  is not contained in 

then, there exists j E {0 ,..., p - 1 ) and io E ( 1  ,..., n) such that 

0 < ( L P V ( ~ ~ ] ] ~ ~  < i ,  

and by applying lemma 3.2, we obtain a contradiction with the hc i  that 

Now, denote by 

X ( j )  = x V ( j )  forall j E  (1, ...,PI. 
Then. for each j E {I, ..., p }  C, = {XOi) ,  W((io), ..., L*'xC~~)) contains a k-perio- 
bic sohtion of equation (5 )  in E wit!? ! < k i r" . 

Now we show that every k-per idc  solution of equation (5) in E, satisfies 1 < k I p. 
hi C - (C ,,..., C k )  be the orbit of a k-pi iodc  s h t h  of equation (5) in E. 

Since for all I = 1,2, ... 

and 

c ~ = L ~ ' P c ~ v ~ =  1, ..., k, 

then for 1 large enough 

that is all the components of Ah1 are positive. 
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DISCRETE POPULATION MODEL 

We deduce from this fact that for each i E { I  ,..., k )  

C; = x ( j )  
j€.J; 

for some Ji C (1 ,..., p) ,  Ji # @, and Xu = x VO] 
Now from the first part of the proof, we know Gat 1 I k I p. Moreover, since L j s  

irreducible, if k = 1 theperiodic solution must be X , which is impossible because X 
P E = {X E - (0, X ): Xi = X or O Vi  = 1 ...., n).  Thus, we must have k > 1. 

Proposition 1.3 is proved. 0 
Now we give a general result on irreducible non negative markovian matrices, 

from which we will deduce corollary 1.3. 

THEOREM 3.3 Let A = {a,) E Mn (R,) be an irreducible non negative matrix. 
Then, there exists rn E b+ - {ijj a positive integer such that 
for ail A' E R: - {O), m 1 m l ,  
lf / t  A"+ ' ( )~  > @ and a > 1 )  I +horn (zimay)J > L). 

-.I 1 ! * - 11 - ' "'-" 
Proof Without loss of generality, since the matrix A is irreducible, by making 
the change of variable as in the beginning of the proof of theorem 3.1, we can 
always assume that A is markovian. Denote by p E (1, ..., n )  the number of 
eigenvalues of o o  ( A )  (i.e., of modulus one). Since the matrix A is irreducible, we 
cm 'u:eoiei,i 3.1, we dediice iiiat die,-e a Fi,iiiiiai;oi, on iiie 

canonical basis of Rn such that 

in the permuted basis, where the block matrices Aii E M ,  ( R + )  are primitive for 
1 

all i = 1 ,..., p. 
Without loss of generality, we can always assume that A is as above. 
Now, since the non negative matrices Aii are primitive, there exists mo E N 

such that, for all i = 1 ,..., p 

A? > > o  

This means that all the component of A;O are positive. Let X E [W! - ( 0 )  be anon 
negative vector, we have to show that for all rn > rnl = rnw, for all i = 1, ..., n, and for 
all j = 1 ,..., n if 

( A ~ + ' X ) ;  > 0 and a;,  > 0 then (AmX) ,  > 0. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 R

iv
er

si
de

 L
ib

ra
ri

es
] 

at
 2

1:
13

 1
5 

O
ct

ob
er

 2
01

4 



86 

As before we denote by 

Let m 2 ml and io E (1, ..., n) such that (Am + lX). l o  . Then, there exists at least 
one jo E (1, ..., n) such that 

ui0p < 0 a2d (AmX) jO > 0. 

But then, there exists lo E {I, ..., p)  such that 

P 

(because V(j) - 1 R,, ), and 
j -  1 

From this we deduce that for all i - 1 ,..., n such that V(~O)~ > 0 we have (ArnWi > 0. 
But now by using lemma 3.2, we must have for each j = 1 ,..., n such that aiJ > 0 
then V(lo)j> 0 (because APV(lo) = V(lo), so by using the lemma 3.2 we must have 
(AV(lo))io = 1). Theorem 3.3 is proved, with ml -- mgp [7 

COROLLARY 3.4 Under assumption i) of (HI), we have the following statement. 
There exists t l  E N a non negative integer such that, for each Xo E [W," , ifwe 

denote by @(t)},,p.~ the solution of equation (5) with initial value Xo E [W," - {O}, 
we have for t 2 tl, 

ifXl(t + 1)  > 0 and Rj > 0 then Xkt) >O. 

Proof By using i) of ( H I )  (i.e.,flO) = 0 andflx) > 0 for all x > 0) we can always 
replace F by L in equation ( 5 ) ,  and by applying theorem 3.3 to this new equation 
we obtain the result. 0 
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DISCRETE POPULATION MODEL 

4. PROOF OF THEOREM 1.4 AND COROLLARY 1.5 

We start this section by proving a result on the delay difference equation (4),  
from which we will deduce the asymptotic behavior of the solutions of equation 
(5). We recall that the equilibrium solution 

2(t)  = 2 v t 2 -n, 

of equation (4)  is said to be stable, if for all E > 0 there exists 71 E 10, min (E, 

X)[ such that, all the solution {x(t)),>-, of equation (4 )  starting with an initial 
value 

x(-i) =x-i € I f - q , f + q [ ,  v i =  l , . . . ,n  

satisfies 

~ ( t )  €12- &,4+ &[Vt > -n. 

PROPOSITION 4.1 Suppose assumption ( H I )  holds, and consider {~(t)}~>-,  a 
solution of the delay difference equation (4). 

Then, if we denote by fir(t))peX the sqzrence ~f the positive elements of 

{xft)},-, we have 

x ( t p )  + .f as p + +m. 

,Vcre=c.cr, the ody  non trivial constant solution of equation (4)  

f ( t )  = 2  Vr > -n, 

is stubie. 

Proof Let (x-,, x-,+l ,..., x-1) E [W: - {0) ,  if we denote by { ~ ( t ) ) , ~ - ,  the solu- 
tion of equation (4)  with initial condition 

x(-i) =x-iVi= l l . . .n ,  

then by the corollary 3.4, there exists to E N such that 

V r > t o V i =  l , . . . , n i f x ( t )  >Oandpi>Othenx(t- i )  > O .  

Without loss of generality we can always suppose that to = 0, by taking the ini- 
tial condition 

(x(to - n),x(to -n+ 1 ) ,  . . .,x(to - 1 ) ) .  

Now, from ( H I )  one can easily prove that 
b ' M , m > O w i t h O < m ~ M t h e r e e x i s t a , b > O w i t h a < b s u c h t h a t  

blM1 C b,bI andf([a,bI)  C h b l .  
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88 P. MAGAL 

Now, denote by 

m =  min (x(-i)) and M = max (x(-i)), 
i=l ,..., n andx(-i)>0 i=l ,  ..., n 

and choose a ,  b > 0 with a < b such that 

n 

because p i  > 0 implies x(-i) > 0 and so pix ( - i) E [a, b]. 
i -  1 

ButA[a, b]) C [a, b] so we have also 

4 0 )  E [a, bl. 

If x(1) > 0 then we have x(0) = 0 or x(0) E [a, b], so by using the arguments as 
previously we have 

4 1 )  E f([a,bI) a n d 4 1 1  E h b l .  

Thus by induction we have 

V t E N if x(t) > 0 then x(t) E f ([a, b ] )  and x(t) E [a, b]. 

Now consider x(t) for t 1 n. 
If x(n) > 0 we have 

and 

becauseA[a, b]) is an interval and pi  > 0 implies x(n - i) > 0. So, 

and by induction we have 
Vt 2 n if x(t) > 0 

Finally, by induction arguments on k, we obtain 

V k E N, Vt 2 kn, if x(t) > 0 then x(t) E fk" ([a, b]). 
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DISCRETE POPULATION MODEL 89 

Now, from theorem 1.1, we know that under (H 1 ); attracts the compact sets of 
R - ( 0 )  underf, and in particular x attracts [a, b] underf. 

Thus if we denote by { ~ ( t ~ ) ) ~ ~ ~  the sequence of all the positive elements of 

{x(t) ),>+ one has 

x(t,,) -b P a s p  -+ +.o. 

(because fk( [a ,  b ] )  -+ { x  ) as k + +w). 

This proves the first part of proposition 4.1. 
Now, we prove that the equilibrium solution of equation (4), { x  (t)),2-n defined by 

f ( t )  = f V t 2 -n, 

is stable. 
Let E > 0 and q* E 10, min ( E ,  x )[. Then, from theorem 1.1 we know that x is 

a stabie fixed point off. So, there exists q E 10, min ( E  - q*, x ) [  such that 

By taking 

and 

...a 
wL have 

min ~ ( x ) , P - q  

Now, it is clear that if we denote by { ~ ( t ) ) ~ ~ ,  a solution of equation (4)  with 
initial value satisfying 

x(-i) = ~ - ~ € ] a , b [ V i =  1 ,..., n. 

Then 

x(0) E [a, b] C ] P  - E,P + E[ 

and by induction argument, 

x(t) E [a,b] C ] P - E , P + E [ Q ~ >  -n. 

So {x (t))f2-, is stable. 
The proposition is proved. 0 

Now, we will give the proof a of theorem 1.4. In the proof we will use the clas- 
sical notions of omega-limit sets for an orbit of a difference equation. For this we 
refer to the paper by La Salle [17] for definitions and properties. 
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90 P. MAGAL 

Proof  ( o f  theorem 1.4 ) Let Xo E RT - (0) and denote by {X(t)),,N the solu- 
tion of equation (5) with initial value 

X ( 0 )  = x o .  

If there exists to E N such that 

X ( t o )  E  { X E  IR: : X i > O V i =  l , . . . , n ) ,  

then, since L is irreducible, we must have 

X ( t )  E { X E R :  : X i  > O V i =  I ,  ..., n ) V t > t o ,  

so {X(r)),,N is eventually strongly positive, and from proposition 4.1, we must 
have 

X ( t )  -+ X as i + +w. 

If, on the other hand, {X(f)) , ,b is not eventually strongiy positive, then, from the 
prGpGsi?ien 4. i , x+r:e deduce &a? 

(0x0)  c E =  {XETW; - { O , X ) :  Vi= 1 ,..., n X i = f o r O ) ,  

where o ( X o )  denotes the omega-limit set of the solution of equation (5 )  with ini- 
tial value Xo. 

Rut; by using the fact that E is a finite set, ca(.Yc) is invariant by F (i.e., 

F ( o ( X o ) )  = o (XO)) ,  and is connected-invariant (see La Salle [17] for the defini- 
tion), we must have 

where { C , ,  ..., Ck) is the orbite of a k-periodic solution of equation ( 5 )  which is 
include in E. 

Now by using the proposition 1.2 on the k-periodic solutions of equation ( 5 )  in 
E, we know that if p  is the number of eigenvalues of L in its peripheral spectrum, 
we must have 

2 < k < p .  

Theorem 1.4 is proved. 0 

Proof  ( o f  - corollary 1.5) First, it is clear that from the proposition - 4.1 the fixed 
point X of F  is stable. Now, it remains to remark that, since X  is stable and 
attracts the point of 

I n t ( R : ) = { x ~ %  : X , > O V i =  1 ,..., n ) ,  
- 
X  attracts the compact sets of Int  {R; ) because Int  {R; ) is an open subset of 
R"). 
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DISCRETE POPULATION MODEL 9 1 

To conclude the proof the corollary 1.5,  it is sufficient to remark that, if the 
matrix is primitive then every solution { x ( t ) ) , , ~  of equation ( 5 )  with initial 
value Xo in R," - ( 0 )  is eventually strongly positive, i.e. there exists to E N such 
that 

X ( t ) E { X € R ?  : X i > O V i = l ,  ..., n ) V t > t o .  

Thus by application of the theorem 1.4, we obtain the corollary 1.5.  

5. CONCLUSION 

In this work, we have given a global description of the asymptotic behavior of 
equation (5 ) ,  under essentially the hypothesis that i attracts the points of 10, +a[ 
under f. 

Under this assumption, we have studied the change in the asymptotic behavior 
due to changes in the structure of the "linear part" (i.e. the passage from the irre- 
ducible primitive case to the irreducible non primitive case, and conversely) of 
the model. We have seen that the changes do not affect the asymptotic behavior 
in the interior of R: (i.e. we obtain the convergence of the solutions starting in 
the interior of R," to the non trivial fixed point). On the other hand, the passage 
from h e  irreducible primitive case to the irreducibie non primitive case, give rise 
to periodic solutions on the border of 03," , and these periodic solutions attract the 
solutions staying on the border of R," . 

Many related results were obtained by several authors. We refer to the book by 
Kwcic and Ladas ii6j where many resuits and exampies can be found. 
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