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Abstract

Several types of differential equations, such as delay differential equations,
age-structure models in population dynamics, evolution equations with boundary
conditions, can be written as semilinear Cauchy problems with an operator which
is not densely defined in its domain. The goal of this paper is to develop a center
manifold theory for semilinear Cauchy problems with non-dense domain. Using
Liapunov-Perron method and following the techniques of Vanderbauwhede et al.
in treating infinite dimensional systems, we study the existence and smoothness
of center manifolds for semilinear Cauchy problems with non-dense domain. As
an application, we use the center manifold theorem to establish a Hopf bifurcation
theorem for age structured models.
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CHAPTER 1

Introduction

The classical center manifold theory was first established by Pliss [88] and
Kelley [65] and was developed and completed in Carr [12], Sijbrand [95], Van-
derbauwhede [104], etc. For the case of a single equilibrium, the center manifold
theorem states that if a finite dimensional system has a nonhyperbolic equilib-
rium, then there exists a center manifold in a neighborhood of the nonhyperbolic
equilibrium which is tangent to the generalized eigenspace associated to the corre-
sponding eigenvalues with zero real parts, and the study of the general system near
the nonhyperbolic equilibrium reduces to that of an ordinary differential equation
restricted on the lower dimensional invariant center manifold. This usually means
a considerable reduction of the dimension which leads to simple calculations and a
better geometric insight. The center manifold theory has significant applications in
studying other problems in dynamical systems, such as bifurcation, stability, per-
turbation, etc. It has also been used to study various applied problems in biology,
engineering, physics, etc. We refer to, for example, Carr [12] and Hassard et al.
[52].

There are two classical methods to prove the existence of center manifolds. The
Hadamard (Hadamard [47]) method (the graph transformation method) is a geo-
metric approach which bases on the construction of graphs over linearized spaces,
see Hirsch et al. [55] and Chow et al. [19, 20]. The Liapunov-Perron (Liapunov
[71], Perron [87]) method (the variation of constants method) is more analytic in
nature, which obtains the manifold as a fixed point of a certain integral equation.
The technique originated in Krylov and Bogoliubov [69] and was furthered devel-
oped by Hale [48, 49], see also Ball [7], Chow and Lu [21], Yi [112], etc. The
smoothness of center manifolds can be proved by using the contraction mapping
in a scale of Banach spaces (Vanderbauwhede and van Gils [105]), the Fiber con-
traction mapping technique (Hirsch et al. [55]), the Henry lemma (Henry [54],
Chow and Lu [22]), among other methods (Chow et al. [18]). For further results
and references on center manifolds, we refer to the monographs of Carr [12], Chow
and Hale [16], Chow et al. [17], Sell and You [94], Wiggins [110], and the survey
papers of Bates and Jones [8], Vanderbauwhede [104] and Vanderbauwhede and
Iooss [106].

There have been several important extensions of the classical center manifold
theory for invariant sets. For higher dimensional invariant sets, it is known that
center manifolds exist for an invariant torus with special structure (Chow and Lu
[23]), for an invariant set consisting of equilibria (Fenichel [44]), for some homoclinic
orbits (Homburg [56], Lin [72] and Sandstede [90]), for skew-product flows (Chow
and Yi [24]), for any piece of trajectory of maps (Hirsch et al. [55]), and for smooth
invariant manifolds and compact invariant sets (Chow et al. [19, 20]).
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2 1. INTRODUCTION

Recently, great attention has been paid to the study of center manifolds in
infinite dimensional systems and researchers have developed the center manifold
theory for various infinite dimensional systems such as partial differential equations
(Bates and Jones [8], Da Prato and Lunardi [30], Henry [54], Scheel [93]), semiflows
in Banach spaces (Bates et al. [9], Chow and Lu [21], Gallay [45], Scarpellini [91],
Vanderbauwhede [103], Vanderbauwhede and van Gils [105]), delay differential
equations (Hale [50], Hale and Verduyn Lunel [51], Diekmann and van Gils [34,
35], Diekmann et al. [36], Hupkes and Verduyn Lunel [58]), infinite dimensional
nonautonomous differential equations (Mielke [81, 82], Chicone and Latushkin
[15]), and partial functional differential equations (Lin et al. [73], Faria et al.
[43], Krisztin [68], Nguyen and Wu [83], Wu [111]). Infinite dimensional systems
usually do not have some of the nice properties the finite dimensional systems
have. For example, the initial value problem may not be well posed, the solutions
may not be extended backward, the solutions may not be regular, the domain of
operators may not be dense in the state space, etc. Therefore, the center manifold
reduction of the infinite dimensional systems plays a very important role in the
theory of infinite dimensional systems since it allows us to study ordinary differential
equations reduced on the finite dimensional center manifolds. Vanderbauwhede
and Iooss [106] described some minimal conditions which allow to generalize the
approach of Vanderbauwhede [104] to infinite dimensional systems.

Let X be a Banach space. Consider the non-homogeneous Cauchy problem

(1.1)
du

dt
= Au(t) + f(t), t ∈ [0, τ ] , u(0) = x ∈ D(A),

where A : D(A) ⊂ X → X is a linear operator, f ∈ L1 ((0, τ ) , X) . If D(A) = X,
that is, if D(A) is dense in X, the Cauchy problem has been extensively studied
(Kato [63], Pazy [85]). However, there are many examples (see Da Prato and
Sinestrari [31]) in which the density condition is not satisfied. Indeed, several types
of differential equations, such as delay differential equations, age-structure models in
population dynamics, some partial differential equations, evolution equations with
nonlinear boundary conditions, can be written as semilinear Cauchy problems with
an operator which is not densely defined in its domain (see Thieme [98, 99], Ezzinbi
and Adimy [42], Magal and Ruan [76]). Da Prato and Sinestrari [31] investigated
the existence and uniqueness of solutions to the non-homogeneous Cauchy problem
(1.1) when the operator has non-dense domain.

In this paper we present a center manifold theory for semilinear Cauchy prob-
lems with non-dense domain. Consider the semiflow generated by the semi-linear
Cauchy problem

du

dt
= Au(t) + F (u(t)), t ∈ [0, τ ] , u(0) = x ∈ D(A),

where F : D(A) → X is a continuous map. A very important and useful approach
to investigate such non-densely defined problems is to use the integrated semigroup
theory, which was first introduced by Arendt [3, 4] and further developed by Keller-
mann and Hieber [64], Neubrander [84], Thieme [98, 99], see also Arendt et al. [5]
and Magal and Ruan [76]. The goal is to show that, combined with the integrated
semigroup theory, we can adapt the techniques of Vanderbauwhede [103, 104],
Vanderbauwhede and Van Gills [105] and Vanderbauwhede and Iooss [106] to the
context of semilinear Cauchy problems with non-dense domain.



1. INTRODUCTION 3

As an application, we will apply the center manifold theory for semilinear
Cauchy problems with non-dense domain to study Hopf bifurcation in age structure
models. Let u(t, a) denote the density of a population at time t with age a. Consider
the following age structured model

(1.2)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂u(t, a)

∂t
+

∂u(t, a)

∂a
= −µu(t, a), a ∈ (0,+∞) ,

u(t, 0) = αh
(∫ +∞

0
γ(a)u(t, a)da

)
,

u(0, .) = ϕ ∈ L1
+ ((0,+∞) ;R) ,

where µ > 0 is the mortality rate of the population, the function h(·) describes
the fertility of the population, α ≥ 0 is considered as a bifurcation parameter.
Such age structured models are hyperbolic partial differential equations (Hadeler
and Dietz [53], Keyfitz and Keyfitz [66]) and have been studied extensively by
many researchers since the pioneer work of W. O. Kermack and A. G. McKendrick
(Anderson [1], Diekmann et al. [32], Inaba [61]). We refer to some early papers
of Gurtin and MacCamy [46] and Webb [107], the monographs by Hoppensteadt
[57], Webb [108], Iannelli [59], and Cushing [27], a recent paper of Magal and
Ruan [76] and the references therein.

The existence of non-trivial periodic solutions in age structured models has
been a very interesting and difficult problem, however, there are very few results
(Cushing [25, 26], Prüss [89], Swart [96], Kostava and Li [67], Bertoni [10]).
It is believed that such periodic solutions in age structured models are induced
by Hopf bifurcation (Castillo-Chavez et al. [13], Inaba [60, 62], Zhang et al.
[114]), but there is no general Hopf bifurcation theorem available for age structured
models. In this paper we shall use the center manifold theorem for semilinear
Cauchy problems with non-dense domain to establish a Hopf bifurcation theorem
for the age structured model (1.2).

The paper is organized as follows. In Chapter 2, some results on integrated
semigroups are recalled. One of the main tools to develop the center manifold theory
is the spectral decomposition of the state space X. The difficulty here is that from
the classical theory of C0-semigroup we only have spectral decomposition of the
space X0 := D(A). But in order to deal with non-densely defined problems we need
spectral decomposition of the whole state space X. In Chapter 3, we address this
issue. In Chapter 4 we present the main results of the paper, namely the existence
and smoothness of the center manifold for semilinear Cauchy problems with non-
dense domain, by using the Liapunov-Perron method and following the techniques
and results of Vanderbauwede and Iooss [106].

In Chapter 5, we apply the center manifold theory to study Hopf bifurcation in
the age structured model (1.2). This kind of problems has been considered by Diek-
mann and van Gils [34, 35] and Diekmann et al. [33] by studying the equivalent
integral/delay equations. Nevertheless, here we regard this problem as an example
simple enough to illustrate our results. One may observe that the approach used
for this kind of problems can be used to study some other types of equations, such
as functional differential equations. Once again one of the main difficulties is to
obtain the spectral state decomposition for functional differential equations. No-
tice that this question has been recently addressed for delay differential equations
in the space of continuous functions by Liu, Magal and Ruan [74] and for neutral
delay differential equations in Lp space by Ducrot, Liu and Magal [39]. Thus, using



4 1. INTRODUCTION

these recent developments it is also possible to apply our results presented here to
functional differential equations. Of course in the context of functional differential
equations this problem was considered in the past (see Hale [50]). However, the
approach presented here allows us to consider both functional differential equations
and age-structured problems as special cases of the non-densely defined problem
(Magal and Ruan [76]).



CHAPTER 2

Integrated Semigroups

In this chapter we recall some results about integrated semigroups. We refer
to Arendt [3, 4], Neubrander [84], Kellermann and Hieber [64], Thieme [99], and
Arendt et al. [5] for more detailed results on the subject. The results that we present
here are taken from Magal and Ruan [76, 78].

Let X and Z be two Banach spaces. Denote by L (X,Z) the space of bounded
linear operators from X into Z and by L (X) the space L (X,X) . Let A : D(A) ⊂
X → X be a linear operator. We denote by R(A) the range of A and N(A) the null
space of A. If A is the infinitesimal generator of a strongly continuous semigroup
of bounded linear operators on X, we denote by {TA(t)}t≥0 this semigroup. Recall

that A is invertible if A is a bijection from D(A) into X and A−1 is bounded.
If X is a C-Banach space, we recall that the resolvent set of A is defined by
ρ (A) = {λ ∈ C : λI −A is invertible} . Moreover, we denote by σ(A) := C\ρ (A)
the spectrum of A.

Note that if X is a real Banach space, then as in Schaefer [92, p.134], we can
consider the complexification XC of X, which is the additive group X × X with
scalar multiplication defined by

(α, β) (x, y) := (αx− βy, βx+ αy)

for (α, β) ∈ C and (x, y) ∈ X ×X. Then XC is a complex Banach space endowed
with the norm

‖(x, y)‖XC = sup
0≤θ≤2π

‖cos (θ)x+ sin (θ) y‖ .

Define AC : D(AC) ⊂ XC → XC by

AC (u, v) = (Au,Av) , ∀ (u, v) ∈ D(AC) = D(A)×D(A).

Then AC is a C-linear operator on XC. Set

ρ (A) := ρ
(
AC

)
and σ(A) := C\ρ

(
AC

)
.

Note that if X is a real Banach space, then it is easy to see that

λ ∈ ρ (A) ∩ R ⇔λI −A is invertible.

Let Y be a subspace of X. Y is said to be invariant by A if

A (D(A) ∩ Y ) ⊂ Y.

Denote by A |Y : D(A |Y ) ⊂ Y → X the restriction of A to Y, which is defined
by

A |Y x = Ax, ∀x ∈ D(A |Y ) = D(A) ∩ Y.

Denote by AY : D(AY ) ⊂ Y → Y the part of A in Y, which is defined by

AY x = Ax, ∀x ∈ D(AY ) = {x ∈ D(A) ∩ Y : Ax ∈ Y } .

5



6 2. INTEGRATED SEMIGROUPS

For convenience, from now on we define

X0 := D(A) and A0 := AX0
.

Lemma 2.1. Let (X, ‖.‖) be a K-Banach space (with K = R or C) and let
A : D(A) ⊂ X → X be a linear operator. Assume that ρ (A) 
= ∅, then

ρ (A0) = ρ (A) .

Moreover, we have the following:

(i) For each λ ∈ ρ (A0) ∩K and each µ ∈ (ω,+∞) ,

(λI −A)
−1

= (µ− λ) (λI −A0)
−1

(µI −A)
−1

+ (µI −A)
−1

.

(ii) For each λ ∈ ρ (A) ∩K,

D(A0) = (λI −A)−1 X0 and (λI −A0)
−1 = (λI −A)−1 |X0

.

Proof. Without loss of generality we can assume that X is a complex Banach
space. Assume that λ ∈ ρ (A0) , µ ∈ ρ (A) , and set

L = (µ− λ) (λI −A0)
−1

(µI −A)
−1

+ (µI −A)
−1

.

Then one can easily check that

Lx ∈ D(A), (λI −A)Lx = x, ∀x ∈ X,

and

L (λI −A)x = x, ∀x ∈ D(A).

Thus, (λI −A) is invertible and (λI −A)−1 = L is bounded, so λ ∈ ρ (A) . This
implies that ρ (A0) ⊂ ρ (A) . To prove the converse inclusion, we fix λ ∈ ρ (A) . Then
one can easily prove (ii). So ρ (A) ⊂ ρ (A0) , and the result follows. �

The following Lemma was proved in Magal and Ruan [76, Lemma 2.1].

Lemma 2.2. Let (X, ‖.‖) be a Banach space and A : D(A) ⊂ X → X be a
linear operator. Assume that there exists ω ∈ R such that (ω,+∞) ⊂ ρ(A) and

lim sup
λ→+∞

λ
∥∥∥(λI − A)−1

∥∥∥
L(X0)

< +∞.

Then the following assertions are equivalent:

(i) limλ→+∞ λ (λI −A)
−1

x = x, ∀x ∈ X0.

(ii) limλ→+∞ (λI −A)−1 x = 0, ∀x ∈ X.

(iii) D (A0) = X0.

Recall that A is a Hille-Yosida operator if there exist two constants, ω ∈ R

and M ≥ 1, such that (ω,+∞) ⊂ ρ(A) and∥∥∥(λI −A)
−k

∥∥∥
L(X)

≤ M

(λ− ω)
k
, ∀λ > ω, ∀k ≥ 1.

In the following, we assume that A satisfies some weaker conditions

Assumption 2.3. Let (X, ‖.‖) be a Banach space and A : D(A) ⊂ X → X be
a linear operator. Assume that
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(a) There exist two constants, ω ∈ R and M ≥ 1, such that (ω,+∞) ⊂ ρ(A)
and ∥∥∥(λI −A)

−k
∥∥∥
L(X0)

≤ M

(λ− ω)
k
, ∀λ > ω, ∀k ≥ 1;

(b) limλ→+∞ (λI −A)−1 x = 0, ∀x ∈ X.

By using Lemma 2.2 and Hille-Yosida theorem (see Pazy [85], Theorem 5.3 on
p.20), one obtains the following lemma.

Lemma 2.4. Assumption 2.3 is satisfied if and only if there exist two constants,
M ≥ 1 and ω ∈ R, such that (ω,+∞) ⊂ ρ(A) and A0 is the infinitesimal generator
of a C0-semigroup {TA0

(t)}t≥0 on X0 which satisfies ‖TA0
(t)‖L(X0)

≤ Meωt, ∀t ≥ 0.

We now define the integrated semigroup generated by A. The notion of the
generator for an integrated semigroup is taken from Thieme [99].

Definition 2.5. Let (X, ‖.‖) be a Banach space. A family of bounded linear
operators {S(t)}t≥0 on X is called an integrated semigroup if

(i) S(0) = 0.
(ii) The map t → S(t)x is continuous on [0,+∞) for each x ∈ X.
(iii) ∀t, r ≥ 0,

S(r)S(t) =

∫ r

0

(S(τ + t)− S(τ ))dτ = S(t)S(r).

We say that a linear operator A : D(A) ⊂ X → X is the generator of an integrated
semigroup {S(t)}t≥0 if and only if

x ∈ D(A), y = Ax ⇔ S(t)x− tx =

∫ t

0

S(s)yds, ∀t ≥ 0.

If A is the generator of an integrated semigroup, we use {SA(t)}t≥0 to denote
this integrated semigroup. The following proposition summarizes some properties
of integrated semigroups. Assertion (iv) of the following proposition is well known
in the context of integrated semigroup generated by a Hille-Yosida operator. We
refer to Magal and Ruan [76, Proposition 2.6] for a proof of this result.

Proposition 2.6. Let Assumption 2.3 be satisfied. Then A generates a unique
integrated semigroup {SA(t)}t≥0 and for each x ∈ X, each t ≥ 0, and each µ > ω,

SA(t)x is given by

(2.1) SA(t)x = µ

∫ t

0

TA0
(s) (µI −A)−1 xds+(µI −A)−1 x−TA0

(t) (µI −A)−1 x.

Moreover, we have the following properties:

(i) For all t ≥ 0 and all x ∈ X,∫ t

0

SA(s)xds ∈ D(A), SA(t)x = A

∫ t

0

SA(s)xds+ tx.

(ii) The map t → SA(t)x is continuously differentiable if and only if x ∈ X0

and
dSA(t)x

dt
= TA0

(t)x, ∀t ≥ 0, ∀x ∈ X0.

(iii) TA0
(r)SA(t) = SA(t+ r)− SA(r), ∀t, r ≥ 0.
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(iv) If we assume in addition that A is a Hille-Yosida operator, then we have

‖SA(t)− SA(s)‖L(X) ≤ M

∫ t

s

eωσdσ, ∀t, s ∈ [0,+∞) with t ≥ s.

From Proposition 2.6, we also deduce that SA(t) commutes with (λI −A)−1

and

SA(t)x =

∫ t

0

TA0
(l)xdl, ∀t ≥ 0, ∀x ∈ X0.

Hence, ∀x ∈ X, ∀t ≥ 0, ∀µ ∈ (ω,+∞),

(µI −A)−1 SA(t)x = SA(t) (µI −A)−1 x =

∫ t

0

TA0
(s) (µI −A)−1 xds.

Moreover, by using formula (2.1) we know that {SA(t)}t≥0 is an exponentially

bounded integrated semigroup. More precisely, for each γ > max(0, ω), there exists
Mγ > 0, such that ‖SA(t)‖ ≤ Mγe

γt. So by using Proposition 3.10 in Thieme [99],
we have for each λ > max(0, ω) that

(2.2) (λI −A)−1 x = λ

∫ +∞

0

e−λtSA(t)xdt.

We now consider the non-homogeneous Cauchy problem

(2.3)
du

dt
= Au(t) + f(t), t ∈ [0, τ ] , u(0) = x ∈ D(A).

Assume that f belongs to some appropriated subspace of L1 ((0, τ ) , X) .

Definition 2.7. A continuous map u ∈ C ([0, τ ] , X) is called an integrated
solution of (2.3) if and only if

(2.4)

∫ t

0

u(s)ds ∈ D(A), ∀t ∈ [0, τ ] ,

and

u(t) = x+A

∫ t

0

u(s)ds+

∫ t

0

f(s)ds, ∀t ∈ [0, τ ] .

From (2.4) we know that if u is an integrated solution of (2.3) then

u(t) ∈ D(A), ∀t ∈ [0, τ ] .

Lemma 2.8. Let Assumption 2.3 be satisfied. Then for each x ∈ D(A) and
each f ∈ L1 ((0, τ ) , X) , ( 2.3) has at most one integrated solution.

From now on, for each τ̂ > 0 and each f ∈ L1 ((0, τ̂) , X) , we set

(SA ∗ f) (t) :=
∫ t

0

SA(t− s)f(s)ds, ∀t ∈ [0, τ̂ ] .

Note that from Lemma 2.8 in [76], we know that if f ∈ C1([0, τ ] , X), then the map
t → (SA ∗ f) (t) is continuously differentiable on [0, τ ]. So the following assumption
makes sense.
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Assumption 2.9. Assume that there exist a real number τ∗ > 0 and a non-
decreasing map δ∗ : [0, τ ] → [0,+∞) such that for each f ∈ C1([0, τ∗] , X),∥∥∥∥ d

dt
(SA ∗ f)(t)

∥∥∥∥ ≤ δ∗(t) sup
s∈[0,t]

‖f(s)‖ , ∀t ∈ [0, τ∗] ,

and

lim
t→0+

δ∗(t) = 0.

The following theorem was proved in Magal and Ruan [78].

Theorem 2.10. Let Assumptions 2.3 and 2.9 be satisfied. Then for each τ > 0
and each f ∈ C([0, τ ] , X) the map t → (SA ∗ f) (t) is continuously differentiable,
(SA ∗ f) (t) ∈ D(A), ∀t ∈ [0, τ ] , and if we set u(t) = d

dt (SA ∗ f) (t), then

u(t) = A

∫ t

0

u(s)ds+

∫ t

0

f(s)ds, ∀t ∈ [0, τ ] .

Moreover, there exists a non-decreasing map δ : [0,+∞) → [0,+∞), such that
limt→0+ δ(t) = 0 and

‖u(t)‖ ≤ δ(t) sup
s∈[0,t]

‖f(s)‖ , ∀t ∈ [0, τ ] .

Furthermore, for each λ ∈ (ω,+∞) we have for each t ∈ [0, τ ] that

(2.5) (λI −A)−1 d

dt
(SA ∗ f) (t) =

∫ t

0

TA0
(t− s) (λI −A)−1 f(s)ds.

As an immediate consequence of Theorem 2.10 we have the following result.

Corollary 2.11. Let Assumptions 2.3 and 2.9 be satisfied. Then for each
τ > 0, each f ∈ C([0, τ ] , X), and each x ∈ X0, the Cauchy problem ( 2.3) has a
unique integrated solution u ∈ C ([0, τ ] , X0) given by

u(t) = TA0
(t)x+

d

dt
(SA ∗ f) (t), ∀t ∈ [0, τ ] ,

and

‖u(t)‖ ≤ Meωt ‖x‖+ δ(t) sup
s∈[0,t]

‖f(s)‖ , ∀t ∈ [0, τ ] .

We now consider a bounded perturbation of A. As an immediate consequence
of Proposition 2.16 in Magal and Ruan [76], we have the following proposition.

Proposition 2.12. Let Assumptions 2.3 and 2.9 be satisfied. Let L ∈ L (X0, X)
be a bounded linear operator. Then A+ L : D(A) ⊂ X → X satisfies Assumptions
2.3 and 2.9. More precisely, if we fix τL > 0 such that

δ (τL) ‖L‖L(X0,X) < 1,

and if we denote by {SA+L(t)}t≥0 the integrated semigroup generated by A + L,

then ∀f ∈ C ([0, τL] , X) ,∥∥∥∥ d

dt
(SA+L ∗ f)

∥∥∥∥ ≤ δ (t)

1− δ (τL) ‖L‖L(X0,X)

sup
s∈[0,t]

‖f(s)‖ , ∀t ∈ [0, τL] .
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From now on, for each τ̂ > 0 and each f ∈ C ([0, τ̂ ] , X) , we set

(SA � f) (t) := d

dt
(SA ∗ f) (t), ∀t ∈ [0, τ̂ ] .

By using the fact that (SA � f) (t) ∈ X0, ∀t ∈ [0, τ ] and formula (2.5), we have
∀t ∈ [0, τ ] that

(2.6) (SA � f) (t) = lim
µ→+∞

∫ t

0

TA0
(t− l)µ (µI −A)−1 f(l)dl, ∀f ∈ Z.

This approximation formula was already observed by Thieme [98] in the classical
context of integrated semigroups generated by a Hille-Yosida operator. From this
approximation formulation, we deduce that for each t, s ∈ [0, τ ] with s ≤ t, and
f ∈ C ([0, τ ] , X) ,

(2.7) (SA � f) (t) = TA0
(t− s) (SA � f) (s) + (SA � f (s+ .)) (t− s).

To conclude this chapter we state a result proved in Magal and Ruan [78]. This
result is one of the main tools to investigate semi-linear problems.

Proposition 2.13. Let Assumptions 2.3 and 2.9 be satisfied. Then for each
γ > ω, there exists Cγ > 0, such that for each f ∈ C (R+, X) and t ≥ 0,

e−γt ‖(SA � f) (t)‖ ≤ Cγ sup
s∈[0,t]

e−γs ‖f(s)‖ .

More precisely, for each ε > 0, if τε > 0 is such that Mδ (τε) ≤ ε, then the above
inequality is true with

Cγ =
2εmax (1, e−γτε)(

1− e(ω−γ)τε
) , ∀γ > ω.



CHAPTER 3

Spectral Decomposition of the State Space

The goal of this chapter is to investigate the spectral properties of the linear
operator A. Indeed, since A0 is the infinitesimal generator of a linear C0-semigroup
of X0, we can apply the standard theory to the linear operator A0. We will recall
some basic important results on the spectral theory for C0-semigroups. Neverthe-
less, the classical theory does not apply to A since it is non-densely defined. This
question will be mainly addressed in Proposition 3.5. As consequences, we will also
derive some results for non-homogeneous non-densely defined problem.

We first investigate the properties of projectors which commute with the resol-
vents of A0 and the resolvent of A. Then we will turn to the spectral decomposition
of the state spaces X0 and X. Assume A : D(A) ⊂ X → X is a linear operator on
a complex Banach X. We start with some basic facts.

Lemma 3.1. We have the following:

(i) If Y is invariant by A , then A |Y = AY (i.e. D(AY ) = D(A) ∩ Y ).

(ii) If (λI −A)
−1

Y ⊂ Y for some λ ∈ ρ (A) , then

D(AY ) = (λI −A)
−1

Y, λ ∈ ρ (AY ) and (λIY −AY )
−1

= (λI −A)
−1 |Y .

Proof. (i) Assume that Y is invariant by A, we have

D(AY ) = {x ∈ D(A) ∩ Y : Ax ∈ Y } = D(A) ∩ Y = D(A |Y ),
so A |Y = AY .

(ii) Assume that (λI −A)−1 Y ⊂ Y for some λ ∈ ρ (A). Then we have

D(AY ) = {x ∈ D(A) ∩ Y : Ax ∈ Y } = {x ∈ D(A) ∩ Y : (λI −A)x ∈ Y }
= (λI −A)

−1
Y,

and the result follows. �

Let Π : X → X be a bounded linear projector on a Banach space X and let Y
be a subspace (closed or not) of X. Then we have the following equivalence

(3.1) Π (Y ) ⊂ Y ⇔ Π (Y ) = Y ∩ Π (X) .

Lemma 3.2. Let (X, ‖.‖) be a Banach space. Let A : D(A) ⊂ X → X be a
linear operator and let Π : X → X be a bounded linear projector. Assume that

Π (λI −A)−1 = (λI −A)−1 Π

for some λ ∈ ρ(A). Then we have the following

(i) Π (D(A)) = D(A) ∩ Π (X) and Π
(
D(A)

)
= D(A) ∩ Π (X) .

(ii) AΠx = ΠAx, ∀x ∈ D(A).
(iii) AΠ(X) = A |Π(X).

11
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(iv) λ ∈ ρ
(
AΠ(X)

)
, D(AΠ(X)) = (λI −A)−1 Π (X) and

(
λI − AΠ(X)

)−1
=

(λI −A)−1 |Π(X) .

(v)
(
A |Π(X)

)
D(A|Π(X))

=
(
AD(A)

)
|Π(D(A)) .

Proof. We have

Π (D(A)) = Π (λI −A)
−1

(X) = (λI −A)
−1

Π (X) ⊂ D(A).

Thus, Π (D(A)) ⊂ D(A). Since Π is bounded, we have Π
(
D(A)

)
⊂ D(A). So by

using (3.1), we obtain Π (D(A)) = D(A) ∩Π (X) and Π
(
D(A)

)
= D(A) ∩Π (X) .

This proves (i).
Let x ∈ D(A) be fixed. Set y = (λI −A)x. Then

ΠAx = ΠA (λI −A)
−1

y = A (λI −A)
−1

Πy = AΠx,

which gives (ii). Hence, Π (X) is invariant by A, and by using Lemma 3.1, we
obtain (iii). Moreover, we have

(λI −A)
−1

Π (X) = Π (λI −A)
−1

X ⊂ Π (X) .

So Lemma 3.1 implies (iv). Finally, we have

D
((

A |Π(X)

)
D(A|Π(X))

)
=
{
x ∈ D(A |Π(X)) : Ax ∈ D(A |Π(X))

}
=
{
x ∈ Π (X) ∩D(A) : Ax ∈ D(A) ∩ Π (X)

}
=
{
x ∈ Π

(
D(A)

)
∩D(A) : Ax ∈ Π

(
D(A)

)}
= D

((
AD(A)

)
|Π(D(A))

)
.

This shows that (v) holds. �

Lemma 3.3. Let the assumptions of Lemma 3.2 be satisfied. Assume in addition

that Π has a finite rank. Then Π (D(A)) is closed, Π
(
D(A)

)
= Π(D(A)) ⊂ D(A),

and A |Π(X) is a bounded linear operator from Π (D (A)) into Π (X).

Proof. By using Lemma 3.2, we have Π (D(A)) = D(A)∩Π (X) , so Π (D(A))
is a finite dimensional subspace of X. It follows that Π (D(A)) is closed and A |Π(X)

is bounded. Now since Π is bounded, we have Π
(
D(A)

)
⊂ Π (D(A)) = Π (D(A)) ,

and the result follows. �

Lemma 3.4. Let Assumption 2.3 be satisfied. Let Π0 : X0 → X0 be a bounded
linear projector. Then

(3.2) Π0TA0
(t) = TA0

(t)Π0, ∀t ≥ 0

if and only if

(3.3) Π0 (λI −A0)
−1

= (λI −A0)
−1

Π0, ∀λ > ω.

If we assume in addition that ( 3.2) is satisfied, then we have the following:

(i) Π0 (D(A0)) = D(A0) ∩ Π0 (X0) and A0Π0x = Π0A0x, ∀x ∈ D(A0).
(ii) A0 |Π(X0)= (A0)Π0(X0)

.

(iii) TA0|Π0(X0)
(t) = TA0

(t) |Π0(X0), ∀t ≥ 0.
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(iv) If we assume in addition that Π0 has a finite rank, then Π0 (X0) =
Π0 (D(A0)) ⊂ D(A0), A0 |Π0(X0) is a bounded linear operator from Π0 (X0)
into itself, and

TA0|Π0(X0)
(t) = eA0|Π0(X0)t, ∀t ≥ 0.

Proof. (3.2)⇒(3.3) follows from the following formula

(λI −A0)
−1

x =

∫ +∞

0

e−λsTA0
(s)xds, ∀λ > ω, ∀x ∈ Y.

(3.3)⇒(3.2) follows from the exponential formula (see Pazy [85, Theorem 8.3, p.33])

TA0
(t)x = lim

n→+∞

(
I − t

n
A0

)−n

x, ∀x ∈ X0.

By applying Lemma 3.2 and Lemma 3.3 to A0, we obtain (i)-(iv). �
The idea of proving the following result comes from the proof of Theorem 2.6

in Thieme [102].

Proposition 3.5. Let Assumption 2.3 be satisfied. Let Π0 : X0 → X0 be a
bounded linear projector satisfying the following properties

Π0 (λI − A0)
−1

= (λI −A0)
−1

Π0, ∀λ > ω

and
Π0 (X0) ⊂ D(A0) and A0 |Π0(X0) is bounded.

Then there exists a unique bounded linear projector Π on X satisfying the following
properties:

(i) Π |X0
= Π0.

(ii) Π (X) ⊂ X0.

(iii) Π (λI −A)−1 = (λI −A)−1 Π, ∀λ > ω.

Moreover, for each x ∈ X we have the following approximation formula

Πx = lim
λ→+∞

Π0λ (λI −A)−1 x = lim
h→0+

1

h
Π0SA (h)x.

Proof. Assume first that there exists a bounded linear projector Π on X
satisfying (i)-(iii). Let x ∈ X be fixed. Then from (ii) we have Πx ∈ X0, so

Πx = lim
λ→+∞

λ (λI −A)−1 Πx.

Using (i) and (iii), we deduce that

Πx = lim
λ→+∞

Π0λ (λI −A)−1 x.

Thus, there exists at most one bounded linear projector Π satisfying (i)-(iii).
It remains to prove the existence of such an operator Π. To simplify the no-

tation, set B = A0 |Π0(X0) . Then by assumption, B is a bounded linear operator
from Π0 (X0) into itself, and

TA0
(t)Π0x = eBtΠ0x, ∀t ≥ 0, ∀x ∈ X0.

Let x ∈ X be fixed. Since SA(t)x ∈ X0 for each t ≥ 0, we have for each h > 0 and
each λ > ω that

(λI −A0)
−1 SA(h)x = SA(h) (λI −A)−1 x =

∫ h

0

TA0
(h− s) (λI −A)−1 xds
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and

Π0 (λI −A0)
−1

SA(h)x = (λI −A0)
−1

Π0SA(h)x

=

∫ h

0

Π0TA0
(h− s) (λI −A)−1 xds

=

∫ h

0

eB(h−s)Π0 (λI −A)
−1

xds.

Since B is a bounded linear operator, t → eBt is operator norm continuous and

1

h

∫ h

0

eB(h−s)ds = IΠ0(X0) +
1

h

∫ h

0

[
eB(h−s) − IΠ0(X0)

]
ds.

Thus, there exists h0 > 0, such that for each h ∈ [0, h0] ,∥∥∥∥∥ 1h
∫ h

0

[
eB(h−s) − IΠ0(X0)

]
ds

∥∥∥∥∥
L(Π0(X0))

< 1.

It follows that for each h ∈ [0, h0] , the linear operator 1
h

∫ h

0
eB(h−s)ds is invertible

from Π0 (X0) into itself and(
1

h

∫ h

0

eB(h−s)ds

)−1

=

(
IΠ0(X0) −

(
IΠ0(X0) −

1

h

∫ h

0

eB(h−s)ds

))−1

=

∞∑
k=0

(
IΠ0(X0) −

1

h

∫ h

0

eB(h−s)ds

)k

.

We have for each λ > ω and each h ∈ (0, h0] that(
1

h

∫ h

0

eB(h−s)ds

)−1

(λI −A0)
−1 Π0

1

h
SA(h)x = Π0 (λI −A)−1 x.

Since for each t ≥ 0, eBtΠ0 = TA0
(t)Π0 commutes with (λI −A0)

−1
, it follows

that for each h ∈ [0, h0] ,
(

1
h

∫ h

0
eB(h−s)ds

)−1

Π0 commutes with (λI −A0)
−1

.

Therefore, we obtain for each λ > ω and each h ∈ (0, h0] that

(3.4) λ (λI −A0)
−1

(
1

h

∫ h

0

eB(h−s)ds

)−1

Π0
1

h
SA(h)x = Π0λ (λI −A)

−1
x.

Now it is clear that the left hand side of (3.4) converges as λ → +∞. So we can
define Π : X → X for each x ∈ X by

(3.5) Πx = lim
λ→+∞

Π0λ (λI −A)−1 x.

Moreover, for each h ∈ (0, h0] and each x ∈ X,

(3.6) Πx =

(
1

h

∫ h

0

eB(h−s)ds

)−1

Π0
1

h
SA(h)x.

It follows from (3.6) that Π : X → X is a bounded linear operator and Π (X) ⊂ X0.
Furthermore, by using (3.5), we know that Π |X0

= Π0 and Π commutes with the
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resolvent of A. Also notice that for each h ∈ (0, h0] ,

1

h
Π0SA(h)x =

1

h

∫ h

0

eB(h−s)Πxds.

So

Πx = lim
h↘0

1

h
Π0SA(h)x.

Finally, for each x ∈ X,

ΠΠx = lim
λ→+∞

ΠΠ0λ (λI −A)
−1

x = lim
λ→+∞

Π2
0λ (λI −A)

−1
x

= lim
λ→+∞

Π0λ (λI −A)−1 x = Πx.

This implies that Π is a projector. �

Note that if the linear operator Π0 has a finite rank, then A0 |Π0(X0) is bounded.
So we can apply the above proposition.

By Proposition 2.6, Lemmas 3.2 and 3.4, we obtain the following results.

Lemma 3.6. Let Assumption 2.3 be satisfied. Let Π : X → X be a bounded
linear projector. Assume that

Π (λI −A)
−1

= (λI −A)
−1

Π, ∀λ ∈ (ω,+∞) .

Then A |Π(X)= AΠ(X) satisfies Assumption 2.3 on Π (X) . Moreover,

(i)
(
A |Π(X)

)
D(A|Π(X))

=
(
AD(A)

)
|Π(D(A))= A0 |Π(X0) .

(ii) SA(t)Π = ΠSA(t), ∀t ≥ 0.
(iii) SA|Π(X)

(t) = SA(t) |Π(X), ∀t ≥ 0.

From the above results, we obtain the second main result of this chapter.

Proposition 3.7. Let Assumptions 2.3 and 2.9 be satisfied. Let Π : X → X
be a bounded linear projector. Assume that

Π (λI −A)
−1

= (λI −A)
−1

Π, ∀λ ∈ (ω,+∞) .

Then the linear operator A |Π(X)= AΠ(X) satisfies Assumptions 2.3 and 2.9 in
Π (X). Moreover, for each τ > 0, each f ∈ C([0, τ ] , X), and each x ∈ X0, if we set
for each t ∈ [0, τ ] that

u(t) = TA0
(t)x+

d

dt
(SA ∗ f) (t),

then

Πu(t) = TA0|Π(X0)
(t)Πx+

d

dt

(
SA|Π(X)

∗Πf
)
(t),

Πu(t) = Πx+A |Π(X)

∫ t

0

Πu(s)ds+

∫ t

0

Πf(s)ds,

and

‖Πu(t)‖ ≤ Meωt ‖Πx‖+ δ(t) sup
s∈[0,t]

‖Πf(s)‖ , ∀t ∈ [0, τ ] .

Furthermore, if Π has a finite rank and Π (X) ⊂ X0, then Π (X) = Π (X0) ⊂
Π (D (A0)) ⊂ D (A0) , A |Π(X) is a bounded linear operator from Π (X0) into itself.
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In particular, A |Π(X)= A0 |Π(X0) and the map t → Πu(t) is a solution of the
following ordinary differential equation in Π (X0) :

dΠu(t)

dt
= A0 |Π(X0) Πu(t) + Πf(t), ∀t ∈ [0, τ ] , with Πu(0) = Πx.

We now recall some well known results about spectral theory of closed linear

operators. We first recall that if λ̂ ∈ ρ (A) ,

(3.7) (λI −A)
−1

=
(
λ̂I −A

)−1 ∞∑
n=0

(
λ̂− λ

)n (
λ̂I −A

)−n

,

whenever
∣∣∣λ− λ̂

∣∣∣ ∥∥∥∥(λ̂I −A
)−1

∥∥∥∥
L(X)

< 1. So one obtains that (λI −A)
−1

is

holomorphic on ρ (A) .
The following result is proved in Yosida [113, Theorems 1 and 2, p.228-299].

Theorem 3.8. Let A : D(A) ⊂ X → X be a closed linear operator in the
complex Banach space X and let λ0 be an isolated point of σ (A) . Then,

(3.8) (λI −A)
−1

=

∞∑
k=−∞

(λ− λ0)
k
Bk,

where for each integer k,

(3.9) Bk =
1

2πi

∫
SC(λ0,ε)

+

(λ− λ0)
−k−1

(λI −A)
−1

dλ,

where SC (λ0, ε)
+

is the counter-clockwise oriented circumference |λ− λ0| = ε for
sufficiently small ε > 0 such that |λ− λ0| ≤ ε does not contain other point of the
spectrum than λ0. We have the following properties

(3.10)

BkBm = 0, k ≥ 0,m ≤ −1,
Bn = (−1)n Bn+1

0 , n ≥ 1,
B−p−q+1 = B−pB−q(p, q ≥ 1),
Bn = (A− λ0I)Bn+1(n ≥ 0),
(A− λ0I)B−n = B−(n+1) = (A− λ0I)

n B−1,
(A− λ0I)B0 = B−1 − I.

Note that from the third equation of (3.10), we have for each p ≥ 1 that

B−pB−1 = B−p−1+1 = B−p,

so B−1 is a projector on X. Since

(A− λ0I)B−1 = B−2,

it follows that

AB−1 = λ0B−1 +B−2.

So A restricted to R(B−1) is a bounded linear operator. We also have for each
p ≥ 1 that

(3.11) AB−p = AB−1B−p = λ0B−1B−p +B−2B−p = λ0B−p +B−p−1.

Moreover, from (3.9) it is clear that B−1 commutes with (λI −A)
−1

for each λ ∈
ρ (A) . Thus, (

λ0I −A |B−1(X)

)−1
= (λ0I −A)−1 |B−1(X) .
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Furthermore, by using the last equation of (3.10), we deduce that λ0 /∈ σ
(
A |(I−B−1)(X)

)
and (

λ0I −A |(I−B−1)(X)

)−1
= B0 |(I−B−1)(X) .

Recall that λ0 is a pole of (λI −A)
−1

of order m ≥ 1 if λ0 is an isolated point
of the spectrum and

B−m 
= 0, B−k = 0, ∀k > m.

The following result is proved in Yosida [113, Theorem 3, p.299].

Theorem 3.9. Let A : D(A) ⊂ X → X be a closed linear operator in the

complex Banach space X and let λ0 be a pole of (λI −A)
−1

of order m ≥ 1. Then
λ0 is an eigenvalue of A, and

R (B−1) = N ((λ0I −A)
n
) , R (I −B−1) = R ((λ0I −A)

n
) , ∀n ≥ m,

X = N ((λ0I −A)
n
)⊕R ((λ0I −A)

n
) , ∀n ≥ m.

We already knew that A |B−1(X) is bounded. Moreover, if λ0 is a pole of

(λI −A)−1 of order m ≥ 1, we have from the above theorem that(
λ0I −A |B−1(X)

)m
= 0.

From (3.11) for p = m, we obtain

AB−p = λ0B−p.

Since B−p 
= 0, we have {λ0} ⊂ σ
(
A |B−1(X)

)
. To prove the converse inclusion we

use the same argument as in the proof of Kato [63, Theorem 6.17, p.178]. Set that
for λ ∈ C and let ε < |λ− λ0|,

Lλ =
1

2πi

∫
SC(λ0,ε)

+

(λ′I −A)−1

λ− λ′ dλ′.

Then we have

(λI −A)Lλ =
1

2πi

∫
SC(λ0,ε)

+

(λI −A)
(λ′I −A)−1

λ− λ′ dλ′

=
1

2πi

[∫
SC(λ0,ε)

+

(λ′I −A)
−1

dλ′ +

∫
SC(λ0,ε)

+

1

λ− λ′ dλ
′

]

=
1

2πi

[∫
SC(λ0,ε)

+

(λ′I −A)
−1

dλ′

]
= B−1.

Similarly, we have

Lλ (λI −A)x = B−1x, ∀x ∈ D(A).

It follows that for each λ ∈ C\ {λ0} ,
(
λI −A |B−1(X)

)
is invertible and(

λI −A |B−1(X)

)−1
= Lλ |B−1(X) .

It follows that

σ
(
A |B−1(X)

)
= {λ0} .

Furthermore, since λ0 /∈ σ
(
A |(I−B−1)(X)

)
, we have that

σ
(
A |(I−B−1)(X)

)
= σ (A) \ {λ0} .
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Assume that λ1 and λ2 are two distinct poles of (λI −A)−1 . Set for each i = 1, 2
that

Pi =
1

2πi

∫
SC(λi,ε)

+

(λI −A)
−1

dλ,

where ε > 0 is small enough. It is clear that P1 commutes with P2 and

P1P2 = P2P1 = 0.

Indeed, let x ∈ R (P1) be fixed. Since P1 commutes with (λI −A)−1 for each
λ ∈ ρ (A) , we have

P2x =
1

2πi

∫
SC(λ2,ε)

+

(λI −A)−1 xdλ =
1

2πi

∫
SC(λ2,ε)

+

(
λI −A |P1(X)

)−1
xdλ.

Furthermore, since σ
(
A |P1(X)

)
= {λ1} , it follows from (3.7) that

P2x =
1

2πi

∫
SC(λ2,ε)

+

∞∑
n=0

(λ− λ2)
n
[(
λ2I −A |P1(X)

)−1
]n+1

xdλ

=
1

2πi

∞∑
n=0

∫
SC(λ2,ε)

+

(λ− λ2)
n dλ

[(
λ2I −A |P1(X)

)−1
]n+1

x

= 0.

Hence,

P2x = 0, ∀x ∈ R (P1) .

Assumption 3.10. Let (X, ‖.‖) be a complex Banach space and let A : D(A) ⊂
X → X be a linear operator satisfying Assumption 2.3. Assume that there exists
η ∈ R such that

Ση := σ (A0) ∩ {λ ∈ C : Re (λ) > η}
is non-empty, finite, and contains only poles of (λI −A0)

−1
.

By using Lemma 2.1 we know that

σ(A0) = σ(A),

so

Ση := σ (A) ∩ {λ ∈ C : Re (λ) > η} ,
and for each λ0 ∈ Ση, we set

B0
λ0,k =

1

2πi

∫
SC(λ0,ε)

+

(λ− λ0)
−k−1

(λI − A0)
−1

dλ, ∀k ∈ Z,

and

Bλ0,k =
1

2πi

∫
SC(λ0,ε)

+

(λ− λ0)
−k−1

(λI −A)
−1

dλ, ∀k ∈ Z.

We first have the following lemma.

Lemma 3.11. Let Assumption 3.10 be satisfied. If λ0 ∈ Ση is a pole of (λI −A0)
−1

of order m, then λ0 is a pole of order m of (λI −A)−1 and

Bλ0,1x = lim
µ→+∞

B0
λ0,1µ (µI −A)−1 x, ∀x ∈ X.
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Proof. Let x ∈ X and k ∈ Z be fixed. We have Bλ0,kx ∈ X0, so

Bλ0,kx = lim
µ→+∞

µ (µI −A)−1 Bλ0,kx.

Thus,

µ (µI − A)
−1

Bλ0,kx =
1

2πi
µ (µI −A)

−1
∫
SC(λ0,ε)

+

(λ− λ0)
−k−1

(λI −A)
−1

xdλ

=
1

2πi

∫
SC(λ0,ε)

+

(λ− λ0)
−k−1 (λI −A0)

−1 µ (µI −A)−1 xdλ

= lim
µ→+∞

B0
λ0,kµ (µI −A)

−1
x,

and the result follows. �

From the above results we immediately have the following result.

Theorem 3.12. Let Assumption 3.10 be satisfied. Set

Π0 =
∑

λ0∈Ση

B0
λ0,−1, Π =

∑
λ0∈Ση

Bλ0,−1.

Then

Πx = lim
µ→+∞

Π0µ (µI −A)−1 x, ∀x ∈ X.

Moreover, we have the following properties:

(i) Π |X0
= Π0, Π (X) ⊂ D(A) ⊂ X0, and

Π (λI − A)
−1

= (λI −A)
−1

Π, ∀λ ∈ ρ (A) .

(ii) A |Π(X) is bounded,

σ
(
A |Π(X)

)
= σ

(
A0 |Π0(X0)

)
= Ση,

and

σ
(
A |(I−Π)(X)

)
= σ

(
A0 |(I−Π0)(X0)

)
= σ (A) \ Ση.

Let Â : D(Â) ⊂ X̂ → X̂ be the generator of
{
TÂ(t)

}
, a strongly continuous

semigroup of bounded linear operator on a Banach space
(
X̂, ‖.‖

X̂

)
. We denote

by ω0

(
Â
)
∈ [−∞,+∞) the growth bound of Â, which is defined by

ω0

(
Â
)
:= lim

t→+∞

ln
(∥∥TÂ(t)

∥∥
L(X̂)

)
t

,

and denote by ω0,ess

(
Â
)
∈ [−∞,+∞) the essential growth bound of Â, which

is defined by

ω0,ess

(
Â
)
:= lim

t→+∞

ln
(
τ
(
TÂ(t)BX̂

(0, 1)
))

t

where B
X̂
(0, 1) =

{
x ∈ X̂ : ‖x‖

X̂
≤ 1

}
, and for each bounded set B ⊂ X̂,

τ (B) = inf {ε > 0 : B can be covered by a finite number of balls of radius ≤ ε}
is the Kuratovsky measure of non-compactness.
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Remark 3.13. Note that the existence of the limit in the definition of the
growth bound ω0(Â) is proved in Dunford and Schwartz [40, Corollary 5, p.619].

The existence of the limit in the definition of the essential growth bound ω0,ess(Â)
follows from Dunford and Schwartz [40, Lemma 4, p.618] and the proof of Webb
[108, Proposition 4.12, p.170].

The following result is taken from Webb [108, Proposition 4.13, p.170-171].

Proposition 3.14. Let Â : D(Â) ⊂ X̂ → X̂ be the generator of
{
TÂ(t)

}
,

a strongly continuous semigroup of bounded linear operators on a Banach space(
X̂, ‖.‖

X̂

)
. Then

ω0

(
Â
)
≥ sup

λ∈σ(Â)

Re (λ) , ω0,ess

(
Â
)
≥ sup

λ∈σE(Â)

Re (λ) ,

and

ω0

(
Â
)
= max

(
ω0,ess

(
Â
)
, sup
λ∈σ(Â)\σE(Â)

Re (λ)

)
,

where σE(Â) is the essential spectrum of Â.

By applying the above result and Proposition 4.11 on p. 166 in Webb [108] and
Corollary 2.11 on p. 258 in Engel and Nagel [41], we obtain the following theorem.

Theorem 3.15. Let (X, ‖.‖) be a complex Banach space and let A : D(A) ⊂
X → X be a linear operator satisfying Assumption 2.3, and assume that ω0 (A0) >
ω0,ess (A0) . Then for each η > ω0,ess (A0) such that

Ση := σ (A0) ∩ {λ ∈ C : Re (λ) ≥ η}
is nonempty and finite, each λ0 ∈ Ση is a pole of (λ−A0)

−1
and B0

λ0,−1 has a
finite rank. Moreover, if we set

Π0 =
∑

λ0∈Ση

B0
λ0,−1,

then

Π0 (λ−A0)
−1

= (λ−A0)
−1

Π0, ∀λ ∈ ρ (A) ,

ω0 (A0) = ω0

(
A0 |Π0(X)

)
= sup

λ∈Ση

Re (λ) ,

and
ω0

(
A0 |(I−Π0)(X)

)
≤ η.

Remark 3.16. In order to apply the above theorem, we need to check that
ω0 (A0) > ω0,ess (A0) . This property can be verified by using perturbation tech-
niques and by applying the results of Thieme [101] in the Hille-Yosida case, or the
results in Ducrot, Liu and Magal [38] in the present context.



CHAPTER 4

Center Manifold Theory

In this chapter, we investigate the existence and smoothness of the center man-
ifold for a nonlinear semiflow {U(t)}t≥0 on X0, generated by integrated solutions
of the Cauchy problem

(4.1)
du(t)

dt
= Au(t) + F (u(t)), for t ≥ 0, with u(0) = x ∈ X0,

where A : D(A) ⊂ X → X is a linear operator satisfying Assumptions 2.3 and 2.9,
and F : X0 → X is Lipschitz continuous. So t → U(t)x is a solution of

(4.2) U(t)x = x+A

∫ t

0

U(s)xds+

∫ t

0

F (U(s)x)ds, ∀t ≥ 0,

or equivalently

(4.3) U(t)x = TA0
(t)x+ (SA � F (U(.)x)) (t), ∀t ≥ 0.

This type of problems has been investigated by Thieme [98] when A is a Hille-Yosida
operator and by Magal and Ruan [78] when A satisfies Assumptions 2.3 and 2.9. We
know that for each x ∈ X0, ( 4.2) has a unique integrated solution t → U(t)x from
[0,+∞) into X0. Moreover, the family {U(t)}t≥0 defines a continuous semiflow,
that is,

(i) U(0) = I and U(t)U(s) = U(t+ s), ∀t, s ≥ 0,
(ii) The map (t, x) → U(t)x is continuous from [0,+∞)×X0 into X0.

Furthermore (see Magal and Ruan [78]), there exists γ > 0 such that

‖U(t)x− U(t)y‖ ≤ Meγt ‖x− y‖ , ∀t ≥ 0, ∀x, y ∈ X0.

Assume that x ∈ X0 is an equilibrium of {U(t)}t≥0 (i.e. U(t)x = x, ∀t ≥ 0,

or equivalently x ∈ D(A) and Ax + F (x) = 0). Then by using (4.2) and by
replacing U(t)x by V (t)x = U(t)x−x, and F (x) by F (x+x)−F (x) , without loss
of generality we can assume that x = 0. Moreover, assume that F is differentiable
at 0 and denote by DF (0) its differential at 0. Then by using Proposition 2.12 and
by replacing A by A + DF (0), and F by F − DF (0), without loss of generality
we can also assume that DF (0) = 0. So in the sequel, we will assume that we can
decompose the space X0 into X0s, X0c, and X0u, the stable, center, and unstable
linear manifold, respectively, corresponding to the spectral decomposition of A0.

Assumption 4.1. Assume that Assumption 2.3 and 2.9 are satisfied and there
exist two bounded linear projectors with finite rank, Π0c ∈ L (X0) \ {0} and Π0u ∈
L (X0) , such that

Π0cΠ0u = Π0uΠ0c = 0

and

Π0kTA0
(t) = TA0

(t)Π0k, ∀t ≥ 0, ∀k = {c, u} .

21
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Assume in addition that

(a) If Π0u 
= 0, then ω0

(
−A0 |Π0u(X0)

)
< 0.

(b) σ
(
A0 |Π0c(X0)

)
⊂ iR

(c) If Π0s := I − (Π0c +Π0u) 
= 0, then ω0

(
A0 |Π0s(X0)

)
< 0.

Remark 4.2. By Theorem 3.15, Assumption 4.1 is satisfied if and only if

(a) ω0,ess (A0) < 0.
(b) σ (A0) ∩ iR 
= ∅.

For each k = {c, u} , we denote by Πk : X → X the unique extension of Π0k

satisfying (i)-(iii) in Proposition 3.5. Denote

Πs = I − (Πc +Πu) and Πh = I −Πc.

Then we have for each k ∈ {c, h, s, u} that

Πk (λI −A)−1 = (λI −A)−1 Πk, ∀λ > ω,

Πk (X0) ⊂ X0,

and for each k ∈ {c, u} that

Πk (X) ⊂ X0.

For each k ∈ {c, h, s, u} , set

X0k = Πk (X0) , Xk = Πk (X) , Ak = A |Xk
, and A0k = A0 |X0k

.

Then for each k ∈ {c, u} ,
Xk = X0k.

Thus, by using Lemma 3.6(i) and (3.1) we have for each k ∈ {c, h, s, u} that

(Ak)D(Ak)
= A0 |X0k

and X0k = Xk ∩X0.

In other words, A0k is the part of Ak in X0k = D (Ak). Moreover, we have

X = Xs ⊕Xc ⊕Xu and Xh = Xs ⊕Xu.

Lemma 4.3. Fix β ∈ (0,min(−ω0 (A0s) ,−ω0 (−A0u))). Then we have

‖TA0s
(t)‖L(X0s)

≤ Mse
−βt, ∀t ≥ 0,(4.4) ∥∥e−A0ut

∥∥
L(X0u)

≤ Mue
−βt, ∀t ≥ 0(4.5)

with

Ms = sup
t≥0

‖TA0s
(t)‖L(X0s)

eβt < +∞,

Mu = sup
t≥0

∥∥e−A0ut
∥∥
L(X0u)

eβt < +∞.

Moreover, for each η ∈ (0, β) , we have

(4.6)
∥∥eA0ct

∥∥
L(X0c)

≤ eη|t|Mc,η, ∀t ∈ R,

with

Mc,η = sup
t∈R

∥∥eA0ct
∥∥
L(X0c)

e−η|t| < +∞.
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Let (Y, ‖.‖Y ) be a Banach space. Let η ∈ R be a constant and I ⊂ R be an
interval. Define

BCη(I, Y ) =

{
f ∈ C (I, Y ) : sup

t∈I
e−η|t| ‖f(t)‖Y < +∞

}
.

It is well known that BCη(I, Y ) is a Banach space when it is endowed with the
norm

‖f‖BCη(I,Y ) = sup
t∈I

e−η|t| ‖f(t)‖Y .

Moreover, the family
{(

BCη(I, Y ), ‖.‖BCη(I,Y )

)}
η>0

forms a scale of Banach

spaces, that is, if 0 < ζ < η then BCζ(I, Y ) ⊂ BCη(I, Y ) and the embedding is
continuous; more precisely, we have

‖f‖BCη(I,Y ) ≤ ‖f‖BCζ(I,Y ) , ∀f ∈ BCζ(I, Y ).

Let (Z, ‖.‖Z) be a Banach spaces. From now on, we denote by Lip(Y, Z) (resp.
LipB(Y, Z)) the space of Lipschitz (resp. Lipschitz and bounded) maps from Y into
Z. Set

‖F‖Lip(Y,Z) := sup
x,y∈Y :x	=y

‖F (x)− F (y)‖Z
‖x− y‖Y

.

We shall study the existence and smoothness of center manifolds in the following
two sections.

4.1. Existence of center manifolds

In this section, we investigate the existence of center manifolds. From now
on we fix β ∈ (0,min(−ω0 (A0s) ,−ω0 (−A0u))). Recall that u ∈ C(R, X0) is a
complete orbit of {U(t)}t≥0 if

(4.7) u(t) = U(t− s)u(s), ∀t, s ∈ R with t ≥ s,

where {U(t)}t≥0 is a continuous semiflow generated by (4.2).

Note that equation (4.7) is also equivalent to

u(t) = u(s) +A

∫ t−s

0

u(s+ r)dr +

∫ t−s

0

F (u(s+ r)) dr

for all t, s ∈ R with t ≥ s, or to

(4.8) u(t) = TA0
(t− s)u(s) + (SA � F (u(s+ .))) (t− s)

for each t, s ∈ R with t ≥ s.

Definition 4.4. Let η ∈ (0, β). The η- center manifold of (4.1), denoted
by Vη, is the set of all points x ∈ X0, such that there exists u ∈ BCη (R, X0) , a
complete orbit of {U(t)}t≥0 , such that u(0) = x.

Let u ∈ BCη (R, X0) . For all τ ∈ R, we have

e−η|τ | ‖u‖BCη(R,X0)
≤ ‖u(.+ τ )‖BCη(R,X0)

≤ eη|τ | ‖u‖BCη(R,X0)
.

So for each η > 0, Vη is invariant under the semiflow {U(t)}t≥0 , that is,

U(t)Vη = Vη, ∀t ≥ 0.
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Moreover, we say that {U(t)}t≥0 is reduced on Vη if there exists a map Ψη :
X0c → X0h such that

Vη = Graph (Ψ) = {xc +Ψ(xc) : xc ∈ X0c} .

Before proving the main results of this chapter, we need some preliminary lemmas.

Lemma 4.5. Let Assumption 4.1 be satisfied. Let τ > 0 be fixed. Then for
each f ∈ C([0, τ ] , X) and each t ∈ [0, τ ] , we have

(4.9) Π0s (SA � f) (t) = (SA �Πsf) (t) = (SAs
�Πsf) (t),

and for each k ∈ {c, u} ,

(4.10) Π0k (SA � f) (t) = (SA �Πkf) (t) =

∫ t

0

eA0k(t−r)Πkf(r)dr, ∀t ∈ [0, τ ] .

Furthermore, for each γ > −β, there exists Ĉs,γ > 0, such that for each f ∈
C([0, τ ] , X) and each t ∈ [0, τ ] , we have

(4.11) e−γt ‖Π0s (SA � f) (t)‖ ≤ Ĉs,γ sup
s∈[0,t]

e−γs ‖f(s)‖ ds.

Proof. The first part (i.e. equations (4.9) and (4.10)) of the lemma is a conse-
quence of Proposition 3.7. Moreover, applying Proposition 2.13 to (SAs

�Πsf) (t)
and using (4.4), we obtain (4.11). �

Lemma 4.6. Let Assumption 4.1 be satisfied. Then we have the following:

(i) For each η ∈ [0, β) , each f ∈ BCη (R, X) , and each t ∈ R,

Ks(f)(t) := lim
r→−∞

Π0s (SA � f(r + .)) (t− r) exists.

(ii) For each η ∈ [0, β) , Ks is a bounded linear operator from BCη (R, X) into
BCη (R, X0s). More precisely, for each ν ∈ (−β, 0) , we have

‖Ks‖L(BCη(R,X),BCη(R,X0s))
≤ Ĉs,ν , ∀η ∈ [0,−ν] ,

where Ĉs,ν > 0 is the constant introduced in ( 4.11).
(iii) For each η ∈ [0, β) , each f ∈ BCη (R, X) , and each t, s ∈ R with t ≥ s,

Ks(f)(t)− TA0s
(t− s)Ks(f)(s) = Π0s (SA � f(s+ .)) (t− s).

Proof. (i) and (iii) Let η ∈ (0, β) be fixed. By using (2.7), we have for each
t, s, r ∈ R with r ≤ s ≤ t, and each f ∈ BCη (R, X) that

(SA � f(r + .)) (t− r) = TA0
(t− s) (SA � f(r + .)) (s− r) + (SA � f(s+ .)) (t− s).

By projecting this equation on X0s, we obtain for all t, s, r ∈ R with r ≤ s ≤ t that

(4.12)
Π0s (SA � f(r + .)) (t− r)
= TA0s

(t− s)Π0s (SA � f(r + .)) (s− r)
+Π0s (SA � f(s+ .)) (t− s).
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Let ν ∈ (−β,−η) be fixed. Then by using (4.4) and (4.11), we have for all t, s, r ∈ R

with r ≤ s ≤ t that

‖Π0s (SA � f(r + .)) (t− r)−Π0s (SA � f(s+ .)) (t− s)‖
= ‖TA0s

(t− s)Π0s (SA � f(r + .)) (s− r)‖
≤ Mse

−β(t−s)Ĉs,νe
ν(s−r) sup

l∈[0,s−r]

e−νl ‖f(r + l)‖

= MsĈs,νe
−β(t−s)eν(s−r) sup

σ∈[r,s]

e−ν(σ−r) ‖f(σ)‖

= MsĈs,νe
−β(t−s)eνs sup

l∈[r,s]

e−νσeη|σ|e−η|σ| ‖f(σ)‖

≤ ‖f‖BCη(R,X) MsĈs,νe
−β(t−s)eνs sup

σ∈[r,s]

e−νσeη|σ|.

Hence, for all s, r ∈ R− with s ≥ r, we obtain

‖Π0s (SA � f(r + .)) (t− r)−Π0s (SA � f(s+ .)) (t− s)‖
≤ ‖f‖BCη(R,X) MsĈs,νe

−β(t−s)eνs sup
σ∈[r,s]

e−(ν+η)σ.

Because − (ν + η) > 0, we have

‖Π0s (SA � f(r + .)) (t− r)−Π0s (SA � f(s+ .)) (t− s)‖
≤ ‖f‖BCη(R,X) MsĈs,νe

−β(t−s)eνse−(ν+η)s

= ‖f‖BCη(R,X) MsĈs,νe
−βte(β−η)s.

Since β − η > 0, by using Cauchy sequences, we deduce that

Ks(f)(t) = lim
s→−∞

Π0s (SA � f(s+ .)) (t− s) exists.

Taking the limit as r goes to −∞ in (4.12), we obtain (iii).
(ii) Let ν ∈ (−β, 0) and η ∈ [0,−ν] be fixed. For each f ∈ BCη (R, X) and each

t ∈ R, we have

‖Ks(f)(t)‖ = lim
r→−∞

‖Π0s (SA � f(r + .)) (t− r)‖

≤ Ĉs,ν lim sup
r→−∞

eν(t−r) sup
l∈[0,t−r]

e−νl ‖f(r + l)‖

= Ĉs,ν lim sup
r→−∞

eν(t−r) sup
σ∈[r,t]

e−ν(σ−r) ‖f(σ)‖

= Ĉs,ν lim sup
r→−∞

eνt sup
σ∈[r,t]

e−νσeη|σ|e−η|σ| ‖f(σ)‖

= Ĉs,νe
νt ‖f‖η sup

σ∈(−∞,t]

e−νσeη|σ|.

Since (ν + η) ≤ 0, we deduce that if t ≤ 0,

e−η|t| ‖Ks(f)(t)‖ ≤ Ĉs,νe
(ν+η)t ‖f‖η sup

σ∈(−∞,t]

e−(ν+η)σ = Ĉs,νe
(ν+η)t ‖f‖η e

−(ν+η)t

= Ĉs,ν ‖f‖η
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and since (η − ν) > 0, it follows that if t ≥ 0,

e−η|t| ‖Ks(f)(t)‖ ≤ Ĉs,νe
(ν−η)t ‖f‖η sup

σ∈(−∞,t]

e−νσeη|σ|

≤ Ĉs,ν ‖f‖η e
(ν−η)t max( sup

σ∈(−∞,0]

e−(ν+η)σ, sup
σ∈[0,t]

e(η−ν)σ)

= Ĉs,ν ‖f‖η e(ν−η)te(η−ν)t = Ĉs,ν ‖f‖η .

This completes the proof. �

Lemma 4.7. Let Assumption 4.1 be satisfied. Let η ∈ [0, β) be fixed. Then we
have the following:

(i) For each f ∈ BCη (R, X) and each t ∈ R,

Ku(f)(t) := −
∫ +∞

t

e−A0u(l−t)Πuf(l)dl := − lim
r→+∞

∫ r

t

e−A0u(l−t)Πuf(l)dl

exists.
(ii) Ku is a bounded linear operator from BCη (R, X) into BCη (R, X0u) and

‖Ku‖L(BCη(R,X)) ≤
Mu ‖Πu‖L(X)

(β − η)
.

(iii) For each f ∈ BCη (R, X) and each t, s ∈ R with t ≥ s,

Ku(f)(t)− eA0u(t−s)Ku(f)(s) = Π0u (SA � f(s+ .)) (t− s).

Proof. By using (4.5) and the same argument as in the proof of Lemma 4.6,
we obtain (i) and (ii). Moreover, for each s, t, r ∈ R with s ≤ t ≤ r, we have∫ r

s

eA0u(s−l)Πuf(l)dl =

∫ t

s

eA0u(s−l)Πuf(l)dl +

∫ r

t

eA0u(s−l)Πuf(l)dl

=

∫ t

s

eA0u(s−l)Πuf(l)dl + eA0u(s−t)

∫ r

t

eA0u(t−l)Πuf(l)dl.

It follows that

eA0u(t−s)

∫ r

s

eA0u(s−l)Πuf(l)dl =

∫ t

s

eA0u(t−l)Πuf(l)dl +

∫ r

t

eA0u(t−l)Πuf(l)dl.

When r → +∞, we obtain for all s, t ∈ R with s ≤ t that

−eA0u(t−s)Ku,η(f)(s) =

∫ t−s

0

eA0u(t−s−r)Πuf(s+ r)dr −Ku,η(f)(t)

= Πu (SA � f(s+ .)) (t− s)−Ku,η(f)(t).

This gives (iii). �

Lemma 4.8. Let Assumption 4.1 be satisfied. Let η ∈ (0, β) be fixed. For each
xc ∈ X0c, each f ∈ BCη (R, X) , and each t ∈ R, denote

K1(xc)(t) := eA0ctxc, Kc(f)(t) :=

∫ t

0

eA0c(t−s)Πcf(s)ds.
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Then K1 (respectively Kc) is a bounded linear operator from X0c into BCη (R, X0c)
(respectively from BCη (R, X) into BCη (R, X0c) , and

‖K1‖L(Xc,BCη(R,X)) ≤ max

(
sup
t≥0

∥∥∥e(Ac−ηI)t
∥∥∥ , sup

t≥0

∥∥∥e−(Ac+ηI)t
∥∥∥) ,

‖Kc‖L(BCη(R,X)) ≤ ‖Πc‖L(X) max

(∫ +∞

0

∥∥∥e(Ac−ηI)l
∥∥∥ dl, ∫ +∞

0

∥∥∥e−(Ac+ηI)l
∥∥∥ dl) .

Proof. The proof is straightforward. �

Lemma 4.9. Let Assumption 4.1 be satisfied. Let η ∈ (0, β) and u ∈ BCη (R, X0)
be fixed. Then u is a complete orbit of {U(t)}t≥0 if and only if for each t ∈ R,

(4.13)
u(t) = K1(Π0cu(0))(t) +Kc(F (u(.)))(t)

+Ku(F (u(.)))(t) +Ks(F (u(.)))(t).

Proof. Let u ∈ BCη (R, X0) . Assume first that u is a complete orbit of
{U(t)}t≥0. Then for k ∈ {c, u} we have for all l, r ∈ R with r ≤ l that

Π0ku(l) = eA0k(l−r)Π0ku(r) +

∫ l

r

eA0k(l−s)ΠkF (u(s))ds.

Thus,
dΠ0ku(t)

dt
= A0kΠ0ku(t) + ΠkF (u(t)), ∀t ∈ R.

From this ordinary differential equation, we first deduce that

(4.14) Π0cu(t) = eA0ctΠ0cu(0) +

∫ t

0

eA0c(t−s)ΠcF (u(s))ds, ∀t ∈ R.

Hence, for each t, l ∈ R,

Π0uu(t) = eA0u(t−l)Π0uu(l) +

∫ t

l

eA0u(t−s)ΠuF (u(s))ds, ∀t, l ∈ R.

It follows that for each l ≥ 0,∥∥∥e−A0u(l−t)Π0uu(l)
∥∥∥ ≤ Mu ‖Πu‖L(X) e

−β(l−t)eηl ‖u‖BCη(R,X0)
.

So when l goes to +∞, we obtain

(4.15) Π0uu(t) = −
∫ +∞

t

eA0u(t−s)ΠuF (u(s))ds, ∀t ∈ R.

Furthermore, we have for all t, l ∈ R with t ≥ l that

Π0su(t) = TA0s
(t− l)Π0su(l) + Π0s (SA � F (u(l + .))) (t− l)

and for each l ≤ 0 that

‖TA0s
(t− l)Π0su(l)‖ ≤ e−βtMs ‖u‖η e(β−η)l.

Taking l → −∞, we obtain

(4.16) Π0su(t) = Ks,η (F (u(.))) (t), ∀t ∈ R.

Finally, summing up (4.14), (4.15), and (4.16), we obtain (4.13).
Conversely, assume that u is a solution of (4.13). Then

Π0cu(t) = eA0ctΠ0cu(0) +

∫ t

0

eA0c(t−s)ΠcF (u(s))ds, ∀t ∈ R.
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It follows that

dΠ0cu(t)

dt
= A0cΠ0cu(t) + ΠcF (u(t)), ∀t ∈ R.

Thus, for l, r ∈ R− with r ≤ l,

Π0cu(l) = TA0
(t− s)Π0cu(r) + Π0c (SA � F (u(s+ .))) (t− s).

Moreover, using Lemma 4.6 (iii) and Lemma 4.7 (iii), we deduce that for all t, s ∈ R

with t ≥ s

Π0su(t)− TA0
(t− s)Π0su(s) = Π0s (SA � F (u(s+ .))) (t− s),

Π0uu(t)− TA0
(t− s)Π0uu(s) = Π0u (SA � F (u(s+ .))) (t− s).

Therefore, u satisfies (4.8) and is a complete orbit of {U(t)}t≥0 . �

Let η ∈ (0, β) be fixed. We rewrite equation (4.13) as the following fixed point
problem: To find u ∈ BCη (R, X) such that

(4.17) u = K1(Π0cu(0)) +K2ΦF (u),

where the nonlinear operator ΦF ∈ Lip (BCη (R, X0) , BCη (R, X)) is defined by

ΦF (u)(t) = F (u(t)), ∀t ∈ R

and K2 ∈ L (BCη (R, X) , BCη (R, X0)) is the linear operator defined by

K2 = Kc +Ks +Ku.

Moreover, we have the following estimates

‖K1‖L(Xc,BCη(R,X)) ≤ max(sup
t≥0

∥∥∥e(Ac−ηId)t
∥∥∥ , sup

t≥0

∥∥∥e−(Ac+ηId)t
∥∥∥),

‖ΦF ‖Lip ≤ ‖F‖Lip ,
and for each ν ∈ (−β, 0) , we have

‖K2‖L(BCη(R,X)) ≤ γ (ν, η) , ∀η ∈ (0,−ν] ,

where

(4.18)
γ (ν, η) := Ĉs,ν +

Mu ‖Πu‖L(X)

(β − η)

+ ‖Πc‖L(X) max
(∫ +∞

0

∥∥e(Ac−ηId)l
∥∥ dl, ∫ +∞

0

∥∥e−(Ac+η)l
∥∥ dl) .

Moreover, by Lemma 4.9, the η-center manifold is given by

(4.19) Vη = {x ∈ X0 : ∃u ∈ BCη (R, X0) a solution of (4.17) and u(0) = x} .
We are now in the position to prove the existence of center manifolds for semilin-

ear equations with non-dense domain, which is a generalization of Vanderbauwhede
and Iooss [106, Theorem 1, p.129].

Theorem 4.10. Let Assumption 4.1 be satisfied. Let η ∈ (0, β) be fixed and let
δ0 = δ0 (η) > 0 be such that

δ0 ‖K2‖L(BCη(R,X)) < 1.

Then for each F ∈ Lip(X0, X) with ‖F‖Lip(X0,X) ≤ δ0, there exists a Lipschitz

continuous map Ψ : X0c → X0h such that

Vη = {xc +Ψ(xc) : xc ∈ X0c} .
Moreover, we have the following properties:
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(i) supxc∈Xc
‖Ψ(xc)‖ ≤ ‖Ks +Ku‖L(BCη(R,X)) sup

x∈X0

‖ΠhF (x)‖ .

(ii)

(4.20) ‖Ψ‖Lip(X0c,X0h)
≤ ‖Ks+Ku‖L(BCη(R,X))‖F‖Lip(X0,X)‖K1‖L(Xc,BCη(R,X0))

1−‖K2‖L(BCη(R,X))‖F‖Lip(X0,X)
.

(iii) For each u ∈ C (R, X0) , the following statement are equivalent:
(1) u ∈ BCη (R, X0) is a complete orbit of {U(t)}t≥0 .

(2) Π0hu(t) = Ψ(Π0cu(t)), ∀t ∈ R, and Π0cu(.) : R → X0c is a solution
of the ordinary differential equation

(4.21)
dxc(t)

dt
= A0cxc(t) + ΠcF [xc(t) + Ψ (xc(t))] .

Proof. (i) Since ‖F‖Lip ‖K2‖L(BCη(R,X)) < 1, the map (Id−K2ΦF ) is invert-

ible, (Id−K2ΦF )
−1 is Lipschitz continuous, and

(4.22)
∥∥(Id−K2ΦF )

−1
∥∥
Lip(BCη(R,X0))

≤ 1
1−‖K2‖L(BCη(R,X))‖F‖Lip(X0,X)

.

Let x ∈ X0 be fixed. By Lemma 4.9, we know that x ∈ Vη if and only if there exists
uΠ0cx ∈ BCη (R, X) , such that uΠ0cx (0) = x and

uΠ0cx = K1(Π0cx) +K2ΦF (uΠ0cx) .

So

Vη =
{
(Id−K2ΦF )

−1K1(xc) (0) : xc ∈ X0c

}
.

We define Ψ : X0c → X0h by

(4.23) Ψ(xc) = Π0h(Id−K2ΦF )
−1K1(xc)(0), ∀xc ∈ X0c.

Then

Vη = {xc +Ψ(xc) : xc ∈ X0c} .
For each xc ∈ X0c, set

uxc
= (Id−K2ΦF )

−1K1(xc).

We have

uxc
= K1(xc) +K2ΦF (uxc

) .

By projecting on X0h, we obtain

Π0huxc
= [Ks +Ku] ΦF (uxc

) ,

so

(4.24) Ψ(xc) = [Ks +Ku] ΦF (uxc
) (0)

and (i) follows.
(ii) It follows from (4.22) and (4.24).
(iii) Assume first that u ∈ BCη (R, X0) is a complete orbit of {U(t)}t≥0. Then

by the definition of Vη, we have u(t) ∈ Vη, ∀t ∈ R. Hence,

Π0hu(t) = Ψ(Π0cu(t)), ∀t ∈ R.

Moreover, by projecting (4.8) on X0c, we have for each t, s ∈ R with t ≥ s that

Π0cu (t) = eA0c(t−s)Π0cu(s) +

∫ t−s

0

eA0c(t−s−l)ΠcF (u (s+ l)) dl.

Thus, t → Π0cu (t) is a solution of (4.21).
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Conversely assume that u ∈ C (R, X0) satisfies (iii)(2). Then

Π0hu(t) = Ψ(Π0cu(t)), ∀t ∈ R,

and Π0cu(.) : R → X0c is a solution of (4.21). Set x = u(0). We know that x ∈ Vη,
and by the definition of Vη, there exists v ∈ BCη (R, X0) , a complete orbit of
{U(t)}t≥0 , such that v(0) = x. But since Vη is invariant under the semiflow, we
deduce that

Π0hv(t) = Ψ(Π0cv(t)), ∀t ∈ R,

and Π0cv(.) : R → X0c is a solution of (4.21). Finally, since Π0cv(0) = Π0cu(0),
and since F and Ψ are Lipschitz continuous, we deduce that (4.21) has at most one
solution. It follows that

Π0cv(t) = Π0cu(t), ∀t ∈ R,

and by construction

Π0hv(t) = Ψ(Π0cv(t)) = Ψ(Π0cu(t)) = Π0hu(t), ∀t ∈ R.

Thus,

u(t) = v(t), ∀t ∈ R.

Therefore, u ∈ BCη (R, X0) is a complete orbit of {U(t)}t≥0. �

Proposition 4.11. Let Assumption 4.1 be satisfied. Assume in addition that
F ∈ LipB (X0, X) (i.e. F is Lipschitz and bounded). Then

Vη = Vξ, ∀η, ξ ∈ (0, β) .

Proof. Let η, ξ ∈ (0, β) be such that ξ < η. Let x ∈ Vξ. By the definition of Vξ

there exists u ∈ BCξ (R, X0) , a complete orbit of {U(t)}t≥0 , such that u(0) = x.

But BCξ (R, X0) ⊂ BCη (R, X0) , so u ∈ BCη (R, X0) , and we deduce that x ∈ Vη.
Conversely, let x ∈ Vη be fixed. By the definition of Vη there exists u ∈

BCη (R, X0) , a complete orbit of {U(t)}t≥0 , such that u(0) = x. By Lemma 4.9
we deduce that u is a solution of

u = K1(Π0cu(0)) +K2ΦF (u).

ButK1(Π0cu(0)) ∈ BCξ (R, X0) and F is bounded, so we have ΦF (u) ∈ BC0 (R, X0) ⊂
BCξ (R, X0) and

K2ΦF (u) ∈ BCξ (R, X0) .

Hence, u ∈ BCξ (R, X0) and

u = K1(Π0cu(0)) +K2ΦF (u).

Using again Lemma 4.9 once more, we obtain that x ∈ Vξ. �

4.2. Smoothness of center manifolds

In the sequel, we will use the following notation. Let k ≥ 1 be an integer, let
Y1, Y2, .., Yk, Y and Z be Banach spaces, let V be an open subset of Y . Denote
L(k) (Y1, Y2, .., Yk, Z) (resp. L(k) (Y, Z)) the space of bounded k-linear maps from
Y1× ...×Yk into Z (resp. from Y k into Z). Let W ∈ Ck (V, Z) be fixed. We choose
the convention that if l = 1, ..., k − 1 and u, û ∈ V with u 
= û, the quantity

sup
u1,...,ul∈BY (0,1)

∥∥[DlW (u)−DlW (û)
]
(u1, ..., ul)−Dl+1W (û) (u− û, u1, ..., ul)

∥∥
‖u− û‖
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goes to 0 as ‖u− û‖ → 0. Set

Ck
b (V, Z) :=

{
W ∈ Ck (V, Z) : |W |j,V := sup

x∈V

∥∥DjW (x)
∥∥ < +∞, 0 ≤ j ≤ k

}
.

For each η ∈ [0, β) , consider Kh : BCη (R, X) → BCη (R, X0h) , the bounded linear
operator defined by

Kh = Ks +Ku,

where Ks and Ku are the bounded linear operators defined, respectively, in Lemma
4.6 and Lemma 4.7. For each � > 0 and each η ≥ 0, set

V� := {x ∈ X0 : ‖Πhx‖ < �} , V � := {x ∈ X0 : ‖Πhx‖ ≤ �} ,

and

V
η

� :=
{
u ∈ BCη (R, X0) : u(t) ∈ V �, ∀t ∈ R

}
.

Note that since V � is a closed and convex subset of X0, so is V
η

� for each η ≥ 0.
We make the following assumption.

Assumption 4.12. Let k ≥ 1 be an integer and let η, η̂ ∈
(
0, β

k

)
such that

kη < η̂ < β. Assume

a) F ∈ Lip (X0, X) ∩ Ck
b (V�, X) ;

b) �0 := ‖Kh‖L(BC0(R,X)) ‖ΠhF‖0,X0
< �;

c) supθ∈[η,η̂] ‖K2‖L(BCθ(R,X)) ‖F‖Lip(X0,X) < 1.

Note that by using (4.18) we deduce that

sup
θ∈[η,η̂]

‖K2‖L(BCθ(R,X)) < +∞.

Thus, Assumption 4.12 makes sense.
Following the approach of Vanderbauwhede [104, Corollary 3.6] and Vander-

bauwhede and Iooss [106, Theorem 2], we obtain the following result on the smooth-
ness of center manifolds.

Theorem 4.13. Let Assumptions 4.1 and 4.12 be satisfied. Then the map Ψ
given by Theorem 4.10 belongs to the space Ck

b (Xc, Xh) .

The above result was stated without proof in [106, Theorem 2]. For the sake of
completeness we now prove Theorem 4.13. We first need some preliminary results.

Definition 4.14. Let X be a metric space and H : X → X be a map. A fixed
point x ∈ X of H is said to be attracting if

lim
n→+∞

Hn(x) = x for each x ∈ X.

The following lemma is an extension of the Fibre contraction theorem (which
corresponds to the case k = 1). This result is taken from [104, Corollary 3.6].

Lemma 4.15. Let k ≥ 1 be an integer and let (M0, d0) , (M1, d1) , ..., (Mk, dk)
be complete metric spaces. Let H : M0 ×M1 × ...×Mk → M0 ×M1 × ...×Mk be a
mapping of the form

H (x0, x1, ..., xk) = (H0 (x0) , H1 (x0, x1) , ..., Hk (x0, x1, ..., xk)) ,
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where for each l = 0, ..., k, Hl : M0 ×M1 × ...×Ml → Ml is a uniform contraction;
that is, H0 is a contraction, and for each l = 1, .., k, there exists τl ∈ [0, 1) such
that for each (x0, x1, ..., xl−1) ∈ M0 ×M1 × ...×Ml−1 and each xl, x̂l ∈ Ml,

dl (Hl (x0, x1, ..., xl−1, xl) , Hl (x0, x1, ..., xl−1, x̂l)) ≤ τld (xl, x̂l) .

Then F has a unique fixed point (x0, x1, ..., xk). If, moreover, for each l = 1, ..., k,

Hl (., xl) : M0 ×M1 × ...×Ml−1 → Ml

is continuous, then (x0, x1, ..., xk) is an attracting fixed point of H.

We recall that the map Ψ : X0c → X0h is defined by

Ψ (xc) = Πh (I −K2ΦF )
−1

(K1xc) (0), ∀xc ∈ X0c.

We define the map Γ0 : BCη (R, X0c) → BCη (R, X0) by

Γ0 (u) = (I −K2ΦF )
−1

(u) , ∀u ∈ BCη (R, X0c) .

For each δ ≥ 0, the bounded linear operator L : BCδ (R, X0) → X0h is defined by

L(u) = Πhu(0), ∀u ∈ BCδ (R, X0c) .

Then we have

Ψ (xc) = LΓ0(K1xc), ∀xc ∈ X0c

and

Γ0(u) = u+K2ΦF (Γ0(u)) , ∀u ∈ BCη (R, X0c) .

So we obtain

(4.25) Γ0 = J +K2 ◦ ΦF ◦ (Γ0) ,

where J is the continuous imbedding from BCη (R, X0c) into BCη (R, X0) .
From (4.25), we deduce that for each u ∈ BCη (R, X0c) ,

‖Γ0(u)− u‖BCη(R,X0)
≤ ‖K2‖L(BCη(R,X),BCη(R,X0))

|F |0,X0
,

‖ΠhΓ0(u)(t)‖BC0(R,X) ≤ ‖Kh‖L(BC0(R,X)) ‖ΠhF‖0,X0
= �0, ∀t ∈ R.

For each subset E ⊂ BCη (R, X0c) , denote

M0,E =

{
Θ ∈ C

(
E, V

0

�0

)
: sup
u∈E

‖Θ(u)− u‖BCη(R,X0)
< +∞

}
and set

M0 = M0,BCη(R,X0c).

From the above remarks, it follows that Γ0 (respectively Γ0 |E) must be an element

of M0 (respectively M0,E). Since V
0

�0
is a closed subset of BCη (R, X0) , we know

that for each subset E ⊂ BCη (R, X0c) , M0,E is a complete metric space endowed
with the metric

d0,E

(
Θ, Θ̃

)
= sup

u∈E

∥∥∥Θ(u)− Θ̃ (u)
∥∥∥
BCη(R,X0)

.

Set

d0 = d0,BCη(R,X0c).
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Lemma 4.16. Let E be a Banach space and W ∈ C1
b (V�, E). Let ξ ≥ δ ≥ 0

be fixed. Define ΦW : V η
� → BCξ (R, E) , ΦDW : V η

� → BCξ (R,L (X0, E)) , and

Φ
(1)
W : V η

� → L
(
BCδ (R, X0) , BCξ (R, E)

)
for each t ∈ R, each u ∈ V η

� , and each

v ∈ BCδ (R, X0) by

ΦW (u) (t) := W (u(t)) ,

ΦDW (u) (t) := DW (u (t)) ,(
Φ

(1)
W (u) (v)

)
(t) := DW (u(t)) (v(t)) ,

respectively. Then we have the following:

(a) If ξ > 0, then ΦW and ΦDW are continuous.

(b) For each u, v ∈ V η
� , Φ

(1)
W (u) ∈ L

(
BCδ (R, X0) , BCξ (R, E)

)
,∥∥∥Φ(1)

W (u)− Φ
(1)
W (v)

∥∥∥
L(BCδ(R,X0),BCξ(R,E))

≤ ‖ΦDW (u)− ΦDW (v)‖BCξ−δ(R,L(X0,E))

and∥∥∥Φ(1)
W (u)

∥∥∥
L(BCδ(R,X0),BCξ(R,E))

≤ ‖ΦDW (u)‖BCξ−δ(R,L(X0,E)) ≤ |W |1,V�
.

(c) If ξ > δ, then Φ
(1)
W is continuous.

(d) If ξ ≥ δ ≥ η, we have for each u, û ∈ V η
� that∥∥∥ΦW (u)− ΦW (û)− Φ

(1)
W (û) (u− û)

∥∥∥
BCξ(R,E)

≤ ‖u− û‖BCδ(R,X0)
κξ−δ (u, û)

where

κξ−δ (u, û) = sup
s∈[0,1]

‖ΦDW (su+ (1− s)û)− ΦDW (û)‖BCξ−δ(R,L(X0,E)) ,

and if ξ > δ ≥ η, we have (by continuity of ΦDW )

κξ−δ (u, û) → 0 as ‖u− û‖BCη(R,X0)
→ 0.

Proof. We first prove that ΦW ∈ C0
b

(
V η
� , BCξ (R, E)

)
. For each u, û ∈ V η

�

and each R > 0, we have

(4.26)

‖ΦW (u)− ΦW (û)‖BCξ(R,E) = sup
t∈R

e−ξ|t| ‖W (u(t))−W (û(t))‖

= max

(
sup
|t|≤R

e−ξ|t| ‖W (u(t))−W (û(t))‖ , 2 ‖W‖0 e−ξR

)
.

Fix some arbitrary ε > 0. Let R > 0 be such that 2 ‖W‖0 e−ξR < ε and denote
Ω = {û(t) : |t| ≤ R} . Since W is continuous and Ω is compact, we can find δ1 > 0
such that

‖W (x)−W (x̂)‖ ≤ ε if x̂ ∈ Ω, and ‖x− x̂‖ ≤ δ1.

Let δ = e−ηRδ1. If ‖u− û‖BCη(R,X0)
≤ δ, then ‖u(t)− û(t)‖ ≤ δ1, ∀t ∈ [−R,R] ,

and (4.26) implies ‖ΦW (u)− ΦW (û)‖BCξ(R,E) ≤ ε.

We now prove that Φ
(1)
W ∈ C

(
V η
� ,L

(
BCδ (R, X0) , BCξ (R, E)

))
. From the

first part of the proof, since E is an arbitrary Banach space, we deduce that ΦDW
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is continuous. Moreover, for each u, û ∈ V η
� and each v ∈ BCδ (R, X0) ,∥∥∥(Φ(1)

W (u) (v)
)∥∥∥

BCξ(R,E)
= sup

t∈R

e−ξ|t| ‖DW (u(t)) (v(t))‖

≤ ‖ΦDW (u)‖BCξ−δ(R,L(X0,E)) ‖v‖BCδ(R,X0)

and ∥∥∥([Φ(1)
W (u)− Φ

(1)
W (û)

]
(v)

)∥∥∥
BCξ(R,E)

≤ ‖ΦDW (u)− ΦDW (û)‖BCξ−δ(R,L(X0,E)) ‖v‖BCδ(R,X0)
.

Thus, if ξ ≥ δ, we have for each u ∈ V η
� that

Φ
(1)
W (u) ∈ L

(
BCδ (R, X0) , BCξ (R, E)

)
, ∀u ∈ V η

�

and if ξ > δ,

Φ
(1)
W ∈ C

(
V η
� ,L

(
BCδ (R, X0) , BCξ (R, E)

))
, ∀µ > 0.

Since V� is an open and convex subset of X0, we have the following classical formula

W (x)−W (y) =

∫ 1

0

DW (sx+ (1− s)y) (x− y) ds, ∀x, y ∈ V�.

Therefore, for each u, û ∈ V η
� ,∥∥∥ΦW (u)− ΦW (û)− Φ
(1)
W (û) (u− û)

∥∥∥
BCξ(R,E)

= sup
t∈R

e−ξ|t| ‖W (u(t))−W (û(t))−DW (û(t)) (u (t)− û (t))‖

≤ sup
t∈R

sup
s∈[0,1]

e−ξ|t| ‖[DW (su(t) + (1− s)û(t))−DW (û(t))] (u (t)− û (t))‖

≤ ‖u− û‖BCδ(R,X0)
sup

s∈[0,1]

‖ΦDW (su+ (1− s)û)− ΦDW (û)‖BCξ−δ(R,L(X0,E)) .

The proof is complete. �

The following lemma is taken from Vanderbauwhede and Iooss [106, Lemma
3].

Lemma 4.17. Let E be a Banach space and W ∈ C1
b (V�, E). Let ΦW and Φ

(1)
W

be defined as in Lemma 4.16. Let Θ ∈ C
(
BCη (R, X0c) , V

η
�

)
be such that

(a) Θ is of class C1 from BCη (R, X0c) into BCη+µ (R, X0) for each µ > 0;
(b) its derivative takes the form

DΘ(u)(v) = Θ(1)(u) (v) , ∀u, v ∈ BCη (R, X0c) ,

for some globally bounded Θ(1) : BCη(R, X0c) → L(BCη(R, X0c),
BCη(R, X0)).

Then ΦW ◦ Θ ∈ C0
b (BCη(R, X0c), BCη(R, E)) ∩ C1(BCη(R, X0c),

BCη+µ(R, E)) for each µ > 0 and

D (ΦW ◦Θ) (u)(v) = Φ
(1)
W (Θ (u))Θ(1)(u) (v) , ∀u, v ∈ BCη (R, X0c) .
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Proof. By using Lemma 4.16, it follows that

ΦW ◦Θ ∈ C0
b (BCη (R, X0c) , BCη (R, E))

and

Φ
(1)
W (Θ (.))Θ(1)(.) ∈ C

(
BCη (R, X0c) ,L

(
BCη (R, X0c) , BCη+µ (R, E)

))
.

Let u, û ∈ BCη (R, X0c) . By Lemma 4.16, we also have∥∥∥ΦW (Θ (u))− ΦW (Θ (û))− Φ
(1)
W (Θ (û))Θ(1)(û) (u− û)

∥∥∥
BCη+µ(R,E)

≤
∥∥∥ΦW (Θ (u))− ΦW (Θ (û))− Φ

(1)
W (Θ (û)) (Θ (u)−Θ(û))

∥∥∥
BCη+µ(R,E)

+
∥∥∥Φ(1)

W (Θ (û))
[
Θ(u)−Θ(û)−Θ(1)(û) (u− û)

]∥∥∥
BCη+µ(R,E)

≤ ‖Θ(u)−Θ(û)‖BCη+µ/2(R,X0)
κµ/2 (Θ (u) ,Θ(û))

+ ‖ΦDW (Θ (û))‖BCµ/2(R,L(X0,E))

∥∥Θ(u)−Θ(û)−Θ(1)(û) (u− û)
∥∥
BCη+µ/2(R,X0)

and the result follows. �

One may extend the previous lemma to any order k > 1.

Lemma 4.18. Let E be a Banach space and let W ∈ Ck
b (V�, E) (for some

integer k ≥ 1). Let l ∈ {1, ..., k} be an integer. Suppose ξ ≥ 0, µ ≥ 0 are two real
numbers and δ1, δ2, ..., δl ≥ 0 such that ξ = µ+ δ1 + δ2 + ...+ δl. Define

ΦD(l)W (u) (t) := D(l)W (u (t)) , ∀t ∈ R, ∀u ∈ V η
� ,

Phi
(l)
W (u) (u1, u2, ..., ul) (t) := D(l)W (u (t)) (u1 (t) , u2 (t) , ..., ul (t)) ,

forallt ∈ R, ∀u ∈ V η
� , ∀ui ∈ BCδi (R, X0) , for i = 1, ..., l.

Then we have the following:

(a) If ξ > 0, then ΦD(l)W : V η
� → BCξ

(
R,L(l) (X0, E)

)
is continuous.

(b) For each u, v ∈ V η
� , Φ

(l)
W (u) ∈ L(l)(BCδ1(R, X0), ..., BCδl(R, X0);

BCξ(R, E)),∥∥∥Φ(l)
W (u)− Φ

(l)
W (v)

∥∥∥
L(l)(BCδ1 (R,X0),...,BCδl (R,X0);BCξ(R,E))

≤ ‖ΦD(l)W (u)− ΦD(l)W (v)‖BCµ(R,L(l)(X0,E))

and ∥∥∥Φ(l)
W (u)

∥∥∥
L(l)(BCδ1 (R,X0),...,BCδl (R,X0);BCξ(R,E))

≤ ‖ΦD(l)W (u)‖BCµ(R,L(l)(X0,E)) ≤ |W |l,V�
.

(c) If µ > 0, then Φ
(l)
W is continuous.

(d) If δ1 ≥ η, we have for each u, û ∈ V η
� that∥∥∥Φ(l−1)

W (u)− Φ
(l−1)
W (û)− Φ

(l)
W (û) (u− û)

∥∥∥
L(l−1)(BCδ2 (R,X0),...,BCδl (R,X0);BCξ(R,E))

≤ ‖u− û‖BCδ1 (R,X0)
κ

(l)
µ (u, û) ,

where

κ
(l)
µ (u, û) = sup

s∈[0,1]

‖ΦD(l)W (su+ (1− s)û)− ΦD(l)W (û)‖BCµ(R,L(l)(X0,E)) ,
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and if µ > 0, we have by continuity of ΦD(l)W that

κ
(l)
µ (u, û) → 0 as ‖u− û‖BCη(R,X0)

→ 0.

Proof. This proof is similar to that of Lemma 4.16. �

In the following lemma we use a formula for the kth-derivative of the composed
map. This formula is taken from Avez [6, p. 38] which also corrects the one used
in Vanderbauwhede [104, Proof of Lemma 3.11].

Lemma 4.19. Let E be a Banach space and let W ∈ Ck
b (V�, E) . Let ΦW and

W (k) be defined as above. Let Θ ∈ C
(
BCη (R, X0c) , V

η
�

)
be such that

(a) Θ is of class Ck from BCη (R, X0c) into BCkη+µ (R, X0) for each µ > 0;
(b) for each l = 1, ..., k, its derivative takes the form

DlΘ(u) (v1, v2, ..., vl) = Θ(l)(u) (v1, v2, ..., vl) , ∀u, v1, v2, ..., vl ∈ BCη (R, X0c) ,

for some globally bounded Θ(l) : BCη(R, X0c) → L(l)(BCη(R, X0c);
BCη(R, X0)).

Then ΦW ◦Θ ∈ C0
b (BCη (R, X0c) , BCη (R, E))∩Ck

(
BCη (R, X0c) , BCkη+µ (R, E)

)
for each µ > 0. Moreover, for each l=1, ..., k and each u, v1, v2, ..., vl∈BCη (R, X0c) ,

Dl (ΦW ◦Θ) (u)(v) = (ΦW ◦Θ)(l) (u) (v1, v2, ..., vl)

for some globally bounded (ΦW ◦ Θ)(l) : BCη(R, X0c) → L(l)(BCη(R, X0c);
BCη(R, E)). More precisely, we have for j = 1, ..., k that

(i) (ΦW ◦Θ)(j) (u) = Φ
(1)
W (Θ(u))D(j)Θ(u) + Φ̃W,j(u);

(ii) Φ̃W,1(u) = 0;

(iii) for j > 1, the map Φ̃W,j(u) is a finite sum
∑

λ∈Λj

Φ̃W,λ,j(u), where for

each λ ∈ Λj the map Φ̃W,λ,j(u) : BCη(R, X0c) → L(j)(BCη(R, X0c,
BCη(R, E)) has the following form

Φ̃W,λ,j(u) (u1, u2, ..., uj) = Φ
(l)
W (Θ(u))

⎛⎝ D(r1)Θ(u)
(
ui

r1
1
, ui

r1
2
, ..., ui

r1
r1

)
, ...,

D(rl)Θ(u)
(
ui

rl
1
, ..., ui

rl
rl

) ⎞⎠
with 2 ≤ l ≤ j, 1 ≤ ri ≤ j − 1 for 1 ≤ i ≤ l, r1 + r2 + ...+ rl = j,{

irm1 , ..., irmrm
}
⊂ {1, ..., j} , ∀m = 1, ..., l{

irm1 , ..., irmrm
}
∩
{
irn1 , ..., irnrn

}
= ∅, if m 
= n,

irm1 ≤ irm2 ≤ ... ≤ irmrm , ∀m = 1, ..., l,

and each λ ∈ Λj corresponds to each such a particular choice.

Proof. This proof is similar to that of Lemma 4.17. �

Proof of Theorem 4.13. Step 1. Existence of a fixed point. Let k, η,
and η̂ be the numbers introduced in Assumption 4.12. Let µ > 0 be such that
kη + (2k − 1)µ = η̂. We first apply Lemma 4.15. For each j = 1, ..., k and each
subset E ⊂ BCη (R, X0c) , define Mj,E as the Banach space of all continuous maps

Θj : E → L(j)
(
BCη (R, X0c) , BCjη+(2j−1)µ (R, X0)

)
such that

|Θj |j = sup
u∈E

‖Θj (u)‖L(j)(BCη(R,X0c),BCjη+(2j−1)µ(R,X0)) < +∞.
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For j = 0, ..., k, define the map Hj,E : M0,E ×M1,E × ...×Mj,E → Mj,E as follows:
If j = 0, set for each u ∈ E that

H0,E (Θ0) (u) = u+K2 ◦ ΦF ◦Θ0(u).

If j = 1, set for each u ∈ E that

(4.27) H1,E (Θ0,Θ1) (u)(.) = J1 +K2 ◦ Φ(1)
F (Θ0 (u)) ◦Θ1 (u) ,

where J1 is the continuous imbedding from BCη (R, X0c) into BCη+µ (R, X0) .
If k ≥ 2, set for each j = 2, ..., k and each u ∈ E that

(4.28)
Hj,E (Θ0,Θ1, ...,Θj) (u)

= K2 ◦ Φ(1)
F (Θ0 (u)) ◦Θj (u) + Ĥj,E (Θ0,Θ1, ...,Θj−1) (u) ,

where

Ĥj,E (Θ0,Θ1, ...,Θj−1) (u) =
∑
λ∈Λj

Ĥλ,j,E (Θ0,Θ1, ...,Θj−1) (u)

and

Ĥλ,j,E (Θ0,Θ1, ...,Θj−1) (u) (u0, u1, ..., uj)

= K2 ◦ Φ(l)
F (Θ0(u))

(
Θr1 (u)

(
ui

r1
1
, ui

r1
2
, ..., ui

r1
r1

)
, ...,Θrl (u)

(
ui

rl
1
, ..., ui

rl
rl

))
with the same constraints as in Lemma 4.19 for λ, rj , l, and i

rj
k .

Define

Hj = Hj,BCη(R,X0c) for each j = 0, ..., k.

In the above definition one has to consider K2 as a linear operator from

BCjη+(2j−1)µ (R, X)

into BCjη+(2j−1)µ (R, X0) , and Φ
(l)
F (Θ0(u)) as an element of

L(j)
(
BCr1η+(2r1−1)µ (R, X0) , ..., BCrlη+(2rl−1)µ (R, X0) ;BCjη+(2j−1)µ (R, X)

)
.

Notice that

jη + (2j − 1)µ >

l∑
k=1

rkη + (2rk − 1)µ

since 2 ≤ l ≤ j and r1 + r2 + ...+ rl = j. Finally, define H : M0 ×M1 × ...×Mk →
M0 ×M1 × ...×Mk by

H (Θ0,Θ1, ...,Θk) = (H0 (Θ0) , H1 (Θ0,Θ1) , ..., Hk (Θ0,Θ1, ...,Θk)) .

We now check that the conditions of Lemma 4.15 are satisfied. We have already
shown that H0 is a contraction on X0. It follows from (4.27) and (4.28) that Hj

(1 ≤ j ≤ k) is a contraction on Xj . More precisely, from Assumption 4.12 c), we
have for each j = 1, ..., k that

sup
u∈V η

�

∥∥∥K2 ◦ Φ(1)
F (u)

∥∥∥
L(BCjη+(2j−1)µ(R,X0),BCjη+(2j−1)µ(R,X0))

≤ ‖K2‖L(BCjη+(2j−1)µ(R,X)) sup
u∈V η

�

∥∥∥Φ(1)
F (u)

∥∥∥
L(BCjη+(2j−1)µ(R,X0),BCjη+(2j−1)µ(R,X))

≤ sup
θ∈[η,η̂]

‖K2‖L(BCθ(R,X)) |F |1,V�

≤ sup
θ∈[η,η̂]

‖K2‖L(BCθ(R,X)) ‖F‖Lip(X0,X) < 1.
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Thus, each Hj is a contraction. The fixed point of H0 is Γ0, and we denote by
Γ = (Γ0,Γ1, ...,Γk) the fixed point of H. Moreover, for µ = 0, each Hj is still a
contraction so we have for each j = 1, ..., k that

sup
u∈BCη(R,X0c)

‖Γj(u)‖L(j)(BCη(R,X0),BCjη(R,X0))
< +∞.

Step 2. Attractivity of the fixed point. In this part we apply Lemma
4.15 to prove that for each compact subset C of BCη (R, X0c) and each Θ ∈ M0 ×
M1 × ...×Mk,

(4.29) lim
m→+∞

Hm
C (Θ |C) = Γ |C .

Let C be a compact subset of BCη (R, X0c) . From the definition of HC , it is clear
that

Γ |C= HC (Γ |C)
and from the step 1, it is not difficult to see that for each j = 0, ..., k, Hj,C is
a contraction. In order to apply Lemma 4.15, it remains to prove that for each
j = 1, ..., k, Hj,C (Θ0,C ,Θ1,C , ...,Θj−1,C ,Γj |C) ∈ Mj dependents continuously on
(Θ0,C ,Θ1,C , ...,Θj−1,C) ∈ M0,C ×M1,C × ...×Mj−1,C .

We have

Hj

(
Θ0,C ,Θ1,C , ...,Θj−1,C ,Γ

(j) |C
)
(u)

= K2 ◦ Φ(1)
F (Θ0,C(u)) ◦ Γ(j) (u) + Ĥj (Θ0,C ,Θ1,C , ...,Θj−1,C) (u).

Since Γ(j)(u) ∈ L(j)
(
BCη (R, X0) , BCjη (R, X0)

)
and Φ(u) ∈ V η

� , we can con-

sider Φ
(1)
F as a map from V η

� into L
(
BCjη (R, X0) , BCjη+(2j−1)µ (R, X0)

)
, and by

Lemma 4.16 this map is continuous.

Indeed, let Θ0, Θ̂0 ∈ M0 be two maps. Then we have

sup
u∈C

∥∥∥K2 ◦
[
Φ

(1)
F (Θ0(u))− Φ

(1)
F

(
Θ̂0(u)

)]
◦ Γ(j) (u)

∥∥∥
L(j)(BCη(R,X0c),BCjη+(2j−1)µ(R,X0))

≤ ‖K2‖L(BCjη+(2j−1)µ(R,X))

· sup
u∈C

∥∥∥[Φ(1)
F (Θ0(u))− Φ

(1)
F

(
Θ̂0(u)

)]
◦ Γ(j) (u)

∥∥∥
L(j)(BCη(R,X0c),BCjη+(2j−1)µ(R,X))

≤ ‖K2‖L(BCjη+(2j−1)µ(R,X0)) sup
u∈C

∥∥∥Γ(j) (u)
∥∥∥
L(j)(BCη(R,X0c),BCjη(R,X0))

· sup
u∈C

∥∥∥Φ(1)
F (Θ0(u))− Φ

(1)
F

(
Θ̂0(u)

)∥∥∥
L(j)(BCjη(R,X0),BCjη+(2j−1)µ(R,X))

and by Lemma 4.16 we have

sup
u∈C

∥∥∥Φ(1)
F (Θ0(u))− Φ

(1)
F

(
Θ̂0(u)

)∥∥∥
L(j)(BCjη(R,X0),BCjη+(2j−1)µ(R,X))

≤ sup
u∈C

∥∥∥ΦDF (Θ0(u))− ΦDF

(
Θ̂0(u)

)∥∥∥
BC(2j−1)µ(R,L(X0,X))

≤ max

⎛⎜⎝ sup
|t|≥R

e−(2j−1)µ|t|
∥∥∥DF (Θ0(u)(t))−DF

(
Θ̂0(u)(t)

)∥∥∥
L(X0,X)

,

sup
|t|≤R

e−(2j−1)µ|t|
∥∥∥DF (Θ0(u)(t))−DF

(
Θ̂0(u)(t)

)∥∥∥
L(X0,X)

⎞⎟⎠ .
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Since Θ̂0 is continuous, C is compact, it follows that Θ̂0(C) is compact, and by

Ascoli’s theorem (see for example Lang [70]), the set Ĉ =
⋃

|t|≤R,u∈C

{
Θ̂0(u)(t)

}
is

compact. But since DF (.) is continuous, we have that for each ε > 0, there exists
η > 0, such that for each x, y ∈ X0,

d
(
x, Ĉ

)
≤ η, d

(
y, Ĉ

)
≤ η, and ‖x− y‖ ≤ η ⇒ ‖DF (x)−DF (y)‖ ≤ ε.

Hence, the map Θ0,C → K2 ◦ Φ(1)
F (Θ0,C(.)) ◦ Γ(j) (.) is continuous.

It remains to consider 1 ≤ ri ≤ j − 1, r1 + r2 + ...+ rl = j. We have∥∥∥K2 ◦
[
Φ

(l)
F (Θ0(u))− Φ

(l)
F

(
Θ̂0(u)

)]
(
Θ̃r1 (u) , ..., Θ̃rl (u)

)∥∥∥
L(j)(BCη(R,X0c),BCjη+(2j−1)µ(R,X0))

≤ ‖K2‖L(BCjη+(2j−1)µ(R,X),BCjη+(2j−1)µ(R,X0))

· sup
u∈C

∥∥∥[Φ(l)
F (Θ0(u))− Φ

(l)
F

(
Θ̂0(u)

)]
(
Θ̃r1 (u) , ..., Θ̃rl (u)

)∥∥∥
L(j)(BCη(R,X0c),BCjη+(2j−1)µ(R,X))

≤ ‖K2‖L(BCjη+(2j−1)µ(R,X),BCjη+(2j−1)µ(R,X0))

·
∥∥∥Φ(l)

F (Θ0(u))−Φ
(l)
F

(
Θ̂0(u)

)∥∥∥
L(l)

( ∏
p=1,...,l

BCrpη+(2rp−1)µ(R,X0);BCjη+(2j−1)µ(R,X)

)

·
∏

p=1,...,l

∥∥∥Θ̃rp (u)
∥∥∥
L(j)(BCη(R,X0c),BCrpη+(2rp−1)µ(R,X0))

and by Lemma 4.18 we have

sup
u∈C

∥∥∥Φ(l)
F (Θ0(u))− Φ

(l)
F

(
Θ̂0(u)

)∥∥∥
L(l)

( ∏
p=1,...,l

BCrpη+(2rp−1)µ(R, X0);

BC
jη+(2j−1)µ

(R, X)

)
≤ sup

u∈C

∥∥∥ΦD(l)F (Θ0(u))− ΦD(l)F

(
Θ̂0(u)

)∥∥∥
BCδ (R,L(l)(X0,X))

with δ = (jη + (2j − 1)µ) −
∑l

k=1 rkη + (2rk − 1)µ > 0. By using the same com-
pactness arguments as previously, we deduce that

sup
u∈C

∥∥∥ΦD(l)F (Θ0(u))− ΦD(l)F

(
Θ̂0(u)

)∥∥∥
BCδ (R,L(l)(X0,X))

→ 0

as d0,C(Θ0, Θ̂0) → 0. We conclude that the continuity condition of Lemma 4.15 is
satisfied for each Hj,C and (4.29) follows.

Step 3. In order to prove Theorem 4.13 it now remains to prove that for each
u, v ∈ BCη (R, X0c) , ∀j = 1, ..., k,

(4.30) Γj−1(u)− Γj−1(v) =

∫ 1

0

Γj(s(u− v) + v) (u− v) ds,

where the last integral is a Riemann integral. As assumed that (4.30) is satisfied,
we deduce that Γ0 : BCη (R, X0c) → BCkη+(2k−1)µ (R, X0) is k-times continuously
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differentiable, and since
Ψ(xc) = L ◦ Γ0 ◦K1 (xc)

and L is a bounded linear operator from BCkη+(2k−1)µ (R, X0) into X0h, we know
that Ψ : X0c → X0h is k-times continuously differentiable.

We now prove (4.30). Set

Θ0 =
(
Θ0

0,Θ
0
1, ...,Θ

0
k

)
with

Θ0
0 (u) = u,Θ0

1 (u) = J, and Θ0
j = 0, ∀j = 2, ..., k

and set
Θm = (Θm

0 ,Θm
1 , ...,Θm

k ) = Hm
(
Θ0

)
, ∀m ≥ 1.

Then from Lemma 4.19, we know that Θm
0 : BCη (R, X0c) → BCkη+(2k−1)µ (R, X0)

is a Ck-map and

DjΘm
0 (u) = Θm

j (u), ∀j = 1, ..., k, ∀u ∈ BCη (R, X0c) .

For each u, v ∈ BCη (R, X0c) and each ∀j = 1, ..., k, ∀m ≥ 1,

Θm
j−1(u)−Θm

j−1(v) =

∫ 1

0

Θm
j (s(u− v) + v) (u− v) ds.

Let u, v ∈ BCη (R, X0c) be fixed. Denote

C = {s(u− v) + v : s ∈ [0, 1]} .
Then clearly C is a compact set, and from step 2, we have for each j = 0, ..., k that

sup
w∈C

∥∥Θm
j (w)− Γj(w)

∥∥
BCjη+(2j−1)µ(R,X0)

→ 0 as m → +∞.

Thus, (4.30) follows. �
It follows from the foregoing treatment that we can obtain the derivatives of

Γ0(u) at u = 0. Assume that F (0) = 0 and DF (0) = 0, we have

(4.31)

DΓ0(0) = J,

D(2)Γ0(0)(u1, u2) = K2 ◦ Φ(2)
F (0) (DΓ0(0)(u1), DΓ0(0)(u2)) ,

D(3)Γ0(0)(u1, u2, u3) = K2 ◦ Φ(2)
F (0)

(
D(2)Γ0(0)(u1, u3), DΓ0(0)(u2)

)
+K2 ◦ Φ(2)

F (0)
(
DΓ0(0)(u1), D

(2)Γ0(0)(u2, u3)
)

+K2 ◦ Φ(3)
F (0) (DΓ0(0)(u1), DΓ0(0)(u2), DΓ0(0)(u3)) ,

...

D(l)Γ0(0) =
∑

λ∈Λj

K2 ◦ Φ(l)
F (0)

(
D(r1)Γ (0) , ..., DΓ(rl) (0)

)
.

We have the following Lemma.

Lemma 4.20. Let Assumptions 4.1 and 4.12 be satisfied. Assume also that
F (0) = 0 and DF (0) = 0. Then

Ψ(0) = 0 DΨ(0) = 0,

and if k > 1,

DjΨ(0) (x1, ..., xn) = ΠhD
(l)Γ0(0) (K1x1, ...,K1xn) (0),

where D(l)Γ0(0) is given by ( 4.31). In particular, if k > 1 and

ΠhD
jF (0) |X0c×....×X0c

= 0 for 2 ≤ j ≤ k,
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then

DjΨ(0) = 0 for 1 ≤ j ≤ k.

In the context of Hopf bifurcation, we need an explicit formula forD2Ψ(0). Since
DΓ0(0) = J, we obtain from the above formula that ∀x1, x2 ∈ X0c,

D2Ψ(0) (x1, x2) = ΠhKh

[
D(2)F (0) (K1x1,K1x2)

]
(0),

where

Kh = Ks +Ku, K1(xc)(t) := eA0ctxc,

Ku(f)(t) := −
∫ +∞

t

e−A0u(l−t)Πuf(l)dl,

and

Ks(f)(t) := lim
r→−∞

Π0s (SA � f(r + .)) (t− r).

Hence,

D2Ψ(0) (x1, x2)

= −
∫ +∞

0

e−A0ulΠuD
(2)F (0)

(
eA0clx1, e

A0clx2

)
dl

+ lim
r→−∞

Π0s

(
SA �D(2)F (0)

(
eA0c(r+.)x1, e

A0c(r+.)x2

))
(−r).

In order to explicit the term of the above formula, we remark that

(λI −A)
−1

lim
r→−∞

Π0s

(
SA �D(2)F (0)

(
eA0c(r+.)x1, e

A0c(r+.)x2

))
(−r)

= lim
r→−∞

Π0s

∫ −r

0

TA0
(−r − s) (λI −A)

−1
D(2)F (0)

(
eA0c(r+s)x1, e

A0c(r+s)x2

)
ds

= lim
r→−∞

∫ −r

0

TA0
(l) (λI −A)

−1
D(2)F (0)

(
e−A0clx1, e

−A0clx2

)
dl

=

∫ +∞

0

TA0
(l)Π0s (λI −A)−1 D(2)F (0)

(
e−A0clx1, e

−A0clx2

)
dl.

Therefore, we obtain the following formula

D2Ψ(0) (x1, x2)

= −
∫ +∞

0

e−A0ulΠuD
(2)F (0)

(
eA0clx1, e

A0clx2

)
dl

+ lim
λ→+∞

∫ +∞

0

TA0
(l)Π0sλ (λI −A)

−1
D(2)F (0)

(
e−A0clx1, e

−A0clx2

)
dl.

Assume thatX is a complex Banach space and F is twice continuously differentiable
in X considered as a C-Banach space. We assume in addition that A0c is diago-
nalizable, and denote by {v1, ..., vn} a basis of Xc such that for each i = 1, ..., n,
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A0cvi = λivi. Then by Assumption 4.1, we must have λi ∈ iR,∀i = 1, ..., n. More-
over, for each i, j = 1, ..., n, we have

D2Ψ(0) (vi, vj)

= −
∫ +∞

0

e(λi+λj)le−A0ulΠuD
(2)F (0) (vi, vj) dl

+ lim
λ→+∞

∫ +∞

0

TA0
(l)Π0sλ (λI −A)

−1
D(2)F (0)

(
e−λilvi, e

−λj lvj
)
dl

= − (− (λi + λj) I − (−A0u))
−1 ΠuD

(2)F (0) (vi, vj)

+ lim
λ→+∞

∫ +∞

0

e−(λi+λj)lTA0,s
(l)Π0sλ (λI −A)

−1
D(2)F (0) (vi, vj) dl

= − (− (λi + λj) I − (−A0u))
−1

ΠuD
(2)F (0) (vi, vj)

+ lim
λ→+∞

λ (λI −A)−1 ((λi + λj) I −As)
−1ΠsD

(2)F (0) (vi, vj) .

Thus,

D2Ψ(0) (vi, vj) = ((λi + λj) I −A0u)
−1

ΠuD
(2)F (0) (vi, vj)

+ ((λi + λj) I −As)
−1 ΠsD

(2)F (0) (vi, vj) .

Note that by Assumption 4.1 iR ⊂ ρ (As) , so the above formula is well defined.
As in Vanderbauwhede and Iooss [106, Theorem 3], we have the following

theorem about the existence of the local center manifold.

Theorem 4.21. Let Assumption 4.1 be satisfied. Let F : BX0
(0, ε) → X be

a map. Assume there exists an integer k ≥ 1 such that F is k-time continuously
differentiable in some neighborhood of 0 with F (0) = 0 and DF (0) = 0. Then there
exist a neighborhood Ω of the origin in X0 and a map Ψ ∈ Ck

b (X0c, X0h), with
Ψ(0) = 0 and DΨ(0) = 0, such that the following properties hold:

(i) If I is an interval of R and xc : I → X0c is a solution of

(4.32)
dxc(t)

dt
= A0cxc(t) + ΠcF [xc(t) + Ψ (xc(t))]

such that

u(t) := xc(t) + Ψ (xc(t)) ∈ Ω, ∀t ∈ I,

then for each t, s ∈ I with t ≥ s,

u(t) = u(s) +A

∫ t

s

u(l)dl +

∫ t

s

F (u(l)) dl.

(ii) If u : R →X0 is a map such that for each t, s ∈ R with t ≥ s,

u(t) = u(s) +A

∫ t

s

u(l)dl +

∫ t

s

F (u(l)) dl

and u(t) ∈ Ω, ∀t ∈ R, then

Πhu(t) = Ψ (Πcu(t)) , ∀t ∈ R,

and Πcu : R →X0c is a solution of ( 4.32).
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(iii) If k ≥ 2, then for each x1, x2 ∈ X0c,

D2Ψ(0) (x1, x2)

= −
∫ +∞

0

e−A0ulΠuD
(2)F (0)

(
eA0clx1, e

A0clx2

)
dl

+ lim
r→−∞

Π0s

(
SA �D(2)F (0)

(
eA0c(r+.)x1, e

A0c(r+.)x2

))
(−r).

Moreover, X is a C-Banach space, and if {v1, ..., vn} is a basis of Xc

such that for each i = 1, ..., n, A0cvi = λivi, with λi ∈ iR, then for each
i, j = 1, ..., n,

D2Ψ(0) (vi, vj) = ((λi + λj) I −A0u)
−1ΠuD

(2)F (0) (vi, vj)

+ ((λi + λj) I −As)
−1

ΠsD
(2)F (0) (vi, vj) .

Proof. Set for each r > 0 that

Fr (x) = F (x)χc

(
r−1Π0c(x)

)
χh

(
r−1 ‖Π0h(x)‖

)
, ∀x ∈ X0,

where χc : X0c → [0,+∞) is a C∞ map with χ0c (x) = 1 if ‖x‖ ≤ 1, χ0c (x) = 0
if ‖x‖ ≥ 2, and χh : [0,+∞) → [0,+∞) is a C∞ map with χh (x) = 1 if |x| ≤ 1,
χh (x) = 0 if |x| ≥ 2. Then by using the same arguments as in the proof of Theorem
3 in [106], we deduce that there exists r0 > 0, such that for each r ∈ (0, r0] , Fr

satisfies Assumption 4.12. By applying Theorem 4.13 to

du(t)

dt
= Au(t) + Fr (u(t)) , t ≥ 0, and u(0) = x ∈ D(A)

for r > 0 small enough, the result follows. �
In order to investigate the existence of Hopf bifurcation we also need the fol-

lowing result.

Proposition 4.22. Let the assumptions of Theorem 4.21 be satisfied. Assume
that x ∈ X0 is an equilibrium of {U(t)}t≥0 (i.e. x ∈ D(A) and Ax + F (x) = 0)
such that

x ∈ Ω.

Then
Π0hx = Ψ(Π0cx)

and Π0cx is an equilibrium of the reduced equation ( 4.32). Moreover, if we consider
the linearized equation ( 4.32) at Π0cx

dyc(t)

dt
= L (x) yc(t)

with
L (x) = [A0c +ΠcDF (x) [I +DΨ(Π0cx)]] ,

then we have the following spectral properties

σ (L (x)) = σ ((A+DF (x))0) ∩ {λ ∈ C : Re (λ) ∈ [−η, η]} .
Proof. Let x ∈ X0 be an equilibrium of {U(t)}t≥0 such that x ∈ Ω. We set

xc = Πcx and u(t) = x, ∀t ∈ R.

Then the linearized equation at x is given by

(4.33)
dw(t)

dt
= (A+DF (x))w(t), for t ≥ 0, and w(0) = w0 ∈ X0.
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So
w(t) = T(A+DF (x))0

(t)w0, ∀t ≥ 0.

Moreover, we have
DΨ(xc) yc = Πh

[
Γ1
0(u) (K1yc)

]
and

Γ1
0(u)(v) = v +K2ΦDF (x)

(
Γ1
0(u)(v)

)
, ∀v ∈ BCη (R, X0c) .

It follows that
Γ1
0(u) =

(
I −K2ΦDF (x)

)−1
v.

Thus,

DΨ(xc) yc = Πh

[(
I −K2ΦDF (x)

)−1
(K1yc)

]
.

This is exactly the formula for the center manifold of equation (4.32) (see (4.23)
in the proof of Theorem 4.10). By applying Theorem 4.10 to equation (4.33), we
deduce that

Wη = {yc +DΨ(xc) yc : yc ∈ X0c}
is invariant by

{
T(A+DF (x))0

(t)
}
t≥0

.Moreover, for each w ∈ C (R, X0) the following

statements are equivalent:
(1) w ∈ BCη (R, X0) is a complete orbit of

{
T(A+DF (x))0

(t)
}
t≥0

.

(2) Π0hw(t) = DΨ(xc) (Π0cw(t)), ∀t ∈ R, and Π0cw(.) : R → X0c is a solution
of the ordinary differential equation

dwc(t)

dt
= A0cwc(t) + ΠcDF (x) [wc(t) +DΨ(xc) (wc(t))] .

The result follows from the above equivalence. �



CHAPTER 5

Hopf Bifurcation in Age Structured Models

In order to illustrate Theorem 4.21, we consider an age-structured model. Let
u(t, a) denote the density of a population at time t with age a. Consider the following
age structured model

(5.1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂u(t, a)

∂t
+

∂u(t, a)

∂a
= −µu(t, a), a ∈ (0,+∞) ,

u(t, 0) = αh
(∫ +∞

0
γ(a)u(t, a)da

)
,

u(0, .) = ϕ ∈ L1
+ ((0,+∞) ;R) ,

where µ > 0 is the mortality rate of the population, the function h(·) describes the
fertility of the population, α ≥ 0 is considered as a bifurcation parameter.

Age structured models have been studied extensively by many researchers (Hop-
pensteadt [57], Webb [108], Iannelli [59], and Cushing [27]). The existence of non-
trivial periodic solutions induced by Hopf bifurcation has been observed in various
specific age structured models (Cushing [25, 26], Prüss [89], Swart [96], Kostava
and Li [67], Bertoni [10]). However, there is no general Hopf bifurcation theorem
that can be applied to age structured models. In this chapter, we shall use the
center manifold theorem (Theorem 4.21) to establish a Hopf bifurcation theorem
for the age structured model (5.1); namely, we will prove that a Hopf bifurcation
occurs in the age structured model (5.1), thus a non-trivial periodic solution bi-
furcates from the equilibrium of (5.1) when the bifurcation parameter takes some
critical values.

We first make an assumption on the fertility function h(·).

Assumption 5.1. Assume that h : R → R is defined by

h (x) = x exp(−βx), ∀x ∈ R,

where β > 0 and γ ∈ L∞
+ ((0,+∞) ,R) with∫ +∞

0

γ(a)e−µada = 1.

Set

Y = R×L1 ((0,+∞) ;R) , Y0 = {0} × L1 ((0,+∞) ;R) ,

Y+ = R+×L1 ((0,+∞) ;R+) , Y0+ = Y0 ∩ Y+.

Assume that Y is endowed with the product norm

‖x‖ = |α|+ ‖ϕ‖L1((0,+∞);R) , ∀x =

(
α
ϕ

)
∈ Y.

We denote by
Y C = Y + iY and Y C

0 = Y0 + iY0

45
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the complexified Banach space of Y and Y0, respectively. We can identify Y C to

Y = C×L1 ((0,+∞) ;C)

endowed with the product norm

‖x‖ = |α|+ ‖ϕ‖L1((0,+∞);C) , ∀x =

(
α
ϕ

)
∈ Y C.

From now on, for each x ∈ Y, we denote by

x =

(
α
ϕ

)
, Re (x) =

x+ x

2
, and Im (x) =

x− x

2
.

We consider the linear operator Â : D(Â) ⊂ Y → Y defined by

Â

(
0
ϕ

)
=

(
−ϕ (0)

−ϕ′ − µϕ

)
with

D(Â) = {0} ×W 1,1 ((0,+∞) ;R) .

Moreover, for each λ ∈ C with Re(λ) > −µ, we have λ ∈ ρ
(
Â
)
and(

λI − Â
)−1

(
α
ψ

)
=

(
0
ϕ

)
⇔ ϕ(a) = e−(λ+µ)aα+

∫ a

0

e−(λ+µ)(a−s)ψ(s)ds.

Note that

λ ∈ ρ
(
Â
)
⇔ λ ∈ ρ

(
Â
)

and (
λI − Â

)−1

x =
(
λI − Â

)−1

x, ∀x ∈ Y, ∀λ ∈ ρ
(
Â
)
.

It is well known that Â is a Hille-Yosida operator. Moreover, Â0 is the part of Â

in Y0 generated a C0 -semigroup of bounded linear operators
{
TÂ0

(t)
}
t≥0

, which

is defined by

TÂ0
(t)

(
0
ϕ

)
=

(
0

T̂Â0
(t)ϕ

)
,

where

T̂Â0
(t) (ϕ) (a) =

{
e−µtϕ(a− t), if a ≥ t,
0, if a ≤ t.{

SÂ(t)
}
t≥0

is the integrated semigroup generated by Â and is defined by

SÂ(t)

(
α
ϕ

)
=

(
0

L(t)α+
∫ t

0
T̂Â0

(s)ϕds

)
,

where

L(t) (α) (a) =

{
0, if a ≥ t,
e−µaα, if a ≤ t.

Define H : Y0 → Y and H1 : Y0 → R by

H

(
0
ϕ

)
=

⎛⎝ H1

(
0
ϕ

)
0

⎞⎠ , H1

(
0
ϕ

)
= h

(∫ +∞

0

γ(a)ϕ(a)da

)
.
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Then by identifying u(t) to v(t) =

(
0

u(t)

)
the problem (5.1) can be considered

as the following Cauchy problem

(5.2)
dv(t)

dt
= Âv(t) + αH(v(t)) for t ≥ 0, v(t) = y ∈ Y0+.

Since h is Lipschitz continuous on [0,+∞) , the following lemma is a consequence
of the results in Thieme [99].

Lemma 5.2. Let Assumption 5.1 be satisfied. Then for each α ≥ 0, there exists
a family of continuous maps {Uα(t)}t≥0 on Y0+ such that for each y ∈ Y0+, the

map t → Uα(t)y is the unique integrated solution of ( 5.2), that is,

Uα(t)y = y + Â

∫ t

0

Uα(s)yds+

∫ t

0

αH(Uα(l)y)dl, ∀t ≥ 0,

or equivalently

Uα(t)y = TÂ0
(t)y +

d

dt

(
SÂ ∗ αH(Uα(.)y)

)
(t), ∀t ≥ 0.

Moreover, {Uα(t)}t≥0 is a continuous semiflow, that is, U(0) = Id,

Uα(t)Uα(s) = Uα(t+ s), ∀t, s ≥ 0,

and the map (t, x) → Uα(t)x is continuous from [0,+∞)× Y0+ into Y0+.

We recall that y ∈ Y0+ is an equilibrium of {Uα(t)}t≥0 if and only if

y ∈ D(Â) and Ây + αH (y) = 0.

Here if α > 1, equation (5.1) has two non-negative equilibria given by

v =

(
0
u

)
with u(a) = Ce−µa,

where C is a solution of

C = αh

(
C

∫ +∞

0

γ(a)e−µada

)
with C ≥ 0.

But by Assumption 5.1 we have
∫ +∞
0

γ(a)e−µada = 1, so we obtain

C = 0 or C = C (α) := β−1 ln (α) .

From now on we set

(5.3) vα =

(
0
uα

)
with u(a) = C (α) e−µa, ∀α > 1.

We have

αH (vα) =

(
C (α)
0

)
,

αDH (ψ)

(
0
ϕ

)
=

(
αh′

(∫ +∞
0

γ(a)ψ(a)da
)∫ +∞

0
γ(a)ϕ(a)da

0

)
,

so

αDH (vα)

(
0
ϕ

)
=

(
η (α)

∫ +∞
0

γ(a)ϕ(a)da
0

)
,
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where

η (α)=αh′
(∫ +∞

0

γ(a)e−µadaC (α)

)
=α

(
1− βC (α)

)
exp

(
−βC (α)

)
=1− ln (α) .

We also have for k ≥ 1 that

αDkH (ψ)

((
0
ϕ1

)
, ...,

(
0
ϕk

))

=

⎛⎝ αh(k)
(∫ +∞

0
γ(a)ψ(a)da

) k∏
i=1

∫ +∞
0

γ(a)ϕi(a)da

0

⎞⎠ .

The characteristic equation of the problem is

(5.4) 1 = η (α)

∫ +∞

0

γ(a)e−(λ+µ)ada with λ ∈ C and Re(λ) > −µ.

Set

Ω = {λ ∈ C : Re(λ) > −µ}
and consider the map ∆ : Ω → C defined by

(5.5) ∆ (λ) = 1− η (α)

∫ +∞

0

γ(a)e−(λ+µ)ada.

One can prove that ∆ is holomorphic. Moreover, for each k ≥ 1 and each λ ∈ Ω,
we have

dk∆(λ)

dλk
= (−1)k+1 η (α)

∫ +∞

0

akγ(a)e−(λ+µ)ada.

To simplify the notation, we set

Bαx = Âx+ αDH (vα) x with D (Bα) = D
(
Â
)

and identify Bα to

BC

α (x+ iy) = BC

αx+ iBC

αy, ∀ (x+ iy) ∈ D
(
BC

α

)
:= D

(
Â
)
+ iD

(
Â
)
.

Note that the part of Bα in D (Bα) is the generator of the linearized equation at
vα.

Lemma 5.3. Let Assumption 5.1 be satisfied. Then the linear operator Bα :

D(Â) ⊂ Y → Y is a Hille-Yosida operator and

ωess ((Bα)0) ≤ −µ.

Proof. Since αDH (vα) is a bounded linear operator, it follows that BC
α is

a Hille-Yosida operator. Moreover, by applying Theorem 3 in Thieme [101] (or
Theorem 1.2 in [38]) to Bα + εI for each ε ∈ (0, µ) , we deduce that ωess ((Bα)0) ≤
−µ. �

Lemma 5.4. Let Assumption 5.1 be satisfied. Then the linear operator Bα :

D(Â) ⊂ Y → Y is a Hille-Yosida operator and we have the following:

(i) σ
(
BC

α

)
∩ Ω = {λ ∈ Ω : ∆ (λ) = 0} .
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(ii) If λ ∈ Ω∩ρ
(
BC

α

)
, we have the following explicit formula for the resolvent(

0
ϕ

)
=
(
λI −BC

α

)−1
(

δ
ψ

)

⇔ ϕ(a) =

∫ a

0

e−(λ+µ)(a−s)ψ(s)ds

+∆(λ)−1

[
δ + η (α)

∫ +∞

0

χλ(s)ψ(s)ds

]
e−(λ+µ)a,(5.6)

where

χλ(s) =

∫ +∞

s

γ(l)e−(λ+µ)(l−s)dl, ∀s ≥ 0.

Proof. Assume that λ ∈ Ω and ∆ (λ) 
= 0. Then we have(
λI −BC

α

)( 0
ϕ

)
=

(
δ
ψ

)
⇔

(
λI − Â

)( 0
ϕ

)
=

(
δ
ψ

)
+ αDH (vα)

(
0
ϕ

)
⇔

(
0
ϕ

)
=
(
λI − Â

)−1
(

δ
ψ

)
+
(
λI − Â

)−1

αDH (vα)

(
0
ϕ

)

⇔ ϕ(a) = e−(λ+µ)aδ +

∫ a

0

e−(λ+µ)(a−s)ψ(s)ds

+e−(λ+µ)aη (α)

∫ +∞

0

γ(a)ϕ(a)da.

Thus

∆ (λ)

∫ +∞

0

γ(a)ϕ(a)da =

∫ +∞

0

γ(a)e−(λ+µ)aδ+

∫ +∞

0

γ(a)

∫ a

0

e−(λ+µ)(a−s)ψ(s)dsda,

so

ϕ(a) = e−(λ+µ)a

[
1 + η (α)∆ (λ)−1

∫ +∞

0

γ(l)e−(λ+µ)ldl

]
δ

+

∫ a

0

e−(λ+µ)(a−s)ψ(s)ds

+η (α) e−(λ+µ)a∆(λ)
−1

∫ +∞

0

γ(l)

∫ l

0

e−(λ+µ)(l−s)ψ(s)dsdl.

But we have

1 + η (α)∆ (λ)−1
∫ +∞

0

γ(a)e−(λ+µ)a = ∆(λ)−1

and ∫ +∞

0

γ(l)

∫ l

0

e−(λ+µ)(l−s)ψ(s)dsdl =

∫ +∞

0

∫ +∞

s

γ(l)e−(λ+µ)(l−s)dlψ(s)ds.

Hence (ii) follows. We conclude that

{λ ∈ Ω : ∆ (λ) 
= 0} ⊂ ρ
(
λI −BC

α

)
∩ Ω,
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which implies that

σ
(
λI −BC

α

)
∩ Ω ⊂ {λ ∈ Ω : ∆ (λ) = 0} .

Assume that λ ∈ Ω is such that ∆ (λ) = 0. Then for ϕ(.) = e−(λ+µ). we have

BC

α

(
0
ϕ

)
= λ

(
0
ϕ

)
,

so
(
λI −BC

α

)
is not invertible. We deduce that

{λ ∈ Ω : ∆ (λ) = 0} ⊂ σ
(
λI −BC

α

)
∩ Ω,

and (i) follows. �

The following lemma is well known (see, for example, Dolbeault [37, Theorem
2.1.2, p. 43].

Lemma 5.5. Let f be an Holomorphic map from an open connected subset
Ω ⊂ C and let z0 ∈ C. Then the following assertions are equivalent:

(i) f = 0 on Ω.
(ii) f is null in a neighborhood of z0.
(iii) For each k ∈ N, f (k) (z0) = 0.

Lemma 5.6. Let Assumption 5.1 be satisfied. Then we have the following:

(i) If λ0 ∈ σ
(
BC

α

)
∩ Ω, then λ0 is isolated in σ

(
BC

α

)
.

(ii) If λ0 ∈ σ
(
BC

α

)
∩Ω and if k ≥ 1 is the smallest integer such that

dk∆(λ0)

dλk

=

0, then λ0 a pole of order k of
(
λI −BC

α

)−1
. Moreover, if k = 1, then λ0

is a simple isolated eigenvalue of BC
α and the projector on the eigenspace

associated to λ0 is defined by

Π̂λ0

(
δ
ψ

)
=

(
0

d∆(λ0)
dλ

−1 [
δ +

∫ +∞
0

χλ0
(s)ψ(s)ds

]
e−(λ0+µ).

)
.

(iii) For ∀x ∈ Y C,

Π̂λ0
x = Π̂λ0

x.

Proof. Since Ω is open and connected, we can apply Lemma 5.5 to ∆, and
since for each λ > 0 large enough ∆ (λ) > 0, we deduce that for each λ ∈ Ω, there

exists m ≥ 0 such that dm∆(λ)
dλm 
= 0. Moreover, for each λ0 ∈ Ω, we have

∆ (λ) =
∑
k≥0

(λ− λ0)
k

k!

dk∆(λ0)

dλk

whenever |λ− λ0| is small enough. It follows that each root of ∆ is isolated. More-
over, assume that there exists λ0 ∈ Ω such that ∆ (λ0) = 0. Let m0 ≥ 1 be the

smallest integer such that dm0∆(λ0)
dλm0


= 0. Then we have

∆ (λ) = (λ− λ0)
m0 g (λ)

with

g (λ) =

∞∑
k=m0

(λ− λ0)
k−m0

k!

dk∆(λ0)

dλk



5. HOPF BIFURCATION IN AGE STRUCTURED MODELS 51

whenever |λ− λ0| is small enough. So the multiplicity of λ0 is k. Now by using
Lemma 5.4 we deduce that if λ0 ∈ σ

(
BC

α

)
∩ Ω, then λ0 is isolated in σ

(
BC

α

)
.

Moreover, by using (5.6) we deduce that for k ≥ 1,

lim
λ→λ0

(λ− λ0)
k (

λI −BC

α

)−1
(

δ
ψ

)
= lim

λ→λ0

(λ− λ0)
k
∆(λ)

−1

[
δ +

∫ +∞

0

χλ(s)ψ(s)ds

](
0

e−(λ+µ).

)
= lim

λ→λ0

(λ− λ0)
k−m0

1

g (λ)

[
δ +

∫ +∞

0

χλ(s)ψ(s)ds

](
0

e−(λ+µ).

)
,

so

(5.7) lim
λ→λ0

(λ− λ0)
k (

λI −BC

α

)−1
(

0
ψ

)
= 0 if k > m0.

But since λ0 is isolated, we have(
λI −BC

α

)−1
=

∞∑
k=−∞

(λ− λ0)
k Dk,

where

(5.8) Dk =
1

2πi

∫
SC(λ0,ε)

+

(λ− λ0)
−k−1 (

λI −BC

α

)−1
dλ

for ε > 0 small enough and each k ∈ Z. By combining (5.7) and (5.8), we obtain
when ε → 0 that

D−k = 0 for each k ≥ m0 + 2.

It follows that λ0 is a pole of the resolvent and(
λI −BC

α

)−1
=

∞∑
k=−m0−1

(λ− λ0)
k Dk.

Noticing that

lim
λ→λ0

(λ− λ0)
m0+1 (

λI −BC

α

)−1
= D−m0−1

and using (5.7) once more, we deduce that D−m0−1 = 0. Finally, we have

lim
λ→λ0

(λ− λ0)
m0

(
λI −BC

α

)−1
= D−m0

and

D−m0

(
δ
ψ

)
=

1

g (λ0)

[
δ +

∫ +∞

0

χλ0
(s)ψ(s)ds

](
0

e−(λ0+µ).

)
.

Therefore, λ0 is a pole of order m0 ≥ 1. �

Assumption 5.7. Assume that α∗ > 1 and θ∗ > 0 such that iθ∗ and −iθ∗ are
simple eigenvalues of Bα∗ and

sup { Re (λ) : λ ∈ σ (Bα∗) \ {iθ∗,−iθ∗}} < 0.

Under Assumption 5.7 we have

d∆(−iθ∗)

dλ
=

d∆(iθ∗)

dλ

= 0.
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Moreover, by using assertion (iii) in Lemma 5.6, we can define Π̂c : Y → Y as

Π̂c

(
δ
ϕ

)
= Π̂iθ∗

(
δ
ϕ

)
+ Π̂−iθ∗

(
δ
ϕ

)
, ∀

(
δ
ϕ

)
∈ Y.

By using Theorem 3.15 and Lemma 3.2, we deduce the following result.

Lemma 5.8. Let Assumptions 5.1 and 5.7 be satisfied. Then

σ
(
Bα∗ |Π̂c(Y )

)
= {iθ∗,−iθ∗} , σ

(
Bα∗ |(I−Π̂c)(Y )

)
= σ (Bα∗) \ {iθ∗,−iθ∗} ,

and

ω0

(
Bα∗ |(I−Π̂c)(Y )

)
< 0.

We have

Π̂c

(
1
0

)
=

[
0

d∆(iθ∗)
dλ

−1
e−(iθ∗+µ). + d∆(−iθ∗)

dλ

−1
e−(−iθ∗+µ).

]

=

∣∣∣∣d∆(iθ∗)

dλ

∣∣∣∣−2 [
0

Re (∆ (iθ∗)) ê1 + Im (∆ (iθ∗)) ê2

]
with

ê1 =
[
e−(iθ∗+µ). + e−(−iθ∗+µ).

]
, ê2 =

(
e−(iθ∗+µ). − e−(−iθ∗+µ).

)
i

.

Set
Π̂s :=

(
I − Π̂c

)
.

Then we have

Π̂s

(
1
0

)
=

(
I − Π̂c

)( 1
0

)
=

(
1

−d∆(iθ∗)
dλ

−1
e−(iθ∗+µ). − d∆(−iθ∗)

dλ

−1
e−(−iθ∗+µ).

)

=

(
1

−
∣∣∣ d∆(iθ∗)

dλ

∣∣∣−2

[Re (∆ (iθ∗)) ê1 + Im (∆ (iθ∗)) ê2]

)
.

In order to compute the second derivative of the center manifold at 0, we will
need the following lemma.

Lemma 5.9. Let Assumptions 5.1 and 5.7 be satisfied. Then for each λ ∈
iR \ {−iθ∗, iθ∗} ,(

λI −BC

α∗ |Π̂s(Y )

)−1

Π̂s

(
1
0

)
=

(
0

−d∆(iθ∗)
dλ

−1
e−(iθ∗+µ).

(λ−iθ∗) − d∆(−iθ∗)
dλ

−1
e−(−iθ∗+µ).

(λ+iθ∗) +∆(λ)
−1

e−(λ+µ).

)
Moreover, if λ = iθ∗, we have(

iθ∗I − BC

α∗ |Π̂s(Y )

)−1

Π̂s

(
1
0

)

=

⎛⎝ 0

−d∆(−iθ∗)
dλ

−1 e−(−iθ∗+µ).

2iθ∗
+ d∆(iθ∗)

dλ

−2 [d∆(iθ∗)
dλ − 1

2
d2∆(iθ∗)

dλ2

]
e−(iθ∗+µ).

⎞⎠
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and if λ = −iθ∗, we have(
−iθ∗I −BC

α∗ |Π̂s(Y )

)−1

Π̂s

(
1
0

)
=

(
0

−d∆(iθ∗)
dλ

−1
e−(iθ∗+µ).

−2iθ∗ + d∆(−iθ∗)
dλ

−2 [d∆(−iθ∗)
dλ − 1

2
d2∆(−iθ∗)

dλ2

]
e−(−iθ∗+µ).

)
.

Proof. For each λ ∈ ρ
(
BC

α∗
)
, we have(

λI −BC

α∗
)−1

(
0

e−(±iθ∗+µ).

)
= (λ± iθ∗)−1

(
0

e−(±iθ∗+µ).

)
.

Hence,(
λI −BC

α∗ |Π̂s(Y )

)−1

Π̂s

(
1
0

)
=
(
λI −BC

α∗
)−1

Π̂s

(
1
0

)
=

(
0

−d∆(iθ∗)
dλ

−1
e−(iθ∗+µ).

(λ−iθ∗) − d∆(−iθ∗)
dλ

−1
e−(−iθ∗+µ).

(λ+iθ∗) +∆(λ)
−1

e−(λ+µ).

)
.

Thus,(
0I −BC

α∗ |Π̂s(Y )

)−1

Π̂s

(
1
0

)
=

(
0

−d∆(iθ∗)
dλ

−1
e−(iθ∗+µ).

−iθ∗ − d∆(−iθ∗)
dλ

−1
e−(−iθ∗+µ).

iθ∗ +∆(0)
−1

e−µ.

)

=

(
0∣∣∣d∆(iθ∗)

dλ iθ∗
∣∣∣2 [ Re

(
d∆(iθ∗)

dλ iθ∗
)
e1 + Im

(
d∆(iθ∗)

dλ iθ∗
)
e2

]
+∆(0)

−1
e−µ.

)
.

Moreover, we have(
iθ∗I −BC

α∗ |Π̂s(Y )

)−1

Π̂s

(
1
0

)
= lim

λ→iθ∗

with λ∈ρ(BC

α)

(
λI −BC

α∗ |Π̂s(Y )

)−1

Π̂s

(
1
0

)
,

so(
iθ∗I −BC

α∗ |Π̂s(Y )

)−1

Π̂s

(
1
0

)
= lim

λ→iθ∗

with λ∈ρ(BC

α)

(
0

−d∆(iθ∗)
dλ

−1
e−(iθ∗+µ).

(λ−iθ∗) − d∆(−iθ∗)
dλ

−1
e−(−iθ∗+µ).

(λ+iθ∗) +∆(λ)−1 e−(λ+µ).

)
.

Notice that

−d∆(iθ∗)

dλ

−1 e−(iθ∗+µ).

(λ− iθ∗)
+ ∆ (λ)

−1
e−(λ+µ).

=
(λ− iθ∗)

2

d∆(iθ∗)
dλ (λ− iθ∗)∆ (λ)

[
−∆(λ) e−(iθ∗+µ). + (λ− iθ∗) d∆(iθ∗)

dλ e−(λ+µ).
]

(λ− iθ∗)2

and

(λ− iθ∗)2

d∆(iθ∗)
dλ (λ− iθ∗)∆ (λ)

=
1

d∆(iθ∗)
dλ

∆(λ)
(λ−iθ∗)

→ d∆(iθ∗)

dλ

−2

as λ → iθ∗.
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We have

∆ (λ) e−(iθ∗+µ). = (λ− iθ∗)
d∆(iθ∗)

dλ
+

(λ− iθ∗)
2

2

d2∆(iθ∗)

dλ2
+(λ− iθ∗)

3
g (λ− iθ∗)

with g (0) = 1
3!

d2∆(iθ∗)
dλ2 . Therefore,[

−∆(λ) e−(iθ∗+µ). − (λ− iθ∗) d∆(iθ∗)
dλ e−(λ+µ).

]
(λ− iθ∗)

2

=
− (λ− iθ∗) d∆(iθ∗)

dλ

[
e−(iθ∗+µ). − e−(λ+µ).

]
(λ− iθ∗)

2

+
−
[
(λ−iθ∗)2

2
d2∆(iθ∗)

dλ2 + (λ− iθ∗)
3
g (λ− iθ∗)

]
e−(iθ∗+µ).

(λ− iθ∗)
2

→ −d∆(iθ∗)

dλ

(
−e−(iθ∗+µ).

)
− 1

2

d2∆(iθ∗)

dλ2
e−(iθ∗+µ). as λ → iθ∗.

Finally, it implies that(
iθ∗I − BC

α∗ |Π̂s(Y )

)−1

Π̂s

(
1
0

)

=

⎛⎝ 0

−d∆(−iθ∗)
dλ

−1 e−(−iθ∗+µ).

2iθ∗
+ d∆(iθ∗)

dλ

−2 [d∆(iθ∗)
dλ − 1

2
d2∆(iθ∗)

dλ2

]
e−(iθ∗+µ).

⎞⎠
The case when λ = −iθ∗ can be proved similarly. This completes the proof. �

In order to apply the Center Manifold Theorem 4.21 to the above system, we
will include the parameter α into the state variable. So we consider the system⎧⎪⎪⎪⎨⎪⎪⎪⎩

dv(t)

dt
= Âv(t) + α (t)H(v(t)),

dα(t)

dt
= 0,

v(0) = v0 ∈ Y0, α(0) = α0 ∈ R.

Making a change of variables

α = α̂+ α∗ and v = v̂ + vα∗ ,

we obtain the system

(5.9)

dv̂(t)

dt
= Âv̂(t) + (α̂ (t) + α∗)

[
H(v̂(t) + v(α̂(t)+α∗))−H(v(α̂(t)+α∗))

]
,

dα̂ (t)

dt
= 0.

Set

X = Y × R, X0 = D(Â)× R

and

Ĥ(α̂, v̂) = (α̂+ α∗)
[
H(v̂ + v(α̂+α∗))−H(v(α̂+α∗))

]
.

We have

∂vĤ(α̂, v̂) (w) = (α̂+ α∗)DH(v̂ + v(α̂+α∗)) (w)
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and

∂α̂Ĥ(α̂, v̂) (α̃) = α̃

{
H(v̂ + v(α̂+α∗))−H(v(α̂+α∗))

+ (α̂+ α∗)
[
DH(v̂ + v(α̂+α∗))

(
dv(α̂+α∗)

dα̂

)
−DH(v(α̂+α∗))

(
dv(α̂+α∗)

dα̂

)]}
.

So ∂vĤ(0, 0) = α∗DH(vα∗) and ∂α̂Ĥ(0, 0) = 0.
Consider the linear operator A : D(A) ⊂ X→X defined by

A

(
v̂
α̂

)
=

( (
Â+ α∗DH (vα∗)

)
v̂

0

)
with D(A) = D(Â)× R and the map F : D(A) → X defined by

F

(
v
α̂

)
=

⎛⎜⎜⎝ F1

(
v̂
α̂

)
0L1

0

⎞⎟⎟⎠ ,

where F1 : X → R is defined by

F1

(
v̂
α̂

)
= (α̂+ α∗)

[
H(v̂ + v(α̂+α∗))−H(v(α̂+α∗))

]
− α∗DH (vα∗) (v̂) .

Then we have

F

(
0
α̂

)
= 0, ∀α̂ > 1− α∗, and DF (0) = 0.

Now we can apply Theorem 4.21 to the system

(5.10)
dw(t)

dt
= Aw(t) + F (w(t)) , w(0) = w0 ∈ D(A).

We have for λ ∈ ρ (A) ∩ Ω = Ω \ (σ (Bα∗) ∪ {0}) that

(λ−A)−1

⎛⎝ δ
ψ
r

⎞⎠ =

⎛⎜⎝ (λ− Bα∗)
−1

(
δ
ψ

)
r

λ

⎞⎟⎠ .

By using a similar argument as in the proof of Lemma 5.6 and employing Lemma
5.5, we obtain the following lemma.

Lemma 5.10. Let Assumptions 5.1 and 5.7 be satisfied. Then

σ (A) = σ (Bα) ∪ {0} .
Moreover, the eigenvalues 0 and ±iθ∗ of A are simple. The corresponding projectors
Π0,Π±iθ∗ : X + iX → X + iX are defined by

Π0

(
v
r

)
=

(
0
r

)
,

Π±iθ∗

(
v
r

)
=

(
Π̂±iθ∗v

0

)
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In this context, the projector Πc : X → X is defined by

Πc (x) = (Π0 +Πiθ∗ +Π−iθ∗) (x) , ∀x ∈ X.

Note that we have

Πiθ∗ (x) = Π−iθ∗(x), ∀x ∈ X + iX,

so the above projector Πc maps X into X. Define the basis of Xc = R (Πc (X)) by

e1 =

⎛⎝ 0R
e−(µ+iθ∗). + e−(µ−iθ∗).

0R

⎞⎠ , e2 =

⎛⎝ 0R
e−(µ+iθ∗).−e−(µ−iθ∗).

i
0R

⎞⎠ , e3 =

⎛⎝ 0R
0L1

1

⎞⎠
and

Ae1 = −θ∗e2, Ae2 = θ∗e1, Ae3 = 0.

Then the matrix of Ac in the basis {e1, e2, e3} of Xc is given by

(5.11) M =

⎡⎣ 0 −θ∗ 0
θ∗ 0 0
0 0 0

⎤⎦ .

Moreover, we have

Πc

⎛⎝ 1
0L1

0R

⎞⎠ =

⎛⎝ Π̂+iθ∗

(
1
0L1

)
+ Π̂−iθ∗

(
1
0L1

)
0R

⎞⎠
=

⎛⎝ 0R
d∆(iθ∗)

dλ

−1
e−(iθ∗+µ). + d∆(−iθ∗)

dλ

−1
e−(−iθ∗+µ).

0R

⎞⎠ .

Thus,

Πc

⎛⎝ δ
0L1

r

⎞⎠ = δ

∣∣∣∣d∆(iθ∗)

dλ

∣∣∣∣−2

( Re (∆ (iθ∗)) e1 + Im (∆ (iθ∗)) e2) + re3.

Therefore, we can apply Theorem 4.21. Let Γ : X0c → X0s be the map defined in
Theorem 4.21. Since Xs ⊂ Y ×{0R} and since {e1, e2, e3} is a basis of Xc, it follows
that

Ψ (x1e1 + x2e2 + x3e3) =

(
Ψ1 (x1e1 + x2e2 + x3e3)

0R

)
.

Since F ∈ C∞ (X0, X), we can assume that Ψ ∈ C3
b (X0c, X0s) , and the reduced

system is given by

dxc(t)

dt
= A0 |Xc

xc(t) + ΠcF (xc(t) + Ψ (xc(t)))

= A0 |Xc
xc(t) + F1 (xc(t) + Ψ (xc(t))) Πc

⎛⎝ 1
0L1

0R

⎞⎠ ,

DΓ (0) = 0,

Γ

(
0Y
α̂

)
= 0 for all α̂ ∈ R with |α̂| small enough.
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The system expressed in the basis {e1, e2, e3} of Xc is given by

(5.12)
d

dt

⎛⎝ x1(t)
x2(t)
x3(t)

⎞⎠ = M

⎛⎝ x1(t)
x2(t)
x3(t)

⎞⎠+G (x1(t), x2(t), x3(t))V,

where M is given by (5.11),

V =

∣∣∣∣d∆(iθ∗)

dλ

∣∣∣∣−2
⎛⎝ Re (∆ (iθ∗))

Im (∆ (iθ∗))
0

⎞⎠
and

G (x1, x2, x3) = F1 ◦ (I +Ψ) (x1e1 + x2e2 + x3e3) .

Here x3 corresponds to the parameter of the system. Note that we can compute
explicitly the third order Taylor expansion of the reduced system around 0. We
have

DG (xc) = DF1 (xc +Ψ(xc)) (I +DΨ(xc)) ,

D2G (xc)
(
x1
c , x

2
c

)
= D2F1 (xc +Ψ(xc))

(
(I +DΨ(xc))

(
x1
c

)
, (I +DΨ(xc))

(
x2
c

))
+DF1 (xc +Ψ(xc))D

2Ψ(xc)
(
x1
c , x

2
c

)
,

D3G (xc)
(
x1
c , x

2
c , x

3
c

)
= D3F1 (xc +Ψ(xc))

(
(I +DΨ(xc))

(
x1
c

)
, (I +DΨ(xc))

(
x2
c

)
, (I +DΨ(xc))

(
x3
c

))
+D2F1 (xc +Ψ(xc))

((
D2Ψ(xc)

) (
x1
c , x

3
c

)
, (I +DΨ(xc))

(
x2
c

))
+D2F1 (xc +Ψ(xc))

(
(I +DΨ(xc))

(
x1
c

)
, D2Ψ(xc)

(
x2
c , x

3
c

))
+D2F1 (xc +Ψ(xc))

(
D2Ψ(xc)

(
x1
c , x

2
c

)
, (I +DΨ(xc))

(
x3
c

))
+DF1 (xc +Ψ(xc))D

3Ψ(xc)
(
x1
c , x

2
c , x

3
c

)
.

Since DF1(0) = 0, and Ψ (0) = 0, DΨ(0) = 0, we obtain

DG (0) = 0, D2G (0)
(
x1
c , x

2
c

)
= D2F1 (0)

(
x1
c , x

2
c

)
and

D2G (xc)
(
x1
c , x

2
c , x

3
c

)
= D3F1 (0)

(
x1
c , x

2
c , x

3
c

)
+D2F1 (0)

(
D2Ψ(0)

(
x1
c , x

3
c

)
, x2

c

)
+D2F1 (0)

(
x1
c , D

2Ψ(0)
(
x2
c , x

3
c

))
+D2F1 (0)

(
D2Ψ(0)

(
x1
c , x

2
c

)
, x3

c

)
.

Moreover, by computing the Taylor expansion to the order 3 of the problem, we
have

G (h) =
1

2!
D2G (0) (h, h) +

1

3!
D3G (0) (h, h, h)

+
1

4!

∫ 1

0

(1− t)
4
D4F1 (th) (h, h, h, h)dt.

Notice that we can compute explicitly that

1

2!
D2G (0) (h, h) +

1

3!
D3G (0) (h, h, h) .
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Because F1 is explicit, we only need to compute D2Ψ(0). For each x, y ∈ Xc,

D2Ψ(0) (x, y) = lim
λ→+∞

∫ +∞

0

TA0
(l)Π0sλ (λ−A)−1 D(2)F (0)

(
e−A0clx, e−A0cly

)
dl.

Using the fact that

eActe1 = cos (θ∗t) e1 − sin (θ∗t) e2,

eActe2 = sin (θ∗t) e1 + cos (θ∗t) e2,

eActe3 = e3

and

cos (θ∗t) =

(
eiθ

∗t + e−iθ∗t
)

2
, sin (θ∗t) =

(
eiθ

∗t − e−iθ∗t
)

2i
,

and following Lemma 5.9 and the same method at the end of Chapter 4 (i.e. the
same method as in the proof of (iii) in Theorem 4.21), we can obtain an explicit
formula for D2Ψ(0) (ei, ej) : For i, j = 1, 2,

D2Ψ(0) (ei, ej) =
∑

λ∈Λi,j ,
k,l=1,2

⎛⎝ cij (λ)
(
λI −BC

α |Π̂s(Y )

)−1

Π̂s

(
1
0L1

)
D2F1 (ek, el)

0

⎞⎠ ,

where Λi,j is a finite subset included in iR. So we can compute D2Ψ(0) and thus
have proven that the system (5.12) on the center manifold is C3 in its variables.

Next, we need to study the eigenvalues of the characteristic equation (5.4).
Assume the parameter α > e and consider

∆ (α, λ) = 1− η (α)

∫ +∞

0

γ(a)e−(λ+µ)ada

with

η (α) = 1− ln (α) .

We have
∂∆(α, λ)

∂α
= − 1

α

[∫ +∞

0

γ(a)e−(λ+µ)ada

]
.

If ∆ (α, λ) = 0 and α > e, then

∂∆(α, λ)

∂α
=

1

αη (α)
< 0.

In addition to Assumption 5.7, we also make the following assumptions.

Assumption 5.11. Assume that there is a number α∗ > e such that

a) If λ ∈ Ω and ∆ (α, λ) = 0, then Re
(

∂∆(α,λ)
∂λ

)
> 0.

b) There exists a constant C > 0 such that for each α ∈ [e, α∗] ,

Re (λ) ≥ −µ and ∆ (α, λ) = 0 ⇒ |λ| ≤ C.

c) There exists θ∗ > 0 such that ∆ (α∗, iθ∗) = 0 and ∆ (α∗, iθ) 
= 0, ∀θ ∈
[0,+∞) \ {θ∗} .

d) For each α ∈ [e, α∗) , ∆(α, iθ) 
= 0, ∀θ ∈ [0,+∞) .
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Note that if α = e, we have ∆ (α, λ) = 1, so there is no eigenvalue. By the
continuity of ∆ (α, λ) and using Assumption 5.11 b), we deduce that there exists
α1 ∈ [e, α∗] such that

∆ (α, λ) 
= 0, ∀λ ∈ Ω, ∀α ∈ [e, α1) .

Note that because of Assumption 5.11 a), we can apply locally the implicit

function theorem and deduce that if α̂ > e, λ̂ ∈ Ω, and ∆
(
α̂, λ̂

)
= 0, then

there exist two constants ε > 0, r > 0, and a continuously differentiable map

λ̂ : (α̂− ε, α̂+ ε) → C, such that

∆ (α, λ) = 0 and (α, λ) ∈ (α̂− ε, α̂+ ε)×BC (0, r) ⇔ λ = λ̂ (α) .

Moreover, we have

∆
(
α̂, λ̂ (α)

)
= 0

and

∂∆
(
α̂, λ̂ (α)

)
∂α

+
∂∆

(
α̂, λ̂ (α)

)
∂λ

dλ̂ (α)

dα
= 0.

Thus,

dλ̂ (α)

dα
=

1

∂∆(α̂,λ̂(α))
∂λ

−1

αη (α)
.

However,

Re

⎛⎝∂∆
(
α̂, λ̂ (α)

)
∂λ

⎞⎠ > 0 ⇔ Re

⎛⎝ 1

∂∆(α̂,λ̂(α))
∂λ

⎞⎠ > 0,

so

dRe
(
λ̂ (α)

)
dα

> 0.

Summarizing the above analysis, we have the following Lemma.

Lemma 5.12. Let Assumptions 5.1, 5.7 and 5.11 be satisfied. Then we have
the following:

(a) For each α ∈ [e, α∗), the characteristic equation ∆(α, λ) = 0 has no roots
with positive real part.

(b) There exist constants ε > 0, η > 0, and a continuously differentiable map

λ̂ : (α∗ − ε, α∗ + ε) → C, such that

∆
(
α, λ̂ (α)

)
= 0, ∀α ∈ (α∗ − ε, α∗ + ε)

with

λ̂ (α∗) = iθ∗ and
d

dα
Re

(
λ̂ (α∗)

)
> 0,

and for each α ∈ (α∗ − ε, α∗ + ε) , if

∆(α, λ) = 0, λ 
= λ̂ (α) , and λ 
= λ̂ (α),

then

Re (λ) < −η.
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In order to find the critical values of the parameter α and verify the transver-
sality condition, we need to be more specific about the function γ(a). We make the
following assumption.

Assumption 5.13. Assume that

(5.13) γ(a) =

{
δ (a− τ )

n
e−ζ(a−τ), if a ≥ τ

0, if a ∈ [0, τ )

for some integer n ≥ 1, τ ≥ 0, ζ > 0, and

δ =

(∫ +∞

τ

(a− τ )n e−ζ(a−τ)da

)−1

> 0.

Note that if n ≥ 1, then γ satisfies the conditions in Assumption 5.1. We have
for λ ∈ Ω that∫ +∞

0

γ(a)e−(µ+λ)ada =

∫ +∞

τ

γ(a)e−(µ+λ)ada

= δe−(µ+λ)τ

∫ +∞

τ

(a− τ )ne−(µ+ζ+λ)(a−τ)da

= δe−(µ+λ)τ

∫ +∞

0

lne−(µ+ζ+λ)ldl.

Set

In (λ) =

∫ +∞

0

lne−(µ+ζ+λ)ldl for each n ≥ 0 and each λ ∈ Ω.

Then we have

∆ (α, λ) = 1− η (α)

∫ +∞

0

γ(a)e−(λ+µ)ada

= 1− η (α) δe−(µ+λ)τIn (λ) .

Then by integrating by part we have for n ≥ 1 that

In (λ) =

∫ +∞

0

lne−(µ+ζ+λ)ldl

=

[
lne−(µ+ζ+λ)l

− (µ+ ζ + λ)

]+∞

0

−
∫ +∞

0

nln−1e−(µ+ζ+λ)l

(µ+ ζ + λ)
dl

=
n

(µ+ ζ + λ)
In−1 (λ)

and

I0 (λ) =

∫ +∞

0

e−(µ+ζ+λ)ldl =
1

(µ+ ζ + λ)
.

Therefore,

In (λ) =
n!

(µ+ ζ + λ)
n+1 , ∀n ≥ 0

with 0! = 1.
The characteristic equation (5.4) becomes

(5.14) 1 = η (α) δn!
e−τ(µ+ζ+λ)

(µ+ ζ + λ)n+1 , Re (λ) > −µ.
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Note that when n = 0, the above characteristic equation (5.14) is well known in
the context of delay differential equation (see Hale and Verduyn Lunel [51], p.341).
Note also that when τ = 0, (5.14) becomes trivial. Indeed, assume that τ = 0 and
η < 0, then we have

(µ+ ζ + λ)
n+1

= − |η| δn! = |η| δn!ei(2k+1)π for k = 0, 1, 2, ...

so
λ = − (µ+ ζ) + n+1

√
|η| δn!ei

(2k+1)
n+1 π for k = 0, 1, 2, ...

Note that

d∆(λ)

dλ
= η

∫ +∞

0

aγ(a)e−(λ+µ)ada

= ηδe−(λ+µ)τ

∫ +∞

τ

a(a− τ )ne−(µ+ζ+λ)(a−τ)da

= ηδe−(λ+µ)τ

[∫ +∞

τ

(a− τ )n+1e−(µ+ζ+λ)(a−τ)da

+τ

∫ +∞

τ

(a− τ )ne−(µ+ζ+λ)(a−τ)da

]
= ηδe−(λ+µ)τ [In+1 + τIn]

= ηδe−(λ+µ)τ

[
n+ 1

(µ+ ζ + λ)
+ τ

]
In

=

[
n+ 1

(µ+ ζ + λ)
+ τ

]
[1−∆(λ)] .

If ∆ (λ) = 0, it follows that

d∆(λ)

dλ
=

[
n+ 1

(µ+ ζ + λ)
+ τ

]

= 0 and Re

(
d∆(λ)

dλ

)
> 0.

Hence, all eigenvalues are simple and we can apply the implicit function theorem
around each solution of the characteristic equation.

Note that

|µ+ ζ + λ|2 = |η (α) δn!|
2

n+1 e−
2τ

n+1 (µ+ζ+Re(λ)).

So

(5.15) Im (λ)
2
= |η (α) δn!|

2
n+1 e−

2τ
n+1 (µ+ζ+ Re(λ)) − (µ+ ζ + Re (λ))

2
.

Thus, there exists δ1 > 0 such that −µ < Re (λ) ≤ δ1. This implies that the
characteristic equation (5.14) satisfies Assumption 5.11 b). Using (5.15) we also
know that for each real number δ, there is at most one pair of complex conjugate
eigenvalues such that Re (λ) = δ.

Lemma 5.14. Let Assumption 5.13 be satisfied. Then Assumptions 5.1, 5.7 and
5.11 are satisfied.

Proof. In order to prove the above lemma it is sufficient to prove that for
α > e large enough there exists λ ∈ C such that

∆ (α, λ) = 0 and Re (λ) > 0.

The characteristic equation can be rewritten as follows

(ξ + λ)n+1 = −χ (α) e−τ(ξ+λ), Re (λ) ≥ 0,
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where

χ (α) = (ln (α)− 1) δn! = ln
(α
e

)
δn! > 0 and ξ = µ+ ζ > 0.

Replacing λ by λ̂ = τ (ξ + λ) and χ (α) by χ̂ (α) = τn+1χ (α) , we obtain

λ̂n+1 = −χ̂ (α) e−λ̂ and Re
(
λ̂
)
≥ τξ.

⇔ λ̂n+1 = χ̂ (α) e−λ̂+(2k+1)πi and Re
(
λ̂
)
≥ τξ, k ∈ Z.

So we must find λ̂ = a+ ib with a > τξ such that⎧⎨⎩ a = χ̂ (α)
1

n+1 e−a cos
(

b+(2k+1)π
n+1

)
,

b = χ̂ (α)
1

n+1 e−a sin
(
− b+(2k+1)π

n+1

)
for some k ∈ Z.

From the first equation of the above system we must have

a

χ̂ (α)
1

n+1 e−a
∈ [0, 1) and cos

(
b+ (2k + 1) π

n+ 1

)
> 0.

Moreover, the above system can also be written as

tan

(
b+ (2k + 1)π

n+ 1

)
= − b

a
,

and

aea = χ̂ (α)
1

n+1 cos

(
b+ (2k + 1)π

n+ 1

)
.

We set

b̂ =
b+ (2k + 1)π

n+ 1
.

Then

b = (n+ 1) b̂− (2k + 1)π.

The problem becomes to find θ̂ ∈ R\
{

π
2 +mπ : m ∈ Z

}
such that

(5.16) cos(θ̂) > 0, tan
(
θ̂
)
= − (n+ 1) θ̂ − (2k + 1)π

a
, k ∈ Z,

and

(5.17) aea = χ̂ (α)
1

n+1 cos
(
θ̂
)
.

Fix a > τξ = τ (µ+ ξ), then it is clear that we can find θ̂ ∈ [−π
2 ,

π
2 ] such that (5.16)

is satisfied. Moreover, χ̂ (e) = 0 and χ̂ (α) → +∞ as α → +∞. Thus, we can find
α̂ > e, in turn we can α > e, such that (5.17) is satisfied. The result follows. �

Therefore, by the Hopf bifurcation theorem (see Hassard et al. [52]) and Propo-
sition 4.22 we have the following result.

Proposition 5.15. Let Assumptions 5.1 and 5.13 be satisfied. Then there ex-
ists α∗ > 0, where α∗ satisfies Assumption 5.7, such that the age structured model
( 5.1) undergoes a Hopf bifurcation at the equilibrium v = v̄α∗ given by ( 5.3). In
particular, a non-trivial periodic solution bifurcates from the equilibrium v = v̄α∗

when α = α∗.
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Figure 5.1. The birth rate function b(a) with δ = 1, γ = 1, and
τ = 5.

To carry out some numerical simulations, we consider the equation⎧⎪⎪⎨⎪⎪⎩
∂u

∂t
+

∂u

∂a
= −µu(t, a), t ≥ 0, a ≥ 0

u(t, 0) = h
(∫ +∞

0
b(a)u(t, a)da

)
u(0, a) = u0(a)

with the initial value function

u0(a) = a exp(−0.08a),

the fertility rate function

h(x) = αx exp(−βx)

and the birth rate function (see Figure 5.1)

b(a) =

{
δ exp (−γ (a− τ )) (a− τ ) , if a ≥ τ,
0, if a ∈ [0, τ ] .

where

µ = 0.1, β = 1, δ = 1, γ = 1, τ = 5.

The equilibrium is given by

u(a) = Ce−µa, a ≥ 0, C = h

(∫ +∞

0

b(a)e−µaCda

)
.

We choose α ≥ 0 as the bifurcation parameter. When α = 10, the solution
converges to the equilibrium (see Figure 5.2 upper figure). When α = 20, the
equilibrium loses its stability, a Hopf bifurcation occurs and there is a time periodic
solution (see Figure 5.2 lower figure).

Age structured models have been used to study many biological and epidemio-
logical problems, such as the evolutionary epidemiology of type A influenza (Pease
[86], Castillo-Chavez et al. [13], Inaba [60, 62]), the epidemics of schistosomiasis
in human hosts (Zhang et al. [114]), population dynamics (Gurtin and MacCamy
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Figure 5.2. The age distribution of u(t, a), which converges to
the equilibrium when α = 10 (upper) and is time periodic when
α = 20 (lower).

[46], Webb [107, 108], Iannelli [59], Cushing [27]), and the epidemics of antibiotic-
resistant bacteria in hospitals (D’Agata et al. [29, 28], Webb et al. [109]). Periodic
solutions have been observed in some of these age structured models (Castillo-
Chavez et al. [13], Inaba [60, 62], Zhang et al. [114]) and it is believed that such
periodic solutions are induced by Hopf bifurcation (Cushing [25, 26], Prüss [89],
Swart [96], Kostava and Li [67], Bertoni [10]). In this chapter, we established a
Hopf bifurcation theorem for the age structured model (5.1). Recently, we (Ma-
gal and Ruan [79]) also studied Hopf bifurcation in an evolutionary epidemiological
model of type A influenza (Pease [86] and Inaba [60, 62]). We think that the center
manifold theorem (Theorem 4.21) and the techniques used in analyzing (5.1) can be
developed to investigate Hopf bifurcations in some of the above mentioned biologi-
cal and epidemiological models with age structure (for example, the schistosomiasis
model in Zhang et al. [114] ) and some other structured models (Hoppensteadt
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[57], Webb [108], Iannelli [59], Cushing [27], Magal and Ruan [77]). It may also
be employed to study the stability change in age structured SIR epidemic models
(Thieme [100], Andreasen [2], Cha et al. [14]).
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[87] O. Perron, Über stabilität und asymptotische verhalten der integrale von differentialgle-
ichungssystemen, Math. Z. 29 (1928), 129-160. MR1544998

[88] V. A. Pliss, Principal reduction in the theory of stability of motion, Izv. Akad. Nauk. SSSR
Mat. Ser. 28 (1964), 1297-1324. MR0190449 (32:7861)

[89] J. Prüss, On the qualitative behavior of populations with age-speciific interactions, Comput.
Math. Appl. 9 (1983), 327-339. MR702651 (84h:92035)

[90] B. Sandstede, Center manifolds for homoclinic solutions, J. Dynam. Differential Equations
12 (2000), 449-510. MR1800130 (2001m:37167)

[91] B. Scarpellini, Center manifolds of infinite dimensions I: Main results and applications, ZAMP
42 (1991), 1-32. MR1102229 (92i:58170)

[92] H. H. Schaefer, Banach Lattice and Positive Operator, Springer-Verlag, Berlin, 1974.
MR0423039 (54:11023)

[93] A. Scheel, Radially symmetric patterns of reaction-diffusion systems, Mem. Amer. Math.
Soc. 165 (2003), No. 786. MR1997690 (2005c:35160)

[94] G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Springer-Verlag, New York,
2002. MR1873467 (2003f:37001b)

[95] J. Sijbrand, Properties of center manifolds, Trans. Amer. Math. Soc. 289 (1985), 431-469.
MR783998 (86i:58099)

[96] J. H. Swart, Hopf bifurcation and the stability of non-linear age-depedent population models,
Comput. Math. Appl. 15 (1988), 555-564. MR953565 (89g:92052)

[97] A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, John Wiley & Sons, New
York, 1980. MR564653 (81b:46001)

[98] H. R. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined opera-
tors, Differential Integral Equations 3 (1990), 1035-1066. MR1073056 (92e:47121)

[99] H. R. Thieme, “Integrated semigroups” and integrated solutions to abstract Cauchy problems,
J. Math. Anal. Appl. 152 (1990), 416-447. MR1077937 (91k:47093)

[100] H. R. Thieme, Stability change for the endemic equilibrium in age-structured models for
the spread of S-I-R type infectious diseases, in “Differential Equation Models in Biology,

http://www.ams.org/mathscinet-getitem?mr=1200199
http://www.ams.org/mathscinet-getitem?mr=1200199
http://www.ams.org/mathscinet-getitem?mr=2404439
http://www.ams.org/mathscinet-getitem?mr=2404439
http://www.ams.org/mathscinet-getitem?mr=1863784
http://www.ams.org/mathscinet-getitem?mr=1863784
http://www.ams.org/mathscinet-getitem?mr=2294465
http://www.ams.org/mathscinet-getitem?mr=2294465
http://www.ams.org/mathscinet-getitem?mr=2445337
http://www.ams.org/mathscinet-getitem?mr=2106296
http://www.ams.org/mathscinet-getitem?mr=2106296
http://www.ams.org/mathscinet-getitem?mr=859473
http://www.ams.org/mathscinet-getitem?mr=859473
http://www.ams.org/mathscinet-getitem?mr=1049211
http://www.ams.org/mathscinet-getitem?mr=1049211
http://www.ams.org/mathscinet-getitem?mr=2039148
http://www.ams.org/mathscinet-getitem?mr=2039148
http://www.ams.org/mathscinet-getitem?mr=965688
http://www.ams.org/mathscinet-getitem?mr=965688
http://www.ams.org/mathscinet-getitem?mr=710486
http://www.ams.org/mathscinet-getitem?mr=710486
http://www.ams.org/mathscinet-getitem?mr=1544998
http://www.ams.org/mathscinet-getitem?mr=0190449
http://www.ams.org/mathscinet-getitem?mr=0190449
http://www.ams.org/mathscinet-getitem?mr=702651
http://www.ams.org/mathscinet-getitem?mr=702651
http://www.ams.org/mathscinet-getitem?mr=1800130
http://www.ams.org/mathscinet-getitem?mr=1800130
http://www.ams.org/mathscinet-getitem?mr=1102229
http://www.ams.org/mathscinet-getitem?mr=1102229
http://www.ams.org/mathscinet-getitem?mr=0423039
http://www.ams.org/mathscinet-getitem?mr=0423039
http://www.ams.org/mathscinet-getitem?mr=1997690
http://www.ams.org/mathscinet-getitem?mr=1997690
http://www.ams.org/mathscinet-getitem?mr=1873467
http://www.ams.org/mathscinet-getitem?mr=1873467
http://www.ams.org/mathscinet-getitem?mr=783998
http://www.ams.org/mathscinet-getitem?mr=783998
http://www.ams.org/mathscinet-getitem?mr=953565
http://www.ams.org/mathscinet-getitem?mr=953565
http://www.ams.org/mathscinet-getitem?mr=564653
http://www.ams.org/mathscinet-getitem?mr=564653
http://www.ams.org/mathscinet-getitem?mr=1073056
http://www.ams.org/mathscinet-getitem?mr=1073056
http://www.ams.org/mathscinet-getitem?mr=1077937
http://www.ams.org/mathscinet-getitem?mr=1077937


BIBLIOGRAPHY 71

Epidemiology and Ecology”, eds. by S. N. Busenberg and M. Martelli, Lect. Notes in Biomath.
92, Springer, Berlin, 1991, pp. 139-158. MR1193478 (93h:92034)

[101] H. R. Thieme, Quasi-compact semigroups via bounded perturbation, in “Advances in Math-
ematical Population Dynamics-Molecules, Cells and Man”, eds. by O. Arino, D. Axelrod and
M. Kimmel, World Sci. Publ., River Edge, NJ, 1997, pp. 691-713. MR1634223 (99i:47070)

[102] H. R. Thieme, Positive perturbation of operator semigroups: Growth bounds, essential
compactness, and asynchronous exponential growth, Discrete Contin. Dynam. Systems 4

(1998), 735-764. MR1641201 (2000e:47069)
[103] A. Vanderbauwhede, Invariant manifolds in infinite dimensions, in “Dynamics of Infinite

Dimensional Systems” , ed. by S. N. Chow and J. K. Hale, Springer-Verlag, Berlin, 1987, pp.
409-420. MR921925 (89e:47098)

[104] A. Vanderbauwhede, Center manifold, normal forms and elementary bifurcations, Dynamics
Reported, ed. by U. Kirchgraber and H. O. Walther, Vol. 2, John Wiley & Sons, 1989, pp.
89-169. MR1000977 (90g:58092)

[105] A. Vanderbauwhede and S. A. van Gils, Center manifolds and contractions on a scale of
Banach spaces, J. Funct. Anal. 72 (1987), 209-224. MR886811 (88d:58085)

[106] A. Vanderbauwhede and G. Iooss, Center manifold theory in infinite dimensions, Dynamics
Reported (new series), ed. by C. K. R. T. Jones, U. Kirchgraber and H. O. Walther, Vol. 1,
Springer-Verlag, Berlin, 1992, pp. 125-163. MR1153030 (93f:58174)

[107] G. F. Webb, An age-dependent epidenuc model with spatial diffusion, Arch. Rational Mech.
Anal. 75 (1980), 91-102. MR592106 (81k:92052)

[108] G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker,
New York, 1985. MR772205 (86e:92032)

[109] G. F. Webb, E. M. C. D’Agata, P. Magal and S. Ruan, A model of antibiotic resistant
bacterial epidemics in hospitals, Proc. Natl. Acad. Sci. USA 102 (2005), 13343-13348.

[110] S. Wiggins, Normally Hyperbolic Invariant Manifolds in Dynamical Systems, Springer-
Verlag, New York, 1994. MR1278264 (95g:58163)

[111] J. Wu, Theory and Applications of Partial Differential Equations, Springer-Verlag, New
York, 1996. MR1415838 (98a:35135)

[112] Y. Yi, A generalized integral manifold theorem, J. Differential Equations 102 (1993), 153-

187. MR1209981 (94c:58148)
[113] K. Yosida, Functional Analysis, Springer-Verlag, Berlin, 1980. MR617913 (82i:46002)
[114] P. Zhang, Z. Feng and F. Milner, A schistosomiasis model with an age-structure in hu-

man hosts and its applicationo to treatment strategies, Math. Biosci. 205 (2007), 83-107.
MR2290375 (2007i:92062)

http://www.ams.org/mathscinet-getitem?mr=1193478
http://www.ams.org/mathscinet-getitem?mr=1193478
http://www.ams.org/mathscinet-getitem?mr=1634223
http://www.ams.org/mathscinet-getitem?mr=1634223
http://www.ams.org/mathscinet-getitem?mr=1641201
http://www.ams.org/mathscinet-getitem?mr=1641201
http://www.ams.org/mathscinet-getitem?mr=921925
http://www.ams.org/mathscinet-getitem?mr=921925
http://www.ams.org/mathscinet-getitem?mr=1000977
http://www.ams.org/mathscinet-getitem?mr=1000977
http://www.ams.org/mathscinet-getitem?mr=886811
http://www.ams.org/mathscinet-getitem?mr=886811
http://www.ams.org/mathscinet-getitem?mr=1153030
http://www.ams.org/mathscinet-getitem?mr=1153030
http://www.ams.org/mathscinet-getitem?mr=592106
http://www.ams.org/mathscinet-getitem?mr=592106
http://www.ams.org/mathscinet-getitem?mr=772205
http://www.ams.org/mathscinet-getitem?mr=772205
http://www.ams.org/mathscinet-getitem?mr=1278264
http://www.ams.org/mathscinet-getitem?mr=1278264
http://www.ams.org/mathscinet-getitem?mr=1415838
http://www.ams.org/mathscinet-getitem?mr=1415838
http://www.ams.org/mathscinet-getitem?mr=1209981
http://www.ams.org/mathscinet-getitem?mr=1209981
http://www.ams.org/mathscinet-getitem?mr=617913
http://www.ams.org/mathscinet-getitem?mr=617913
http://www.ams.org/mathscinet-getitem?mr=2290375
http://www.ams.org/mathscinet-getitem?mr=2290375

	Chapter 1. Introduction
	Chapter 2. Integrated Semigroups
	Chapter 3. Spectral Decomposition of the State Space
	Chapter 4. Center Manifold Theory
	4.1. Existence of center manifolds
	4.2. Smoothness of center manifolds

	Chapter 5. Hopf Bifurcation in Age Structured Models
	Acknowledgments

	Bibliography

