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Abstract

The classical susceptible-infectious-recovered (SIR) model, originated
from the seminal papers of Ross [51] and Ross and Hudson [52, 53] in 1916-
1917 and the fundamental contributions of Kermack and McKendrick
[36, 37, 38] in 1927-1932, describes the transmission of infectious dis-
eases between susceptible and infective individuals and provides the basic
framework for almost all later epidemic models, including stochastic epi-
demic models using Monte Carlo simulations or Individual-Based Models
(IBM). In this paper, by defining the rules of contacts between suscepti-
ble and infective individuals, the rules of transmission of diseases through
these contacts, and the time of transmission during contacts, we provide
detailed comparisons between the classical deterministic SIR model and
the IBM stochastic simulations of the model. More specifically, for the
purpose of numerical and stochastic simulations we distinguish two types
of transmission processes: that initiated by susceptible individuals and
that driven by infective individuals. Our analysis and simulations demon-
strate that in both cases the IBM converges to the classical SIR model
only in some particular situations. In general, the classical and individual-
based SIR models are significantly different. Our study reveals that the
timing of transmission in a contact at the individual level plays a crucial
role in determining the transmission dynamics of an infectious disease at
the population level.

Keywords: Susceptible-infectious-recovered (SIR) model, individual-based
model (IBM), random graph of connection, numerical simulation, formal
singular limit.
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1 Introduction

Mathematical modeling in epidemiology started with the pioneering work
of Bernoulli [10] in 1760 in which he aimed at evaluating the effectiveness
of inoculation against smallpox. The model of Bernoulli described the sus-
ceptible and recovered classes and already incorporated the chronological
age of individuals (see Dietz and Heesterbeek [20, 21]). The susceptible-
infectious-recovered (SIR) model as we know today takes its origin in the
fundamental works on “a priori pathometry” by Ross [51] and Ross and
Hudson [52, 53] in 1916-1917 in which a system of ordinary differential
equations was used to describe the transmission of infectious diseases be-
tween susceptible and infected individuals. In 1927-1933, Kermack and
McKendrick [36, 37, 38] extended Ross’s ideas and model, proposed the
cross quadratic term βIS linking the sizes of the susceptible (S) and infec-
tive (I) populations from a probabilistic analysis of the microscopic inter-
actions between infective agents and/or vectors and hosts in the dynamics
of contacts, and established the threshold theorem. Since then epidemic
models have been extensively developed in several directions, we refer to
the monographs of Bailey [7], Bartlett [9], Muench [45], Anderson and
May [4], Busenberg and Cooke [13], Capasso [14], Murray [46], Daley and
Gani [16], Mode and Sleeman [47], Brauer and Castillo-Chavez [11], Diek-
mann and Heesterbeek [19], Thieme [59], and Keeling and Rohani [35] on
these topics.

In order to focus on the dynamical properties of an infectious disease
itself, here we neglect the demography, namely the birth and death pro-
cesses, and the immigration/emigration process. The classical SIR model
takes the following form (Anderson and May [4]):

S′ = −β SI
N

I ′ = β SI
N

− ηRI
R′ = ηRI,

(1.1)

where S(t) is the number of susceptible individuals, I(t) is the number
of infective individuals (i.e. individuals who are infected and capable to
transmit the disease), R(t) is the number of recovered individuals at time
t, respectively, and N is the total number of individuals in the population.
The parameter β > 0 is called the infection rate (i.e. the contact rate times
the probability of infection, see Thieme [59]), and ηR > 0 is the recovery
rate (i.e. the rate at which infective individuals recover). The SIR model
has been used successfully to describe several epidemics (see for example
[15]), but as far as we understand, this rate of infection is only derived
empirically, namely by comparison of the model with real data.

When one neglects the demography, an epidemic model becomes a
combination of the following aspects:

(a) a rule of contacts between individuals;

(b) a rule of transmission per contact;

(c) a rule of development of the infection at the level of individuals.

Since the development of an infection is not instantaneous, rule (c)
can be described by introducing a latency between the transmission of
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the pathogen and the moment at which an exposed individual becomes
capable to transmit the infection (namely becomes infective). This latency
can be described by using either an extra exposed class (when the time of
latency follows an exponential law), which leads to SEIR models, or an age
of infection (i.e. the time since infection), which leads to age-structured
models, we refer to Webb [61], Iannelli [33], Thieme [59], Magal et al. [41]
for details on this topic. In this article, we will neglect the aspect (c) and
focus only on (a) and (b).

In an epidemic of an infectious disease, the graph of contact plays a
crucial role in the transmission of the disease. It is usually admitted (see
Anderson and May [4] and Hethcote [30]) that the SIR model (1.1) is
derived by using a “fully mixed” population. This means that all individ-
uals have the same probability to contact with any other individuals in the
population. Here we will see that even with a fully mixed population, the
SIR model may fail to reproduce the dynamics of the epidemic. Actually
we will see that more sophisticated models are needed to understand the
dynamical property of an epidemic.

Of course in most epidemics, the contacts between individuals will
arise only locally in space. Therefore more general graphs of contact are
needed, we refer to Durrett and Levin [26], Newman [48], Durrett [24, 25],
Meyers [43], Barrat et al. [8] (and references therein) for more information
on this subject. Actually the space can be incorporated by using different
approaches: it can be regarded as a continuous domain (see Rass and
Radcliffe [50], Ruan [54], Ruan and Wu [55]) or again as a network (see
Arino [6] and references therein). In this article, we will neglect the space
in order to focus on the classical SIR model.

Stochastic individual-based models (IBM) have been extensively used
to investigate threshold conditions and to evaluate the efficacy of disease
control measures in which each host is viewed as an individual agent whose
status changes based on probabilistic events occurring over time. IBM are
particularly suitable to describe the transmission of infectious diseases in a
small population in which the individual behavior plays an important role
in the spread of diseases (DeAngelis and Mooij [18], Grimm and Railsback
[29], Levin and Durrett [40], Keeling and Grenfell [34]). Studies have been
performed to compare different types of IBM. For instance, Smieszek et al.
[57] compared two different types of individual-based models, one assumes
random mixing without repetition of contacts and the other assumes that
the same contacts repeat day-by-day. They tested and compared how the
total size of an outbreak differs between these model types depending on
the key parameters such as transmission probability, number of contacts
per day, duration of the infectious period, different levels of clustering and
varying proportions of repetitive contacts. If the number of contacts per
day is high or if the per-contact transmission probability is high, as seen
in typical childhood diseases such as measles, they showed that random
mixing models provide acceptable estimates of the total outbreak size. If
the number of daily contacts or the transmission probability is low, such as
the infection of meticillin-resistant Staphylococcus aureus (MRSA), they
found that particular consideration should be given to the actual structure
of potentially contagious contacts when designing the model. See also the
comparison of a stochastic agent-based model and a structured metapop-
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ulation stochastic model for the progression of a baseline pandemic event
in Italy by Ajelli et al. [1].

We should mention that the Gillespie algorithm or Doob-Gillespie al-
gorithm (see Doob [22, 23] and Gillespie [27, 28]) provides a method to run
random Monte-Carlo simulations associated to ordinary differential equa-
tions (see Andersson and Britton [5] and Kurtz [39]). This method was
successfully used for chemical or biochemical systems of reactions. In epi-
demics, we will see in this article that changing the moment of pathogen’s
transmission from the beginning to the end of contact may influence the
dynamical property of the equations.

The main issue to be addressed in this article is the comparison be-
tween the classical deterministic SIR model and its computer stochastic
versions. The stochastic models will be derived by using Monte Carlo
simulations or IBM. The increase in behavioral details provided by IBM,
however, leads to much greater computational intensity and much greater
difficulty in analyzing the significance of parameters. Some comparison
between deterministic models and IBM have been performed by Pascual
and Levin [49] (in the context of predator-prey), D’Agata et al. [17] (in the
context of epidemics), Hinow et al. [32] (in the context of cell population
dynamics), and Sharkey [56] (in the context of epidemics in networks).
But as we will see, even with rather simple rules (a) and (b), the com-
parison between the SIR model (1.1) and the IBM derived from these
stochastic rules (at the individual level) is not clear in general. Actually
we will see that more general classes of SIR models are necessary to derive
a comparison with the IBM.

The paper is organized as follows. In section 2 we make some as-
sumptions about the rules of contacts between susceptible and infective
individuals, the rules of transmission of diseases through these contacts,
and the time of transmission during contacts. In section 3 we analyze
the transmission driven only by susceptible individuals and compare the
numerical simulations between the classical SIR model and the IBM. In
section 4, the transmission driven only by infective individuals is modeled
and analyzed. Our analysis and simulations demonstrate that in both
cases, the IBM converges to the classical SIR model only in some par-
ticular situations. In general, the classical SIR model and the IBM are
significantly different. A brief discussion is given in section 5.

2 Rules of Contacts and Transmission

In this section we present the stochastic process describing contacts be-
tween individuals. This process will lead to the construction of a simple
deterministic model. The contacts are supposed to be arbitrarily given at
an initial time, and in order to describe the evolution of the contacts with
time, we will use the following rules.

We would like to point out that the evolution of the contact network
is indeed dynamic since it changes with time. We define the rules of
contacts, the rules of transmission, and the time of transmission for the
purpose of numerical and stochastic simulations of the SIR model. These
rules may not affect the outcome of an epidemic from a deterministic
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modeling point of view. However, they are important in numerical and
stochastic simulations and produce dramatically different results.

2.1 Rules of Contacts

Firstly, we make some assumptions on the rules of contacts.

(a) At any time each individual has initiated exactly one contact with an
individual in the population (possibly himself).

(b) The duration of a contact follows an exponential law and the average
duration of a contact is TC > 0.

(c) At the end of a given contact the initiating individual randomly chooses
a new individual within the population and the duration for this con-
tact is determined.

The rules of contacts are chosen to be as simple as possible, since our
goal is to obtain a comparison between an epidemic model using the above
rules for contacts and the usual SI model. The duration of a given contact
is the time from when the contact begins until the individual who initiated
the contact concludes it and begins a new contact. Therefore the average
contact duration TC > 0 can be estimated in practice. Indeed, νC = 1/TC

is the average number of contacts per unit of time.
In real epidemics, participants may have no choice on contact. Here

the terminology “choose” or “initiate” means an individual of one type
(either S or I type) is tracked through a time course of paired-contact with
other individuals. In the following we will consider the extreme case where
one follows either only the susceptible-individuals (abbr. S-individuals)
or only the infectious-individuals (abbr. I-individuals). As we will see the
model outcomes can be very different if the probability of transmission
depends on the class of individuals that is tracked.

To further clarify the terminology, the above assumption also means
that the graph of contact (in which the nodes or vertices are the individ-
uals) is oriented. Moreover, we assume that each individual has one and
only one outward arrow (possibly directed to himself) and at the end of
a given oriented contact the new partner is chosen randomly (within the
population). Oriented graphs have been used previously in the literature
to describe epidemics (see for example Meyers et al. [44]). The definition
of “choose” or “initiate” is contextual in the description of the graph (or
the IBM).

In this model, an S-individual may have many contacts directed to
him, in particular many directed contacts from an I-individuals and vice
versa. The directed network approach may look at first more complicated,
but it provides an advantage to construct an associated mathematical
model to the epidemic considered (i.e. to evaluate the contacts between
S and I individuals). One may also observe that similar treatment can
be used for disease involving a criss-cross transmission between two pop-
ulations (e.g. malaria, nosocomial infections, etc.). In such a situation,
the probability of transmission may depend on which population is trans-
mitting the pathogen. But the mathematical model associated with the
problem will remain similar to the ones constructed here. Therefore, here
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it makes sense to look at the population divided into two subpopulations
S and I.

In order to describe the epidemics, we will classify the population into
the class S of susceptible individuals (i.e. capable to become infected by
contact) and the class I of infective individuals (i.e. capable to transmit
the disease by contact). The transmission can only occur at the end of a
contact between an S-individual and an I-individual. Moreover, we use
the following rules of transmission. In order to take into account new
infections, it will be appropriate to distinguish two processes:

(i) an S-individual chooses an I-individual for a contact;

(ii) an I-individual chooses an S-individual for a contact.

Figure 1: Diagram of the contact network at a given time t ≥ 0. The first
S-individual (S1) only contacts with himself. The second S-individual (S2)
chooses to contact with a third S-individual (S3) who in turn contacts with an
I-individual (I5). I5 contacts another I-individual (I4) who in turn chooses S2

for contact.

Depending on the disease, there may be an asymmetry between these
processes and an important difference in their likelihood of leading to
disease transmission. For example, if the infection is severe enough to
immobilize infective individuals, then the transmission can only take place
when susceptible individuals initiate contacts with infective individuals.
On the other hand, for the common seasonal diseases, such as influenza,
infected individuals continue to initiate contacts and they are very likely
to play an important role in the transmission of the diseases.

As a first attempt to model this process, we first distinguish the num-
ber SC of S−individuals who choose a contact with an infective individual,
the number SF of S−individuals who choose a contact with a susceptible
individual, the number IC of I−individuals who choose a contact with a
susceptible individual, and the number IF of I−individuals who choose a
contact with an infective individual. A diagram of the contact network is
given in Fig. 1. The arrows are pointing the individuals who are chosen for
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the contact. T1, T2, ..., T5 are the times remaining to the end of the contact
for each individual. For this graph of contacts, (Sc, Sf , Ic, If ) = (1, 2, 1, 1).
The individuals in Sc and Ic can be spotted by finding the arrows between
susceptible and infective nodes.

Under the Rules of Contacts, we obtain the following model
S′
C = νC

I
S+I

(SC + SF )− νCSC

S′
F = νC

S
S+I

(SC + SF )− νCSF

I ′C = νC
S

S+I
(IC + IF )− νCIC

I ′F = νC
I

S+I
(IC + IF )− νCIF

(2.1)

with
S = SC + SF and I = IC + IF .

In system (2.1), the fraction S(t)
S(t)+I(t)

(resp. I(t)
S(t)+I(t)

) is the proba-

bility (in a “well mixed” population) that an individual initiates a new
contact (resp. stops a contact) to a susceptible individual (resp. an infec-
tive) at a given time t. The quantity νCSC(t) (resp. νCSF , νCIC , νCIF )
is the flux of individuals interrupting a contact at time t in the class of
SC (resp. SF , IC , IF ). Thus, in the absence of new infections, the rate
that susceptible individuals forming new contacts is νC (SC + SF ) . So the
rate at which susceptible individuals form new contacts with infective in-
dividuals is νC

I
S+I

(SC + SF ), the flux into SC . Similarly, the flux into

SF is νC
S

S+I
(SC + SF ). The equations for I ′C and I ′F can be explained

similarly.
The following lemma is readily proved.

Lemma 2.1 For solutions of system (2.1), S(t) and I(t) are constant
and

(SC(t), SF (t), IC(t), IF (t)) →
(

SI

S + I
,

S2

S + I
,

SI

S + I
,

I2

S + I

)
as t → +∞,

where the convergence is exponential.

The comparison between the ODE model (2.1) and Monte Carlo sim-
ulations of the model is given in Fig. 2. Here a Monte Carlo simulation
means we run a stochastic computer program where we make a simulation
of the above assumptions for N individuals. In this figure we fix νc = 1,
I = N/3, S = 2N/3, Ic = 0 and Sc = S at time t = 0. Moreover, the
number of individuals N varied from N = 200 in (a) up to N = 2000
in (b). Therefore, when N increases the solutions Sc(t) and Ic(t) of the
stochastic simulations converge to the trajectories of the ordinary differ-
ential equation model (2.1).
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Figure 2: The comparison between solutions of the ordinary differential equation
model (2.1) and Monte Carlo simulations of the model. The solutions of the
stochastic model converge to the equilibrium solutions of the ODE model. Here
νc = 1, I = N/3, S = 2N/3, Ic = 0 and Sc = S at time t = 0. (a) N = 200 and
(b) N = 2000.

We now specify the rules for disease transmission.

2.2 Rules of Transmission

We make assumptions about the rules of transmission: During a given
contact between an S−individual and an I−individual, the probability of
transmission is

(a) pS ∈ [0, 1] if the contact was initiated by an S−individual;

(b) pI ∈ [0, 1] if the contact was initiated by an I−individual.

We would like to make some remarks about pS and pI . It is important
to understand that the word “choosing” here serves only to construct
the diagram of contact. For most cases (i.e. for non vector-borne dis-
eases) there is no reason to assume that the transmission is oriented.
Therefore, for non vector-borne diseases it will be natural to assume that
pS = pI . Nevertheless in order to count the number of contacts between
S− and I−individuals it will be convenient to keep the word “choosing”.
For vector-borne or sexually transmitted diseases, pS and pI might be
different. For example, it has been reported that (Higgins et al. [31])
the man-to-woman transmission rate of HIV/AIDS is different form the
woman-to-man transmission rate. Also, in hospitals the contamination
rate of health care workers and the colonization rate of patients for noso-
comial infection are usually different. Thus, for the sake of generality we
assume that pS and pI are different.

The next two sections are divided according to the following special
cases:

(i) pS > 0 and pI = 0 (which will be called transmission driven by the
susceptibles);

(ii) pS = 0 and pI > 0 (which will be called transmission driven by
infectives).
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One may observe that case (i) actually corresponds to the fact that
the contact initiated by I−individuals plays no role in the transmission.
Therefore assumption (i) is also equivalent to supposing that only S-
individuals are initiating contacts. Case (ii) is similar and this assumption
is also equivalent to assuming that only I−individuals are initiating con-
tacts. As we will see, even if these two cases look symmetric at first, these
two scenarios are fairly different in terms of mathematical models. We
also would like to note that pS and pI are used as the probabilities for all
contacts during a simulation.

2.3 Time of Transmission

Finally we would like to address the issue on the time of transmission dur-
ing a given contact. For a given contact between a susceptible individual
and an infective individual, the transmission of the disease occurs (with a
probability pS or pI) only at one of the following two moments:

(c) the beginning of the contact;

(d) the end of the contact.

This is illustrated in Fig. 3. In sections 3.4 and 4.4 (on numerical
simulations), we will examine the following two “extreme” cases. With
the notations of Figure 3, case (c) describes the situation where t∗ = t1
while case (d) corresponds to the situation where t∗ = t2. Both cases may
look very similar at first, in reality they are not. As we will see in sections
3.4 and 4.4, case (c) corresponds to the classical SIR model (1.1) while
case (d) describes new classes of SIR models which will be presented in
sections 3 and 4.

Figure 3: Time of transmission. (a) Transmission occurs at the beginning of a
contact as assumed in the classical SIR model and (b) transmission occurs at
the end of a contact as assumed in the new SIR model. In general, transmission
can occur at any moment in between.
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3 Transmission Driven only by S-individuals

Under the Rules of contacts and Rules of transmission, we further assume
that

pS > 0 and pI = 0.

In addition we assume that the transmission occurs at the end of the
contact period (i.e. Time of transmission (d) is satisfied). By combining
these assumptions and using model (2.1), we obtain the following epidemic
model 

S′
C = νC(

I
S+I

(SC + SF − pSSC)− SC)

S′
F = νC(

S
S+I

(SC + SF − pSSC)− SF )

I ′ = νCpSSC ,

(3.1)

which yields {
S′ = −νCpSSC

I ′ = νCpSSC .

The terms in equations (3.1) involving pS come from the fact that the rates
at which new contacts of susceptible individuals and infective individuals
have changed due to the inclusion of disease transmission in (3.1). The
flux of S-individuals ending a contact at time t and in contact with an
infective individual is νCSC . Therefore the flux of S-individuals becoming
infected must be pSνCSC . The rate at which susceptible ones are forming
new contacts is now νC (SC + SF − pSSC).

3.1 Model with recovery

We consider the case that the population is divided into three groups:
susceptible S, infective I, and recovered R. We also assume that only
susceptible individuals initiate the contact.

Assumption 3.1 The duration of an infection follows an exponential law
and the average duration of an infection is TR > 0.

Under the above assumption, the rate at which I-individuals are re-
covering is ηR := 1

TR
and we obtain the following model

S′
C = νC

(
I

N
[SF + (1− pS)SC ]− SC

)
S′
F = νC

(
S +R

N
[SF + (1− pS)SC ]− SF

)
I ′ = νCpSSC − ηRI
R′ = ηRI,

(3.2)

where N = S+ I+R. The fluxes between the compartments of the model
(3.2) are described in Fig. 4.
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Figure 4: The flux diagram of model (3.2).

The parameters and state variables of the model are listed in Table 1.

Table 1. List of parameters and variables of the model
Symbol Interpretation
νC rate of contact
ηR rate of recovery
TC = 1/νC average duration of contacts
TR = 1/ηR average duration of infection

pS
probability of infection at the end of a contact
whenever a susceptible chooses an infective

pI
probability of infection at the end of a contact
whenever an infective chooses a susceptible

SC number of susceptibles in contact with an infective
SF number of susceptibles contact free with an infective
IC number of infectives in contact with a susceptible
IF number of infectives contact free with a susceptible
S := SC + SF number of susceptibles
I := IC + IF number of infectives
R number of recovereds

3.2 Asymptotic behavior

Set s = S/N, i = I/N, r = R/N, sc = Sc/N, and sf := Sf/N. Then
model (3.2) is equivalent to

s′c = νc {i (s− pSsc)− sc}
s′f = νc {(s+ r) (s− pSsc)− sf}
i′ = νcpSsc − ηRi
r′ = ηRi.

(3.3)
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By summing up the first two equations in system (3.3) we obtain the
following model 

s′ = −νcpSsc
i′ = νcpSsc − ηRi
r′ = ηRi
s′c = νc {i (s− pSsc)− sc}

(3.4)

with s(0) ≥ 0, i(0) ≥ 0, r(0) ≥ 0 and

s(0) + i(0) + r(0) = 1 and sc(0) ∈ [0, s(0)] . (3.5)

Now consider s̄c =
sc
s

which is the probability (or the fraction) of S-

individuals in contact with an I-individual within the population of S-
individuals. By using the first equation of system (3.3) and system (3.4),
we have

s̄′c =
s′c
s

− sc
s

s′

s
= νc

1

s
{i (s− pSsc)− sc}+

sc
s

νcpSsc
s

= νc
{
i (1− pS s̄c)− s̄c + pS s̄

2
c

}
.

Hence
s̄′c = νc (i− s̄c) (1− pS s̄c) . (3.6)

So we obtain the following system
s′ = −νcpS s̄cs
i′ = νcpS s̄cs− ηRi
r′ = ηRi
s̄′c = νc (i− s̄c) (1− pS s̄c) ,

(3.7)

where the initial values satisfy

s(0) = s0 ≥ 0, i(0) = i0 ≥ 0, r(0) = r0 ≥ 0 and s̄c(0) = s̄c0 ∈ [0, 1)

with s0 + i0 + r0 = 1. We can also see that

s(t) + i(t) + r(t) = 1,∀t ≥ 0. (3.8)

Moreover, we have the following inequality

s̄′c(t) ≤ νc(1− s̄c(t))(1− pS s̄c(t))

whenever s̄c(t) ≤ 1. Hence we deduce that

s̄c(t) ∈ (0, 1), ∀t > 0. (3.9)

The last tool to complete the description of the asymptotic behavior is
the following equality

d

dt
{s+ i− ηR

pSνc
[ln(1− pS s̄c) + ln(s)]} = 0. (3.10)

12



Remark 3.2 The model does not coincide with the classical SIR model.
Indeed, if ηR = 0 then we have s+ i = 1 (for both models), it is clear that
the equations

s̄′c = νc (i− s̄c) (1− pS s̄c)

and
i′ = β(1− i)i

do not coincide. If ηR > 0, equation (3.10) provides a formula for s̄c which
is not proportional to i.

As for the classical SIR model, equality (3.10) is the main tool to
determine the limits of the s and r components in model (3.7). The
equilibria of system (3.7) satisfy

s∗ + r∗ = 1 and i∗ = s̄∗c = 0

By using the previous observations (3.8)-(3.10), we obtain the following
proposition.

Proposition 3.3 Assume that pS ∈ (0, 1) , νc > 0, ηR > 0, and further
suppose that

s0 > 0 and i0 > 0.

Then all solutions of model (3.7) and their limits satisfy the following
property for initial values with i0 > 0

lim
t→+∞


s(t)
i(t)
r(t)
s̄c(t)

 =


s∗

0
r∗

0


with the equilibrium satisfying

s∗ + r∗ = 1

and s∗ being the unique solution in
(
0, ηR

pSνc

]
of the equation

s∗ − ηR
pSνc

ln(s∗) = {s0 + i0 −
ηR
pSνc

[ln(1− pS s̄c0) + ln(s0)]}. (3.11)

Proof. Since t → s(t) is decreasing and t → r(t) is increasing, and both
functions are bounded by 1, we deduce that both functions converge (when
t goes to +∞), respectively, to s∗ ≥ 0 and r∗ ≥ 0. Moreover, since
s + i + r = 1 we deduce that t → i(t) also converges (when t goes to
+∞) to some i∗ ≥ 0. Now by using the r-equation one deduces that
i∗ = 0 (otherwise r(t) would be unbounded). Moreover, by using (3.10)
one deduces that s∗ > 0 and satisfies (3.11). Now it remains to prove that

s∗ belongs to
(
0, ηR

pSνc

]
. Assume that

s∗ >
ηR
pSνc

. (3.12)

Without loss of generality we assume that i0 > 0 and s̄c0 > 0. Otherwise
if s̄c0 = 0, since i0 > 0 and

s̄′c = νc (i− s̄c) (1− pS s̄c) ,
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replacing (i0, s̄c0) by any (i(t), s̄c(t)) for t > 0 we obtain the desired
property.

Next by using the i-equation in (3.7) we obtain{
i′ ≥ ηR (s̄c − i) ,
s̄′c = νc (i− s̄c) (1− pS s̄c) .

We deduce that

(i(t), s̄c(t)) ≥ (x(t), y(t)) ,∀t ≥ 0,

where (x, y) is the solution of the monotone system (see Smith [58]){
x′ = ηR (y − x)
y′ = νc (x− y) (1− pSy)

(3.13)

with
x(0) = i0 > 0 and y(0) = s̄c0 > 0.

Set
ε = min (i0, s̄c0) .

We conclude that

lim
t→+∞

i(t) ≥ ε and lim
t→+∞

s̄c(t) ≥ ε,

since (ε, ε) is an equilibrium of system (3.13), we obtain a contradiction
with the fact that

lim
t→+∞

i(t) = lim
t→+∞

s̄c(t) = 0.

This completes the proof.

3.3 Comparison with the classical SIR model

Let βS > 0 and ηR > 0 be fixed. Set νc = 1
ε
, pS = βSε, where ε ∈

(
0, β−1

S

]
is a small parameter. By using this rescaling, system (3.7) becomes the
following system parameterized by ε :

s′ε = −βS s̄cεsε
i′ε = βS s̄cεsε − ηRiε
r′ε = ηRiε

s̄′cε =
1

ε
(iε − s̄cε) (1− βSεs̄cε)

(3.14)

with

sε(0) = s0 > 0, iε(0) = i0 > 0, r(0) = r0 ≥ 0 and s̄cc(0) = s̄c0 ∈ [0, 1) .

Indeed when ε goes to 0 we obtain a singular perturbation problem.
The main question to be addressed in this section is the convergence

of the first three components of the system.
Now consider the classical SIR model

s′ = βSis
i′ = βSis− ηRi
r′ = ηRi

(3.15)
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with
s(0) = s0 > 0, i(0) = i0 > 0, r(0) = r0 ≥ 0.

Recall now the classical result of the SIR model (see Hethcote [30]). By
using the fact that

d

dt

[
s+ i− ηR

βS
ln(s)

]
= 0 (3.16)

and the same argument as above one has the following result.

Proposition 3.4 Assume that

s0 > 0 and i0 > 0,

then

lim
t→+∞

 s(t)
i(t)
r(t)

 =

 s∗

0
r∗

 ,

where s∗ is the unique solution in
(
0, ηR

βS

]
of the equation

s∗ − ηR
βS

ln(s∗) = {s0 + i0 −
ηR
βS

ln(s0)]}. (3.17)

The main result of this section is the following theorem on the conver-
gence of the solution.

Theorem 3.5 (Uniform convergence in time) Under the above as-
sumptions, if

sε(0) = s(0) > 0, iε(0) = i(0) > 0, rε(t) = r(0) ≥ 0,

then  sε(t)
iε(t)
rε(t)

→

 s(t)
i(t)
r(t)


as ε → 0 uniformly with respect to t in [0,+∞) .

In other word, for each constant δ > 0, we can find ε̂ = ε̂ (δ) > 0, such
that

|sε(t)− s(t)| ≤ δ, |iε(t)− i(t)| ≤ δ and |rε(t)− r(t)| ≤ δ

for each ε ∈ (0, ε̂] and each t ≥ 0.

In order to prove this result, we start with a convergence result for a
finite time.

Lemma 3.6 Let τ > 0. Then sε(t)
iε(t)
rε(t)

→

 s(t)
i(t)
r(t)


as ε → 0 uniformly with respect to t in [0, τ ] .

15



Proof. Let τ > 0 be fixed. It is clear the

iε(t) + sε(t) ≤ 1, ∀t ∈ [0, τ ] ,

and by construction we have

0 ≤ sεc(t) ≤ 1 and 0 ≤ iεc(t) ≤ 1.

We also have

s′ε = −βS s̄cεsε

i′ε = βS s̄cεsε − ηRiε

r′ε = ηRiε.

Thus ∣∣i′ε(t)∣∣+ ∣∣s′ε(t)∣∣+ ∣∣r′ε(t)∣∣ ≤ 2 (βS + ηR) , ∀t ∈ [0, τ ] .

Therefore, by the Arzela–Ascoli theorem, for each sequence εn → 0 we
find a subsequence (denoted with the same index) such that

sεn(t) → s(t), iεn(t) → i(t) and rεn(t) → r(t) as n → +∞,

uniformly with respect to t in [0, τ ] . Moreover,

s̄′cε =
1

ε
(iε − s̄cε) (1− βSεs̄cε) .

=
1

ε
[iε (1− βSεs̄cε)− s̄cε (1− βSεs̄cε)] ,

so

s̄′cε = −1

ε
s̄cε +

1

ε

[
iε − βSε

(
s̄cε − s̄2cε

)]
.

Therefore,

s̄εc(t) = e
−
t

ε s̄c0+

∫ t

0

1

ε
e
−
(t− l)

ε iε(l)dl−
∫ t

0

e
−
(t− l)

ε βS

[
s̄cε(l)− s̄2cε(l)

]
dl.

Since

∫ t

0

1

εn
e
−

1

εn
(t−l)

iεn(l)dl → i(t) as n → +∞ in L1 (0, τ)

and

e
−

t

εn s̄c0 −
∫ t

0

e
−

1

εn
(t−l)

βS

[
s̄cε(l)− s̄2cε(l)

]
dl → 0 as n → 0 in L1 (0, τ) ,

the result follows.

Proof of Theorem 3.5. The proof is to combine the (monotone) conver-
gence of t → s(t) and t → r(t), Lemma 3.6, and the convergence of the
equilibrium as ε → 0 (i.e. formula (3.11) and formula (3.17)).
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3.4 Numerical simulations

In order to compare these models numerically we consider some extreme
cases. The codes used for the numerical simulations can be downloaded
at http://www.math.u-bordeaux1.fr/ pmagal/SIR/SIR.htm.

Actually the IBM are rather delicate to run since some parameters and
terms need to be more specific. Here we specify the rules of transmission
between an S−individual and an I−individual.

Assumption 3.7 We further assume that

(a) (New SIR Model) For a given pair of (S, I)-individuals in contact,
if the individual initiating the contact is an S-individual, then the
transmission only occurs at the end of the contact with the proba-
bility pS .

(b) (Classical SIR Model) For a given pair of (S, I)-individuals in
contact, if the individual initiating the contact is an S-individual,
then the transmission only occurs at the beginning of the contact
with the probability pS .

We will use Assumption 3.7 (a) to run an IBM (called IBM11 here)
which corresponds to model (3.2), while Assumption 3.7 (b) will be used
to run an IBM (called IBM21 here) which corresponds to the classical
SIR model (1.1). There are four cases in total which are summarized in
Table 2. The two other cases will be studied in section 4.4. As we will
see, replacing one model by the other might lead to a large bias in the
prediction. Therefore one must be very careful in using IBM to simulate
an epidemic.

Table 2. List of four IBMs.
Transmission driven by S Transmission driven by I

End of contact IBM11 (First new SIR) IBM12 (Second new SIR)
Beginning of contact IBM21 (Classical SIR) IBM22 (Classical SIR)

3.4.1 Simulations with a fully random graph of connection
at time t = 0

In Fig. 5 we compare the new SIR model (3.2) and the classical SIR model
(1.1) with β = βS = pS/TC fixed. The initial value SC = SI/N at time
t = 0, therefore the contacts are assumed to be already stabilized. We
observe large bias in comparing both models. The deviation is confirmed
in the numerical simulations of the IBM in Fig. 5. As predicted by
Theorem 3.5, we first observe numerically the convergence of solutions
of SIR model (3.2) to the solutions of the classical SIR model (1.1) when
the average time of contact TC goes to zero. Note that the curve of R(t),
the number of recovered individuals, is influenced by the parameter TC .
Let R∞ be the limit of R(t) when t goes to +∞. Recall that R∞ is the
total number of cases produced by an epidemic. We can see that R∞
is influenced by the parameter TC . In Fig. 5(a) the total numbers of
cases of the new SIR model (3.2) and the classical SIR model (1.1) are
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fairly different. Here S = 0.9, I = 0.1, Sc = SI/(S + I + R) at time
t = 0. TR = 5 and βS = 0.1 were fixed. In (a) (resp. (b)), TC = 10 and
pS = βSTC = 1 (resp. TC = 1 and pS = βSTC = 0.1) were fixed.
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Figure 5: Comparison of the new SIR model (3.2) (dotted curves) and classical
SIR model (1.1) (dashed curves) with β = βS = pS/TC , S = 0.9, I = 0.1, Sc =
SI/(S+I+R) at time t = 0. TR = 5 and βS = 0.1 were fixed. (a) TC = 10 and
pS = βSTC = 1. (b) TC = 1 and pS = βSTC = 0.1. In both cases the solutions
of the new SIR model converge to the solutions of the classical SIR model.

Comparison of the IBM, the new SIR model (3.2), and the classical
SIR model (1.1) is presented in Fig. 6. Here I = (1/10)N , S = (9/10)N ,
with Sc = SI/(S + I + R) at time t = 0. TC = 5, TR = 5, βS = 0.2
and pS = βSTC = 1 were fixed. νc = 1/TC = 1/5, νR = 1/TR = 1/5.
N (the total number of individuals in the IBM) varies from N = 100
in (a) and (c) to N = 10000 in (b) and (d). In (a) (resp. (b)) the
IBM11 was run to simulate the transmission at the end of the contact for
N = 100 (resp. N = 10000). In (c) (resp. (d)) the IBM21 was run to
simulate the transmission at the beginning of the contact for N = 100
(resp. N = 10000).
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Figure 6: Comparison of simulations of the IBM (solid curves), the new SIR
model (3.2) (dotted curves), and the classical SIR model (1.1) (dashed curves)
with β = βS , I = (1/10)N,S = (9/10)N with Sc = SI/(S + I + R) at time
t = 0. TC = 5, TR = 5, βS = 0.2 and pS = βSTC = 1 were fixed. νc = 1/TC =
1/5, νR = 1/TR = 1/5. In (a) and (b) the IBM11 was run to simulate the
transmission at the end of the contact for N = 100 and N = 10000, respectively.
In (c) and (d) the IBM21 was run to simulate the transmission at the beginning
of the contact for N = 100 and N = 10000, respectively.

In order to illustrate the random fluctuations occurring in IBM11 and
IBM21, we provide more numerical simulations of these two models with
50 runs. For the sake of simplicity, we only plot the simulations of the
recovered class in see Fig. 7. In Fig. 7(a) (resp. (b)) the IBM11 was
run 50 times to simulate the transmission at the end of the contact for
N = 100 (resp. N = 10000). In Fig. 7(c) (resp. (d)) the IBM21 was run
50 times to simulate the transmission at the beginning of the contact for
N = 100 (resp. N = 10000). All parameter values are the same as in Fig.
6.
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Figure 7: Simulations of the recovered class in the IMB. In (a) and (b) the
IBM11 was run 50 times to simulate the transmission at the end of the contact
for N = 100 and N = 10000, respectively. In (c) and (d) the IBM21 was run 50
times to simulate the transmission at the beginning of the contact for N = 100
and N = 10000, respectively. All parameters are the same as in Fig. 6.

3.4.2 Simulations with a non-fully random graph of con-
nection at time t = 0

In this subsection we run some simulations assuming that SC = S at time
t = 0. This means that all S−individuals choose randomly a contact with
an I−individual at t = 0, and for t > 0 all individuals choose randomly
a contact within the all population (i.e. including the S, I and R indi-
viduals). This also means that the contacts are not yet stabilized at time
t = 0.

In Fig. 8 we observe a large deviation between the new SIR model
(3.2) and the classical SIR model (1.1), but the former still predicts the
IBM11 when the number of individuals increases; that is, the solutions of
the IBM11 converge to the equilibrium solutions of the new SIR model
(3.2) when the number of individuals increases. In both (a) and (b) the
classical SIR model (1.1) (with β = βS := pS/TC) fails to predict the total
number of cases produced by IBM11 (even when TC = 0.1). The classical
SIR model (1.1) cannot predict this case, because the contacts are not
yet stabilized, and it takes count of the evolution of contacts between
individuals. Here S = 0.9, I = 0.1, Sc = S at time t = 0. TR = 5 and
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βS = 0.1 are fixed. In (a) (resp. (b)) TC = 10 and pS = βSTC = 1
(resp. TC = 0.1 and pS = βSTC = 0.1) are fixed. In (a) and (b), the total
number of individuals is fixed at N = 100 and N = 1000 respectively for
the IBM11. Of course by taking TC smaller enough and pS = βSTC , the
total number of cases will finally be predicted by the classical SIR model.
This question has to be explored further in order to derive some practical
evaluation of the time of contacts and the probability of transmission in
order to use the classical SIR model.
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Figure 8: Comparison of simulations of the IBM11 (solid curves), the new SIR
model (3.2) (dotted curves), and the classical SIR model (1.1) (dashed curves)
with β = βS and a non-fully random graph of connection at time t = 0. Here
S = 0.9, I = 0.1, Sc = S at time t = 0. TR = 5 and βS = 0.1 are fixed. (a)
TC = 10 and pS = βSTC = 1. (b) TC = 0.1 and pS = βSTC = 0.1.

4 Transmission Driven only by I-individuals

4.1 Gain and loss of contacts

Under the Rules of contacts and Rules of transmission, we assume in
addition that

pS = 0 and pI > 0.

This is also equivalent to assuming that only the I-individuals are building
some contacts with other individuals chosen randomly in the population.

We define Sn(t) as the number of S-individuals that have been chosen
n times for a contact by I-individuals. So each S-individual in class Sn has
been chosen exactly n times for a contact by exactly n different infective
individuals. The total number of S-individuals is given by

S :=

+∞∑
n=0

Sn. (4.1)

The structured diagram of the population in term of contacts is given
in Fig. 9. Recall that each I-individual chooses at most one S-individual.
Since I-individuals are choosing randomly an individual in the population
at the end of each contact, an S-individual can be chosen from 0 to a
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number up to the number of I-individuals. The arrows are pointing to
the group of S-individuals which have been chosen for a contact by I-
individuals. S0 is the group of S-individuals which has not been chosen
by I-individuals, and Sn is the group of S-individuals which has been
chosen n times by I-individuals, where n = 1, 2, ...

Figure 9: Structured diagram of the population in term of contacts indicating
the number of S-individuals chosen for a contact by I-individuals. Sn is the
group of S-individuals which has been chosen n times by I-individuals, where
n = 0, 1, 2, ...

In order to present the model, we first consider separately the following
two processes for S-individuals: 1) the gain contacts with I-individuals;
2) the loss contacts with I-individuals. To describe the processes, we first
make the following assumption.
Gain of Contacts: Assume that, at any given time t ≥ 0, each S-
individual can gain at most one contact with an I-individual.

Under this assumption the model describing the gains of contacts is
given by the following infinite system of ordinary differential equations:

S′
0 = νc

[
−I(t)

N
S0(t)

]
S′
1 = νc

[
I(t)

N
S0(t)−

I(t)

N
S1(t)

]
S′
2 = νc

[
I(t)

N
S1(t)−

I(t)

N
S2(t)

]
. . .

S′
n = νc

[
I(t)

N
Sn−1(t)−

I(t)

N
Sn(t)

]
. . .

(4.2)

For S-individuals, the total number of contacts with I-individuals is given
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by
∑+∞

n=0 nSn(t) and its variation is

d

dt

+∞∑
n=0

nSn(t) = νc
I(t)

N

[
+∞∑
n=1

n (Sn−1(t)− Sn(t))

]

= νc
I(t)

N

[
+∞∑
n=0

(n+ 1)Sn(t)−
+∞∑
n=1

nSn(t)

]
.

Hence

d

dt

+∞∑
n=0

nSn(t) = νc
I(t)

N
S(t).

Now we shall remember that the variation of the number of contacts with
I-individuals is νcI. Since by assumption I-individuals are choosing their
new contacts randomly, we shall consider the probability of finding an

S-individual within the population (namely
S

N
). Therefore the rate at

which S-individuals gain contacts with I-individuals must be νcI
S

N
. This

fully justifies model (4.2).
We also make the following additional assumption.

Loss of Contacts: Assume that, at any given time t ≥ 0, each S-
individual can lose at most one contact with an I-individual.

Then the model describing the loss of contacts of S-individuals with I-
individuals is given by the following infinite system of ordinary differential
equations: 

S′
0 = νc [S1(t)]

S′
1 = νc [2S2(t)− S1(t)]

S′
2 = νc [3S3(t)− 2S2(t)]

. . .
S′
n = νc [(n+ 1)Sn+1(t)− nSn(t)]

. . .

(4.3)

Some explanations are in order at this level. Consider an S-individual
with n contacts. Let τ1, τ2, ..., τn be the random variable durations of
contact. Then each random variable τi follows an exponential law with
mean 1/νc.Moreover, since τ1, τ2, ..., τn are independent random variables,
the probability is

P (τ1 ∈ [t,+∞) , τ2 ∈ [t,+∞) , ..., τn ∈ [t,+∞))

= exp (−νct) ... exp (−νct)︸ ︷︷ ︸
n times

= exp (−nνct) .

This justifies the term −νV nSn(t) in the model, where νV n is the rate at
which Sn-individuals are losing a contact with an I-individual.

4.2 The SIR model

The SIR model can be derived as before. Taking into account the fact that

the flux of an S−individual losing one contact is given by νc
+∞∑
n=1

nSn(t),
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the flux of an S−individual becoming infective is given by νcpI
+∞∑
n=1

nSn(t),

and using Assumption 3.1 again, we obtain the following SIR model:

S′
0 = νc

[
(1− pI)S1(t)−

I(t)

N
S0(t)

]
+ ηRS1(t)

S′
1 = νc

[
I(t)

N
S0(t) + (1− pI) 2S2(t)− S1(t)−

I(t)

N
S1(t)

]
+ ηR[2S2(t)− S1(t)]

. . .

S′
n = νc

[
I(t)

N
Sn−1(t) + (1− pI) (n+ 1)Sn+1(t)− nSn(t)−

I(t)

N
Sn(t)

]
+ηR[(n+ 1)Sn+1(t)− nSn(t)]

. . .

I ′ = νcpI
+∞∑
n=1

nSn(t)− ηRI(t)

R′ = ηRI(t).
(4.4)

The flowchart of model (4.4) is described in Fig. 10.

Figure 10: Flux diagram of model (4.4).

One may first observe that the SIR model (4.4) contains the usual
term ηRI in both the I-equation and the R-equation. This term describes
the fact that the time spend by individuals in the infective class follows an
exponential law with mean TR = 1/ηR. However, since the I-individuals
are becoming R-individuals, the numbers of Sn-individuals (for n ≥ 1)
are also affected by this process. Remembering that Sn is the number of
S-individuals who have been chosen n times by an I-individual, the fact
that some I-individuals are leaving will also induce a flux from the class
Sn into the class Sn−1. By using the same idea as the one used above for
the loss of contacts, we deduce that the term ηR[(n+1)Sn+1(t)−nSn(t)]
is needed in the Sn-equation.
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By renormalizing the distributions, namely by setting

sn =
Sn

N
, i =

I

N
and r =

R

N
,

we obtain the system

s′0 = νc [(1− pI) s1(t)− i(t)s0(t)] + ηR[s1(t)]

s′1 = νc [i(t)s0(t) + (1− pI) 2s2(t)− s1(t)− i(t)s1(t)] + ηR[2s2(t)− s1(t)]
. . .
s′n = νc [i(t)sn−1(t) + (1− pI) (n+ 1)sn+1(t)− nsn(t)− i(t)sn(t)]

+ηR[(n+ 1)sn+1(t)− nsn(t)]
. . .

i′ = νcpI
+∞∑
n=1

nsn(t)− ηRi(t)

r′ = ηRi(t).
(4.5)

Moreover, we have
sn ≥ 0, ∀n ≥ 0,

and
+∞∑
n=0

sn + i+ r = 1.

Furthermore, the quantity
∑+∞

n=0 nsn∑+∞
n=0 sn

is the average number with an I-

individual. Therefore, it is natural to impose that

+∞∑
n=0

nsn < +∞.

The analysis of model (4.5) will be presented elsewhere. We refer to
Martcheva and Thieme [42] for results about the well posedness of similar
classes of infinite differential equations.

4.3 Formal singular limit to the classical SIR model

By using again the rescalling

νc =
1

ε
, pI = βIε,

where ε ∈
(
0, β−1

S

]
is supposed to be a small parameter of the system,

then system (4.5) can be rewritten as

s′0 = 1
ε
[(1− βIε) s1(t)− i(t)s0(t)] + ηR[s1(t)]

s′1 = 1
ε
[i(t)s0(t) + (1− βIε) 2s2(t)− s1(t)− i(t)s1(t)] + ηR[2s2(t)− s1(t)]

. . .
s′n = 1

ε
[i(t)sn−1(t) + (1− βIε) (n+ 1)sn+1(t)− nsn(t)− i(t)sn(t)]
+ηR[(n+ 1)sn+1(t)− nsn(t)]

. . .

i′ = βI

+∞∑
n=1

nsn(t)− ηRi(t)

r′ = ηRi(t).
(4.6)
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This singular perturbation problem describing the convergence of the
above problem to the classical SIR model turns to be technical since

αε := (1− βIε) → 1 as ε(> 0) → 0.

Here we consider this problem formally.
Formal singular limit. Set ε = 0 in system (4.6). Then we obtain

0 = [s1(t)− i(t)s0]
0 = [i(t)s0(t) + 2s2(t)− s1(t)− i(t)s1(t)]
0 = [i(t)s1(t) + 3s3(t)− 2s2(t)− i(t)s2(t)]
. . .
0 = [i(t)sn−1(t) + (n+ 1)sn+1(t)− nsn(t)− i(t)sn(t)]
. . .

i′ = βI

+∞∑
n=1

nsn(t)− ηRi(t)

r′ = ηRi(t).

(4.7)

Hence the susceptible distribution must satisfy

is0 = s1
(i+ 1) s1 = is0 + 2s2
(i+ 2) s2 = is1 + 3s3
. . .
(i+ n) sn = isn−1 + (n+ 1)sn+1

. . .

Therefore, we have

s1 = is0

s2 =
1

2
[(i+ 1) s1 − is0] =

[(i+ 1) i− i]

2
s0 =

i2

2
s0

s3 =
1

3
[(i+ 2) s2 − is1] =

1

3

[
(i+ 2)

i2

2
− i2

]
=

i3

3!
s0

. . .

sn =
1

n
[(i+ (n− 1)) sn−1 − isn−2] =

1

n

[
(i+ (n− 1))

in−1

(n− 1)!
− in−1

(n− 2)!

]
=

in

n!
s0

. . .

By induction we obtain

sn =
in

n!
s0, ∀n ≥ 0.

Thus the fraction of susceptible is

s :=

+∞∑
n=0

sn =

+∞∑
n=0

in

n!
s0 = s0 exp(i).

Since s+ i+ r = 1, we obtain

s0 = s exp(−i) = (1− i− r) exp(−i).
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It follows that sn
s

is a Poisson distribution with parameter i, which means
that

sn
s

=
in

n!
exp(−i), ∀n ≥ 0.

We can interpret the quantity

sn =
in

n!
(1− (i+ r)) exp(−i) (4.8)

as the probability that an S-individual has been chosen by n I-individuals.
Since sn is the proportion of S-individuals which have been chosen by

n I-individuals, the average number of contacts per S-individual is

+∞∑
n=1

nsn =

(
+∞∑
n=0

in

n!
s0

)
i = si.

Hence, formally as the singular limit, we obtain the SIR type model
s′ = −βIsi
i′ = βIsi− ηRi
r′ = ηRi.

(4.9)

4.4 Numerical simulations

In order to perform numerical simulations of system (4.4), we truncate
the system at the order (n∗ +1) > 1. That is, we neglect the terms S′

k(t)
for k ≥ (n∗ + 2) and consider the following system:

S′
0 = νc

[
(1− pI)S1(t)−

I(t)

N
S0(t)

]
+ ηRS1(t)

S′
1 = νc

[
I(t)

N
S0(t) + (1− pI) 2S2(t)− S1(t)−

I(t)

N
S1(t)

]
+ ηR[2S2(t)− S1(t)]

. . .

S′
n∗−1 = νc

[
I(t)

N
Sn∗−2(t) + (1− pI)n

∗Sn∗(t)− (n∗ − 1)Sn∗−1(t)−
I(t)

N
Sn∗−1(t)

]
+ηR[n

∗Sn∗(t)− (n∗ − 1)Sn∗−1(t)]

S′
n∗ = νc

[
I(t)

N
Sn∗−1(t)− n∗Sn∗(t)− I(t)

N
Sn∗(t)

]
− ηR[n

∗Sn∗(t)]

I ′ = νcpI
n∗∑
k=1

kSk(t)− ηRI(t)

R′ = ηRI(t).
(4.10)

At time t = 0, we will take the following initial distributions to simulate
the above model

N > I > 0, R = 0,

and

Sn = N
in

n!
exp(−i)(1− i), ∀n = 0, ..., n∗,

with

i =
I

N
.

As before, we need to specify further the rules of transmission between
an S−individual and an I−individual.
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Assumption 4.1 We further assume that

(a) (New SIR model) For a given pair of (S, I)-individuals in contact,
if the individual initiating the contact is an I-individual, then the
transmission only occurs at the end of the contact with the proba-
bility pI .

(b) (Classical SIR Model) For a given pair of (S, I)-individuals in
contact, if the individual initiating the contact is an I-individual,
then the transmission only occurs at the beginning of the contact
with the probability pI .

We will use Assumption 4.1(a) to run an IBM (called here IBM12)
which corresponds to the new model (4.10), while Assumption 4.1(b) will
be used to run an IBM (called here IBM22) which corresponds to the
classical SIR model (1.1). The comparison between the new model (4.10)
and the classical SIR model (1.1) with β = βI is given in Fig. 10. We
can observe numerically the convergence of the new SIR model (4.10)
to the classical SIR model (1.1) when TC goes to zero and pI = βITC .
Similarly, we can also see that the curve of the recovereds is influenced by
the parameter TC . Let R∞ the limit of R(t) when t goes +∞. In (a) the
total numbers of cases for the new SIR model (4.10) and the classical SIR
model (1.1) are different. Once again one must be very careful in using
IBM to simulate an epidemic, since replacing one model by the other
might lead to a large bias in prediction. Here S/N = 0.9, I/N = 0.1,
Sc = Ic = SI/N at time t = 0. TR = 10 and βI = 0.2 are fixed and
in (a) (resp. (b)) TC = 5 and pI = βITC = 1 (resp. TC = 0.5 and
pI = βITC = 0.1) are also fixed.
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Figure 11: Comparison of the new SIR model (4.10) (dotted curves) and the
classical SIR model (1.1) (dashed curves) with β = βS . (a) The total number
of recovered individuals in the new and classical SIR models are significantly
different as time increases. (b) The solution of the new SIR model converges to
the solution of the classical SIR model. Here S/N = 0.9, I/N = 0.1, Sc = Ic =
SI/N at time t = 0, TR = 10 and βI = 0.2 (a) TC = 5 and pI = βITC = 1. (b)
TC = 0.5 and pI = βITC = 0.1

The comparison of the IBM, the new SIR model (4.10), and the clas-
sical SIR model (1.1) is given in Fig. 12. Here S/N = 0.9, I/N = 0.1,
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Sc = Ic = SI/N at time t = 0. TR = 10, βI = 0.2, TC = 5, and
pI = βITC = 1 are fixed. In (a) (resp. (b)) the IBM12 was run to simulate
the transmission at the end of the contact for N = 100 (resp. N = 10000).
In (c) (resp. (d)) the IBM22 was run to simulate the transmission at the
beginning of the contact for N = 100 (resp. N = 10000).
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Figure 12: Comparison of the IBM (solid curves), the new SIR model (4.10)
(dotted curves), and the classical SIR model (1.1) (dashed curves) with β =
βI , S/N = 0.9, I/N = 0.1, Sc = Ic = SI/N at time t = 0. TR = 10, βI = 0.2,
TC = 5, and pI = βITC = 1 are fixed. In (a) and (b) the IBM12 was run to
simulate the transmission at the end of the contact for N = 100 and N = 10000,
respectively. In (c) and (d) the IBM22 was run to simulate the transmission at
the beginning of the contact for N = 100 and N = 10000, respectively.

5 Discussion

Stochastic individual-based models (IBM) use continuum dynamics to
track relatively small numbers of individuals based on the change rates of
time and view individuals as individual agents whose status changes based
on probabilistic events occurring over time. Such models are particularly
suitable to describe the transmission dynamics of infectious diseases in a
small population in which the individual behavior plays an important role
in the spread of diseases. Most stochastic IBM simulations are based on
the framework of certain deterministic epidemic models, in particular the
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classical susceptible-infective-recovered (SIR) model.
The purpose of this article was to compare the stochastic IBM and the

classical SIR model and to examine how the behavior at the individual
level affects the eventual transmission dynamics of infectious diseases at
the population level. We first made some assumptions about the rules of
contacts between susceptible and infective individuals, the rules of trans-
mission of diseases through these contacts, and the time of transmission
during contacts. For the sake of comparison, we distinguished two types of
transmission processes: that initiated by susceptible individuals and that
driven by infective individuals. We then studied the transmission driven
only by the susceptible individuals and compared the numerical simula-
tions between the IBM and the classical SIR models. The transmission
initiated only by infective individuals was also modeled and analyzed and
the comparison of stochastic IBM simulations and the classical SIR model
was presented. Our analysis and simulations demonstrate that the IBM
converges to the classical SIR model only in some particular situations. In
general, the individual-based and the classical SIR models are significantly
different. Moreover, our study reveals that the timing of transmission in
a contact at the individual level plays a crucial role in the transmission
dynamics of a disease at the population level.

Stochastic SIR epidemics models have been studied extensively and
we refer to Allen [2, 3], Anderson and Britton [5], and Britton [12] (and
references therein) for details on stochastic epidemic models. However, as
far as we understand the derivations of most of these stochastic SIR models
are not very clear and poorly understood using individual stochastic rules.
This is left for future consideration.

There are several issues which deserve further investigation. Firstly,
the stochastic process introduced in section 2 needs to be studied in de-
tail. Secondly, we assumed that the time of transmission of diseases was
either at the beginning or at the end of a contact, in reality the time of
transmission probably occurs at certain moment between the beginning
and the end of a contact. Therefore, modeling the disease transmission
with such a timing of transmission and comparing these models is use-
ful. Thirdly, both the spatial structure and the age of infection play very
important roles in the spread of infectious diseases, it will be very inter-
esting to include these features into the individual stochastic modeling.
Finally, since the contact network is dynamical and fully random, the
results will change if other graphs of contact are used for the stochastic
simulations. We plan to consider some individual-based models for other
types of contact networks in future studies.
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