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1 Introduction

The main purpose of this paper is to present a comprehensive semilinear theory
(Cazenave and Haraux [5], Davies and Pang [8], Hieber [15, 16], Xiao and Liang
[45], etc.) that will allow us to study the dynamics of the non-densely defined
Cauchy problems, such as asymptotic behavior of solutions and bifurcations.
Consider the Cauchy problem:

du

dt
= Au + F (t, u), t ≥ 0, u(0) = u0 ∈ D(A), (1.1)

where A : D(A) ⊂ X → X is a linear operator in a Banach space X and
F : [0,+∞) ×D(A) → X is a continuous map. We are interested in studying
the problem when D(A) is not dense in X and A is not a Hille-Yosida opera-
tor. Several types of differential equations, such as delay differential equations,
age-structure models in population dynamics, some partial differential equa-
tions, evolution equations with nonlinear boundary conditions, can be written
as semilinear Cauchy problems with non-dense domain (see Da Prato and Sines-
trari [7], Thieme [35, 36], Liu et al. [19], Magal and Ruan [22]).

When A is a Hille-Yosida operator (i.e., if there exist two constants ω ∈ R
and M ≥ 1 such that (ω, +∞) ⊂ ρ(A) and ‖ (λI −A)−k ‖L(X) ≤ M

(λ−ω)k , ∀λ >

ω,∀k ≥ 1, where L(X) the space of bounded linear operators from X into X
and ρ(A) is the resolvent set of A) and is densely defined (i.e., D(A) = X),
the problem has been extensively studied (see Segal [33], Weissler [44], Martin
[25], Pazy [30], Hirsch and Smith [17]). When A is a Hille-Yosida operator but
its domain is non-densely defined, Da Prato and Sinestrari [7] investigated the
existence of several types of solutions for (1.1). Thieme [35] investigated the
semilinear Cauchy problem with a Lipschitz perturbation of the closed linear
operator A which is non-densely defined but is Hille-Yosida. Integrated semi-
group theory was used to obtain a variation of constants formula which allows
to transform the integrated solutions of the evolution equation to solutions of
an abstract semilinear Volterra integral equation, which in turn was used to find
integrated solutions to the Cauchy problem. Moreover, sufficient and necessary
conditions for the invariance of closed convex sets under the solution flow were
found. Conditions for the regularity of the solution flow in time and initial
state were derived. The steady states of the solution flow were characterized
and sufficient conditions for local stability and instability were given. See also
Thieme [36, 38].

In this paper, we attempt to extend Thieme’s results [35] to the case when
the operator A is not Hille-Yosida. The perturbations of the operator are only
Lipschitz on bounded sets. In order to do such extensions, we need to obtain an
estimate for nonhomogeneous equation which is obtained in Proposition 2.14.
Then we are able to develop and extend most of his results (except the positivity
result) in [35]. We obtain some weak and classical conditions for positivity of
the solutions by considering the problem in a more general setting; that is, we
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only impose that the integrated solutions exist when the nonlinear interaction
term F is continuous.

We would like to make some comments about the assumption that the linear
operator A is not a Hille-Yosida operator. We first assume that the resolvent set
ρ(A) of A is non-empty and that A0, the part of A in D(A), is the infinitesimal
generator of a strongly continuous semigroup {TA0(t)}t≥0 of bounded linear
operators on D(A). Then A generates an integrated semigroup {SA(t)}t≥0 on
X, defined by

SA(t) = (λI −A0)
∫ t

0

TA0(l)dl (λI −A)−1

for each λ ∈ ρ(A).
Then (see Magal and Ruan [22] and Thieme [38]) we need to impose an

additional condition to assure the existence of integrated solutions of the non-
homogeneous Cauchy problem

du(t)
dt

= Au(t) + f(t) for t ≥ 0 and u(0) = 0. (1.2)

Here we assume that A is not a Hille-Yosida operator (Assumptioon 2.1), but
for each f ∈ C ([0, τ ] , X) the Cauchy problem (1.2) has an integrated solution
uf (t), and there exists a map δ : [0, +∞) → [0,+∞) (independent of f) such
that (Assumption 2.8 and Theorem 2.9)

‖uf (t)‖ ≤ δ(t) sup
s∈[0,t]

‖f(s)‖ , (1.3)

where
δ(t) → 0 as t → 0.

In particular as in the example presented in Magal and Ruan [22], the Cauchy
problem may not have an integrated solution for f ∈ L1 (0, τ ; X) . The goal of
this paper is to show that under such a condition on the Cauchy problem (1.2),
we still can extend the results for the classical semi-linear Cauchy problems.

In practice, it is relatively easy to verify that the linear operator A is not
a Hille-Yosida operators (i.e. verifying Assumptioon 2.1). Nevertheless, for
a given example, it may require some work to verify the condition (1.3) (i.e.
Assumption 2.8). In the context of age-structured models the condition (1.3) has
been successfully verified by Magal and Ruan [22] using some characterization
on the resolvent of A. For the same class of PDEs, Thieme [38] also successfully
applied the notion integrated semigroup with bounded p-semi variation to verify
condition (1.3). For parabolic systems, this question has been studied by Prevost
[32] and Ducrot et al. [13]. In particular, it has been proved that if A is almost
sectorial, and A0 the part of A in D(A) is a sectorial operator, then condition
(1.3) is satisfied. We also refer Prevost [32] for more examples in the context of
parabolic equations.

The rest of the paper is organized as follows. In section 2, we recall some
results on integrated semigroups and give an estimate for solutions to the non-
homogeneous equation (see Proposition 2.14) which is crucial for the stability

4



of equilibria to the semilinear problem. Sections 3-7 are devoted to the study
of the semilinear problem. In section 3, positivity of solutions to the semilin-
ear problem is considered. Section 4 focuses on Lipschitz perturbations of the
problem. Section 5 deals with differentiability of the solutions with respect to
the state variable. In section 6 we are concerned with time differentiability of
the solutions. The stability of equilibria is studied in section 7. In section 8, as
applications we discuss transport equations with nonlinear boundary conditions
and parabolic equations with nonlocal boundary conditions and show that our
results apply. In particular, we verify that our main Assumptions 2.1 and 2.8
hold for these two types of equations.

Notice that Magal and Ruan [22] presented some techniques and results for
integrated semigroups when the generator is not a Hille-Yosida operator and is
non-densely defined, obtained necessary and sufficient conditions for the exis-
tence of mild solutions for non-densely defined non-homogeneous Cauchy prob-
lems, and applied the results to study age structured models. Recently, Magal
and Ruan [23] developed the center manifold theory for non-densely defined
Cauchy problem and employed the theory to establish a Hopf bifurcation the-
orem for age structured models. This paper complements our previous articles
[22, 23] in studying semilinear Cauchy problems with non-dense domain.

2 Integrated Semigroups

In this section we recall some results about integrated semigroups. We refer to
Arendt [2, 3], Neubrander [28], Kellermann and Hieber [18], Thieme [36, 38],
Arendt et al. [4], and Magal and Ruan [22, 23] for more detailed results on the
subject.

Let X and Z be two Banach spaces. Let L (X, Z) denote the space of
bounded linear operators from X into Z and by L (X) the space L (X, X) .
Let A : D(A) ⊂ X → X be a linear operator. If A is the infinitesimal gen-
erator of a strongly continuous semigroup of bounded linear operators on X,
let {TA(t)}t≥0 denote this semigroup. The resolvent set of A is denoted by
ρ (A) = {λ ∈ C : λI −A is invertible} . Set

X0 := D(A),

and A0 the part of A in X0, which is a linear operator on X0 defined by

A0x = Ax, ∀x ∈ D(A0) := {y ∈ D(A) : Ay ∈ X0} .

Assume that (ω,+∞) ⊂ ρ(A). Then it is easy to check that for each λ > ω,

D (A0) = (λI −A)−1
X0 and (λI −A0)

−1 = (λI −A)−1 |X0 .

Recall that A is a Hille-Yosida operator if there exist two constants, ω ∈ R
and M ≥ 1, such that (ω, +∞) ⊂ ρ(A) and

∥∥∥(λI −A)−k
∥∥∥
L(X)

≤ M

(λ− ω)k
, ∀λ > ω, ∀k ≥ 1.
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In the following, we assume that A satisfies some weaker conditions.

Assumption 2.1 Assume that A : D(A) ⊂ X → X is a linear operator on a
Banach space (X, ‖.‖) satisfying the following properties:

(a) There exist two constants, ωA ∈ R and MA ≥ 1, such that (ωA,+∞) ⊂ ρ(A)
and ∥∥∥(λI −A)−k

∥∥∥
L(X0)

≤ MA

(λ− ωA)k
, ∀λ > ωA, ∀k ≥ 1;

(b) limλ→+∞ (λI −A)−1
x = 0,∀x ∈ X.

By using Lemma 2.1 in Magal and Ruan [22] and Assumption 2.1-(b) we
deduce that

D(A0) = X0.

By Hille-Yosida theorem (see Pazy [30], Theorem 5.3 on p.20) and the fact that
if ρ(A) 6= ∅ then ρ(A) = ρ(A0) (see Magal and Ruan [23, Lemma 2.4]), one
obtains the following lemma.

Lemma 2.2 Assumption 2.1 is satisfied if and only if ρ(A) 6= ∅, A0 is the
infinitesimal generator of a linear C0-semigroup {TA0(t)}t≥0 on X0, and

‖TA0(t)‖ ≤ MAeωAt, ∀t ≥ 0.

Now we give the definition of an integrated semigroup.

Definition 2.3 Let (X, ‖.‖) be a Banach space. A family of bounded linear
operators {S(t)}t≥0 on X is called an integrated semigroup if

(i) S(0) = 0.

(ii) The map t → S(t)x is continuous on [0,+∞) for each x ∈ X.

(iii) S(t) satisfies

S(s)S(t) =
∫ s

0

(S(r + t)− S(r)) dr, ∀t, s ≥ 0. (2.2)

An integrated semigroup {S(t)}t≥0 is said to be non-degenerate if S(t)x =
0, ∀t ≥ 0, then x = 0. According to Thieme [36], a linear operator A : D(A) ⊂
X → X is the generator of a non-degenerate integrated semigroup {S(t)}t≥0

on X if and only if

x ∈ D(A), y = Ax ⇔ S(t)x− tx =
∫ t

0

S(s)yds, ∀t ≥ 0. (2.3)

From [36, Lemma 2.5], we know that if A generates {SA(t)}t≥0 , then for each
x ∈ X and t ≥ 0,

∫ t

0

SA(s)xds ∈ D(A) and S(t)x = A

∫ t

0

SA(s)xds + tx.
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An integrated semigroup {S(t)}t≥0 is said to be exponentially bounded if there

exist two constants, M̂ > 0 and ω̂ > 0, such that

‖S(t)‖L(X) ≤ M̂ebωt,∀t ≥ 0.

When we restrict ourselves to the class of non-degenerate exponentially bounded
integrated semigroups, Thieme’s notion of generator is equivalent the one intro-
duced by Arendt [3]. More precisely, combining Theorem 3.1 in Arendt [3] and
Proposition 3.10 in Thieme [36], one has the following result.

Theorem 2.4 Let {S(t)}t≥0 be a strongly continuous exponentially bounded
family of bounded linear operators on a Banach space (X, ‖.‖) and A : D(A) ⊂
X → X be a linear operator. Then {S(t)}t≥0 is a non-degenerate integrated
semigroup and A its generator if and only if there exists some ω̂ > 0 such that
(ω̂, +∞) ⊂ ρ (A) and

(λI −A)−1x = λ

∫ ∞

0

e−λsS(s)xds, ∀λ > ω̂.

The following result is well known in the context of integrated semigroups.

Proposition 2.5 Let Assumption 2.1 be satisfied. Then A generates a uniquely
determined non-degenerate exponentially bounded integrated semigroup {SA(t)}t≥0 .
Moreover, for each x ∈ X, each t ≥ 0, and each µ > ωA, SA(t)x is given by

SA(t)x = (µI −A0)
∫ t

0
TA0(s) (µI −A)−1

xds

= µ
∫ t

0
TA0(s) (µI −A)−1

xds + [I − TA0(t)] (µI −A)−1
x.

(2.4)

Furthermore, the map t → SA(t)x is continuously differentiable if and only if
x ∈ X0 and

dSA(t)x
dt

= TA0(t)x, ∀t ≥ 0, ∀x ∈ X0.

From now on we define

(SA ∗ f) (t) =
∫ t

0

SA(t− s)f(s)ds,∀t ∈ [0, τ ] ,

whenever f ∈ L1 ((0, τ) , X) .
We now consider the non-homogeneous Cauchy problem

du

dt
= Au(t) + f(t), t ∈ [0, τ ] , u(0) = x ∈ D(A) (2.5)

and assume that f belongs to some appropriate subspace of L1 ((0, τ) , X) .

Definition 2.6 A continuous map u ∈ C ([0, τ ] , X) is called an integrated
solution (or mild solution) of (2.5) if and only if

∫ t

0

u(s)ds ∈ D(A), ∀t ∈ [0, τ ]
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and

u(t) = x + A

∫ t

0

u(s)ds +
∫ t

0

f(s)ds, ∀t ∈ [0, τ ] .

Since A generates a non-degenerate integrated semigroup on X, we can apply
Theorem 3.7 in Thieme [36] and obtain the following result.

Lemma 2.7 Let Assumption 2.1 be satisfied. Then for each x ∈ D(A) and each
f ∈ L1 ((0, τ0) , X) , (2.5) has at most one integrated solution.

Denote
(SA ¦ f) (t) =

d

dt
(SA ∗ f) (t)

whenever the map t → (SA ∗ f) (t) is continuously differentiable.
We will say that {SA(t)}t≥0 has a bounded semi-variation on [0, t] if

V∞(SA, 0, t) := sup
{∥∥∥∥∥

n∑

i=1

(
SA(ti)− SA(ti−1)

)
xi

∥∥∥∥∥
}

< +∞,

where the supremum is taken over all partitions 0 = t0 < .. < tn = t of the
interval [a, b] and over any (x1, .., xn) ∈ Xn with ‖xi‖X ≤ 1, ∀i = 1, .., n.

In the sequel, we will only assume that (2.5) has an integrated solution
whenever f ∈ C ([0, τ ] , X) , so we will make the following assumption.

Assumption 2.8 Let τ0 > 0 be fixed. Assume that {SA(t)}t≥0 has a bounded
semi-variation on [0, τ0] and

lim
t(>0)→0

V∞(SA, 0, t) = 0.

The following theorem, proved by Thieme [38], provides an equivalent con-
dition to Assumption 2.8 and is very helpful in application. We refer to Magal
and Ruan [22], Prevost [32] and Ducrot et al. [13] for verifying Assumption 2.8
for age-structured models and parabolic equations.

Theorem 2.9 Let Assumption 2.1 be satisfied. Then Assumption 2.8 is sat-
isfied if and only if for each f ∈ C ([0, τ0] , X) , the map t → (SA ∗ f) (t) is
continuously differentiable on [0, τ0], and

‖(SA ¦ f) (t)‖ ≤ δ (t) sup
s∈[0,t]

‖f(s)‖ , ∀t ∈ [0, τ0] ,

where δ : [0, τ0] → [0, +∞) is a non-decreasing map satisfying

lim
t(>0)→0

δ (t) = 0.
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Proof. Assume first that Assumption 2.8 is satisfied. By using Lemma 3.1 in
[38], we have for each t ∈ [0, τ0] and each f ∈ C ([0, τ0] , X) ,

‖(SA ? f)(t)‖ ≤ V∞(SA, 0, t) sup
s∈[0,t]

‖f(s)‖ ,

where (SA ? f)(t) is defined as a Stieltjes convolution (see [38]). Moreover, by
Theorem 4.2 in [38], we deduce that for each f ∈ C ([0, τ0] , X) , the map t →
(SA ∗ f)(t) is continuously differentiable and

(SA ? f)(t) = (SA ¦ f)(t) :=
d

dt
(SA ∗ f)(t).

So by fixing δ (t) = V∞(SA, 0, t) we obtain the desired estimate.
Conversely, by using the same arguments as in the proof of Theorem 3.4 in

[38], one deduces that

V∞ (SA(.), 0, t) ≤ δ (t) ,∀t ∈ [0, τ0] ,

and the result follows.
We have

SA(τ + h) = SA(τ) + TA0(τ)SA(h), ∀h ≥ 0,

so by using Assumption 2.8 we deduce that t → SA(t) has a bounded semi-
variation on [0, 2τ0] . Now using induction arguments, we deduce that t → SA(t)
has a bounded semi-variation on [0, τ ] for each τ ≥ 0, and by using Theorem
2.9 we obtain the following result.

Theorem 2.10 Let Assumptions 2.1 and 2.8 be satisfied. Then for each τ > 0,
t → SA(t) has a bounded semi-variation on [0, τ ] . Moreover, for each f ∈
C ([0, τ ] , X) , the map t → (SA ∗ f) (t) is continuously differentiable, (SA ∗ f) (t) ∈
D(A), ∀t ∈ [0, τ ] , and u(t) = (SA ¦ f) (t) satisfies

u(t) = A

∫ t

0

u(s)ds +
∫ t

0

f(s)ds, ∀t ∈ [0, τ ]

and
‖u(t)‖ ≤ V∞(SA, 0, t) sup

s∈[0,t]

‖f(s)‖ , ∀t ∈ [0, τ ] .

Furthermore, for each λ ∈ (ω, +∞) , we have

(λI −A)−1 (SA ¦ f) (t) =
∫ t

0

TA0(t− s) (λI −A)−1
f(s)ds. (2.6)

Corollary 2.11 Let Assumptions 2.1 and 2.8 be satisfied. Then for each x ∈ X0

and each f ∈ C ([0, τ ] , X0), the Cauchy problem (2.5) has a unique integrated
solution u ∈ C ([0, τ ] , X0) given by

u(t) = TA0(t)x + (SA ¦ f) (t), ∀t ∈ [0, τ ] .

Moreover, we have

‖u(t)‖ ≤ MAeωt ‖x‖+ V∞(SA, 0, t) sup
s∈[0,t]

‖f(s)‖ , ∀t ∈ [0, τ ] .

9



We now consider a bounded perturbation of A. The following result was
proved in Magal and Ruan [22, Theorem 3.1], which is also closely related to
Desch and Schappacher’s theorem (see [10] or Engel and Nagel [14, Theorem
3.1, p. 183]).

Theorem 2.12 Let Assumptions 2.1 and 2.8 be satisfied. Let L ∈ L (X0, X) .
Then A+L : D(A) ⊂ X → X satisfies Assumptions 2.1 and 2.8. More precisely,
if {SA+L(t)}t≥0 denotes the integrated semigroup generated by A + L, and τ1 ∈
(0, τ0] is chosen such that ‖L‖L(X0,X) V∞(SA, 0, τ1) < 1, then for each f ∈
C ([0, τ1] , X) ,

‖(SA+L ¦ f) (t)‖ ≤ V∞(SA, 0, t)
1− ‖L‖L(X0,X) V∞(SA, 0, τ1)

sup
s∈[0,t]

‖f(s)‖ , ∀t ∈ [0, τ1] .

We have the following lemma.

Lemma 2.13 Let Assumptions 2.1 and 2.8 be satisfied. Then t → SA(t) is
continuous from [0, +∞) into L (X) and

lim
λ→+∞

∥∥∥(λI −A)−1
∥∥∥
L(X)

= 0.

Proof. By Proposition 3.10 in Thieme [36], we have for each λ > max(0, ωA)
that

(λI −A)−1
x = λ

∫ +∞

0

e−λtSA(t)xdt.

Note that

SA(t)x =
d

dt

∫ t

0

SA(t− s)xds,

so by Assumption 2.8, we have

‖SA(t)x‖ ≤ V∞(SA, 0, t) ‖x‖ , ∀t ≥ 0.

But
SA(t + h)− SA(t) = TA0(t)SA(h),

it follows that t → SA(t) is operator norm continuous. Let ε > 0 be fixed and
let τε > 0 be such that V∞(SA, 0, τε) ≤ ε. Choose γ > max(0, ωA) and Mγ > 0
such that

‖SA(t)x‖ ≤ Mγeγt,∀t ≥ 0.

Then we have for each λ > γ that

∥∥∥(λI −A)−1
x
∥∥∥ ≤ λ

[
Mγ

∫ +∞

τε

e(γ−λ)tdt + ε

∫ τε

0

e−λtdt

]
‖x‖ .

Thus,
lim sup
λ→+∞

∥∥∥(λI −A)−1
∥∥∥
L(X)

≤ ε.
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This proves the lemma.
By using the fact that (SA ¦ f) (t) ∈ X0, ∀t ∈ [0, τ ] , and formula (2.6), we

have for each f ∈ C ([0, τ ] , X) that

(SA ¦ f) (t) = lim
µ→+∞

∫ t

0

TA0(t− l)µ (µI −A)−1
f(l)dl, ∀t ∈ [0, τ ] . (2.7)

This approximation formula was already observed by Thieme [35] in the classical
context of integrated semigroups generated by a Hille-Yosida operator. From
this approximation formulation, we then deduce that for each pair t, s ∈ [0, τ ]
with s ≤ t, and f ∈ C ([0, τ ] , X) ,

(SA ¦ f) (t) = TA0 (t− s) (SA ¦ f) (s) + (SA ¦ f (s + .)) (t− s). (2.8)

Let |.| denote the norm on X0 defined by

|x| = sup
l≥0

e−ωAl ‖TA0 (l)x‖ , ∀x ∈ X0.

Clearly, we have
|TA0 (t)|L(X0)

≤ eωAt, ∀t ≥ 0,

‖x‖ ≤ |x| ≤ MA ‖x‖ , ∀x ∈ X0,

and by Assumption 2.8, for each f ∈ C ([0, τ ] , X) and each t ∈ [0, τ ] ,

|(SA ¦ f) (t)| ≤ MA ‖(SA ¦ f) (t)‖ ≤ MAV∞(SA, 0, t) sup
s∈[0,t]

‖f(s)‖ . (2.9)

The following proposition is one of the main tools for studying semilinear
problems (see next section and also Magal and Ruan [23] for another class of
applications of this result).

Proposition 2.14 Let Assumptions 2.1 and 2.8 be satisfied. Let ε > 0 be fixed.
Then for each τε > 0 satisfying MAV∞(SA, 0, τε) ≤ ε, we have

‖(SA ¦ f) (t)‖ ≤ C (ε, γ) sup
s∈[0,t]

eγ(t−s) ‖f(s)‖ , ∀t ≥ 0

whenever γ ∈ (ωA, +∞) , f ∈ C (R+, X) , and with

C (ε, γ) :=
2εmax (1, e−γτε)

1− e(ω
A
−γ)τε

.

Proof. Let ε > 0, f ∈ C (R+, X) , and γ > ωA be fixed. Let τε = τε (ε) ∈ (0, τ ]
be such that MAV∞(SA, 0, τε) ≤ ε. By (2.9), we have

|(SA ¦ f) (t)| ≤ ε sup
s∈[0,t]

‖f(s)‖ , ∀t ∈ [0, τε] . (2.10)

Let γ > ωA be fixed. Set

ε1 = ε max
(
1, e−γτε

)
.
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Let k ∈ N and t ∈ [kτε, (k + 1) τε] be fixed. First, notice that if γ ≥ 0, we have

ε sup
s∈[kτε,t]

‖f(s)‖ = ε sup
s∈[kτε,t]

eγse−γs ‖f(s)‖

≤ εeγt sup
s∈[kτε,t]

e−γs ‖f(s)‖

= ε1e
γt sup

s∈[kτε,t]

e−γs ‖f(s)‖ .

Moreover, if γ < 0, we have

ε sup
s∈[kτε,t]

‖f(s)‖ = ε sup
s∈[kτε,t]

eγse−γs ‖f(s)‖

≤ εeγkτε sup
s∈[kτε,t]

e−γs ‖f(s)‖

= εeγte−γteγkτε sup
s∈[kτε,t]

e−γs ‖f(s)‖

= eγtεe−γ(t−kτε) sup
s∈[kτε,t]

e−γs ‖f(s)‖

≤ eγtεe−γτε sup
s∈[kτε,t]

e−γs ‖f(s)‖

= eγtε1 sup
s∈[kτε,t]

e−γs ‖f(s)‖ .

Therefore, for each k ∈ N, each t ∈ [kτε, (k + 1) τε] , and each γ ∈ R, we obtain

ε sup
s∈[kτε,t]

‖f(s)‖ ≤ eγtε1 sup
s∈[kτε,t]

e−γs ‖f(s)‖ . (2.11)

It follows from (2.10) and (2.11) that for all t ∈ [0, τε] ,

|(SA ¦ f) (t)| ≤ ε sup
s∈[0,t]

‖f(s)‖ = eγtε1 sup
s∈[0,t]

e−γs ‖f(s)‖ . (2.12)

Using (2.8) with s = τε, we have for all t ∈ [τε, 2τε] that

(SA ¦ f) (t) = T0 (t− τε) (SA ¦ f) (τε) + (SA ¦ f (τε + .)) (t− τε).

Using (2.10), (2.11), and (2.12), we have

|(SA ¦ f) (t)| ≤ eωA(t−τε) |(SA ¦ f) (τε)|+ |(SA ¦ f (τε + .)) (t− τε)|
≤ eωA(t−τε)eγτεε1 sup

s∈[0,τε]

e−γs ‖f(s)‖+ ε sup
s∈[τε,t]

‖f(s)‖

≤ eωA(t−τε)eγτεε1 sup
s∈[0,τε]

e−γs ‖f(s)‖+ eγtε1 sup
s∈[τε,t]

e−γs ‖f(s)‖

≤ ε1e
γt

(
e(ωA−γ)(t−τε) + 1

)
sup

s∈[0,t]

e−γs ‖f(s)‖ .

Similarly, for all t ∈ [2τε, 3τε] ,

(SA ¦ f) (t) = TA0 (t− 2τε) (SA ¦ f) (2τε) + (SA ¦ f (2τε + .)) (t− 2τε)

12



and

|(SA ¦ f) (t)| ≤ eωA(t−2τε)ε1e
γ2τε

(
e(ωA−γ)τε + 1

)
sup

s∈[0,2τε]

e−γs ‖f(s)‖

+ε sup
s∈[2τε,t]

‖f(s)‖

≤ eωA(t−2τε)ε1e
γ2τε

(
e(ωA−γ)τε + 1

)
sup

s∈[0,2τε]

e−γs ‖f(s)‖

+ε1e
γt sup

s∈[2τε,t]

e−γs ‖f(s)‖

≤ ε1e
γt

[
e(ωA−γ)(t−2τε)

(
e(ωA−γ)τε + 1

)
+ 1

]
sup

s∈[0,t]

e−γs ‖f(s)‖ .

By induction, we obtain ∀k ∈ N with k ≥ 1,∀t ∈ [kτε, (k + 1) τε] , and for each
γ > ωA that

|(SA ¦ f) (t)| ≤ ε1e
γt sup

s∈[0,t]

e−γs ‖f(s)‖
[
e(ωA−γ)(t−kτε)

k−1∑
n=0

(
e(ωA−γ)τε

)n

+ 1

]

≤ ε1e
γt sup

s∈[0,t]

e−γs ‖f(s)‖
[ ∞∑

n=0

(
e(ωA−γ)τε

)n

+ 1

]
.

Since γ > ωA, we have for each t ≥ 0 that

e−γt ‖(SA ¦ f) (t)‖ ≤ e−γt |(SA ¦ f) (t)| ≤ 2ε1

1− e(ωA−γ)τε
sup

s∈[0,t]

e−γs ‖f(s)‖ .

This completes the proof.
Let I ⊂ [0, +∞) be an interval. Set s := inf I ≥ 0. For each γ ≥ 0, define

BCγ (I, Y ) :=
{

ϕ ∈ C (I, Y ) : sup
l∈I

e−γ(l−s) ‖ϕ(l)‖Y < +∞
}

and
‖ϕ‖BCγ(I,Y ) := sup

l∈I
e−γ(l−s) ‖ϕ(l)‖Y .

It is well known that BCγ (I, Y ) endowed with the norm ‖.‖BCγ(I,Y ) is a Banach
space.

By using Proposition 2.14 we obtain the following result.

Lemma 2.15 Let Assumptions 2.1 and 2.8 be satisfied. For each s ≥ 0 and
each σ ∈ (s,+∞] , define a linear operator Ls : C ([s, σ) , X) → C ([s, σ) , X0)
by

Ls (ϕ) (t) = (SA ¦ ϕ(. + s)) (t− s), ∀t ∈ [s, σ) , ∀ϕ ∈ C ([s, σ) , X) .

Then for each γ > ωA, Ls is a bounded linear operator from BCγ ([s, σ) , X)
into BCγ ([s, σ) , X0) . Moreover, for each ε > 0 and each τε > 0 such that
MAV∞(SA, 0, τε) ≤ ε,

‖Ls (ϕ)‖L(BCγ([s,σ),X),BCγ([s,σ),X0))
≤ C (ε, γ) .
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Proof. Let ϕ ∈ BCγ ([s, σ) , X) be fixed. By using Proposition 2.14, we have for
t ∈ [s, σ) that

e−γ(t−s) ‖(SA ¦ ϕ(. + s)) (t− s)‖ ≤ C (ε, γ) sup
l∈[0,t−s]

e−γl ‖ϕ(l + s)‖

= C (ε, γ) sup
r∈[s,t]

e−γ(r−s) ‖ϕ(r)‖

≤ C (ε, γ) sup
r∈[s,σ)

e−γ(r−s) ‖ϕ(r)‖

and the result follows.

3 Semilinear Problems – Positivity

Start from this section, we consider the semilinear Cauchy problem

dU(t, s)x
dt

= AU(t, s)x + F (t, U(t, s)x), t ≥ s, U(s, s)x = x ∈ X0.

We shall investigate the properties of the non-autonomous semiflow generated
by the following problem

U(t, s)x = x + A

∫ t

s

U(l, s)xdl +
∫ t

s

F (l, U(l, s)x)dl, t ≥ s ≥ 0, (3.1)

or equivalently

U(t, s)x = TA0(t− s)x + (SA ¦ F (. + s, U(. + s, s)x)) (t− s), t ≥ s ≥ 0. (3.2)

Definition 3.1 Consider two maps χ : [0,+∞)×X0 → (0, +∞] and U : Dχ →
X0, where

Dχ =
{

(t, s, x) ∈ [0, +∞)2 ×X0 : s ≤ t < s + χ (s, x)
}

.

We say that U is a maximal non-autonomous semiflow on X0 if U satisfies the
following properties:

(i) χ (r, U(r, s)x) + r = χ (s, x) + s, ∀s ≥ 0,∀x ∈ X0, ∀r ∈ [s, s + χ (s, x)) .

(ii) U(s, s)x = x, ∀s ≥ 0, ∀x ∈ X0.

(iii) U(t, r)U(r, s)x = U(t, s)x, ∀s ≥ 0, ∀x ∈ X0, ∀t, r ∈ [s, s + χ (s, x)) with
t ≥ r.

(iv) If χ (s, x) < +∞, then

lim
t→(s+χ(s,x))−

‖U(t, s)x‖ = +∞.
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Set
D =

{
(t, s, x) ∈ [0, +∞)2 ×X0 : t ≥ s

}
.

In order to present a theorem on the existence and uniqueness of solutions to
equation (3.1), we make the following assumption.

Assumption 3.2 Assume that F : [0, +∞)×D(A) → X is a continuous map,
and for each σ > 0 and each ξ > 0 there exists K(σ, ξ) > 0 such that

‖F (t, x)− F (t, y)‖ ≤ K(σ, ξ) ‖x− y‖

whenever t ∈ [0, σ] , y, x ∈ X0 with ‖x‖ ≤ ξ and ‖y‖ ≤ ξ.

The following theorem is proved in Magal and Ruan [22, Theorem 5.2].

Theorem 3.3 Let Assumptions 2.1-2.8 and 3.2 be satisfied. Then there exist
a map χ : [0, +∞) × X0 → (0,+∞] and a maximal non-autonomous semi-
flow U : Dχ → X0, such that for each x ∈ X0 and each s ≥ 0, U(., s)x ∈
C ([s, s + χ (s, x)) , X0) is a unique maximal solution of (3.1) (or equivalently a
unique maximal solution of (3.2)). Moreover, Dχ is open in D and the map
(t, s, x) → U(t, s)x is continuous from Dχ into X0.

We are now interested in the positivity of the solutions of equation (3.1). Let
X+ ⊂ X be a cone of X. That is, X+ is a closed convex subset of X satisfying
the following two properties:

(i) λx ∈ X+, ∀x ∈ X+, ∀λ ≥ 0.

(ii) x ∈ X+ and −x ∈ X+ ⇒ x = 0.

It is clear that X0+ = X0 ∩X+ is also a cone of X0. Recall that such a cone
defines a partial order on the Banach space X which is defined by

x ≥ y if and only if x− y ∈ X+.

We need the following assumption to prove the positivity of solutions of equation
(3.1).

Assumption 3.4 Assume that there exists a linear operator B ∈ L (X0, X)
such that

(a) For each γ > 0, A− γB is resolvent positive (i.e., (λI − (A− γB))−1X+ ⊂
X+ for all λ > ωA large enough).

(b) For each ξ > 0 and each σ > 0, there exists γ = γ(ξ, σ) > 0, such that

F (t, x) + γBx ∈ X+

whenever x ∈ X0+, ‖x‖ ≤ ξ and t ∈ [0, σ] .
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Proposition 3.5 Let Assumptions 2.1-2.8 and 3.2-3.4 be satisfied. Then for
each x ∈ X0+ and each s ≥ 0, we have

U(t, s)x ∈ X0+, ∀t ∈ [s, s + χ (s, x)) .

Proof. Without loss of generality we can assume that s = 0 and x ∈ X0+.
Moreover, using the semiflow property, it is sufficient to prove that there exists
ε ∈ (0, χ (0, x)) such that U(t, 0)x ∈ X0+, ∀t ∈ [0, ε] . Let x ∈ X0+ be fixed. We
set ξ := 2 (‖x‖+ 1) . Let γ > 0 such that

F (t, x) + γBx ∈ X+

whenever x ∈ X0+, ‖x‖ ≤ ξ and t ∈ [0, 1]. Fix τγ > 0 such that γV∞(SA, 0, τγ) <
1. For each σ ∈ (0, τγ) , define

Eσ = {ϕ ∈ C ([0, σ] , X0+) : ‖ϕ(t)‖ ≤ ξ, ∀t ∈ [0, σ]} .

Then it is sufficient to consider the fixed point problem

u(t) = T(A−γB)0(t)x + (SA−γB ¦ F (., u(.)) + γBu(.)) (t) =: Ψ(u)(t), ∀t ∈ [0, σ] .

Since A − γB is resolvent positive, we have T(A−γB)0(t)X0+ ⊂ X0+, ∀t ≥ 0.
Using the approximation formula (2.7), we also deduce that for each τ > 0,

(SA−γB ¦ ϕ) (t) ∈ X0+, ∀t ∈ [0, τ ] , ∀ϕ ∈ C ([0, τ ] , X+) .

Moreover, by using Theorem 2.12, for each ϕ ∈ Eσ and each t ∈ [0, σ], we
deduce that

‖Ψ(ϕ)(t)‖ =
∥∥T(A−γB)0(t)x + (SA−γB ¦ F (., ϕ(.)) + γϕ(.)) (t)

∥∥

≤ ∥∥T(A−γB)0(t)x
∥∥ +

V∞(SA, 0, t)
1− γV∞(SA, 0, τγ)

sup
s∈[0,t]

‖F (s, ϕ(s)) + γϕ(s)‖

≤ sup
t∈[0,σ]

∥∥T(A−γB)0(t)x
∥∥

+
V∞(SA, 0, σ)

1− γV∞(SA, 0, τγ)

[
sup

s∈[0,σ]

‖F (s, 0)‖+ [K(1, ξ) + γ] ξ

]
.

Hence, there exists σ1 ∈ (0, 1) such that

Ψ(Eσ) ⊂ Eσ, ∀σ ∈ (0, σ1] .

Therefore, for each σ ∈ (0, σ1] and each pair ϕ,ψ ∈ Eσ, we have for t ∈ [0, σ]
that

‖Ψ(ϕ)(t)−Ψ(ψ)(t)‖ = ‖(SA−γB ¦ [F (., ϕ(.))− F (., ψ(.)) + γ (ϕ− ψ) (.)]) (t)‖
≤ V∞(SA, 0, σ)

1− γV∞(SA, 0, τγ)
[K(1, ξ) + γ] sup

s∈[0,σ]

‖(ϕ− ψ) (s)‖ .

Thus, there exists σ2 ∈ (0, σ1] such that Ψ(Eσ2) ⊂ Eσ2 and Ψ is a contraction
strict on Eσ2 . The result then follows.
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Example 3.6 (1) We refer to Thieme [35] and Hirsch and Smith [17] for more
results on the positivity of semiflows.

(2) Usually Proposition 3.5 is applied with B = I. But the case B 6= I can
also be useful. Consider the following functional differential equation:

{
dx(t)

dt
= f (xt) , ∀t ≥ 0,

x0 = ϕ ∈ C ([−τ, 0] ,Rn) ,
(3.3)

where f : C ([−τ, 0] ,Rn) → Rn is Lipschitz continuous on bounded sets of
C ([−τ, 0] ,Rn). In order to obtain the positivity of solutions, it is sufficient to
assume that for each M ≥ 0 there exists γ = γ (M) > 0 such that

f (ϕ) + γϕ (0) ≥ 0

whenever ‖ϕ‖∞ ≤ M and ϕ ∈ C
(
[−τ, 0] ,Rn

+

)
. It is well known that this con-

dition is sufficient to obtain the positivity of solutions (see Martin and Smith
[26, 27]). In order to prove this, one may also apply Proposition 3.5. By identify-

ing xt with u(t) =
(

0
xt

)
, the system (3.3) can be rewritten as a non-densely

defined Cauchy problem (see Liu, Magal and Ruan [19] for more details)

dv(t)
dt

= Av(t) + F (v(t)), ∀t ≥ 0, and v(0) =
(

0
ϕ

)

with X = Rn × C ([−τ, 0] ,Rn) , D (A) = {0Rn} × C1 ([−τ, 0] ,Rn) , where A :
D(A) ⊂ X → X is defined by

A

(
0
ϕ

)
=

( −ϕ′ (0)
ϕ′

)

and F : D(A) → X by

F

(
0
ϕ

)
=

(
f (ϕ)
0C

)
.

Then Proposition 3.5 applies with

B

(
0
ϕ

)
=

(
ϕ (0)
0C

)
.

Recall that a cone X+ of a Banach space (X, ‖.‖) is normal if there exists a
norm ‖.‖1 equivalent to ‖.‖, which is monotone, that is,

∀x, y ∈ X, 0 ≤ x ≤ y ⇒ ‖x‖1 ≤ ‖y‖1 .

Corollary 3.7 Let Assumptions 2.1-2.8 and 3.2-3.4 be satisfied. Assume in
addition that

(a) X+ is a normal cone of (X, ‖.‖).
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(b) There exist a continuous map G : [0, +∞) × X0+ → X+ and two real
numbers k1 ≥ 0 and k2 ≥ 0, such that for each t ≥ 0 and each x ∈ X0+,

F (t, x) ≤ G(t, x) and ‖G(t, x)‖ ≤ k1 ‖x‖+ k2.

Then
χ (s, x) = +∞, ∀s ≥ 0, ∀x ∈ X0+.

Moreover, we have the following estimate: for each γ > 0 large enough, there
exist C1 > 0 and C2 > 0 such that

‖U(t, s)x‖ ≤ eγ(t−s) [C1 ‖x‖+ C2] .

Proof. Without loss of generality, we can assume that s = 0 and the norm ‖.‖
is monotone. Let ε ∈

(
0,

1
2k1

)
and τε > 0 such that MAV∞(SA, 0, τε) ≤ ε. Let

x ∈ X0+ be fixed. Then by Proposition 3.5, we have for each t ∈ [0, χ (0, x))
that

0 ≤ U(t, 0)x = TA0(t)x + (SA ¦ F (., U(., 0)x)) (t)
≤ TA0(t)x + (SA ¦G(., U(., 0)x)) (t).

Hence, for each γ > max(ωA, 0), we have for each t ∈ [0, χ (0, x)) that

e−γt ‖U(t, 0)x‖ ≤ e−γt ‖TA0(t)x‖+ e−γt ‖(SA ¦G(., U(., 0)x)) (t)‖
≤ MAe(−γ+ωA)t ‖x‖+ C (ε, γ) sup

s∈[0,t]

e−γs ‖G(s, U(s, 0)x)‖

≤ MA ‖x‖+ C (ε, γ) sup
s∈[0,t]

e−γs [k1 ‖U(s, 0)x‖+ k2]

≤ MA ‖x‖+ k2C (ε, γ) + k1C (ε, γ) sup
s∈[0,t]

e−γs ‖U(s, 0)x‖ .

Since 2k1ε < 1, for γ > max(ωA, 0) sufficiently large, we obtain k1C (ε, γ) =
2k1ε�

1−e(ωA−γ)τε
� < 1 and the result follows.

4 Global Lipschitz Perturbation

We now consider the case where the map x → F (t, x) is Lipschitz continuous.
Let (Y, ‖.‖Y ) and (Z, ‖.‖Z) be two Banach spaces. Let E be a subset of Y and
G : Y → Z be a map. Define

‖G‖Lip(E,Z) = sup
x,y∈E:x 6=y

‖G(x)−G(y)‖Z

‖x− y‖Y

.

For each x ∈ Y and r > 0, set

BY (x, r) = {y ∈ Y : ‖x− y‖Y < r} , BY (x, r) = {y ∈ Y : ‖x− y‖Y ≤ r} .
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The main results of this section are on the existence and uniqueness of a solution
to the integral equation (3.1) and its estimate when x → F (t, x)x is globally
Lipschitz continuous.

Proposition 4.1 Let Assumptions 2.1-2.8 be satisfied. Let F : [0, +∞)×D(A) →
X be a continuous map and σ ∈ (0, +∞] be a fixed constant. Assume that

ΓF (σ) := sup
t∈[0,σ)

‖F (t, .)‖Lip(X0,X) < +∞.

Then for each x ∈ X0 and each s ∈ [0, σ) , there exists a unique solution
U(., s)x ∈ C ([s, σ) , X0) of

U(t, s)x = x + A

∫ t

s

U(l, s)xdl +
∫ t

s

F (l, U(l, s)x)dl, ∀t ∈ [s, σ) .

Moreover, there exists γ0 > max (0, ωA) such that for each γ ≥ γ0, each pair
t, s ∈ [0, σ) with t ≥ s, and each pair x, y ∈ X0, we have

‖U(t, s)x‖ ≤ eγ(t−s)

[
2MA ‖x‖+ sup

l∈[s,σ)

e−γ(l−s) ‖F (l, 0)‖
]

and
‖U(t, s)x− U (t, s) y‖ ≤ eγ(t−s)2MA ‖x− y‖ .

Proof. Fix s, t ∈ [0, σ) with s < t. Let ε > 0 such that

εmax(ΓF (σ) , 1) < 1/8.

Let τε > 0 such that MAV∞(SA, 0, τε) ≤ ε. Then by Lemma 2.15 we have for
each γ > ωA that

‖Ls (ϕ)‖L(BCγ([s,+∞),X),BCγ([s,+∞),X0))
≤ C (γ, ε) =

2εmax (1, e−γτε)(
1− e(ωA−γ)τε

) .

Let γ0 ≥ max(0, ωA) such that

1(
1− e(ωA−γ)τε

) < 2, ∀γ ≥ γ0.

To prove the proposition it is sufficient to prove that the following fixed point
problem

U(., s)x = TA0(.− s)x + Ls ◦Ψ(U(., s)x) (3.4)

admits a solution U(., s)x ∈ BCγ ([s, σ) , X0) , where Ψ : BCγ ([s, σ) , X0) →
BCγ ([s, σ) , X) is a nonlinear operator defined by

Ψ (ϕ) (l) = F (l, ϕ(l)), ∀l ∈ [s, t] , ∀ϕ ∈ BCγ ([s, σ) , X0) .
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We have
‖TA0(.− s)‖L(X0,BCγ([s,σ),X0))

≤ MA,

‖Ls‖L(BCγ([s,σ),X),BCγ([s,σ),X0))
≤ 4ε,

and
‖Ψ‖Lip(BCγ([s,σ),X0),BCγ([s,σ),X)) ≤ ΓF (σ) .

From this we deduce that

‖Ls ◦Ψ‖Lip(BCγ([s,σ),X0),BCγ([s,σ),X0))
≤ 4εΓF (σ) ≤ 1/2.

Thus, the fixed point problem (3.4) has a unique solution. Moreover, for each
x ∈ X0, there exists a unique solution in BCγ ([s, σ) , X0) .

‖U(., s)x‖BCγ([s,t],X0)
≤ MA ‖x‖+ ‖Ls (Ψ (0))‖+ ‖Ls (Ψ (U(., s)x)−Ψ (0))‖

≤ MA ‖x‖+ 4ε ‖Ψ(0)‖BCγ([s,σ),X) +
1
2
‖U(., s)x‖BCγ([s,σ),X0)

,

which implies that

‖U(., s)x‖BCγ([s,σ),X0)
≤ 2MA ‖x‖+ 8ε ‖Ψ(0)‖BCγ([s,σ),X) .

Since by construction ε ≤ 1
8 , we have

sup
l∈[s,σ)

e−γ(l−s) ‖U(., s)x‖ ≤ 2MA ‖x‖+ sup
l∈[s,σ)

e−γ(l−s) ‖F (l, 0)‖ .

Similarly, we have for each pair x, y ∈ X0 that

U(., s)x− U(., s)y = TA0(.− s)(x− y) + Ls [Ψ (U(., s)x)−Ψ(U(., s)y)] .

Therefore,

‖U(., s)x− U(., s)y‖BCγ([s,σ),X0)

≤ MA ‖x− y‖+
1
2
‖U(., s)x− U(., s)y‖BCγ([s,σ),X0)

.

This completes the proof.

5 Differentiability with Respect to the State Vari-
able

In this section we investigate the differentiability of solutions with respect to
the state variable.

Proposition 5.1 Let Assumptions 2.1-2.8 and 3.2 be satisfied. Assume in ad-
dition that:
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(a) For each t ≥ 0 the map x → F (t, x) is continuously differentiable from
X0 into X.

(b) The map (t, x) → DxF (t, x) is continuous from [0,+∞)×X0 into L (X0, X) .

Let x0 ∈ X0, s ≥ 0, τ ∈ [0, χ (s, x0)) , and γ ∈ (0, χ (s, x0)− τ) . Let η > 0
(there exists such a constant since Dχ is open in D) such that

χ (s, y) > τ + γ,∀y ∈ BX0 (x0, η) .

Then for each t ∈ [s, s + τ + γ] , the map x → U(t, s)x is defined from BX0 (x, η)
into X0 and is differentiable at x0. Moreover, if we set

V (t, s)y = DxU(t, s)(x)(y),∀y ∈ X0,

then t → V (t, s)y is an integrated solution of the Cauchy problem

dV (t, s)y
dt

= AV (t, s)y + DxF (t, U(t, s)x0)V (t, s)y, t ∈ [s, s + χ (s, x0)) ,

V (s, s)y = y

or equivalently t → V (t, s)y is a solution of

V (t, s)y = TA0(t−s)y+(SA ¦DxF (., U(., s)x0)V (., s)y) (t−s),∀t ∈ [s, s + χ (s, x0)) .

Proof. First by using the result in the subsection about the Lipschitz case, it
clear that W (t, s) is well defined. Set

R(t)(y) = U(t, s) (x0 + y)− U(t, s)(x0)− V (t, s)y.

Then

R(t)(y) = (SA ¦ [F (., U(., s) (x0 + y))− F (., U(., s) (x0))−DxF (., U(., s)x0)V (., s)y]) (t−s).

But

F (t, U(t, s) (x0 + y))− F (t, U(t, s) (x0))

=
∫ 1

0

DxF (t, rU(t, s) (x0 + y) + (1− r)U(t, s) (x0)) (U(t, s) (x0 + y)− U(t, s) (x0)) dr

=
∫ 1

0

Ψ1(t, r, y) (U(t, s) (x0 + y)− U(t, s) (x0)) dr

+DxF (t, U(t, s) (x0)) (U(t, s) (x0 + y)− U(t, s) (x0)) ,

where

Ψ1(t, r, y) = DxF (t, rU(t, s) (x0 + y)+(1−r)U(t, s) (x0))−DxF (t, U(t, s) (x0)).

Thus,
R(t)y = (SA ¦ [K(.) + DxF (., U(., s)x0)R(.)y]) (t− s),
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where

K(t) =
∫ 1

0

Ψ2(t, r, y) (U(t, s) (x0 + y)− U(t, s) (x0)) dr

and

Ψ2(t, r, y) = DxF (t, rU(t, s) (x0 + y)+(1−r)U(t, s) (x0))−DxF (t, U(t, s) (x0)).

The result follows from Proposition 2.14 and the continuity of (t, x) → U(t, s)x.

6 Time Differentiability

In this subsection, we study the time differentiability of the solutions. Consider
a solution u ∈ C([0, τ ], D(A)) of

u(t) = x0 + A

∫ t

0

u(s)ds +
∫ t

0

F (s, u(s))ds, t ∈ [0, τ ].

Assume that x0 ∈ D(A) and F : [0, T ] × D(A) → X is a C1 map. When the
domain of A is dense, it is well known (see Pazy [30], Theorem 6.1.5, p. 187)
that for each x ∈ D(A), the map t → u(t) is a classical solution. That is, the
map t → u(t) is continuously differentiable, u(t) ∈ D(A) for all t ∈ [0, τ ], and
satisfies {

u′(t) = Au(t) + f(t, u(t)), ∀t ∈ [0, τ ],
u(0) = x0.

In this subsection, we consider the same problem but in the the context of non-
densely defined Cauchy problems. When A satisfies the Hille-Yosida condition,
this problem has been studied by Thieme [35] and Magal [21]. So the goal is
to extend these results to the non-Hille-Yosida case. This problem turns to be
more difficult. For each τ > 0, set

C1,+([0, τ ], X) =
{

f ∈ C ([0, τ ] , X) :
d+f

dt
∈ C ([0, τ) , X) and lim

t↗τ

d+f

dt
(t) exists

}
.

The following lemma is a variant of a result due to Da Prato and Sinestrari [7].

Lemma 6.1 Let A : D(A) ⊂ X → X be a closed linear operator. Let τ > 0,
f ∈ C([0, τ ], X), and x ∈ X0 be fixed. Assume that u ∈ C ([0, τ ] , X) is a solution
of

u(t) = x + A

∫ t

0

u(s)ds +
∫ t

0

f(s)ds, ∀t ∈ [0, τ ] .

Assume in addition that u belongs to C1,+([0, τ ], X) or C([0, τ ] , D(A)). Then

u ∈ C1([0, τ ] , X) ∩ C([0, τ ] , D(A))

and
u′(t) = Au(t) + f(t), ∀t ∈ [0, τ ] .
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Proof. If u ∈ C([0, T ], D(A)), since A is closed, we have

u(t) = x +
∫ t

0

Au(s)ds +
∫ t

0

f(s)ds, ∀t ∈ [0, τ ] .

So u ∈ C1([0, τ ] , X) and u′(t) = Au(t) + f(t), ∀t ∈ [0, τ ] .
If u ∈ C1,+([0, τ ], X), then we have for each t ∈ [0, τ) and h > 0 that

u(t + h)− u(t)
h

−
∫ t+h

t
f(s)ds

h
= A

∫ t+h

t
u(s)ds

h
.

Since A is closed, we deduce that u(t) ∈ D(A) and Au(t) = d+u
dt (t) + f(t), ∀t ∈

[0, τ) . Since u ∈ C1,+([0, τ ], X), we then deduce that u ∈ C([0, τ ], D(A)) and
complete the proof.

Lemma 6.2 Let Assumptions 2.1 and 2.8 be satisfied. Assume that g ∈ C1 ([0, T ] , X)
and g(0) ∈ D(A), then t → (SA ¦ g) (t) is continuously differentiable and

d

dt
(SA ¦ g) (t) = TA0(t)g(0) + (SA ¦ g′) (t), ∀t ∈ [0, T ] .

Proof. Since g is continuously differentiable, the map t → (SA ∗ g) (t) is contin-
uously differentiable,

d

dt
(SA ∗ g) (t) = SA(t)g(0) + (SA ∗ g′) (t), ∀t ∈ [0, T ] ,

Since g(0) ∈ D(A), we have SA(t)g(0) =
∫ t

0
TA0(l)g(0)dl, ∀t ∈ [0, T ] , and the

result follows.
The following theorem is due to Vanderbauwhede [39, Theorem 3.5].

Lemma 6.3 (Fibre Contraction Theorem) Let M1 and M2 be two complete
metric spaces and Ψ : M1 ×M2 → M1 ×M2 a mapping of the form

Ψ(x, y) = (Ψ1 (x) , Ψ2 (x, y)) , ∀ (x, y) ∈ M1 ×M2

satisfying the following properties:

(i) Ψ1 has a fixed point x ∈ M1 such that for each x ∈ M1,

Ψn
1 (x) → x as n → +∞.

(ii) There exists k ∈ [0, 1) such that for each x ∈ M1 the map y → Ψ2 (x, y) is
k-Lipschitz continuous.

(iii) The map x → Ψ2 (x, y) is continuous, where y ∈ M2 is a fixed point of the
map y → Ψ2 (x, y) .

Then for each (x, y) ∈ M1 ×M2,

Ψn (x, y) → (x, y) as n → +∞.
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The key result of this section is the following lemma.

Lemma 6.4 Let Assumptions 2.1 and 2.8 be satisfied. Let τ > 0 be fixed and
F : [0, τ ] ×D(A) → X be continuously differentiable. Assume that there exists
an integrated solution u ∈ C ([0, τ ] , X) of the Cauchy problem

du(t)
dt

= Au(t) + F (t, u(t)), t ∈ [0, τ ] ,

u(0) = x ∈ X0.

Assume in addition that

x ∈ D(A0) and F (0, x) ∈ D(A).

Then there exists ε > 0, such that u ∈ C1([0, ε], X) ∩ C([0, ε], D(A)) and

u′(t) = Au(t) + F (t, u(t)), ∀t ∈ [0, ε].

Proof. Since F is continuously differentiable, there exist ε0 > 0, K1 > 0, and
K2 > 0 such that

‖∂tF (t, y)‖ ≤ K1 and ‖∂xF (t, y)‖L(X0,X) ≤ K2

whenever ‖x− y‖ ≤ ε0 and 0 ≤ t ≤ ε0. For each ε ∈ (0, ε0] , set

Mε
1 = {ϕ ∈ C([0, ε], X0) : ϕ(0) = x, ‖ϕ(t)− x‖ ≤ ε0,∀t ∈ [0, ε]},

Mε
2 = {ϕ ∈ C([0, ε], X0) : ϕ(0) = A0x + F (0, x),

‖ϕ(t)−A0x + F (0, x)‖ ≤ ε0, ∀t ∈ [0, ε]}.

From now on, we assume that for each i = 1, 2, Mε
i is endowed with the metric

d(ϕ, ϕ̂) = ‖ϕ− ϕ̂‖∞,[0,ε] and Mε
1 × Mε

2 is endowed with the usual product

distance d((ϕ,ψ), (ϕ̂, ψ̂)) = d(ϕ, ϕ̂) + d(ψ, ψ̂).
For each ε ∈ (0, ε0] , set

Eε =
{

(ϕ1, ϕ2) ∈ Mε
1 ×Mε

2 : ϕ1(t) = x +
∫ t

0

ϕ2(s)ds,∀t ∈ [0, ε]
}

.

Then it is clear that Eε is a closed subset of Mε
1 ×Mε

2 .
We consider a map Ψ : Mε

1 ×Mε
2 → C ([0, ε] , X0)×C ([0, ε] , X0) defined by

Ψ (ϕ1, ϕ2) = (Ψ1 (ϕ1) , Ψ2 (ϕ1, ϕ2)) , ∀ (ϕ1, ϕ2) ∈ Mε
1 ×Mε

2 ,

where for each t ∈ [0, ε] ,

Ψ1 (ϕ1) (t) = TA0(t)x + (SA ¦ F (., ϕ1(.))) (t),
Ψ2 (ϕ1, ϕ2) (t) = TA0(t) [A0x + F (0, x)]

+ (SA ¦ ∂tF (., ϕ1(.)) + ∂xF (., ϕ1(.))ϕ2(.)) (t).
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One can easily check that Ψ is a continuous map. We now prove that for some
ε > 0 small enough, Ψ (Mε

1 ×Mε
2 ) ⊂ Mε

1 ×Mε
2 , and

Ψ1 (ϕ1) (0) = x, Ψ2 (ϕ1, ϕ2) (0) = [A0x + F (0, x)] .

For each ε ∈ (0, ε0] , each t ∈ [0, ε] , and each ϕ ∈ Mε
1 , we have

‖Ψ1 (ϕ) (t)− x‖
≤ ‖TA0(t)x− x‖+ ‖(SA ¦ F (., ϕ(.)) (t)‖
≤ ‖TA0(t)x− x‖+ V∞(SA, 0, t) sup

s∈[0,t]

‖F (s, ϕ(s))‖

≤ ‖TA0(t)x− x‖+ V∞(SA, 0, ε)

[
sup

s∈[0,t]

‖F (s, x)‖+ K2 sup
s∈[0,t]

‖ϕ(s)− x‖
]

≤ sup
t∈[0,ε]

‖TA0(t)x− x‖+ V∞(SA, 0, ε)

[
sup

s∈[0,ε]

‖F (s, x)‖+ K2ε0

]
.

Thus, there exists ε1 ∈ (0, ε0] such that for each ε ∈ (0, ε1] , Ψ1 (Mε
1 ) ⊂ Mε

1 .
Moreover, for each ε ∈ (0, ε1] , each t ∈ [0, ε] , and each (ϕ1, ϕ2) ∈ Mε

1 ×Mε
2 ,

we have

‖Ψ2 (ϕ1, ϕ2) (t)− [A0x + F (0, x)]‖
≤ ‖TA0(t) [A0x + F (0, x)]− [A0x + F (0, x)]‖

+ ‖(SA ¦ ∂tF (., ϕ1(.)) + ∂xF (., ϕ1(.))ϕ2(.)) (t)‖
≤ sup

t∈[0,ε]

‖TA0(t) [A0x + F (0, x)]− [A0x + F (0, x)]‖

+V∞(SA, 0, ε) sup
s∈[0,ε]

‖∂tF (s, ϕ1(s))‖

+V∞(SA, 0, ε) sup
s∈[0,ε]

‖∂xF (s, ϕ1(s))‖ ‖ϕ2(.)‖

≤ sup
t∈[0,ε]

‖TA0(t) [A0x + F (0, x)]− [A0x + F (0, x)]‖

+V∞(SA, 0, ε) {K1 + K2 [‖A0x + F (0, x)‖+ ε0]} .

Therefore, there exists ε2 ∈ (0, ε1] such that for each ε ∈ (0, ε2] , Ψ2 (Mε
1 ×Mε

2 ) ⊂
Mε

2 .
Similarly, for each ε ∈ (0, ε2] , Ψ(Mε

1 ×Mε
2 ) ⊂ Mε

1 × Mε
2 . Now we check

that Ψ (Eε) ⊂ Eε. Let (ϕ1, ϕ2) ∈ Eε. Then ϕ1 ⊂ C1 ([0, ε] , X0) and ϕ′1(t) =
ϕ2(t),∀t ∈ [0, ε] . Notice that

Ψ1 (ϕ1) (t) = TA0(t)x + (SA ¦ F (., ϕ1(.)) (t),

using Lemma 6.2 and the fact that x ∈ D(A0) and F (0, x) ∈ D(A), we have

dΨ1 (ϕ1) (t)
dt

= A0TA0(t)x + TA0(t)F (0, x) +
(

SA ¦ d

dt
F (., ϕ1(.)

)
(t)

= TA0(t) [A0x + F (0, x)] + (SA ¦ ∂tF (., ϕ1(.)) + ∂xF (., ϕ1(.))ϕ2(.)) (t).
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Thus,
dΨ1 (ϕ1) (t)

dt
= Ψ2 (ϕ1, ϕ2) (t)

and
Ψ (Eε) ⊂ Eε.

Next we apply Lemma 6.3. It remains to verify i) and ii) for some ε ∈ (0, ε2]
small enough. Let (ϕ1, ϕ2) , (ϕ̂1, ϕ̂2) ∈ Mε

1 × Mε
2 be fixed. We have for each

ε ∈ (0, ε2] that

‖Ψ1 (ϕ1) (t)−Ψ1 (ϕ̂1) (t)‖ = ‖(SA ¦ F (., ϕ1(.))− F (., ϕ̂1(.))) (t)‖
≤ V∞(SA, 0, ε) ‖F (s, ϕ1(s))− F (s, ϕ̂1(s))‖
≤ V∞(SA, 0, ε)K2 sup

s∈[0,ε]

‖ϕ1(s)− ϕ̂1(s)‖ .

So there exists ε3 ∈ (0, ε2] such that δ1 := V∞(SA, 0, ε3)K2 ∈ (0, 1) , we have
for each ε ∈ (0, ε3] that

‖Ψ1 (ϕ1)−Ψ1 (ϕ̂1)‖∞,[0,ε] ≤ δ1 ‖ϕ1 − ϕ̂1‖∞,[0,ε] .

Moreover,

‖Ψ2 (ϕ1, ϕ2) (t)−Ψ2 (ϕ1, ϕ̂2) (t)‖ = ‖(SA ¦ ∂xF (., ϕ1(.)) (ϕ2(.)− ϕ̂2)) (t)‖
≤ V∞(SA, 0, ε)K2 sup

s∈[0,ε]

‖ϕ2(s)− ϕ̂2(s)‖

≤ δ1 sup
s∈[0,ε]

‖ϕ2(s)− ϕ̂2(s)‖ ,

which implies that

‖Ψ2 (ϕ1, ϕ2) (t)−Ψ2 (ϕ1, ϕ̂2)‖∞,[0,ε] ≤ δ1 ‖ϕ2 − ϕ̂2‖∞,[0,ε] .

Hence, for ε = ε3 we have Ψ (Mε
1 ×Mε

2 ) ⊂ Mε
1 × Mε

2 , Ψ(Eε) ⊂ Eε and Ψ
satisfies the assumptions of Lemma 6.3. We deduce that there exists (u, v) ∈
Mε

1 ×Mε
2 such that for each (ϕ1, ϕ2) ∈ Mε

1 ×Mε
2 ,

Ψn (ϕ1, ϕ2) → (u, v) as n → +∞.

Since Ψ (Eε) ⊂ Eε and Eε is closed, we deduce that (u, v) ∈ Eε. In particular,
u ∈ C1([0, ε], X), and the result follows.

Lemma 6.5 Let Assumptions 2.1 and 2.8 be satisfied. Let τ > 0 be fixed and
F : [0, τ ] ×D(A) → X be continuously differentiable. Assume that there exists
an integrated solution u ∈ C ([0, τ ] , X) of the Cauchy problem

du(t)
dt

= Au(t) + F (t, u(t)), t ∈ [0, τ ] ,

u(0) = x ∈ X0.
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Assume in addition that

x ∈ D(A0) and F (0, x) ∈ D(A).

Then u ∈ C1([0, τ ], X) ∩ C([0, τ ], D(A)) and

u′(t) = Au(t) + F (t, u(t)), ∀t ∈ [0, τ ].

Proof. Let w ∈ C([0, τ ], D(A)) be a solution of the equation

w(t) = Ax + F (0, x) + A

∫ t

0

w(s)ds

+
∫ t

0

∂

∂t
F (s, u(s)) + DxF (s, u(s))w(s)ds,∀t ∈ [0, τ ].

From the subsection concerning globally Lipschitz perturbation, it is clear that
the solution w(t) exists and is uniquely determined. Since u(t) exists on [0, τ ],
let t ∈ [0, τ) be fixed. We have for each h ∈ (0, τ − t) that

u(t + h)− u(t)
h

=
1
h

A

[∫ t+h

0

u(s)ds−
∫ t

0

u(s)ds

]

+
1
h

[∫ t+h

0

F (s, u(s))ds−
∫ t

0

F (s, u(s))ds

]

= A

[∫ t

0

u(s + h)− u(s)
h

ds

]
+

1
h

A

∫ h

0

u(s)ds

+
∫ t

0

F (s + h, u(s + h))− F (s, u(s))
h

ds +
1
h

∫ h

0

F (s, u(s))ds.

Therefore,

u(t + h)− u(t)
h

− w(t)

= A

∫ t

0

[
u(s + h)− u(s)

h
− w(s)

]
ds

+
1
h

A

∫ h

0

u(s)ds +
1
h

∫ h

0

F (s, u(s))ds−Ax− F (0, x)

+
∫ t

0

[
F (s + h, u(s + h))− F (s + h, u(s))

h
−DxF (s, u(s))w(s)

]
ds

+
∫ t

0

[
F (s + h, u(s))− F (s, u(s))

h
− ∂

∂t
F (s, u(s))

]
ds.

Denote

vh(t) :=
u(t + h)− u(t)

h
− w(t)
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and

xh :=
1
h

A

∫ h

0

u(s)ds +
1
h

∫ h

0

F (s, u(s))ds−Ax− F (0, x).

We have

vh(t) = xh + A

∫ t

0

vh(s)ds

+
∫ t

0

∫ 1

0

DxF (l (u(s + h)− u(s)) + u(s))
(

u(s + h)− u(s)
h

− w(s)
)

dlds

+
∫ t

0

∫ 1

0

[DxF (l (u(s + h)− u(s)) + u(s))−DxF (u(s))] w(s)dlds

+
∫ t

0

[
F (s + h, u(s))− F (s, u(s))

h
− ∂

∂t
F (s, u(s))

]
ds.

Set

K = sup
l∈[0,1],s∈[0,τ ],h∈[0,τ−s]

‖DxF (l (u(s + h)− u(s)) + u(s))‖L(X0,X) < +∞.

Let τ̂ > 0 such that

MV∞(SA, 0, t) ≤ 1
8(K + 1)

, ∀t ∈ [0, τ̂ ] .

Choose γ > max(0, ωA) so that

1
4

(
1− e(ωA−γ)bτ) <

1
2
.

Then by Proposition 2.14, we have for all γ > max(0, ωA) that

e−γt ‖vh(t)‖ ≤ M ‖xh‖+
1
2

sup
s∈[0,τ ]

e−γs ‖vh(s)‖

+ sup
s∈[0,τ ]

e−γs

∥∥∥∥
∫ 1

0

[DxF (l (u(s + h)− u(s)) + u(s))−DxF (u(s))] w(s)dl

∥∥∥∥

+ sup
s∈[0,τ ]

e−γs

∥∥∥∥
∫ 1

0

[
F (s + h, u(s))− F (s, u(s))

h
− ∂

∂t
F (s, u(s))

]
dl

∥∥∥∥ ,

which implies that

e−γt ‖vh(t)‖
≤ 2M ‖xh‖

+2 sup
s∈[0,τ ]

e−γs

∥∥∥∥
∫ 1

0

[DxF (l (u(s + h)− u(s)) + u(s))−DxF (u(s))] w(s)dl

∥∥∥∥

+2 sup
s∈[0,τ ]

e−γs

∥∥∥∥
∫ 1

0

[
F (s + h, u(s))− F (s, u(s))

h
− ∂

∂t
F (s, u(s))

]
dl

∥∥∥∥ .
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We now claim that
lim
h↘0

xh = 0.

Indeed, we have

u(h)− u(0)
h

=
1
h

A

∫ h

0

u(s)ds +
1
h

∫ h

0

F (s, u(s))ds

and by Lemma 6.4, we have

lim
h→0+

u(h)− u(0)
h

= Ax + F (0, x),

so
lim
h↘0

xh = 0.

We conclude that for each t ∈ [0, τ) , we will have

lim
h→0+

u(t + h)− u(t)
h

= w(t).

Since w ∈ C ([0, τ ] , X) , we deduce that u ∈ C1,+([0, τ ], X). By using Lemma
6.1, we obtain the result.

To extend the differentiability result to the case where F (0, x0) /∈ D(A), we
notice that, since u(t) ∈ D(A) for all t ∈ [0, T ], a necessary condition for the
differentiability is

Ax + F (0, x) ∈ D(A).

In fact, this condition is also sufficient. Indeed, taking any bounded linear
operator B ∈ L(X), if u satisfies

u(t) = x + A

∫ t

0

u(s)ds +
∫ t

0

F (s, u(s))ds, ∀t ∈ [0, T ],

then we have

u(t) = x + (A + B)
∫ t

0

u(s)ds +
∫ t

0

(F (s, u(s))−Bu(s)) ds, t ∈ [0, T ].

So to prove the differentiability of u(t) it is sufficient to find B such that (A +
B)x ∈ D(A). Take B(ϕ) = −x∗(ϕ)Ax, where x∗ ∈ X∗ is a continuous linear
form with x∗(x) = 1 if x 6= 0, which is possible by the Hahn-Banach theorem.
We then have

x ∈ D(A) = D(A + B) and (A + B)x ∈ D(A) = D(A + B).

Moreover, assuming that Ax+F (0, x) ∈ D(A), we obtain F (0, x0)−Bx ∈ D(A).
By using Theorem 2.12, we deduce that A + B satisfies Assumptions 2.1 and
2.8 and have the following theorem.
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Theorem 6.6 Let Assumptions 2.1 and 2.8 be satisfied. Let τ > 0 be fixed and
F : [0, τ ] ×D(A) → X be continuously differentiable. Assume that there exists
an integrated solution u ∈ C ([0, τ ] , X) of the Cauchy problem

du(t)
dt

= Au(t) + F (t, u(t)), t ∈ [0, τ ] ,

u(0) = x ∈ X0.

Assume in addition that

x ∈ D(A) and Ax + F (0, x) ∈ D(A).

Then u ∈ C1([0, τ ], X) ∩ C([0, τ ], D(A)) and

u′(t) = Au(t) + F (t, u(t)), ∀t ∈ [0, τ ].

We now consider the nonlinear generator

ANϕ = Aϕ + F (0, ϕ), ϕ ∈ D(AN ) = D(A).

As in the linear case, one may define AN,0 (the part AN in D(A)) as follows

AN,0 = AN on D(AN,0) =
{

y ∈ D(A) : ANy ∈ D(A)
}

.

Of course, one may ask about the density of the domain D(AN,0) in D(A).

Lemma 6.7 Under Assumptions 2.1-2.8 and 3.2, the domain D(AN,0) is dense
in X0 = D(A). Assume in addition that X has a positive cone X+ and that
Assumption 3.4 is satisfied. Then D(AN,0) ∩X0+ is dense in X0+.

Proof. Let y ∈ D(A) be fixed. Consider the following fixed point problem:
xλ ∈ D(A) satisfies

(λI −A− F )xλ = λy ⇔ xλ = λ(λI −A)−1y + (λI −A)−1F (0, xλ).

Denote

Φλ(x) = λ(λI −A)−1y + (λI −A)−1F (0, xλ), ∀x ∈ X0.

Let r > 0 be fixed. Since y ∈ D(A), by Lemma 2.13, limλ→+∞
∥∥∥(λI −A)−1

∥∥∥
L(X)

=

0, we deduce that there exists λ0 > ωA such that

Φλ(BX0(y, r)) ⊂ BX0(y, r), ∀λ ≥ λ0,

where B(y, r) denotes the ball centered at y with radius r in X0. Moreover,
there exists λ1 ≥ λ0, such that for each λ ≥ λ1, Φλ is a strict contraction on
B(y, r). Hence, ∀λ ≥ λ1, there exists xλ ∈ B(y, r) such that Φλ(xλ) = xλ.
Finally, using the fact that y ∈ D(A), we have lim

λ→+∞
λ(λI −A)−1y = y, so

lim
λ→+∞

xλ = y.

The proof of the positive case is similar.
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7 Stability of Equilibria

In this section we first investigate the local stability of an equilibrium.

Proposition 7.1 Let Assumptions 2.1 and 2.8 be satisfied. Let F : D(A) → X
be a continuous map. Assume that

(a) There exists x ∈ D(A) such that Ax + F (x) = 0.

(b) There exist M̂ ≥ 1, ω̂ < 0, and L ∈ L (X0, X) such that
∥∥T(A+L)0

(t)
∥∥
L(X0)

≤ M̂ebωt, ∀t ≥ 0.

(c) ‖F − L‖Lip(BX0 (x,r),X) → 0 as r → 0.

Then for each γ ∈ (ω̂, 0) there exists ε > 0, such that for each x ∈ BX0 (x, ε) ,
there exists a unique solution U(.)x ∈ C ([0, +∞) , X0) of

U(t)x = x + A

∫ t

0

U(s)xds +
∫ t

0

F (U(s)x) ds, ∀t ≥ 0

which satisfies

‖U(t)x− x‖ ≤ eγt2M̂ ‖x− x‖ , ∀t ≥ 0, ∀x ∈ X0.

Proof. Without loss of generality we can assume that x = 0, L = 0, ωA < 0,
and

‖F‖Lip(BX0 (x,η),X) → 0 as η → 0.

Choose η0 > 0 such that

‖F‖Lip(BX0 (x,η0),X) < +∞.

Let φ : (−∞, +∞) → [0,+∞) be a Lipschitz continuous map such that

φ(α)





= 0, if 2 ≤ |α|
∈ [0, 1] , if 1 ≤ |α| ≤ 2
= 1, if |α| ≤ 1.

Set
Fr (x) = φ(r ‖x‖)F (x), ∀x ∈ X0,∀r > 0.

Then

Fr (x) =
{

0, if 2
r ≤ ‖x‖ ,

F (x) , if ‖x‖ ≤ 1
r .

Choose η ∈ (0, η0] and fix r =
2
η
. Let x, y ∈ X0. Define ϕ : [0, 1] → R by

ϕ(t) = ‖Fr (t (x− y) + y)− Fr (y)‖ , ∀t ∈ [0, 1] .
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Since ‖F‖Lip(BX0 (x,η),X) < +∞, the map ϕ is Lipschitz continuous, we have for
each pair t, s ∈ [0, 1] that

|ϕ(t)− ϕ(s)| ≤ ‖F‖Lip(BX0 (x,η),X)
(
2 ‖φ‖Lip + 1

)
‖x− y‖ |t− s| .

In particular, for t = 1 and s = 0, we deduce that

‖Fr (x)− Fr (y)‖ ≤ ‖F‖Lip(BX0(x, 2
r ),X)

(
2 ‖φ‖Lip + 1

)
‖(x− y)‖ .

So for all r ≥ 2
η0

, Fr ∈ Lip (X0, X) and

‖Fr‖Lip(X0,X) ≤ ‖F‖Lip(BX0(x, 2
r ),X)

(
2 ‖φ‖Lip + 1

)
→ 0 as r → +∞. (3.5)

For each r ≥ 2
η0

, we consider the nonlinear semigroup {Ur(t)} which is a solution

of

Ur(t)x = x + A

∫ t

0

Ur(s)xds +
∫ t

0

Fr (Ur(s)x) ds, ∀t ≥ 0.

Let γ ∈ (ω̂, 0) be fixed. By Proposition 4.1 and (3.5), there exists r0 = r0 (γ) ≥
2
η0

such that

‖Ur0(t)x‖ ≤ eγt2M ‖x‖ , ∀t ≥ 0, ∀x ∈ X0.

Let ε ∈
(
0, 1

2r0

1
2M

)
. Then for each x ∈ BX0(0, ε),

‖Ur0(t)x‖ ≤ eγt2M ‖x‖ ≤ 1
2r0

.

On the other hand, since F = Fr on BX0

(
0, 1

2r0

)
, we deduce that for each

x ∈ BX0(0, ε), Ur0(.)x is a solution of

Ur(t)x = x + A

∫ t

0

Ur(s)xds +
∫ t

0

F (Ur(s)x) ds, ∀t ≥ 0.

The uniqueness of the solution with initial value x in BX0(0, ε) follows from the
fact that F is locally Lipschitz continuous around 0 and by using the arguments
of Lemma 3.3 in Magal and Ruan [22].

Remark 7.2 (1) If F is continuously differentiable in BX0 (x, r0) , we set L =
DF (x). Then by the formula

F (x)− F (y) =
∫ 1

0

DF (s(x− y) + y)(x− y)ds, ∀x, y ∈ BX0 (x, ε) ,

it is clear that

‖F −DF (x)‖Lip(BX0 (x,r),X) → 0 as r → 0.
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So if x is an equilibrium (i.e. assertion (a) is satisfied) and
∥∥T(A+DF (x))0

(t)
∥∥
L(X0)

≤ M̂ebωt, ∀t ≥ 0

for some M̂ ≥ 1 and ω̂ < 0, the conclusion of the proposition holds.
(2) In order to see an example where the condition (c) is more appropriate

than the usual differentiability condition, we consider the following case. Assume
that F is quasi-linear, that is F (x) = L(x)x, where L : X0 → L (X0, X) is a
Lipschitz continuous map (but not necessarily differentiable in a neighborhood
of 0). Then

‖(F − L(0)) x− (F − L(0)) y‖ = ‖(L(x)− L(0)) x− (L(y)− L(0)) y‖
≤ ‖(L(x)− L(0)) x− (L(y)− L(0)) x‖

+ ‖(L(y)− L(0)) x− (L(y)− L(0)) y‖
≤ [‖x‖+ ‖y‖] ‖L‖Lip ‖x− y‖ .

So
‖(F − L(0))‖Lip(BX0+ (0,ε),X) ≤ 2ε ‖L‖Lip → 0 as ε → 0.

Thus, in this case we can apply the condition (c), but F is not differentiable.

We now investigate the global asymptotic stability of an equilibrium.

Proposition 7.3 Let Assumptions 2.1 and 2.8 be satisfied. Let F : D(A) → X
be a Lipschitz continuous map. Assume that:

(a) There exists x ∈ D(A) such that Ax + F (x) = 0.

(b) There exist M̂ > 0, ω̂ < 0, and L ∈ L (X0, X), such that
∥∥T(A+L)0

(t)
∥∥
L(X0)

≤ M̂ebωt, ∀t ≥ 0.

Consider {U(t)}t≥0 the C0-semigroup of nonlinear operators on X0 which is
solution of

U(t)x = x + A

∫ t

0

U(s)xds +
∫ t

0

F (U(s)x) ds, ∀t ≥ 0.

Then for each γ ∈ (ω̂, 0) , there exists δ0 = δ0 (γ) > 0, such that

‖F − L‖Lip(X0,X) ≤ δ0 ⇒ ‖U(t)x− x‖ ≤ eγt2M̂ ‖x− x‖ , ∀t ≥ 0, ∀x ∈ X0.

So x is a globally exponentially stable equilibrium of {U(t)}t≥0.

Proof. Replacing U(t)x by V (t)x = U(t)(x + x) − x and F (.) by G(.) =
F (. + x) − F (x), respectively. Without loss of generality we can assume that
x = 0. Moreover, using Theorem 2.12 and replacing M by M̂, ωA by ω̂, A by
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A + L, and F by F − L, respectively. We can further assume that L = 0 and
ωA < 0.

Fix τ > 0 and set ε := Mδ(τ). Let γ ∈ (ωA, 0) be fixed. Choose δ0 = δ0 (γ) >
0 such that

δ0
2εe−γτε

(
1− e(ωA−γ)τε

) ≤ 1
2
.

Then by Lemma 2.15 we have

‖L0 (ϕ)‖L(BCγ([0,+∞),X),BCγ([0,+∞),X0))
≤ 2εe−γτε

(
1− e(ωA−γ)τε

) ≤ 1
2δ0

.

It is sufficient to consider the problem U(.)x ∈ BCγ ([0, +∞) , X0) ,

U(t)x = TA0(t)x + L0 (Ψ (U(.)x)) (t) , ∀t ∈ [0, +∞) ,

where Ψ : BCγ ([0, +∞) , X0) → BCγ ([0, +∞) , X) is defined by

Ψ (ϕ) (t) = F (ϕ (t)) ,∀t ∈ [0, +∞) .

If ‖F‖Lip(X0,X) ≤ δ0, we have ‖L0 ◦Ψ‖Lip(BCγ([0,+∞),X0),BCγ([0,+∞),X0))
≤ 1/2,

so for each t ≥ 0

‖U(.)x‖BCγ([0,+∞),X0)
≤ M ‖x‖+

1
2
‖U(.)x‖BCγ([0,+∞),X0)

and the result follows.
Let L : X0 → X be a bounded linear operator. In order to apply the Stability

Theorem, one need to prove that there exist two constant, M̂ ≥ 1 and ω̂ < 0,
such that ∥∥T(A+L)0

(t)
∥∥
L(X0)

≤ M̂ebωt, ∀t ≥ 0,

which is also equivalent to

ω0 ((A + L)0) := lim
t→+∞

ln
(∥∥T(A+L)0

(t)
∥∥
L(X0)

)

t
< ω̂.

This condition can also be expressed by using spectral properties of the linear
operator A+L. In fact, by applying the results obtained by Webb [43] (see also
Engel and Nagel [14] for more results), it is necessary to verify the following two
properties:

(a) (Point spectrum condition)

σp (A + L) ⊂ {λ ∈ C : Re (λ) < ω̂}

where
σp (A + L) = {λ ∈ C : N (λI − (A + L)) 6= {0}} .
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(b) (Essential growth rate condition)

ω0,ess ((A + L)0) := lim
t→+∞

ln
(∥∥T(A+L)0

(t)
∥∥

ess

)

t
< ω̂,

where ∥∥T(A+L)0
(t)

∥∥
ess

= κ
(
T(A+L)0

(t)BX0 (0, 1)
)

with BX0 (0, 1) = {x ∈ X0 : ‖x‖ ≤ 1} , and for each bounded set B ⊂ X,
κ (B) = inf {ε > 0 : B can be covered by a finite number of balls of radius ≤ ε}
is the Kuratovsky measure of non-compactness.

In practice the essential growth rate condition can be studied by using per-
turbation technics. When R (L) ⊂ X0 this question has been investigated by
Webb [41, 42, 43]. When R (L) * X0, this question has been investigated in the
Hille-Yosida case by Thieme [37] and extended to the non-Hille-Yosida case by
Ducrot et al. [12].

As a consequence of Theorem 2.2 in Desch and Schappacher [9] and Propo-
sition 5.1, we have the following result on the instability of an equilibrium (see
Thieme [35, Corollary 4.3]).

Proposition 7.4 Let Assumptions 2.1 and 2.8 be satisfied. Let F : D(A) → X
be a Lipschitz continuous map. Assume that there exists x ∈ D(A) such that
Ax + F (x) = 0. Assume that ω0,ess ((A + DF (x))0) < 0 and there exists λ ∈
σp ((A + DF (x))0) with Re (λ) > 0. Then x is an unstable equilibrium in the
following sense: There exist a constant ε > 0 and a sequence xn (∈ X0) → x as
tn → +∞, such that

‖U (tn) xn − x‖ ≥ ε for all n ≥ 0.

Remark 7.5 When the property of an equilibrium changes from stability to
instability, interesting and complex dynamics, such as Hopf bifurcation, can
occur. We refer to Magal and Ruan [23] for detailed results on this aspect.

8 Applications

As we mentioned in the Introduction, the key point in applying our results is
to verify the main Assumptions 2.1 and 2.8. In this section, as examples we
consider transport equations and parabolic equations and verify that the As-
sumptions 2.1 and 2.8 hold, so that the theory developed in this article applies.

8.1 Transport equations

First consider the transport equation with a nonlinear (and nonlocal) boundary
condition 




∂u

∂t
+

∂u

∂x
= M(u(t, .))(x), t > 0, a > 0

u(t, 0) = G(u(t, .))
u(0, .) = u0 ∈ Lp ((0,+∞) ,R) ,

(8.1)
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where M : Lp ((0, +∞) ,R) → Lp ((0,+∞) ,R) and G : Lp ((0,+∞) ,R) → R
are continuous maps.

In order to take into account the nonlinear boundary condition we consider
the extended state space

X = R× Lp ((0, +∞) ,R)

endowed with the usual product norm and a linear operator A : D(A) ⊂ X → X
defined by

A

(
0
ϕ

)
=

( −ϕ(0)
−ϕ′

)

with
D(A) = {0R} ×W 1,p ((0,+∞) ,R) .

Notice that X0 = ¯D(A) 6= X. So A is non-densely defined in X. Also, note that
A is Hille-Yosida if and only if p = 1. So A is not a Hille-Yosida operator if we
assume p > 1.

Now we consider a nonlinear operator F : D(A) → X defined by

F (
(

0
ϕ

)
) =

(
G(ϕ)
M(ϕ)

)
.

Then by identifying u(t, .) to v(t) =
(

0
u(t, .)

)
, the PDE (8.1) can be formu-

lated as a non-densely defined Cauchy problem

dv(t)
dt

= Av(t) + F (v(t)) for t ≥ 0 with u(0) = x ∈ D(A). (8.2)

Lemma 8.1 The operator A satisfies Assumption 2.1.

Proof. It is readily to check that the resolvent is given by the formula

(λI −A)−1

(
y
ψ

)
=

(
0
ϕ

)

⇔ ϕ(a) = e−λay +
∫ a

0
e−λ(a−s)ψ(s)ds.

It follows that ∥∥∥∥(λI −A)−1

(
y
0

)∥∥∥∥ =
(

1
pλ

)1/p

|y| .
By using Young’s inequality we also have

∥∥∥∥(λI −A)−1

(
0
ψ

)∥∥∥∥ =
1
λ
‖ψ‖Lp .

So A0, the part of A in X0 = D(A), is a Hille-Yosida operator and we have the
estimate

0 < lim
λ→+∞

λ1/p
∥∥∥(λI −A)−1

∥∥∥
L(X)

< +∞.

This completes the proof.
Now we can claim that A0 (the part of B in X0) generates a C0-semigroup

{TA0(t)}t≥0 and A generates an integrated semigroup SA(t).
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Lemma 8.2 {TA0(t)}t≥0 , the C0-semigroup generated by A0 (the part of A in
X0), is defined by

TA0(t)
(

0
ϕ

)
=

(
0

T̂A0(t)ϕ

)

with

T̂A0(t) (ϕ) (a) =
{

e−λaϕ(a− t) if a ≥ t,
0 if a < t.

Moreover, {SA(t)}t≥0 , the integrated semigroup generated by A, is defined by

SA(t)
(

y
ϕ

)
=

(
0

W (t)y +
∫ t

0
T̂B0(s)ϕds

)

with

W (t) (y) (a) =
{

e−λay if a ≤ t,
0 if a > t.

Proof. For TA0(t) and SA(t) defined by the above formulas, we have

d

dt
(λI −A)−1

TA0(t)x = λ (λI −A)−1
TA0(t)x− TA0(t)x

and

d

dt
(λI −A)−1

SA(t)x = λ (λI −A)−1
SA(t)x− SA(t)x + (λI −A)−1

x.

The result follows from Lemma 2.10 of Magal and Ruan [22].

Lemma 8.3 For each τ, each f ∈ Lp ((0, τ) , X0) and each x ∈ X0, there exists
a unique integrated solution u ∈ C([0, τ ] , X0) of the Cauchy problem

du

dt
= Au(t) + f(t), t ∈ [0, τ ] , u(0) = x, (8.3)

given by
u(t) = TA0(t)x + (SA ¦ f) (t), ∀t ∈ [0, τ ] . (8.4)

Moreover, there is a constant Mτ such that

‖(SA ¦ f) (t)‖ ≤ Mτ

(∫ t

0

‖f(s)‖p
ds

)1/p

, ∀t ∈ [0, τ ] . (8.5)

Proof. Let ψ ∈ C∞c ((0, +∞) , Y ∗) be fixed. We define x∗ ∈ X∗
0 by

x∗
(

0
ϕ

)
=

∫ +∞

0

ψ(s)(ϕ(s))ds.

Let x =
(

y
ϕ

)
∈ X. For each λ > ω, we have

x∗
(

(λI −A)−1

(
y
ϕ

))
=

∫ +∞

0

e(−λ+ω)tWx∗(t) (y) dt
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with
Wx∗(t)(y) = e−(λ+ω)tψ(t)y.

Therefore,

x∗
(

(λI −A)−n

(
y
ϕ

))
=

(−1)n−1

(n− 1)!
dn−1

dλn−1
x∗

(
(λI −A)−1

(
y
ϕ

))

=
1

(n− 1)!

∫ +∞

0

tn−1e(−λ+ω)tWx∗(t) (y) dt

and
∣∣∣∣x∗

(
(λI −A)−n

(
y
ϕ

))∣∣∣∣ ≤
1

(n− 1)!

∫ +∞

0

tn−1e−λtM ‖ψ(t)‖Y ∗ dt ‖y‖Y .

Hence, Proposition 4.1 and Theorem 4.7 in Magal and Ruan [22] imply that u(t)
defined by (8.4) is an integrated solution of (8.3). Moreover, by using Lemma
2.10 in Magal and Ruan [22], we the inequality in (8.5).

Now combine Theorem 2.9 and Lemma 8.3, we know that Assumption 2.8
is satisfied. Thus, the theory developed in sections 2-7 applies to the transport
equation (8.1).

8.2 Parabolic equations

In the parabolic equations, due to the boundary conditions it is well known that
elliptic operators are not in general Hille-Yosida operators but almost sectorial
operators (see Da Prato [6], Okazawa [29], Periago and Straub [31] and references
therein). To illustrate this property we consider the parabolic system





∂u

∂t
=

∂2u

∂x2
+ M(u(t, .))(x), t > 0, x > 0

−∂u(t, 0)
∂x

= G(u(t, .))

u(0, .) = u0 ∈ Lp ((0,+∞) ,R) ,

(8.6)

As before we consider a linear operator A : D(A) ⊂ X → X defined by

A

(
0
ϕ

)
=

(
ϕ′(0)
ϕ′′

)

with
D(A) = {0R} ×W 2,p ((0,+∞) ,R) .

One may observe that A0, the part of A in D(A) = {0R} × Lp ((0, +∞) ,R) , is
the generator of the strongly continuous semigroup of bounded linear operators
associated to 




∂u

∂t
=

∂2u

∂x2
, t > 0, x > 0

−∂u(t, 0)
∂x

= 0

u(0, .) = u0 ∈ Lp ((0, +∞) ,R) .
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That is,

A0

(
0
ϕ

)
=

(
0

ϕ′′

)

with

D(A0) =
{(

0
ϕ

)
∈ {0R} ×W 2,p ((0, +∞) ,R) : ϕ′(0) = 0

}
.

In particular it is well known that A0 is the infinitesimal generator of an analytic
semigroup on D(A). The resolvent of A is defined by the formula

(λI −A)−1

(
α
ψ

)
=

(
0
ϕ

)

⇔ ϕ(x) = α
−
√

λ
e−
√

λxα + 1
2
√

λ

∫ +∞
0

e−
√

λsψ(s)dse−
√

λx + 1
2
√

λ

∫ +∞
0

e−
√

λ|x−s|ψ(s)ds

for λ ∈ C with Re (λ) > 0.
So as in the hyperbolic case we obtain

0 < lim inf
λ→+∞

λ1/p∗
∥∥∥(λI −A)−1

∥∥∥
L(X)

< lim sup
λ→+∞

λ1/p∗
∥∥∥(λI −A)−1

∥∥∥
L(X)

< +∞,

where
p∗ =

2p

1 + p
.

Note that A is not a Hille-Yosida operator when

p ∈ (1, +∞) .

Now by identifying u(t, .) to v(t) =
(

0
u(t, .)

)
, the PDE (8.6) can be for-

mulated as a non-densely defined Cauchy problem

dv(t)
dt

= Av(t) + F (v(t)) for t ≥ 0 with u(0) = x ∈ D(A). (8.7)

We make the following assumption.

Assumption 8.4 Let A : D(A) ⊂ X → X a linear operator on a Banach
space X. Assume that there exist two constants, ωA ∈ R and MA > 0, such
that

(a) ρ(A0) ⊃ {λ ∈ C : Re (λ) > ωA} and
∥∥∥(λ− ωA) (λI −A0)

−1
∥∥∥
L(X0)

≤ MA, ∀λ ∈ C, Re (λ) > ωA;

(b) (ωA, +∞) ⊂ ρ (A) and there exists p∗ ≥ 1 such that

lim sup
λ→+∞

λ1/p∗
∥∥∥(λI −A)−1

∥∥∥
L(X)

< +∞.
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The above assumption can be reformulated by saying that A0 is sectorial and
A is 1

p∗ -almost sectorial. Moreover, we have the following result (see Ducrot,
Magal and Prevost [13, Theorem 3.1]).

Lemma 8.5 Let Assumption 8.4 be satisfied. Let λ > ωA and p̂ ∈ (p∗, +∞) be
fixed. Then for each f ∈ Lp̂ ((0, τ) , X), the map t → (SA ∗ f) (t) is continuously
differentiable, (SA ∗ f) (t) ∈ D(A), ∀t ∈ [0, τ ] , and if we denote by u(t) =
d
dt (SA ∗ f) (t), then

u(t) = A

∫ t

0

u(s)ds +
∫ t

0

f(s)ds, ∀t ∈ [0, τ ] .

Moreover, for each β ∈
(
1− 1

p∗ , 1− 1
p̂

)
and each t ∈ [0, τ ] , the following esti-

mate holds

‖(SA ¦ f) (t)‖ ≤ Mβ,τ

∫ t

0

(t− s)−βeωA(t−s) ‖f(s)‖ ds, (8.8)

where Mβ,τ is some positive constant.

Lemma 8.5 implies that for each p̂ > p∗ and each τ > 0, the Cauchy problem
(8.7) has a unique integrated solution and there exists a constant Mτ,bp > 0 such
that

‖(SA ¦ f) (t)‖ ≤ Mτ,bp (∫ t

0

‖f(s)‖bp ds

)1/bp
, ∀t ∈ [0, τ ] .

Therefore, the Assumptions 2.1 and 2.8 are satisfied for the parabolic equation
(8.8). Thus, the results in sections 3-7 apply to this equation too.

For parabolic problems in dimension n, we refer to Tanabe [34, Section 3.8,
p.82], Agranovich [1], and Volpert and Volpert [40] for general estimates for the
resolvent of elliptic operators in the n dimensional case.

The goal of this paper was to develop a comprehensive semilinear theory
for non-densely defined Cauchy problems when the linear operator is not a
Hille-Yosida operator. The above two examples on transport equations with
nonlinear boundary conditions and parabolic equations with nonlocal boundary
conditions demonstrate that when the linear operator is not Hille-Yosida, we
still can formulate the problems into a non-densely defined Cauchy problem and
apply the theory of this paper to study these two types of equations. We believe
that our results can be applied to discuss various other types of equations, such
as retarded and neutral functional differential equations (see Liu, Magal and
Ruan [19], Magal and Ruan [22], and Ducrot, Liu and Magal [11]).
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