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1 Introduction

In this article we consider the following nonhomogeneous nonautonomous problem

du(t)

dt
= (A+B(t))u(t) + f(t), for t ≥ t0, and u(t0) = x ∈ D(A), (1.1)

where t0 ∈ R, A : D(A) ⊂ X → X is a linear operator (possibly with non-dense domain
that is D(A)  X) on a Banach space (X, ‖ · ‖), {B(t)}t∈R ⊂ L(D(A), X) is a locally
bounded and strongly continuous family of bounded linear operators and f ∈ L1

loc(R, X).
Recall that the linear operator A is said to be a Hille-Yosida operator if there exist

two constants ω ∈ R and M ≥ 1, such that the resolvent set of A contains (ω,+∞) and
the resolvent operator satisfies the usual condition∥∥(λI −A)−k

∥∥
L(X)

≤M (λ− ω)
−k
,∀λ > ω, ∀k ≥ 1.

In the following, we will not assume that A is a Hille-Yosida operator since in As-
sumption 1.1-i) the operator norm is taken into D(A) instead of X.

Assumption 1.1 We assume that

i) There exist two constants ω ∈ R and M ≥ 1, such that (ω,+∞) ⊂ ρ(A) and∥∥(λI −A)−k
∥∥
L(D(A))

≤M (λ− ω)
−k
, ∀λ > ω, k ≥ 1.

ii) lim
λ→+∞

(λI −A)−1x = 0, ∀x ∈ X.

Set
X0 := D(A)

and denote by A0 the part of A on X0 that is

A0x = Ax,∀x ∈ D(A0) and D(A0) := {x ∈ D(A) : Ax ∈ X0}.

Then it is known that Assumption 1.1 is equivalent to ρ(A) 6= ∅ and A0 is a densely de-
fined Hille-Yosida linear operator on X0 (see [33, Lemma 2.1 and Lemma 2.2]). Therefore
A0 generates a strongly continuous semigroup {TA0

(t)}t≥0 ⊂ L(X0).
An important and useful approach to investigate such a non-densely defined Cauchy

problem (1.1) is to use the integrated semigroup theory. This notion was introduced
first by Arendt [3, 4]. The integrated semigroup generated by A, namely {SA(t)}t≥0, is
a strongly continuous family of bounded linear operators on X that is uniquely defined
for each t ≥ 0 and each x ∈ X by

SA(t)x = (µI −A0)

∫ t

0

TA0
(t)(µI −A)−1xdt
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when µ > ω.
In order to assure the existence of mild solutions of (1.1) we need the following extra

assumption.

Assumption 1.2 For each τ > 0 and each f ∈ C ([0, τ ] , X) we assume that there exists
uf ∈ C ([0, τ ] , X0) an integrated (or mild) solution of

duf
dt

= Auf (t) + f(t), for t ≥ 0 and uf (0) = 0. (1.2)

Moreover we assume that there exists a nondecreasing map δ : [0,+∞) → [0,+∞) such
that

‖uf (t)‖ ≤ δ(t) sup
s∈[0,t]

‖f(s)‖, ∀t ≥ 0, (1.3)

with
δ(t)→ 0 as t→ 0+.

Let f ∈ C([0,+∞), X) be fixed. The existence of mild solutions in Assumption 1.2
is equivalent to the continuous time differentiability of the map t → (SA ∗ f)(t) from
[0,+∞) into X. Moreover by the uniqueness of the mild solutions of (1.2) (see Thieme
[40]) we have

uf (t) =
d

dt
(SA ∗ f)(t),∀t ≥ 0,

when it exists. Define

(SA � f)(t) :=
d

dt
(SA ∗ f)(t),∀t ≥ 0.

The foregoing Assumption 1.2 needs justification. In fact if A is a Hille-Yosida operator,
then Assumption 1.2 holds true as long as t → f(t) is continuous (see Kellermann and
Hieber [26]) and we have the following estimate

‖(SA � f)(t)‖ ≤M
∫ t

0

eω(t−s)‖f(s)‖ds

and Assumption 1.2 is clearly satisfied. As presented in Magal and Ruan [31], it is
possible to obtain some necessary and sufficient conditions on the resolvent operator of
A to obtain Lp (for p ∈ [1,+∞)) estimation on ‖(SA � f)(t)‖. Such a result was also
investigated by using the notion of bounded semi-p-variation (for p ∈ [1,+∞)) Thieme
[42, Theorem 4.3]. Such a conditions was also investigated by Ducrot, Magal and Prevost
[17] in the almost sectorial case.

The following assumption will be required in order to deal with the existence of
integrated solutions for the nonhomogeneous equation (1.1).

Assumption 1.3 Let {B(t)}t∈R ⊂ L(X0, X) be a family of bounded linear operators.
We assume that t→ B(t) is strongly continuous from R into L(X0, X), that is for each
x ∈ X0 the map t → B(t)x is continuous from R into X. We assume that for each
integer n ≥ 1

sup
t∈[−n,n]

‖B(t)‖L(X0,X) < +∞.
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The foregoing assumptions will allow us to obtain the existence of an evolution family
(see Definition 1.4 below) for the homogeneous Cauchy problem (1.4). Before proceeding
let us introduce the notation

∆ :=
{

(t, s) ∈ R2 : t ≥ s
}

and recall the notion of an evolution family.

Definition 1.4 Let (Z, ‖ · ‖) be a Banach space. A two parameters family of bounded
linear operators on Z, {U(t, s)}(t,s)∈∆, is an evolution family if

i) For each t, r, s ∈ R with t ≥ r ≥ s

U(t, t) = IL(Z) and U(t, r)U(r, s) = U(t, s).

ii) For each x ∈ Z, the map (t, s)→ U(t, s)x is continuous from ∆ into Z.

If in addition there exist two constants M̂ ≥ 1 and ω̂ ∈ R such that

‖U(t, s)‖L(Z) ≤ M̂eω̂(t−s), ∀(t, s) ∈ ∆,

we say that {U(t, s)}(t,s)∈∆ is an exponentially bounded evolution family.

Consider the following homogeneous equation for each t0 ∈ R
du(t)

dt
= (A+B(t))u(t), for t ≥ t0 and u(t0) = x ∈ X0. (1.4)

By using [31, Theorem 5.2] and [32, Proposition 4.1] we obtain the following Proposition.

Proposition 1.5 Let Assumptions 1.1, 1.2 and 1.3 be satisfied. Then the Cauchy prob-
lem (1.4) generates a unique evolution family {UB(t, s)}(t,s)∈∆ ⊂ L(X0). Moreover
UB(·, t0)x0 ∈ C([t0,+∞), X0) is the unique solution of the fixed point problem

UB(t, t0)x0 = TA0(t− t0)x0 +
d

dt

∫ t

t0

SA(t− s)B(s)UB(s, t0)x0ds, ∀t ≥ t0. (1.5)

If we assume in addition that

sup
t∈R
‖B(t)‖L(X0,X) < +∞,

then the evolution family {UB(t, s)}(t,s)∈∆ is exponentially bounded.

The following theorem provides an approximation formula of the solutions of equation
(1.1). This is the first main result.

Theorem 1.6 (Variation of constants formula) Let Assumptions 1.1, 1.2 and 1.3
be satisfied. Then for each t0 ∈ R, each x0 ∈ X0 and each f ∈ C([t0,+∞], X) the unique
integrated solution uf ∈ C([t0,+∞], X0) of (1.1) is given by

uf (t) = UB(t, t0)x0 + lim
λ→+∞

∫ t

t0

UB(t, s)λ(λ−A)−1f(s)ds, ∀t ≥ t0, (1.6)

where the limit exists in X0. Moreover the convergence in (1.6) is uniform with respect
to t, t0 ∈ I for each compact interval I ⊂ R.
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This variation of constant formula has been proved by Gühring and Räbiger [22]
when A is a Hille-Yosida operator by using extrapolated semigroups. Some extensions of
this result have been proved in [10, 11] for nonautonomous Hille-Yosida operators A(t).

The arguments used in [22] strongly use the fact that A is a Hille-Yosida operator.
Actually the estimation used is the following

‖λ(λI −A)−1‖L(X) ≤M
λ

λ− ω
,∀λ > max(0, ω),

as a consequence when λ→ +∞ we obtain

lim sup
λ→+∞

‖λ(λI −A)−1‖L(X) < +∞.

In the context of non-Hille-Yosida operator this last estimation is no longer true. There-
fore we need to find another approach to prove our result. In Sections 6 and 7 we will
consider some examples of parabolic and hyperbolic equations which lead us to the non-
Hille-Yosida case. For example, the linear operator A in Sections 6 which comes from a
parabolic equation in Lp space, satisfies the following estimates (see Lemma 6.3)

0 < lim inf
λ(∈R)→+∞

λ
2p

1+p

∥∥∥(λI −A)
−1
∥∥∥
L(X)

≤ lim sup
λ(∈R)→+∞

λ
2p

1+p

∥∥∥(λI −A)
−1
∥∥∥
L(X)

< +∞

where p ∈ [1,+∞). It follows that when p > 1

lim
λ→+∞

λ
∥∥∥(λI −A)

−1
∥∥∥
L(X)

= +∞.

Therefore proving our results will not consist in adapting arguments from the Hille-
Yosida case but require several intermediate technical lemmas in order to obtain the
limit

lim
λ→+∞

∫ t

t0

UB(t, s)λ (λI −A)
−1
f(s)ds, t ≥ t0.

Our second main result deals with a necessary and sufficient condition for the evolu-
tion family (generated by the homogeneous problem associated to system (1.1)) to have
an exponential dichotomy. To be more precise let us first recall some definitions and
state our result.

Definition 1.7 Let (Z, ‖ · ‖Z) be a Banach space. We say that {Π(t)}t∈R ⊂ L(Z) is a
strongly continuous family of projectors on Z if

Π(t)Π(t) = Π(t), ∀t ∈ R,

and for each x ∈ Z, t→ Π(t)x is continuous from R into Z.

The following notion of exponential dichotomy will be used in this paper. We refer
for instance to [18, 19, 22, 23, 24, 29] and the references therein.

Definition 1.8 Let (Z, ‖ · ‖Z) be a Banach space. We say that an evolution family
{U(t, s)}(t,s)∈∆ ⊂ L(Z) has an exponential dichotomy with constant κ ≥ 1 and exponent
β > 0 if and only if the following properties are satisfied
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i) There exist two strongly continuous families of projectors {Π+(t)}t∈R and {Π−(t)}t∈R
on Z such that

Π+(t) + Π−(t) = IL(Z), ∀t ∈ R.

Then we define for all t ≥ s

U+(t, s) := U(t, s)Π+(s) and U−(t, s) := U(t, s)Π−(s).

ii) For all (t, s) ∈ ∆ we have Π+(t)U(t, s) = U(t, s)Π+(s) and then Π−(t)U(t, s) =
U(t, s)Π−(s).

iii) For all (t, s) ∈ ∆ the restricted linear operator U(t, s)Π−(s) is invertible from
Π−(s)(Z) into Π−(t)(Z) with inverse denoted by Ū−(s, t) and we set

U−(s, t) := Ū−(s, t)Π−(t).

iv) For all (t, s) ∈ ∆

‖U+(t, s)‖L(Z) ≤ κe−β(t−s) and ‖U−(s, t)‖L(Z) ≤ κe−β(t−s).

In the foregoing Definition 1.8 the notations + and − are used to refer respectively
the forward time and the backward time.

Definition 1.9 Let f ∈ L1
loc(R, X) be fixed. A function u ∈ C(R, X0) is an integrated

solution (or a weak solution) of (1.1) if and only if for each t ≥ t0∫ t

t0

u(r)dr ∈ D(A)

and

u(t) = u(t0) +A

∫ t

t0

u(r)dr +

∫ t

t0

[B(r)u(r) + f(r)]dr.

We will say that u is a mild solution of (1.1) if

u(t) = TA0(t− t0)u(t0) +
d

dt

∫ t

t0

SA(t− s)[B(s)u(s) + f(s)]ds, ∀t ≥ t0.

Actually weak and mild notions of solutions are equivalent (see [31, Corollary 2.12.]).
Then our second main result splits into the following two theorems.

Theorem 1.10 Let Assumptions 1.1, 1.2 and 1.3 be satisfied. Assume in addition that

sup
t∈R
‖B(t)‖L(X0,X) < +∞.

Then the following assertions are equivalent

i) The evolution family {UB(t, s)}(t,s)∈∆ has an exponential dichotomy.
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ii) For each bounded function f ∈ C(R, X), there exists a unique bounded integrated
solution u ∈ C(R, X0) of (1.1).

Theorem 1.11 Let Assumptions 1.1, 1.2 and 1.3 be satisfied. Assume in addition that

sup
t∈R
‖B(t)‖L(X0,X) < +∞.

If UB has an exponential dichotomy with exponent β > 0, then for each η ∈ [0, β) and
each f ∈ BCη(R, X) with

BCη(R, X) :=

{
f ∈ C(R, X) : ‖f‖η := sup

t∈R
e−η|t|‖f(t)‖ < +∞

}
there exists a unique integrated solution u ∈ BCη(R, X0) of (1.1) which is given for each
t ∈ R by

uf (t) = lim
λ→+∞

[∫ t

−∞
U+
B (t, s)λ(λ−A)−1f(s)ds−

∫ +∞

t

U−B (t, s)λ(λ−A)−1f(s)ds

]
.

(1.7)
Moreover the following properties hold true

i) The limit (1.7) exists uniformly on compact subsets of R.

ii) If f is bounded and uniformly continuous with relatively compact range, then the
limit (1.7) is uniform on R.

iii) For each ν ∈ (−β, 0) there exists C(ν, κ, β) > 0 such that

‖uf‖η ≤ C(ν, κ, β)‖f‖η, ∀η ∈ [0,−ν].

The paper is organized as follows. In section 2 we recall some results concerning
integrated semigroups and define the notion of integrated solutions for system (1.1).
Section 3 is devoted to a the proof of Theorem 1.6 concerning the variation of constants
formula. In Section 4 we prove some uniform convergence results. Theorems 1.10 and
1.11 are proved in Section 5. Finally in Sections 6 and 7 we present two examples to
illustrate our results.

2 Preliminaries

In the following lemma we summarize some results proved in Magal and Ruan [33, Lemma
2.1 and Lemma 2.2].

Lemma 2.1 Let Assumption 1.1 be satisfied. Then we have

ρ(A) = ρ(A0).

Moreover, we have the following properties
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i) For each λ > ω

D(A0) = (λI −A)−1X0 and (λI −A)−1
|X0

= (λI −A0)−1.

ii) D(A0) = X0.

iii) lim
λ→+∞

λ(λI −A)−1x = x, ∀x ∈ X0.

Remark 2.2 It can be easily proved that lim
λ→+∞

λ(λI −A)−1x = x uniformly for x in a

relatively compact subset of X0. This property will be often used in this paper.

Note that if (A,D(A)) satisfies Assumption 1.1, then by Lemma 2.1 we have∥∥(λI −A0)−k
∥∥
L(X0)

≤M (λ− ω)
−k
, ∀λ > ω, k ≥ 1 and D(A0) = X0.

Therefore (A0, D(A0)) generates a strongly continuous semigroup {TA0(t)}t≥0 ⊂ L(X0)
with

‖TA0
(t)‖L(X0) ≤Meωt, ∀t ≥ 0.

The characterization of an integrated semigroup is summarized in the definition below.

Definition 2.3 Let (X, ‖ · ‖) be a Banach space. A family of bounded linear operators
{S(t)}t≥0 on X is called an integrated semigroup if

i) S(0)x = 0,∀x ∈ X.

ii) t→ S(t)x is continuous on [0,+∞) for each x ∈ X.

iii) For each t ≥ 0, S(t) satisfies

S(s)S(t) =

∫ s

0

[S(r + t)− S(r)]dr, ∀s ≥ 0.

The integrated semigroup {S(t)}t≥0 is said to be non-degenerate if

S(t)x = 0, ∀t ≥ 0⇒ x = 0.

Moreover we will say that (A,D(A)) generates an integrated semigroup {SA(t)}t≥0 ⊂
L(X,X0) that is

x ∈ D(A) and y = Ax⇔ SA(t)x = tx+

∫ t

0

S(s)yds, ∀t ≥ 0.

The following result is well known in the context of integrated semigroups.

Proposition 2.4 Let Assumption 1.1 be satisfied. Then (A,D(A)) generates a uniquely
determined non-degenerate exponentially bounded integrated semigroup with

‖SA(t)‖L(X) ≤ M̂eω̂t,

where M̂ > 0, ω̂ > 0 and (ω̂,+∞) ∈ ρ(A). Moreover the following properties hold
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i) For each x ∈ X, each t ≥ 0, each µ > ω, SA(t)x is given by

SA(t)x = (µI −A0)

∫ t

0

TA0(s)ds(µI −A)−1,

or equivalently

SA(t)x = µ

∫ t

0

TA0
(s)(µI −A)−1xds+ [I − TA0

(t)](µI −A)−1x.

ii) The map t→ SA(t)x is continuously differentiable if and only if x ∈ X0 and

dSA(t)x

dt
= TA0(t)x, ∀t ≥ 0, ∀x ∈ X0.

Next we give the notion of integrated solutions for system (1.1).

Definition 2.5 Let t0 ∈ R and let f ∈ L1
loc((t0,+∞), X) be fixed. A function u ∈

C([t0,+∞), X0) is an integrated (or mild) solution of (1.1) if and only if for each t ≥ t0∫ t

t0

u(r)dr ∈ D(A)

and

u(t) = x+A

∫ t

t0

u(r)dr +

∫ t

t0

[B(r)u(r) + f(r)]dr.

The following result is a direct consequence of Theorem 2.10 in [32].

Theorem 2.6 Let Assumptions 1.1 and 1.2 be satisfied. Let t0 ∈ R be fixed. Then for
all f ∈ C([t0,+∞), X), the map t→ (SA ∗ f(t0 + ·))(t− t0) is continuously differentiable
from [t0,+∞) into X and satisfies the following properties

i) (SA ∗ f(t0 + ·))(t− t0) ∈ D(A), ∀t ≥ t0.

ii) If we set
u(t) := (SA � f(t0 + ·))(t− t0), ∀t ≥ t0,

then the following hold

u(t) = A

∫ t

t0

u(s)ds+

∫ t

t0

f(s)ds, ∀t ≥ t0,

and
‖u(t)‖ ≤ δ(t− t0) sup

s∈[t0,t]

‖f(s)‖, ∀t ≥ t0.

iii) For all λ ∈ (ω,+∞) we have for each t ≥ t0

(λI −A)−1 d

dt
(SA ∗ f(t0 + ·))(t− t0) =

∫ t

t0

TA0
(t− s)(λI −A)−1f(s)ds.
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As a consequence of iii) in Theorem 2.6, we obtain the following approximation
formula

d

dt

∫ t

t0

SA(t− s)f(s)ds = lim
λ→+∞

∫ t

t0

TA0
(t− s)λ(λI −A)−1f(s)ds, ∀t ≥ t0. (2.1)

It also follows that for each t, h ≥ 0

(SA � f)(t+ h) = TA0
(h)(SA � f)(t) + (SA � f(t+ ·))(h). (2.2)

As an immediate consequence of Theorem 2.6 we obtain the following lemma.

Lemma 2.7 Let Assumptions 1.1 and 1.2 be satisfied. Let f ∈ C(R, X). Then the map
(t, t0)→ (SA � f(t0 + ·))(t− t0) is continuous from ∆ into X.

Proof. Let (t, t0), (s, s0) ∈ ∆. We have

I := (SA � f(t0 + ·))(t− t0)− (SA � f(s0 + ·))(s− s0)
= (SA �

[
f(t0 + ·)− f(s0 + ·)

]
)(t− t0)

+(SA � f(s0 + ·))(t− t0)− (SA � f(s0 + ·))(s− s0)

hence by using (2.2)

I = (SA �
[
f(t0 + ·)− f(s0 + ·)

]
)(t− t0)

+
[
TA0

((t− t0)− (s− s0))− I
]
(SA � f(s0 + ·))(s− s0)

+(SA � f(s0 + (s− s0) + ·))((t− t0)− (s− s0))

whenever t − t0 ≥ s − s0. The result follows by using the uniform continuity of f on
bounded intervals.

By using [32, Proposition 4.1] we obtain the following lemma.

Lemma 2.8 Let Assumptions 1.1, 1.2 and 1.3 be satisfied. Let t0 ∈ R be fixed. Then
for each x0 ∈ X0 and f ∈ C([t0,+∞), X) there exists a unique integrated solution
uf ∈ C([t0,+∞), X0) of (1.1) given by

uf (t) = TA0
(t− t0)x0 +

d

dt
(SA ∗ ((Buf )(t0 + ·) + f(t0 + ·))(t− t0), ∀t ≥ t0,

or equivalently

uf (t) = TA0
(t− t0)x0 + (SA � ((Buf )(t0 + ·) + f(t0 + ·))(t− t0), ∀t ≥ t0,

where we have used the notation (Buf )(t) := B(t)uf (t) for every t ≥ t0.

The next result is due to Magal and Ruan [32, Proposition 2.14] and is one of the
main tools in studying integrated solutions for non-Hille-Yosida operators.

Proposition 2.9 Let Assumption 1.1 be satisfied. Let ε > 0 be given and fixed. Then,
for each τε > 0 satisfying Mδ(τε) ≤ ε, we have

‖ d
dt

(SA ∗ f)(t)‖ ≤ C(ε, γ) sup
s∈[0,t]

eγ(t−s)‖f(s)‖, ∀t ≥ 0,

whenever γ ∈ (ω,+∞), f ∈ C(R+, X) with

C(ε, γ) :=
2εmax(1, e−γτε)

1− e(ω−γ)τε
.
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3 A variation of constants formula

In this section we will prove the first main result of this paper. It deals with the represen-
tation of the integrated solution of (1.1) in term of the evolution family {UB(t, s)}(t,s)∈∆.
This result generalizes [22, Theorem 2.2] to the context of non-Hille-Yosida operator. The
proof will be given by using several technical lemmas. Note that a direct consequence of
Theorem 1.6 is the following

Corollary 3.1 Let Assumptions 1.1, 1.2 and 1.3 be satisfied. Then for each t0 ∈
R, each x0 ∈ X0 and each f ∈ C([t0,+∞), X0) the unique integrated solution uf ∈
C([t0,+∞), X0) of (1.1) is given by

uf (t) = UB(t, t0)x0 +

∫ t

t0

UB(t, s)f(s)ds, ∀t ≥ t0.

Next we prove some technical lemmas that will be crucial for the proof of Theorem
1.6.

Lemma 3.2 Let Assumptions 1.1, 1.2 and 1.3 be satisfied. Then for each h ∈ C(∆, X)
the following equality holds∫ t

t0

d

dt

[∫ t

s

SA(t− r)h(r, s)dr

]
ds =

d

dt

∫ t

t0

SA(t− r)
[∫ r

t0

h(r, s)ds

]
dr

for all (t, t0) ∈ ∆.

For convenience we will use the following notation

Rλ(A) := (λI −A)−1,∀λ ∈ ρ(A).

Proof. Let t0 ∈ R be fixed. Let s ≥ t0 be given. Then observing that h(·, s) ∈
C([s,+∞), X) one can apply Theorem 2.6 to obtain for all t ≥ s and λ > ω that∫ t

s

TA0
(t− r)λRλ(A)h(r, s)dr = λRλ(A)

d

dt

∫ t

s

SA(t− r)h(r, s)dr. (3.1)

Thus integrating both sides of (3.1) and using Fubini’s theorem we obtain for each t ≥ t0
and λ > ω that

λRλ(A)

∫ t

t0

[
d

dt

∫ t

s

SA(t− r)h(r, s)dr

]
ds =

∫ t

t0

[∫ t

s

TA0
(t− r)λRλ(A)h(r, s)dr

]
ds

=

∫ t

t0

[∫ r

t0

TA0
(t− r)λRλ(A)h(r, s)ds

]
dr

=

∫ t

t0

TA0(t− r)λRλ(A)

[∫ r

t0

h(r, s)ds

]
dr.

11



Now observing that∫ t

t0

[
d

dt

∫ t

s

SA(t− r)h(r, s)dr

]
ds ∈ X0, ∀t ≥ t0,

the result follows since we have

lim
λ→+∞

λRλ(A)

∫ t

t0

[
d

dt

∫ t

s

SA(t− r)h(r, s)dr

]
ds =

∫ t

t0

[
d

dt

∫ t

s

SA(t− r)h(r, s)dr

]
ds

for all t ≥ t0 and (see equality (2.1))

lim
λ→+∞

∫ t

t0

TA0(t− r)λRλ(A)

[∫ r

t0

h(r, s)ds

]
dr =

d

dt

∫ t

t0

SA(t− r)
[∫ r

t0

h(r, s)ds

]
dr

for all t ≥ t0.
Using Lemma 3.2 and Proposition 2.9 we can prove the following technical lemma.

Lemma 3.3 Let Assumptions 1.1, 1.2 and 1.3 be satisfied. Let f ∈ C(R, X). Define
for each λ > ω and (t, t0) ∈ ∆

vλ(t, t0) :=

∫ t

t0

UB(t, s)λRλ(A)f(s)ds

and

w(t, t0) :=
d

dt

∫ t

t0

SA(t− s)f(s)ds = (SA � f(t0 + ·))(t− t0).

Then we have the following properties

i) For each λ > ω and (t, t0) ∈ ∆

vλ(t, t0) =
d

dt

∫ t

t0

SA(t− r)B(r)vλ(r, t0)dr + λRλ(A)w(t, t0), ∀t ≥ t0.

ii) If in addition supt∈R ‖B(t)‖L(X0,X) < +∞, then there exists a constant γ >
max(0, ω) such that for each λ > ω and (t, t0) ∈ ∆

sup
s∈[t0,t]

e−γs‖vλ(s, t0)‖ ≤ 2 sup
s∈[t0,t]

e−γs‖λRλ(A)w(s, t0)‖

and since w(s, t0) ∈ X0 we have

‖λRλ(A)w(s, t0)‖ ≤ M |λ|
λ− ω

‖w(s, t0)‖, ∀s ∈ [t0, t].

Proof. (i) By using formula (1.5) we obtain for each λ > ω and t ≥ t0 that

vλ(t, t0) =

∫ t

t0

TA0(t− s)λRλ(A)f(s)ds

+

∫ t

t0

[
d

dt

∫ t

s

SA(t− r)B(r)UB(r, s)λRλ(A)f(s)dr

]
ds.
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Now note that from Theorem 2.6 we have for each λ > ω∫ t

t0

TA0
(t− s)λRλ(A)f(s)ds = λRλ(A)

d

dt

∫ t

t0

SA(t− s)f(s)ds, ∀t ≥ t0, (3.2)

and from Lemma 3.2 with h(r, s) = B(r)UB(r, s)λRλ(A)f(s)∫ t

t0

[
d

dt

∫ t

s

SA(t− r)h(r, s)dr

]
ds =

d

dt

∫ t

t0

SA(t− r)vλ(r, t0)dr, ∀t ≥ t0. (3.3)

Then (i) follows by combining (3.2) and (3.3)
(ii) To do this we will make use of Proposition 2.9. Let ε > 0 be given such that

2ε sup
t∈R
‖B(t)‖L(X0,X) <

1

4
. (3.4)

Let τε > 0 be given with Mδ(τε) ≤ ε. By combining Proposition 2.9 together with i) we
obtain for each λ > ω and t ≥ t0 that

‖vλ(t, t0)‖ ≤ C(ε, γ) sup
s∈[t0,t]

[
eγ(t−s) ‖B(s)‖L(X0,X) ‖vλ(s, t0)‖

]
+ ‖λRλ(A)w(t, t0)‖,

whenever γ ∈ (ω,+∞) with

C(ε, γ) :=
2εmax(1, e−γτε)

1− e(ω−γ)τε
, (3.5)

so that

sup
s∈[t0,t]

e−γs‖vλ(s, t0)‖ ≤ C(ε, γ) sup
s∈R
‖B(s)‖L(X0,X) sup

s∈[t0,t]

e−γs‖vλ(s, t0)‖+ sup
s∈[t0,t]

‖λRλ(A)w(s, t0)‖.

By using (3.5) and (3.4) it is easily seen that one can chose γ > max(0, ω) large enough
such that

0 ≤ C(ε, γ) sup
t∈R
‖B(t)‖L(X0,X) <

1

2
,

and (ii) follows.
The next Lemma will be needed in the following.

Lemma 3.4 Let Assumptions 1.1 and 1.2 be satisfied. Then for each a, c ∈ R with a < c
and each x ∈ X, the map t→ (SA ∗ x1[a,c)(·))(t) is differentiable on [0,+∞) and

d

dt
(SA ∗ x1[a,c)(·))(t) =

 0 if c ≤ 0 or t ≤ a,
SA(t− a+)x if c > 0 and t ∈ [a, c),
TA0

(t− c)SA(c− a+)x if c > 0 and t ≥ c

with a+ := max(0, a).
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Proof. The proof is straightforward.

Now we have all the materials to prove Theorem 1.6.

Proof of Theorem 1.6. Since the proof is trivial when f(t) = 0 it is sufficient to
prove our theorem for x0 = 0. Let t0 ∈ R be fixed. Recalling for each λ > ω

vλ(t, t0) =

∫ t

t0

UB(t, s)λRλ(A)f(s)ds, ∀t ≥ t0,

we will show that the limit

v̄(t, t0) := lim
λ→+∞

vλ(t, t0), ∀t ≥ t0, (3.6)

is well defined and is an integrated solution of

dv(t)

dt
= [A+B(t)]v(t) + f(t), t ≥ t0 and v(t0) = 0. (3.7)

First of all note that by Lemma 2.8, problem (3.7) admits a unique integrated solution
v(·, t0) ∈ C([t0,+∞), X0) satisfying

v(t, t0) = (SA � (Bv(·, t0))(t0 + ·))(t− t0) + (SA � f(t0 + ·))(t− t0), ∀t ≥ t0, (3.8)

where we used the notation (Bv(·, t0))(t) = B(t)v(t, t0) for every t ≥ t0. Furthermore
by Lemma 3.3 we also have for each λ > ω and each t ≥ t0

vλ(t, t0) =
d

dt

∫ t

t0

SA(t− r)B(r)vλ(r, t0)dr + λRλ(A)w(t, t0), ∀t ≥ t0, (3.9)

with

w(t, t0) =
d

dt

∫ t

t0

SA(t− s)f(s)ds = (SA � f(t0 + ·))(t− t0), ∀t ≥ t0. (3.10)

Then (3.8) and (3.9) can be rewritten, for each λ > ω, as the following system{
vλ(t, t0) = (SA � (Bvλ(·, t0))(t0 + ·))(t− t0) + λRλ(A)w(t, t0), t ≥ t0

v(t, t0) = (SA � (Bv(·, t0))(t0 + ·))(t− t0) + w(t, t0), t ≥ t0
(3.11)

where we used the notation (Bvλ(·, t0))(t) = B(t)vλ(t, t0) for every t ≥ t0.
Let I ⊂ R be a compact subset of R. To show that (3.6) exists uniformly for t ≥ t0

in I, we will make use of Proposition 2.9. We have from (3.11) that for each λ > ω and
each t ≥ t0

vλ(t, t0)− v(t, t0) = (SA � (B(vλ(·, t0)− v(·, t0)))(t0 + ·))(t− t0) + [λRλ(A)− I]w(t, t0),
(3.12)

14



with the notation

(B(vλ(·, t0)− v(·, t0)))(t) := B(t)(vλ(t, t0)− v(t, t0)), ∀t ≥ t0.

Let ε > 0 be given such that

2ε sup
t∈I
‖B(t)‖L(X0,X) <

1

4
. (3.13)

Let τε > 0 be given with Mδ(τε) ≤ ε. Then by using (3.12) and Proposition 2.9 we
obtain for each λ > ω and each t ≥ t0 with t, t0 ∈ I that

‖vλ(t, t0)− v(t, t0)‖ ≤ C(ε, γ) sup
s≥t0
s,t0∈I

[
eγ(t−s) ‖B(s)‖L(X0,X) ‖vλ(s, t0)− v(s, t0)‖

]
+‖[λRλ(A)− I]w(t, t0)‖,

whenever γ ∈ (ω,+∞) with

C(ε, γ) :=
2εmax(1, e−γτε)

1− e(ω−γ)τε
,

so that

sup
s≥t0
s,t0∈I

e−γs‖vλ(s, t0)− v(s, t0)‖ ≤ C(ε, γ) sup
s∈I
‖B(s)‖L(X0,X) sup

s≥t0
s,t0∈I

e−γs‖vλ(s, t0)− v(s, t0)‖

+ sup
s≥t0
s,t0∈I

‖[λRλ(A)− I]w(s, t0)‖.

By using (3.13) one can chose γ > 0 large enough such that

0 ≤ C(ε, γ) sup
t∈I
‖B(t)‖L(X0,X) <

1

2
,

providing for all λ > ω that

sup
s≥t0
s,t0∈I

e−γs‖vλ(s, t0)− v(s, t0)‖ ≤ 2 sup
s≥t0
s,t0∈I

e−γs‖[λRλ(A)− I]w(s, t0)‖.

Hence recalling that the limit lim
λ→+∞

λRλ(A)y = y is uniform on relatively compact sets

of X0 and by observing that w(·, ·) maps I × I into a relatively compact set of X0, we
obtain

lim
λ→+∞

sup
s≥t0
s,t0∈I

e−γs‖[λRλ(A)− I]w(s, t0)‖ = 0,

that is
lim

λ→+∞
sup
s≥t0
s,t0∈I

e−γs‖vλ(s, t0)− v(s, t0)‖ = 0.

Since I is bounded, this implies

lim
λ→+∞

sup
s≥t0
s,t0∈I

‖vλ(s, t0)− v(s, t0)‖ = 0.

The proof is complete.
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4 A uniform convergence result

Let BUC(R, X) be the space of all bounded and uniformly continuous functions on R.
The next proposition gives a uniform convergence result subject to f belonging to an
appropriate subspace of BUC(R, X).

Proposition 4.1 Let Assumptions 1.1, 1.2 and 1.3 be satisfied. Assume in addition
that

sup
t∈R
‖B(t)‖L(X0,X) < +∞.

Let f ∈ BUC(R, X) with relatively compact range. Then, for any fixed t0 > 0 the limit

lim
λ→+∞

∫ t

t−t0
UB(t, s)λRλ(A)f(s)ds,

exists uniformly for t ∈ R.

Proof. Let t0 > 0 be fixed. Recall that for each λ > ω we have

vλ(t, t− t0) =

∫ t

t−t0
UB(t, s)λRλ(A)f(s)ds, ∀t ∈ R.

Thus by using similar arguments in the proof of (ii) in Lemma 3.3 we have for each
t ∈ R, each λ > ω and µ > ω that

sup
s∈[t−t0,t]

e−γs‖vλ(s, s−t0)−vµ(s, s−t0)‖ ≤ 2 sup
s∈[t−t0,t]

e−γs‖[λRλ(A)−µRµ(A)]w(s, s−t0)‖,

with γ > max(0, ω) (large enough) and

w(t1, t2) = (SA � f(t2 + ·))(t1 − t2), ∀(t1, t2) ∈ ∆.

Hence for each t ∈ R, each λ > ω and µ > ω

‖vλ(t, t− t0)− vµ(t, t− t0)‖ ≤ 2 sup
s∈[t−t0,t]

eγ(t−s)‖[λRλ(A)− µRµ(A)]w(s, s− t0)‖

≤ 2 eγt0 sup
s∈[t−t0,t]

‖[λRλ(A)− µRµ(A)]w(s, s− t0)‖.

Then to prove our proposition, it is sufficient to show that

lim
λ,µ→+∞

sup
s∈R
‖[λRλ(A)− µRµ(A)]w(s, s− t0)‖ = 0.

This can be achieved by proving that w(·, ·− t0) maps R into a relatively compact subset
of X0. To do so we will prove that for any ε > 0, there exists a relatively compact set
K such that

w(t, t− t0) ∈ K + cεBX0(0, 1), ∀t ∈ R,

for some constant c > 0 and BX0(0, 1) the closed unit ball of X0.
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Let ε > 0 be given and fixed. Then since f has its range in a relatively compact
subset of X, there exist η = t0

n > 0, with n ∈ N\{0} and a function g : R→ X such that
g is constant on each interval [kη, (k+ 1)η), k ∈ Z. Moreover the range of g is contained
in a finite set K0 ⊂ X and

sup
t∈R
‖f(t)− g(t)‖ ≤ ε.

Note that g can be written as

g(t) =
∑
k∈Z

xk1[kη,kη+η)(t), ∀t ∈ R,

with xk ∈ K0 for all k ∈ Z. Then by Lemma 3.4 it is easy to see that t→ (SA ∗ g)(t) is
differentiable on [0,+∞) and we can write

w(t, t− t0) = (SA � g(t− t0 + ·))(t0) + (SA � (f − g)(t− t0 + ·))(t0), ∀t ∈ R.

Let t ∈ R be fixed. Note that one can write

t = k0η + r, with r ∈ [0, η) and k0 ∈ Z,

providing that (recalling t0 = nη)

(SA � g(t− t0 + ·))(t0) =
d

dt

∫ t0

0

SA(t0 − s)g(t− t0 + s)ds

=
d

dt

∫ t

t−t0
SA(t− s)g(s)ds

=
d

dt

∫ k0η+r

(k0−n)η+r

SA(t− s)g(s)ds

=

n−1∑
i=0

d

dt

∫ (k0−i)η+r

(k0−i−1)η+r

SA(k0η + r − s)g(s)ds

=

n−1∑
i=0

d

dt

[∫ (k0−i)η

(k0−i−1)η+r

SA(k0η + r − s)xk0−i−1ds

+

∫ (k0−i)η+r

(k0−i)η
SA(k0η + r − s)xk0−ids

]
,
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therefore we obtain

(SA � g(t− t0 + ·))(t0) =

n−1∑
i=0

[SA(iη + η)− SA(iη + r)]xk0−i−1

+

n−1∑
i=0

[SA(iη + r)− SA(iη)]xk0−i

=

n∑
i=1

[SA(iη)− SA(iη − η + r)]xk0−i

+

n−1∑
i=0

[SA(iη + r)− SA(iη)]xk0−i

= [SA(nη)− SA(nη − η + r)]xk0−n

+

n−1∑
i=1

[SA(iη + r)− SA(iη − η + r)]xk0−i + SA(r)xk0

= TA0
(nη − η + r)SA(η − r)xk0−n

+

n−1∑
i=1

TA0(iη − η + r)SA(η)xk0−i + SA(r)xk0 ,

so that we can claim that t→ (SA � g(t− t0 + ·))(t0) has its range in

K =

{
n∑
k=0

TA0
(sk)SA(lk)xk : 0 ≤ sk, lk ≤ t0 and xk ∈ K0, k = 0, . . . , n

}
.

Then recalling that

(t, x) ∈ [0,+∞)×X → S(t)x and (t, x) ∈ [0,+∞)×X0 → T (t)x

are continuous, K is clearly compact.
To complete the proof it remains to give an estimate of z(·, · − t0) with

z(t1, t2) := (SA � (f − g)(t2 + ·))(t1 − t2), ∀(t1, t2) ∈ ∆.

By using Proposition 2.9 one obtains

‖z(t1, t2)‖ ≤ C(1, γ0) sup
t∈[0,t1−t2]

eγ0(t1−t2−t)‖f(t2 + t)− g(t2 + t)‖, ∀(t1, t2) ∈ ∆.

with γ0 > max(0, ω), Mδ(τ1) ≤ 1 and

C(1, γ0) :=
2 max(1, e−γ0τ1)

1− e(ω−γ0)τ1
.

Therefore
sup

(t1,t2)∈∆

‖z(t1, t2)‖ ≤ C(1, γ0)eγ0(t1−t2)sup
t∈R
‖f(t)− g(t)‖

≤ C(1, γ0)eγ0(t1−t2)ε,

that is
sup
t∈R
‖z(t, t− t0)‖ ≤ C(1, γ0)eγ0t0ε,

and the result follows.
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5 Exponential dichotomy

In this section we consider the complete orbits of the Cauchy problem (1.1). Namely we
consider a continuous map u : (−∞,+∞)→ X0 as a mild solution of

du(t)

dt
= (A+B(t))u(t) + f(t), for t ∈ R. (5.1)

This part is devoted to the proof of Theorems 1.10 and 1.11. We will give necessary
and sufficient conditions for the evolution family {UB(t, s)}(t,s)∈∆ ⊂ L(X0) to have an
exponential dichotomy. More precisely we will prove that the existence of an exponential
dichotomy for {UB(t, s)}(t,s)∈∆ is equivalent to the existence of an integrated solution
u ∈ C(R, X0) for all f in an appropriate subspace of C(R, X).

In what follows when {U(t, s)}(t,s)∈∆ ⊂ L(Z) has an exponential dichotomy we define
its associate Green’s operator function by

Γ(t, s) :=

{
U+(t, s), if t ≥ s,
−U−(s, t), if t < s.

Remark 5.1 It is well known that when {U(t, s)}(t,s)∈∆ ⊂ L(Z) has an exponential
dichotomy, then for each x ∈ Z, the map (t, s) ∈ R2 → U−(t, s)x is continuous from R2

into Z (see [37, Lemma VI.9.15] or [20, Lemma 9.17]).

Remark 5.2 It is easy to obtain from condition i) in Definition 1.8 that

Π+(t)Π−(t) = Π−(t)Π+(t) = 0L(Z).

We also trivially have

U+(t, t) = Π+(t) and U+(t, r)U+(r, l) = U+(t, l), ∀t ≥ r ≥ l,

while
U−(t, t) = Π−(t) and U−(t, r)U−(r, l) = U−(t, l). ∀t, r, l ∈ R,

It follows that U+ (respectively U−) is a strongly continuous semiflow (respectively flow).
One may also observe that

U−(t, r)U(r, l) = U−(t, l), ∀(r, t), (r, l) ∈ ∆

and
U+(t, r)U(r, l) = U+(t, l), ∀(t, r), (r, l) ∈ ∆.

Notation 5.3 Let (Z, ‖ · ‖) be a Banach space. The following weighted Banach space
will be used in the following

BCη(R, Z) :=

{
f ∈ C(R, Z) : ‖f‖η := sup

t∈R
e−η|t|‖f(t)‖Z < +∞

}
, η ≥ 0.

Note that we have the following continuous embedding

BCη1(R, Z) ⊆ BCη2(R, Z) if η1 ≤ η2.
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If η = 0 we set

BC(R, Z) :=

{
f ∈ C(R, Z) : ‖f‖∞ := sup

t∈R
‖f(t)‖Z < +∞

}
and define

C0(R, Z) :=

{
f ∈ BC(R, Z) : lim

t→±∞
f(t) = 0

}
.

The following result is well known in the context of exponential dichotomy. We refer
for instance to [6, 27, 28].

Theorem 5.4 Let Z be a Banach space. Let {U(t, s)}(t,s)∈∆ ⊂ L(Z) be an exponentially
bounded evolution family. Consider the following integral equation

u(t) = U(t, t0)u(t0) +

∫ t

t0

U(t, s)f(s)ds, (t, t0) ∈ ∆. (5.2)

Then the following properties are equivalent

i) {U(t, s)}(t,s)∈∆ ⊂ L(Z) has an exponential dichotomy.

ii) Let F(R, Z) be the space BC(R, Z) or C0(R, Z). Then for any f ∈ F(R, Z) there
exists a unique solution u ∈ F(R, Z) of (5.2).

Moreover, if {U(t, s)}(t,s)∈∆ has an exponential dichotomy, then for each f ∈ F(R, Z)
the unique solution u ∈ F(R, Z) of (5.2) is given by

u(t) =

∫ +∞

−∞
Γ(t, s)f(s)ds, ∀t ∈ R,

where {Γ(t, s)}(t,s)∈R2 ⊂ L(Z) is the Green’s operator function associated to {U(t, s)}(t,s)∈∆.

In what follows we will give an analogue of Theorem 5.4 for the evolution family
{UB(t, s)}(t,s)∈∆ ⊂ L(X0). To do so we will first prove some estimates.

Proposition 5.5 Let Assumptions 1.1, 1.2 and 1.3 be satisfied. Assume in addition
that

sup
t∈R
‖B(t)‖L(X0,X) < +∞.

Then there exists a non-decreasing function δ∗ : [0,+∞) → [0,+∞) with δ∗(t) → 0 as
t→ 0+ such that for each f ∈ C(R, X) and λ > w + 1 the map

vλ(t, t0) =

∫ t

t0

UB(t, s)λRλ(A)f(s)ds, (t, t0) ∈ ∆,

satisfies
‖vλ(t, t0)‖ ≤ δ∗(t− t0) sup

s∈[t0,t]

‖f(s)‖, ∀(t, t0) ∈ ∆.
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Proof. Let λ > ω be given. Thus by Lemma 3.3 there exists γ > max(0, w) large
enough (independent of t0) such that for each t ≥ t0

sup
s∈[t0,t]

e−γs‖vλ(s, t0)‖ ≤ 2 sup
s∈[t0,t]

e−γs‖λRλ(A)w(s, t0)‖

with
w(t1, t2) = (SA � f(t2 + ·))(t1 − t2), ∀(t1, t2) ∈ ∆.

Since w(t1, t2) ∈ X0 for all (t1, t2) ∈ ∆ and by Assumption 1.3

‖w(t1, t2)‖ ≤ δ(t2 − t1) sup
s∈[t1,t2]

‖f(s)‖, ∀(t1, t2) ∈ ∆,

it follows that for each λ > ω and t ≥ t0 that

sup
s∈[t0,t]

e−γs‖vλ(s, t0)‖ ≤ 2 sup
s∈[t0,t]

e−γs‖λRλ(A0)w(s, t0)‖

≤ 2
M |λ|
λ− ω

sup
s∈[t0,t]

e−γs‖w(s, t0)‖

≤ 2
M |λ|
λ− ω

sup
s∈[t0,t]

[
e−γsδ(s− t0) sup

l∈[t0,s]

‖f(l)‖

]
.

Then by using the fact that δ is non-decreasing and γ > 0 we obtain for each λ > ω and
t ≥ t0 that

sup
s∈[t0,t]

e−γs‖vλ(s, t0)‖ ≤ 2
M |λ|
λ− ω

e−γt0δ(t− t0) sup
s∈[t0,t]

‖f(s)‖, ∀t ≥ t0,

providing that

‖vλ(t, t0)‖ ≤ 2
M |λ|
λ− ω

eγ(t−t0)δ(t− t0) sup
s∈[t0,t]

‖f(s)‖, ∀t ≥ t0.

This conclusion follows by using the fact that

λ > ω + 1⇒ |λ|
λ− w

< 1 + |ω|.

In the rest of this paper, the following assumption will be used.

Assumption 5.6 Assume that {UB(t, s)}(t,s)∈∆ ⊂ L(X0) has an exponential dichotomy

with exponent β > 0, constant κ ≥ 1 and strongly continuous projectors {Π+
B(t)}t∈R ⊂

L(X0) and {Π−B(t)}t∈R ⊂ L(X0).

Note that if {UB(t, s)}(t,s)∈∆ has an exponential dichotomy, then combining Remark
5.2 and condition iv) in Definition 1.8 we have

sup
t∈R
‖Π+

B(t)‖L(Z) ≤ κ and sup
t∈R
‖Π−B(t)‖L(Z) ≤ κ. (5.3)
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Proposition 5.7 Let Assumption 1.1 be satisfied. Let {U(t, s)}(t,s)∈∆ ⊂ L(X0) be a

given evolution family such that there exist M̂ ≥ 1, ω̂ ∈ R and

‖U(t, s)‖L(X0) ≤ M̂eω̂(t−s), ∀(t, s) ∈ ∆.

Assume that for each f ∈ C(R, X) the map

vλ(t, t0) =

∫ t

t0

U(t, s)λRλ(A)f(s)ds, (t, t0) ∈ ∆,

satisfies

‖vλ(t, t0)‖ ≤ δ∗∗(t− t0) sup
s∈[t0,t]

‖f(s)‖, ∀(t, t0) ∈ ∆,

with δ∗∗ : [0,+∞)→ [0,+∞) a non-decreasing function such that δ∗∗(t)→ 0 as t→ 0+.

Let ε > 0 be given and fixed. Then, for each τε > 0 satisfying M̂δ∗∗(τε) ≤ ε and each
λ > ω + 1 we have

‖vλ(t, t0)‖ ≤ C̃(ε, γ, ω̂, M̂) sup
s∈[t0,t]

eγ(t−s)‖f(s)‖, ∀(t, t0) ∈ ∆,

whenever γ > ω̂ and f ∈ C(R, X) with

C̃(ε, γ, ω̂, M̂) := M̂emax(0,ω̂)τε
2εmax(1, e−γτε)

1− e(ω̂−γ)τε
.

Proof. Without loss of generality we can assume that t0 = 0. Let τε > 0 be given
such that

M̂δ∗∗(s) ≤ ε, ∀s ∈ [0, τε].

Let t ≥ 0 be fixed. Then since we can write t = nτε + θ with θ ∈ [0, τε) and n ∈ N we
obtain

vλ(t, 0) =

∫ t

0

U(t, s)λRλ(A)f(s)ds

=

n−1∑
k=0

∫ (k+1)τε

kτε

U(t, s)λRλ(A)f(s)ds+

∫ t

nτε

U(t, s)λRλ(A)f(s)ds

=

n−1∑
k=0

U(t, (k + 1)τε)

∫ (k+1)τε

kτε

U((k + 1)τε, s)λRλ(A)f(s)ds

+U(t, nτε)

∫ t

nτε

U(nτε, s)λRλ(A)f(s)ds

=

n−1∑
k=0

U(t, (k + 1)τε)vλ((k + 1)τε, kτε) + U(t, nτε)vλ(t, nτε),

so that

vλ(t, 0) = U(t, nτε)

n−1∑
k=0

U(nτε, (k + 1)τε)vλ((k + 1)τε, kτε) + U(t, nτε)vλ(t, nτε). (5.4)
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Next observe that for all (r0, r1) ∈ ∆ and r ≥ r0 with 0 ≤ r0 − r1 ≤ τε we have

‖U(r, r0)vλ(r0, r1)‖ ≤ M̂eω̂(r−r0)‖vλ(r0, r1)‖
≤ eω̂(r−r0)M̂δ∗(r0 − r1) sup

s∈[r1,r0]

‖f(s)‖

≤ eω̂(r−r0)ε sup
s∈[r1,r0]

‖f(s)‖.
(5.5)

Let γ > ω̂ be fixed. Set ε1 := max(1, e−γτε). Let k ∈ N and r ∈ [kτε, (k + 1)τε] be given
and fixed. Then if γ ≥ 0 we have

ε sup
s∈[kτε,r]

‖f(s)‖ = ε sup
s∈[kτε,r]

e−γseγs‖f(s)‖ ≤ ε1e
γr sup
s∈[kτε,r]

e−γs‖f(s)‖ (5.6)

while if γ < 0

ε sup
s∈[kτε,r]

‖f(s)‖ = ε sup
s∈[kτε,r]

e−γseγs‖f(s)‖

≤ εeγkτε sup
s∈[kτε,r]

e−γs‖f(s)‖

≤ εeγre−γ(r−kτε) sup
s∈[kτε,r]

e−γs‖f(s)‖

≤ εeγre−γτε sup
s∈[kτε,r]

e−γs‖f(s)‖

≤ ε1e
γr sup
s∈[kτε,r]

e−γs‖f(s)‖.

Therefore for each k ∈ N, each r ∈ [kτε, (k + 1)τε] and γ > ω̂ we obtain

ε sup
s∈[kτε,r]

‖f(s)‖ ≤ ε1e
γr sup
s∈[kτε,r]

e−γs‖f(s)‖. (5.7)

By (5.5) and (5.7) we obtain for each k ∈ N, each r ≥ (k + 1)τε and γ > ω̂ that

‖U(r, (k + 1)τε)vλ((k + 1)τε, kτε)‖ ≤ e(ω̂−γ)(r−(k+1)τε)ε1e
γr sup
s∈[kτε,(k+1)τε]

e−γs‖f(s)‖.

(5.8)
Since t− nτε ∈ [0, τε) we have from (5.5) and (5.7) that

‖U(t, nτε)vλ(t, nτε)‖ ≤ eω̂(t−nτε)ε sup
s∈[nτε,t]

‖f(s)‖

≤ eω̂(t−nτε)ε1e
γt sup
s∈[nτε,t]

e−γs‖f(s)‖

≤ emax(0,ω̂)τεε1e
γt sup
s∈[nτε,t]

e−γs‖f(s)‖,
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and by using (5.4) and (5.8) we obtain

‖vλ(t, 0)‖ ≤ M̂eω̂(t−nτε)
n−1∑
k=0

‖U(nτε, (k + 1)τε)vλ((k + 1)τε, kτε)‖+ ‖U(t, nτε)vλ(t, nτε)‖

≤ M̂eω̂(t−nτε)

n−1∑
k=0

e(ω̂−γ)(nτε−(k+1)τε)ε1e
γnτε sup

s∈[kτε,(k+1)τε]

e−γs‖f(s)‖

+emax(0,ω̂)τεε1e
γt sup
s∈[nτε,t]

e−γs‖f(s)‖

≤ M̂eω̂(t−nτε)eγnτε

[
n−1∑
k=0

e(ω̂−γ)(n−1−k))τε

]
ε1 sup
s∈[0,t]

e−γs‖f(s)‖

+emax(0,ω̂)τεε1e
γt sup
s∈[nτε,t]

e−γs‖f(s)‖

≤ M̂e(ω̂−γ)(t−nτε)eγt

[
n−1∑
k=0

e(ω̂−γ)kτε

]
ε1 sup
s∈[0,t]

e−γs‖f(s)‖

+emax(0,ω̂)τεε1e
γt sup
s∈[0,t]

e−γs‖f(s)‖.

Then since ω̂ − γ < 0 we obtain

‖vλ(t, 0)‖ ≤ M̂emax(0,ω̂)τεeγt

[
1 +

+∞∑
k=0

(e(ω̂−γ)τε)k

]
ε1 sup
s∈[0,t]

e−γs‖f(s)‖

≤ M̂emax(0,ω̂)τεeγt
[

2

1− e(ω̂−γ)τε

]
ε1 sup
s∈[0,t]

e−γs‖f(s)‖.

The proof is complete.
As a direct consequence of Propositions 5.7 and 5.5 we obtain the following result.

Proposition 5.8 Let Assumptions 1.1, 1.2, 1.3 and 5.6 be satisfied. Assume in addition
that

sup
t∈R
‖B(t)‖L(X0,X) < +∞.

Let ε > 0 be given and fixed. Then, for each τε > 0 satisfying κδ∗(τε) ≤ ε and each
λ > ω + 1, the map

vλ(t, t0) =

∫ t

t0

UB(t, s)λRλ(A)f(s)ds, (t, t0) ∈ ∆,

satisfies
‖Π+(t)vλ(t, t0)‖ ≤ Ĉ(ε, γ) sup

s∈[t0,t]

eγ(t−s)‖f(s)‖, ∀(t, t0) ∈ ∆,

whenever γ > −β and f ∈ C(R, X) with

Ĉ(ε, γ) := κ
2εmax(1, e−γτε)

1− e−(β+γ)τε
. (5.9)
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Proposition 5.9 Let Assumptions 1.1, 1.2, 1.3 and 5.6 be satisfied. Assume in addition
that

sup
t∈R
‖B(t)‖L(X0,X) < +∞.

Let ε > 0 be given and fixed. Then, for each τε > 0 satisfying κδ∗(τε) ≤ ε and each
λ > ω + 1 the map

vλ(t, t0) =

∫ t

t0

UB(t, s)λRλ(A)f(s)ds, (t, t0) ∈ ∆,

satisfies

‖U−B (t0, t)vλ(t, t0)‖ ≤ Ĉ(ε, γ) sup
s∈[t0,t]

eγ(s−t0)‖f(s)‖, ∀(t, t0) ∈ ∆,

whenever γ > −β and f ∈ C(R, X) with Ĉ(ε, γ) defined in (5.9).

Proof. Let (t, t0) ∈ ∆ be given. Without loss of generality one can assume that
t = 0. From now on fix t0 ≤ 0. Let τε > 0 be given such that

κδ∗(s) ≤ ε, ∀s ∈ [0, τε].

Then since we can write t0 = −nτε − θ with θ ∈ [0, τε) and n ∈ N we obtain

U−B (0, t0)vλ(0, t0) =

∫ 0

t0

U−B (0, s)λRλ(A)f(s)ds

=

n−1∑
k=0

∫ −kτε
−(k+1)τε

U−B (0, s)λRλ(A)f(s)ds

+

∫ −nτε
t0

U−B (0, s)λRλ(A)f(s)ds

=

n−1∑
k=0

U−B (0,−kτε)
∫ −kτε
−(k+1)τε

U−B (−kτε, s)λRλ(A)f(s)ds

+U−B (0,−nτε)
∫ −nτε
t0

U−B (−nτε, s)λRλ(A)f(s)ds,

so that

Π−(0)vλ(0, t0) =

n−1∑
k=0

U−B (0,−kτε)vλ(−kτε,−(k + 1)τε) + U−B (0,−nτε)vλ(−nτε, t0).

(5.10)
Since U−B (0, t0) is invertible from Π−(t0)(X0) into Π−(0)(X0) with inverse U−B (t0, 0), by
applying U−B (t0, 0) to (5.10) we obtain

U−B (t0, 0)vλ(0, t0) =

n−1∑
k=0

U−B (t0,−kτε)vλ(−kτε,−(k + 1)τε) + U−B (t0,−nτε)vλ(−nτε, t0).
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and by using the evolution property of U−B it follows that

U−B (t0, 0)vλ(0, t0) = U−B (t0,−nτε)
n−1∑
k=0

U−B (−nτε,−kτε)vλ(−kτε,−(k + 1)τε)

+U−B (t0,−nτε)vλ(−nτε, t0).

(5.11)

Next observe that for all (r0, r1) ∈ ∆ and r ≤ r1 with 0 ≤ r0 − r1 ≤ τε, we have

‖U−B (r, r0)vλ(r0, r1)‖ ≤ κe−β(r0−r)‖vλ(r0, r1)‖
≤ e−β(r0−r)κδ∗(r0 − r1) sup

s∈[r1,r0]

‖f(s)‖

≤ e−β(r0−r)ε sup
s∈[r1,r0]

‖f(s)‖.
(5.12)

Let γ > −β be fixed. Set ε1 := max(1, e−γτε). Let k ∈ N and r ∈ [−(k + 1)τε,−kτε] be
given and fixed. Then if γ ≥ 0 we have

ε sup
s∈[r,−kτε]

‖f(s)‖ = ε sup
s∈[r,−kτε]

e−γseγs‖f(s)‖ ≤ ε1e
−γr sup

s∈[r,−kτε]

eγs‖f(s)‖,

while if γ < 0

ε sup
s∈[r,−kτε]

‖f(s)‖ = ε sup
s∈[r,−kτε]

e−γseγs‖f(s)‖

≤ εeγkτε sup
s∈[r,−kτε]

eγs‖f(s)‖

≤ εe−γreγ(r+kτε) sup
s∈[r,−kτε]

eγs‖f(s)‖

≤ εe−γre−γτε sup
s∈[r,−kτε]

eγs‖f(s)‖

≤ ε1e
−γr sup

s∈[r,−kτε]

eγs‖f(s)‖.

Therefore, for each k ∈ N, each r ∈ [−(k + 1)τε,−kτε] and γ > −β we obtain

ε sup
s∈[r,−kτε]

‖f(s)‖ ≤ ε1e
−γr sup

s∈[r,−kτε]

eγs‖f(s)‖. (5.13)

By (5.12) and (5.13) we obtain for each k ∈ N, each r ≤ −(k + 1)τε and γ > −β that

‖U−B (r,−kτε)vλ(−kτε,−(k + 1)τε)‖ ≤ e(β+γ)(r+(k+1)τε)e−γrε1 sup
s∈[−(k+1)τε,−kτε]

eγs‖f(s)‖.

Since −nτε − t0 = θ ∈ [0, τε) we obtain from (5.11) and (5.13)

‖U−B (t0,−nτε)vλ(−nτε, t0)‖ ≤ eβ(t0+nτε)ε sup
s∈[t0,−nτε]

‖f(s)‖

≤ eβ(t0+nτε)ε1e
−γt0 sup

s∈[t0,−nτε]

eγs‖f(s)‖, (5.14)
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and by using (5.11) and (5.14) it follows that

‖U−B (t0, 0)Π−(0)vλ(0, t0)‖ ≤ κeβ(t0+nτε)

[
n−1∑
k=0

e(β+γ)(−n+k+1)τεeγnτεε1 sup
s∈[−(k+1)τε,−kτε]

eγs‖f(s)‖

]
+eβ(t0+nτε)ε1e

−γt0 sup
s∈[t0,−nτε]

eγs‖f(s)‖

≤ κeβ(t0+nτε)eγnτε

[
n−1∑
k=0

e(β+γ)(−n+k+1)τεε1 sup
s∈[t0,0]

eγs‖f(s)‖

]
+eβ(t0+nτε)ε1e

−γt0 sup
s∈[t0,0]

eγs‖f(s)‖

≤ κe(β+γ)(t0+nτε)e−γt0

[
0∑

k=−n+1

(e(β+γ)τε)kε1 sup
s∈[t0,0]

eγs‖f(s)‖

]
+eβ(t0+nτε)ε1e

−γt0 sup
s∈[t0,0]

eγs‖f(s)‖.

Finally, since γ + β > 0 and t0 + nτε < 0 we get

‖U−B (t0, 0)Π−(0)vλ(0, t0)‖ ≤ κ

[
1 +

0∑
k=−n+1

(e(β+γ)τε)k

]
ε1e
−γt0 sup

s∈[t0,0]

eγs‖f(s)‖

≤ κ

[
1 +

0∑
k=−∞

(e(β+γ)τε)k

]
ε1e
−γt0 sup

s∈[t0,0]

eγs‖f(s)‖

≤ κ
[

2

1− e−(β+γ)

]
ε1e
−γt0 sup

s∈[t0,0]

eγs‖f(s)‖.

This completes the proof.

Lemma 5.10 Let Assumptions 1.1, 1.2, 1.3 and 5.6 be satisfied. Assume in addition
that

sup
t∈R
‖B(t)‖L(X0,X) < +∞.

Let η ∈ [0, β) be given. Then for each λ > ω + 1, each f ∈ BCη(R, X) and t ∈ R

J +
λ (f)(t) := lim

t0→−∞

∫ t

t0

U+
B (t, s)λRλ(A)f(s)ds :=

∫ t

−∞
U+
B (t, s)λRλ(A)f(s)ds, (5.15)

exists. Moreover, the following properties hold

i) For each η ∈ [0, β) and each λ > ω + 1, J +
λ is a bounded linear operator from

BCη(R, X) into itself. More precisely for any ν ∈ (−β, 0)

‖J +
λ (f)‖η ≤ Ĉ(1, ν)‖f‖η, ∀f ∈ BCη(R, X) with η ∈ [0,−ν],

where Ĉ(1, ν) is the constant introduced in Proposition 5.8.
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ii) For each η ∈ [0, β), each λ > ω + 1 and each f ∈ BCη(R, X) we have

J +
λ (f)(t) = U+

B (t, l)J +
λ (f)(l) +

∫ t

l

U+
B (t, s)λRλ(A)f(s)ds, ∀(t, l) ∈ ∆. (5.16)

Proof. Let η ∈ [0, β) be given. Let λ > ω + 1 be given and fixed. Recall

vλ(t, t0) :=

∫ t

t0

UB(t, s)λRλ(A)f(s)ds, ∀(t, t0) ∈ ∆,

and observe that

Π+(t)vλ(t, t0) =

∫ t

t0

U+
B (t, s)λRλ(A)f(s)ds, ∀(t, t0) ∈ ∆,

and
J +
λ (f)(t) = lim

t0→−∞
Π+(t)vλ(t, t0), ∀t ∈ R.

To prove the existence of the limit, we will show that for each fixed t ∈ R, {Π+(t)vλ(t, t0)}t0≤t
is a Cauchy sequence. Fix t ∈ R. Let f ∈ BCη(R, X) be given. Let t0, r ∈ R such that
t0 ≤ r ≤ t. Then we have

Π+(t)vλ(t, t0) = U+
B (t, r)

∫ r

t0

U+
B (r, s)λRλ(A)f(s)ds+

∫ t

r

U+
B (t, s)λRλ(A)f(s)ds

= U+
B (t, r)vλ(r, t0) + Π+(t)vλ(t, r)

and
Π+(t)vλ(t, t0)−Π+(t)vλ(t, r) = UB(t, r)Π+(r)vλ(r, t0). (5.17)

Hence by Proposition 5.8 we can find a constant Ĉ(1, γ) > 0 with γ ∈ (−β,−η) such
that

‖Π+(t)vλ(t, t0)−Π+(t)vλ(t, r)‖ ≤ κe−β(t−r)Ĉ(1, γ) sup
s∈[t0,r]

eγ(r−s)‖f(s)‖

≤ κe−β(t−r)Ĉ(1, γ)‖f‖η sup
s∈[t0,r]

eγ(r−s)eη|s|

≤ κe−β(t−r)Ĉ(1, γ)‖f‖ηe−γ(t−r) sup
s∈[t0,r]

eγ(t−s)eη|s|

≤ κe−(β+γ)(t−r)Ĉ(1, γ)‖f‖η sup
s∈[t0,r]

eγ(t−s)eη(|t−s|+|t|).

Then using the fact that β + γ > 0 and η + γ < 0 we obtain

‖Π+(t)vλ(t, t0)−Π+(t)vλ(t, r)‖ ≤ κe−(β+γ)(t−r)Ĉ(1, γ)‖f‖ηeη|t|,

that is
lim

t0,r→−∞
‖Π+(t)vλ(t, t0)−Π+(t)vλ(t, r)‖ = 0.
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This proves the existence of the limit (5.15) for any fixed t ∈ R.
(i): Let η ∈ [0, β) be given. Let ν ∈ (−β, 0). By Proposition 5.8 we can find a constant

Ĉ(1, ν) > 0 such that

‖Π+(t)vλ(t, t0)‖ ≤ Ĉ(1, ν) sup
s∈[t0,t]

eν(t−s)‖f(s)‖, ∀(t, t0) ∈ ∆.

Then for all (t, t0) ∈ ∆

‖Π+(t)vλ(t, t0)‖ ≤ Ĉ(1, ν) sup
s∈[t0,t]

eν(t−s)‖f(s)‖

≤ Ĉ(1, ν)‖f‖η sup
s∈[t0,t]

eν(t−s)eη|s|

≤ Ĉ(1, ν)‖f‖η sup
s∈[t0,t]

eν(t−s)eη|t−s|+η|t|

≤ Ĉ(1, ν)‖f‖ηeη|t| sup
s∈[t0,t]

e(ν+η)(t−s),

and since ν + η < 0 we obtain

‖Π+(t)vλ(t, t0)‖ ≤ Ĉ(1, ν)‖f‖ηeη|t|. (5.18)

The result follows by letting t0 → −∞ in (5.18).
(ii): Let η ∈ [0, β) and (t, l) ∈ ∆ be given. Then

J +
λ (f)(t) = U+

B (t, l)

∫ l

−∞
U+
B (l, s)λRλ(A)f(s)ds+

∫ t

l

U+
B (t, s)λRλ(A)f(s)ds

= U+
B (t, l)J +

λ (f)(l) +

∫ t

l

U+
B (t, s)λRλ(A)f(s)ds.

This completes the proof.

Lemma 5.11 Let Assumptions 1.1, 1.2, 1.3 and 5.6 be satisfied. Assume in addition
that

sup
t∈R
‖B(t)‖L(X0,X) < +∞.

Let η ∈ [0, β) be given. Then for each λ > ω + 1, each f ∈ BCη(R, X) and t0 ∈ R

J−λ (f)(t0) := − lim
t→+∞

∫ t

t0

U−B (t0, s)λRλ(A)f(s)ds := −
∫ +∞

t0

U−B (t0, s)λRλ(A)f(s)ds,

(5.19)
exists. Moreover the following properties hold

i) For each η ∈ [0, β) and each λ > ω + 1, J−λ is a bounded linear operator from
BCη(R, X) into itself. More precisely for any ν ∈ (−β, 0)

‖J−λ (f)‖η ≤ Ĉ(1, ν)‖f‖η, ∀f ∈ BCη(R, X) with η ∈ [0,−ν],

where Ĉ(1, ν) is the constant introduced in Proposition 5.8.
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ii) For each η ∈ [0, β), each λ > ω + 1 and each f ∈ BCη(R, X) we have

J−λ (f)(t) = U−B (t, l)J−λ (f)(l) +

∫ t

l

U−B (t, s)λRλ(A)f(s)ds, ∀(t, l) ∈ ∆. (5.20)

Proof. Let η ∈ [0, β) be given. Let λ > ω + 1 be given and fixed. Recall

vλ(t, t0) :=

∫ t

t0

UB(t, s)λRλ(A)f(s)ds, ∀(t, t0) ∈ ∆.

Observe that

U−B (t0, t)vλ(t, t0) =

∫ t

t0

U−B (t0, s)λRλ(A)f(s)ds, ∀(t, t0) ∈ ∆,

and
J−λ (f)(t0) = − lim

t→+∞
zλ(t, t0), ∀t0 ∈ R,

with
zλ(t, t0) := U−B (t0, t)vλ(t, t0), ∀(t, t0) ∈ ∆. (5.21)

To prove the existence of the limit, we will show that for each t0 ∈ R, {wλ(t, t0)}t≥t0 is
a Cauchy sequence. Let f ∈ BCη(R, X) be given. Let t, r ∈ R such that t0 ≤ r ≤ t.
Then we have

zλ(t, t0) =

∫ r

t0

U−B (t0, s)λRλ(A)f(s)ds+ U−B (t0, r)

∫ t

r

U−B (r, s)λRλ(A)f(s)ds

= zλ(r, t0) + U−B (t0, r)zλ(r, t),

and
zλ(t, t0)− zλ(r, t0) = U−B (t0, r)zλ(r, t). (5.22)

Then by Proposition 5.9 and the definition of zλ in (5.21) we can find a constant Ĉ(1, γ) >
0 with γ ∈ (−β,−η) such that

‖zλ(t, t0)− zλ(r, t0)‖ ≤ κe−β(r−t0)Ĉ(1, γ) sup
s∈[t,r]

eγ(s−t)‖f(s)‖

≤ κe−β(r−t0)Ĉ(1, γ)‖f‖ηe−γ(t−t0) sup
s∈[t,r]

eγ(s−t0)eη|s|

≤ κe−β(r−t0)Ĉ(1, γ)‖f‖ηe−γ(r−t0)e−γ(t−r) sup
s∈[t,r]

eγ(s−t0)eη|s|

≤ κe−(β+γ)(r−t0)Ĉ(1, γ)‖f‖ηe−γ(t−r) sup
s∈[t,r]

eγ(s−t0)eη|s|

≤ κe−(β+γ)(r−t0)Ĉ(1, γ)‖f‖η sup
s∈[t,r]

eγ(s−t0)eη|s|

≤ κe−(β+γ)(r−t0)Ĉ(1, γ)‖f‖η sup
s∈[t,r]

eγ(s−t0)eη(|s−t0|+|t0|)

≤ κe−(β+γ)(r−t0)Ĉ(1, γ)‖f‖η sup
s∈[t,r]

e(γ+η)(s−t0)eη|t0|,
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and since β + γ > 0, γ + η < 0 we obtain

‖zλ(t, t0)− zλ(r, t0)‖ ≤ κe−(β+γ)(r−t0)Ĉ(1, γ)‖f‖ηeη|t0|,

which gives
lim

t,r→+∞
‖zλ(t, t0)− zλ(r, t0)‖ = 0,

and proves the existence of the limit (5.19).
i) Let η ∈ [0, β) be given. Let ν ∈ (−β, 0). Note that by Proposition 5.9 we can find a

constant Ĉ(1, ν) > 0 such that

‖wλ(t, t0)‖ ≤ Ĉ(1, ν) sup
s∈[t0,t]

eγ(s−t0)‖f(s)‖, ∀(t, t0) ∈ ∆.

Then for all (t, t0) ∈ ∆

‖wλ(t, t0)‖ ≤ Ĉ(1, ν)‖f‖η sup
s∈[t0,t]

eν(s−t0)eη|s|

≤ Ĉ(1, ν)‖f‖η sup
s∈[t0,t]

eν(s−t0)eη(|s−t0|+|t0|)

≤ Ĉ(1, ν)‖f‖η sup
s∈[t0,t]

e(ν+η)(s−t0)eη|t0|,

and since ν + η < 0 we obtain

‖wλ(t, t0)‖ ≤ Ĉ(1, ν)‖f‖ηeη|t0|. (5.23)

The result follows by letting t→ +∞ in (5.23).
(ii) Let η ∈ [0, β) and (t, l) ∈ ∆ be given. Then

J−λ (f)(l) = −
∫ t

l

U−B (l, s)λRλ(A)f(s)ds−
∫ +∞

t

U−B (l, s)λRλ(A)f(s)ds

= −U−B (l, t)

∫ t

l

U−B (t, s)λRλ(A)f(s)ds− U−B (l, t)

∫ +∞

t

U−B (t, s)λRλ(A)f(s)ds

and because U−B (l, t) is invertible from Π−(t)(X0) into Π−(l)(X0) with inverse U−B (t, l)
and J−λ (f)(l) ∈ Π−(l)(X0) one gets

U−B (t, l)J−λ (f)(l) = −
∫ t

l

U−B (t, s)λRλ(A)f(s)ds−
∫ +∞

t

U−B (t, s)λRλ(A)f(s)ds

= −
∫ t

l

U−B (t, s)λRλ(A)f(s)ds+ J−λ (f)(t),

and the result follows.

Lemma 5.12 Let Assumptions 1.1, 1.2, 1.3 and 5.6 be satisfied. Assume in addition
that

sup
t∈R
‖B(t)‖L(X0,X) < +∞.
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Let η ∈ [0, β) be given. For each λ > ω + 1 and each f ∈ BCη(R, X) define

Jλ(f)(t) := J +
λ (f)(t) + J−λ (f)(t) :=

∫ +∞

−∞
ΓB(t, s)λRλ(A)f(s)ds, ∀t ∈ R, (5.24)

Then the following properties hold

i) For each η ∈ [0, β) and each λ > ω + 1, Jλ is a bounded linear operator from
BCη(R, X) into itself. More precisely for any ν ∈ (−β, 0)

‖Jλ(f)‖η ≤ 2 Ĉ(1, ν)‖f‖η, ∀f ∈ BCη(R, X) with η ∈ [0,−ν], (5.25)

where Ĉ(1, ν) is the constant introduced in Proposition 5.8.

ii) For each η ∈ [0, β), each λ > ω + 1 and each f ∈ BCη(R, X) we have

Jλ(f)(t) = UB(t, l)Jλ(f)(l) +

∫ t

l

UB(t, s)λRλ(A)f(s)ds, ∀(t, l) ∈ ∆. (5.26)

iii) For each η ∈ [0, β), each f ∈ BCη(R, X), Jλ(f) is uniformly convergent on com-
pact subset of R as λ→ +∞.

iv) For each f ∈ BUC(R, X) ⊂ BC0(R, X) with relatively compact range, Jλ(f) is
uniformly convergent on R as λ→ +∞.

Proof. The proof of (i) follows from Lemmas 5.10 and 5.11.
(ii) Let η ∈ [0, β), f ∈ BCη(R, X) and (t, l) ∈ ∆ be given. Since J +

λ (f)(l) ∈ Π+(l),
J−λ (f)(l) ∈ Π−(l) one gets from (5.16) and (5.20)

J +
λ (f)(t) = UB(t, l)Π+(l)J +

λ (f)(l) + Π+(t)

∫ t

l

UB(t, s)λRλ(A)f(s)ds. (5.27)

and

J−λ (f)(t) = UB(t, l)Π−(l)J−λ (f)(l) + Π−(t)

∫ t

l

UB(t, s)λRλ(A)f(s)ds. (5.28)

and the result follows by adding up (5.27) and (5.28) combined with the fact that Π+(t)+
Π−(t) = Π+(l) + Π−(l) = I.
(iii) To do this we will prove the convergence for J +

λ and J−λ as λ goes to +∞. Let
η ∈ [0, β) and f ∈ BCη(R, X) be given. Let ε > 0 be given given and fixed. Let r > 0
be large enough such that

2κe−βrĈ(1, ν)‖f‖η ≤ ε. (5.29)

We first prove the convergence for J +
λ as λ goes to +∞. Indeed by using (5.27) combined

with the estimate in (i) we obtain for each λ, µ > ω + 1, each t ∈ R

‖J +
λ (f)(t)− J +

µ (f)(t)‖ ≤ κe−βr‖J +
λ (f)(t− r)− J +

µ (f)(t− r)‖

+κ‖
∫ t

t−r
UB(t, s)[λRλ(A)− µRµ(A)f(s)ds‖

≤ 2κe−βrĈ(1, ν)‖f‖η

+κ‖
∫ t

t−r
UB(t, s)[λRλ(A)− µRµ(A)f(s)ds‖
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and by using (5.29) we obtain the estimate

‖J +
λ (f)(t)− J +

µ (f)(t)‖ ≤ ε+ κ‖
∫ t

t−r
UB(t, s)[λRλ(A)− µRµ(A)f(s)ds‖, ∀t ∈ R.

(5.30)
Now infer from Theorem 1.6 that

lim
λ,µ→+∞

∫ t

t−r
UB(t, s)[λRλ(A)− µRµ(A)f(s)ds = 0,

uniformly for t in a compact subset of R and (5.30) yields

lim
λ,µ→+∞

‖J +
λ (f)(t)− J +

µ (f)(t)‖ ≤ ε,

uniformly for t in a compact subset of R. Since ε > 0 is arbitrarily fixed we conclude by
a Cauchy sequence argument that lim

λ→+∞
J +
λ (f)(t) exists uniformly for t in a compact

subset of R.
Now we prove the convergence for J−λ . First recall that for each t ∈ R, U−B (t+ r, t) is

invertible from Π−(t)(X0) into Π−(t+r)(X0) with inverse U−B (t, t+r). Then by applying
U−B (t, t+ r) to the left side of (5.28) one gets for all t ∈ R

U−B (t, t+ r)J−λ (f)(t+ r) = U−B (t, t+ r)UB(t+ r, t)Π−(t)J−λ (f)(t)

+U−B (t, t+ r)Π−(t+ r)

∫ t+r

t

UB(t+ r, s)λRλ(A)f(s)ds, ∀t ∈ R,

that is

U−B (t, t+ r)J−λ (f)(t+ r) = J−λ (f)(t) + U−B (t, t+ r)

∫ t+r

t

UB(t+ r, s)λRλ(A)f(s)ds, ∀t ∈ R,

so that

J−λ (f)(t) = U−B (t, t+r)J−λ (f)(t+r)−U−B (t, t+r)

∫ t+r

t

UB(t+r, s)λRλ(A)f(s)ds, ∀t ∈ R.

Then for each λ, µ > ω + 1, each t ∈ R

‖J−λ (f)(t)− J−µ (f)(t)‖ ≤ κe−βr‖J−λ (f)(t+ r)− J−µ (f)(t+ r)‖

+‖
∫ t+r

t

U−B (t, s)[λRλ(A)− µRµ(A)]f(s)ds‖

≤ 2κe−βrĈ(1, ν)‖f‖η

+κ‖
∫ t+r

t

UB(t+ r, s)[λRλ(A)− µRµ(A)]f(s)ds‖,

and by using (5.29) we obtain the estimate

‖J−λ (f)(t)− J−µ (f)(t)‖ ≤ ε+ κ‖
∫ t+r

t

UB(t+ r, s)[λRλ(A)− µRµ(A)]f(s)ds‖.

(5.31)
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Now we infer from Theorem 1.6 that

lim
λ,µ→+∞

∫ t+r

t

UB(t+ r, s)[λRλ(A)− µRµ(A)]f(s)ds = 0,

uniformly for t in a compact subset of R and (5.31) yields

lim
λ,µ→+∞

‖J−λ (f)(t)− J−µ (f)(t)‖ ≤ ε.

uniformly for t in a compact subset of R. Since ε > 0 is arbitrarily fixed we conclude by
a Cauchy sequence argument that lim

λ→+∞
J−λ (f)(t) exists uniformly for t in a compact

subset of R.
Finally we obtain that

lim
λ→+∞

Jλ(f)(t) = lim
λ→+∞

J +
λ (f)(t) + lim

λ→+∞
J−λ (f)(t),

exists uniformly for t in a compact subset of R.
(iv) The proof use the same argument as in the proof of iii). The uniform convergence
on R is obtained by using Proposition 4.1 which ensures that the limits

lim
λ,µ→+∞

∫ t

t−r
UB(t, s)[λRλ(A)− µRµ(A)]f(s)ds = 0,

and

lim
λ,µ→+∞

∫ t+r

t

UB(t+ r, s)[λRλ(A)− µRµ(A)]f(s)ds = 0,

are uniform for t ∈ R.
Now we are ready to prove an analogue of Theorem 5.4 for our purpose.

Theorem 5.13 Let Assumptions 1.1, 1.2 and 1.3 be satisfied. Assume in addition that

sup
t∈R
‖B(t)‖L(X0,X) < +∞.

Then the following assertions are equivalent

i) The evolution family {UB(t, s)}(t,s)∈∆ has an exponential dichotomy.

ii) For each f ∈ BC(R, X), there exists a unique integrated solution u ∈ BC(R, X0)
of (1.1).

Moreover if UB has an exponential dichotomy with exponent β > 0, then for each η ∈
[0, β) and each f ∈ BCη(R, X) there exists a unique integrated solution u ∈ BCη(R, X0)
of (1.1) which is given by

u(t) = lim
λ→+∞

Jλ(f)(t) = lim
λ→+∞

∫ +∞

−∞
ΓB(t, s)λRλ(A)f(s)ds, ∀t ∈ R,

where {ΓB(t, s)}(t,s)∈R2 is the Green’s operator function associated to {UB(t, s)}(t,s)∈∆.
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Proof. (i) ⇒(ii) This is a direct consequence of Lemma 5.12 by taking the limit
when λ goes to +∞ in (5.26).

(ii)⇒(i) First of all note that since BC(R, X0) ⊂ BC(R, X), the property ii) ensures
that for each f ∈ BC(R, X0) there exists a unique integrated solution u ∈ BC(R, X0) of
(1.1). Furthermore note that if uf ∈ BC(R, X0) is a solution of (1.1) for f ∈ BC(R, X0)
then by Corollary 3.1 we know that it satisfies the integral equation

uf (t) = UB(t, t0)x0 +

∫ t

t0

UB(t, s)f(s)ds, ∀t ≥ t0,

and (i) follows by Theorem 5.4. The proof is complete.
As a consequence of the foregoing theorem we can obtain the following persistence

result for exponential dichotomy

Theorem 5.14 Let Assumptions 1.1, 1.2, 1.3 and 5.6 be satisfied and assume in addi-
tion that

sup
t∈R
‖B(t)‖L(X0,X) < +∞.

Then there exists ε > 0 such that for each strongly continuous family {C(t)}t∈R ⊂
L(X0, X) satisfying

sup
t∈R
‖B(t)− C(t)‖L(X0,X) ≤ ε,

the evolution family generated by

du(t)

dt
= (A+ C(t))u(t), for t ∈ R. (5.32)

has an exponential dichotomy.

Proof. The proof of this theorem is classical. Then we will only sketch the proof.
Note that the the evolution family generated by (5.32) has an exponential dichotomy if
and only if for each f ∈ BC(R, X) there exists a unique u ∈ BC(R, X0) satisfying

du(t)

dt
= (A+ C(t))u(t) + f(t), for t ∈ R.

or equivalently

du(t)

dt
= (A+B(t))u(t) + [C(t)−B(t)]u(t) + f(t), for t ∈ R.

This is equivalent to solve for each f ∈ BC(R, X) the fixed point problem to find
u ∈ BC(R, X0) such that

u(t) = J ([C(.)−B(.)]u(.) + f(.))(t)

where

J (g)(t) = lim
λ→+∞

∫ +∞

−∞
ΓB(t, s)λRλ(A)g(s)ds, ∀t ∈ R

which can be performed by using the uniform estimates (5.25) (for η = 0) obtained in
Lemma 5.12.
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6 Example 1

In order to illustrate our results we will apply some of the results to a parabolic equation
. Let p ∈ [1,+∞) and I := (0, 1). Consider the following parabolic equation with
non-local boundary condition for each initial time t0 ∈ R

∂u(t, x)

∂t
=
∂2u(t, x)

∂x2
+ αu(t, x) + g(t, x), for t ≥ t0 and x ∈ (0, 1),

−∂u(t, 0)

∂x
=

∫
I

β0(t, x)ϕ(x)dx+ h0(t)

+
∂u(t, 1)

∂x
=

∫
I

β1(t, x)ϕ(x)dx+ h1(t)

u(t0, .) = ϕ ∈ Lp(I,R),

(6.1)

with α > 0, g ∈ C(R, Lp(I,R)), h0, h1 ∈ C(R,R) and β0, β1 ∈ C(R, Lq(I,R)) (with
1
p + 1

q = 1).

Abstract reformulation: In order to incorporate the boundary condition into the state
variable, we consider

X := R2×Lp(I,R)

which is a Banach space endowed with the usual product norm∥∥∥∥∥∥
 x0

x1

ϕ

∥∥∥∥∥∥ = |x0|+ |x1|+ ‖ϕ‖Lp

and we set
X0 := {0R2} × Lp(I,R).

We consider A : D(A) ⊂ X → X the linear operator defined by

A
(

0R2

ϕ

)
:=

 ϕ′(0)
−ϕ′(1)
ϕ′′


with

D(A) := {0R2} ×W 2,p(I,R).

By construction A0 the part of A in X0 coincides with the usual formulation for the
parabolic equation (6.1) with homogeneous boundary conditions. Indeed A0 : D(A0) ⊂
X0 → X0 is a linear operator on X0 defined by

A0

(
0R2

ϕ

)
=

(
0R2

ϕ′′

)
with

D(A0) = {0R2} ×
{
ϕ ∈W 2,p ((0, 1) ,R) : ϕ′(0) = ϕ′(1) = 0

}
.

In the following lemma we will first summarize some classical properties for the linear
operator A0.
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Lemma 6.1 The linear operator A0 is the infinitesimal generator of {TA0(t)}t≥0, an
analytic semigroup of bounded linear operators on X0. Moreover, TA0(t) is compact for
each t > 0 and (0,+∞) ⊂ ρ(A0). The spectrum of A0 is given by

σ(A0) =
{
−(πk)2 : k ∈ N

}
and each eigenvalue λk := −(πk)2 is associated to the eigenfunction

ψk(x) := cos(πkx).

Furthermore each eigenvalue λk is simple and the projector on the generalized eigenspace
associated to this eigenvalue is given by

Πk,0

(
0R2

ϕ

)
:=

(
0R2∫ 1

0
ψk(r)ϕ(r)dr∫ 1
0
ψk(r)2dr

ψk

)
.

Set
Ωω = {λ ∈ C : Re (λ) > ω} , ∀ω ∈ R,

define for λ ∈ C,
∆ (λ) := µ2(eµ − e−µ),

where
µ :=

√
λ.

Next we compute explicitly the resolvent of A.

Lemma 6.2 For each ωA ≥ 0 such that

ΩωA ⊂ {λ ∈ C : ∆ (λ) 6= 0} ⊂ ρ (A) ,

and for each λ := µ2 ∈ ΩωA we have

(λI −A)

(
0R2

ϕ

)
=

 y0

y1

f

⇔
(

0R2

ϕ

)
= (λI −A)−1

 y0

y1

f

⇔
ϕ(x) =

∆1(x)

∆ (λ)

1

µ
y0 +

∆2(x)

∆ (λ)

1

µ
y1 +

∆1(x)

∆ (λ)

1

2µ

∫ 1

0

e−µsf(s)ds

+
∆2(x)

∆ (λ)

1

2µ

∫ 1

0

e−µ(1−s)f(s)ds+
1

2µ

∫ 1

0

e−µ|x−s|f(s)ds

where
∆1(x) = µ2

[
eµ(1−x) + e−µ(1−x)

]
and ∆2(x) = µ2

[
e−µx + eµx

]
.
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Proof. In order to compute the resolvent we set

u(x) :=
1

2µ

∫ 1

0

e−µ|x−s|f(s)ds =
1

2µ

∫ +∞

−∞
e−µ|x−s|f̄(s)ds

where f̄ extends f by 0 on R \ [0, 1] . We have

u(x) =
1

2µ

[∫ x

−∞
e−µ(x−s)f̄(s)ds+

∫ +∞

x

eµ(x−s)f̄(s)ds

]
so

u′(x) = −1

2

∫ x

−∞
e−µ(x−s)f̄(s)ds+

1

2

∫ +∞

x

eµ(x−s)f̄(s)ds.

We set

u(0) = γ0 :=
1

2µ

∫ 1

0

e−µsf(s)ds and u(1) = γ1 :=
1

2µ

∫ 1

0

e−µ(1−s)f(s)ds

and we observe that
u′(0) = µγ0 and u′(1) = −µγ1

We set
u1(x) := e−µx and u2(x) := eµx.

In order to solve the problem

(λI −A)

 0
0
ϕ

 =

 y0

y1

f


we look for ϕ under the form

ϕ(x) = u(x) + z1u1(x) + z2u2(x),

where z1, z2 ∈ R.
We observe that to verify the boundary conditions

−ϕ′(0) = y0 and ϕ′(1) = y1

is equivalent to verify {
u′(0) + z1u

′
1(0) + z2u

′
2(0) = −y0

u′(0) + z1u
′
1(0) + z2u

′
2(0) = y1

so we must solve the system

z1u
′
1(0) + z2u

′
2(0) = −y0 − u′(0)

z1u
′
1(1) + z2u

′
2(1) = y1 − u′(1)
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which is equivalent to

−µz1 +µz2 = −y0 − µγ0

−µe−µz1 +µeµz2 = y1 + µγ1

hence
z1 = 1

∆(λ) [−µeµ (−y0 − µγ0) + µ (y1 + µγ1)]

z2 = 1
∆(λ) [−µe−µ (−y0 − µγ0) + µ (y1 + µγ1)]

and the result follows.
The following estimation shows that A is not a Hille-Yosida operator.

Lemma 6.3 We have the following estimations

0 < lim inf
λ(∈R)→+∞

λ
1
p∗
∥∥∥(λI −A)

−1
∥∥∥
L(X)

≤ lim sup
λ(∈R)→+∞

λ
1
p∗
∥∥∥(λI −A)

−1
∥∥∥
L(X)

< +∞,

with

p∗ =
2p

1 + p
.

Proof. Let λ > 0 be large enough. We have∥∥∥∥∥∥(λI −A)−1

 0
y1

0Lp

∥∥∥∥∥∥ = |y1|
√
λ

∆ (λ)

∥∥∥e√λ· + e−
√
λ·
∥∥∥
Lp
.

Set

γλ :=

√
λ

∆ (λ)

∥∥∥e√λ· + e−
√
λ·
∥∥∥
Lp
,

we have
√
λ

∆ (λ)

[
‖e
√
λ·‖Lp − ‖e−

√
λ·‖Lp

]
≤ γλ ≤

√
λ

∆ (λ)

[
‖e
√
λ·‖Lp + ‖e−

√
λ·‖Lp

]
and √

λ

∆ (λ)
‖e
√
λ·‖Lp =

√
λ

λ(e
√
λ − e−

√
λ)

(∫ 1

0

ep
√
λxdx

)1/p

and
lim

λ→+∞
γλλ

p+1
2p = (1/p)1/p > 0,

and the result follows.
By using Lemmas 6.1-6.3, we deduce that Assumption 3.4 in Ducrot, Magal and

Prevost [17] is satisfied. Therefore by applying Theorem 3.11 in [17] we obtain the
following lemma.

Lemma 6.4 The linear operator A satisfies Assumption 1.1 and Assumption 1.2.

Remark 6.5 Since ρ(A) 6= ∅, one can prove that σ(A0) = σ(A) (see [33]).
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Abstract Cauchy problem: By identifying u(t, .) and v(t) :=

(
0R2

u(t, .)

)
we can

rewrite equation (6.1) as the following abstract Cauchy problem for each initial time
t0 ∈ R

dv(t)

dt
= Av(t) + αv(t) + B(t)v(t) + f(t), for t ≥ t0 and v(t0) =

(
0R2

ϕ

)
, (6.2)

where

B(t)

(
0R
ϕ

)
:=

 ∫
I
β0(t, x)ϕ(x)dx∫

I
β1(t, x)ϕ(x)dx

0Lp

 and f(t) :=

 h0(t)
h1(t)
g(t, .)

 .

By using Lemma 6.1 we know that (A + αI)0 the part of (A + αI) in X = R2 ×
Lp((0,+∞),R), is the infinitesimal generator of

{
T(A+αI)0(t)

}
t≥0

an analytic semigroup

of bounded linear operators on X0. By using Lemma 6.4 we deduce that (A + αI)
generates an integrated semigroup

{
S(A+αI)(t)

}
t≥0

. Consider for each initial time t0 ∈ R
the parabolic equation

∂u(t, x)

∂t
=
∂2u(t, x)

∂x2
+ αu(t, x), for t ≥ t0 and x ∈ (0, 1),

−∂u(t, 0)

∂x
=
∫
I
β0(t, x)ϕ(x)dx

+
∂u(t, 1)

∂x
=
∫
I
β1(t, x)ϕ(x)dx

u(t0, .) = ϕ ∈ Lp(I,R),

(6.3)

this equation corresponds to the abstract Cauchy problem for each initial time t0 ∈ R

dv(t)

dt
= (A+ αI)v(t) + B(t)v(t), for t ≥ t0 and v(t0) =

(
0R2

ϕ

)
. (6.4)

Variation of constants formula : By using Proposition 1.5 we obtain the following
result.

Proposition 6.6 The Cauchy problem (6.4) generates a unique evolution family
{UB(t, s)}(t,s)∈∆ ⊂ L(X0). Moreover UB(·, t0)x0 ∈ C([t0,+∞), X0) is the unique solu-
tion of the fixed point problem

UB(t, t0)x0 = T(A+αI)0(t− t0)x0 +
d

dt

∫ t

t0

S(A+αI)(t− s)B(s)UB(s, t0)x0ds, t ≥ t0. (6.5)

If we assume in addition that

sup
t∈R
‖β0(t, .)‖Lq + ‖β1(t, .)‖Lq < +∞

then the evolution family {UB(t, s)}(t,s)∈∆ is exponentially bounded.

By using Theorem 1.6 we obtain the following result.
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Theorem 6.7 For each t0 ∈ R, each x0 ∈ X0 and each f ∈ C([t0,+∞], X) the unique
integrated solution vf ∈ C([t0,+∞], X0) of (6.2) is given for each t ≥ t0 by

vf (t) = UB(t, t0)x0 + lim
λ→+∞

∫ t

t0

UB(t, s)λRλ(A+ αI)f(s)ds (6.6)

where the limit exists in X0. Moreover the convergence in (6.6) is uniform with respect
to t, t0 ∈ I for each compact interval I ⊂ R.

Exponential dichotomy result : By using Theorem 5.13 we obtain the following
result

Theorem 6.8 Assume that

sup
t∈R
‖β0(t, .)‖Lq + ‖β1(t, .)‖Lq < +∞

Then the following assertions are equivalent

i) The evolution family {UB(t, s)}(t,s)∈∆ has an exponential dichotomy.

ii) For each f ∈ BC(R, X), there exists a unique integrated solution u ∈ BC(R, X0)
of (6.2).

Assumption 6.9 Assume that α > 0 and α 6= −(πk)2,∀k ∈ N.

Then the spectrum of A+αI does not contain any purely imaginary eigenvalue, and by
using Lemma 6.1 and Remark 6.5 we deduce that

σ(A+ αI) = σ(A0 + αI) =
{
−(πk)2 + α : k ∈ N

}
.

Therefore
0 /∈ σ(A0 + αI).

Then U(t, s) := TA+αI(t− s) has an exponential dichotomy and we can apply Theorem
5.14 with A+B(t) := A+ αI and C(t) := B(t).

Theorem 6.10 Let Assumption 6.9 be satisfied. There exists ε > 0 such that

sup
t∈R
‖β0(t, .)‖Lq + ‖β1(t, .)‖Lq < ε

implies that the evolution family {UB(t, s)}(t,s)∈∆ ⊂ L(X0) has an exponential dichotomy.

7 Example 2

In this section we briefly illustrate our results with an application to an age-structured
model which is a hyperbolic partial differential equation. We consider

∂tu(t, a) + ∂au(t, a) = −µu(t, a), for t ≥ t0 and a ≥ 0,

u(t, 0) =

∫ +∞

0

β(t, a)u(t, a)da

u(t0, .) = ϕ ∈ Lp+((0,+∞),R),

(7.1)

41



with µ > 0, β ∈ C(R, Lq((0,+∞),R)) (with 1
p + 1

q = 1).
As in the preceding example we define the Banach space

X := R×Lp((0,+∞),R)

in order to incorporate the boundary condition. The Banach space X is endowed with
the usual product norm ∥∥∥∥( r

ϕ

)∥∥∥∥ = |r|+ ‖ϕ‖Lp .

Set
X0 := {0} × Lp((0,+∞),R)).

We consider A : D(A) ⊂ X → X the linear operator defined by

A

(
0
ϕ

)
:=

(
−ϕ(0)
−ϕ′ − µϕ

)
with

D(A) := {0} ×W 1,p((0,+∞),R).

The following lemma is proved in [32, Lemma 8.1 and Lemma 8.3].

Lemma 7.1 The linear operator A satisfies Assumptions 1.1 and 1.2. Moreover we
have

0 < lim
λ→+∞

λ
1
p ‖Rλ(A)‖L(X) < +∞.

Lemma 7.1 implies that the part A0 of A on X0 := D(A) generates a C0-semigroup
{TA0

(t)}t≥0.

Now we consider the family of bounded linear operators {B(t)}t≥0 ⊂ L(X) given by

B(t)

(
r
ϕ

)
:=

 ∫ +∞
0

β(t, a)ϕ(a)da

0

 , ∀
(

r
ϕ

)
∈ X.

Hence by identifying u(t, .) and v(t) :=

(
0R2

u(t, .)

)
, system (7.1) rewrites as the following

abstract Cauchy problem for each initial time t0 ∈ R

dv(t)

dt
= Av(t) +B(t)v(t), for t ≥ t0 and v(t0) =

(
0R2

ϕ

)
. (7.2)

Proposition 7.2 The Cauchy problem (7.1) generates a unique evolution family
{UB(t, s)}(t,s)∈∆ ⊂ L(X0). Moreover UB(·, t0)x0 ∈ C([t0,+∞), X0) is the unique solu-
tion of the fixed point problem

UB(t, t0)x0 = TA0
(t− t0)x0 +

d

dt

∫ t

t0

SA(t− s)B(s)UB(s, t0)x0ds, t ≥ t0.
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If we assume in addition that

sup
t∈R
‖β(t, .)‖Lq < +∞

then the evolution family {UB(t, s)}(t,s)∈∆ is exponentially bounded.

By using Theorem 1.6 we also obtain the following result concerning the existence of
exponential dichotomy.

Theorem 7.3 Assume that
sup
t∈R
‖β(t, .)‖Lq < +∞

Then the following assertions are equivalent

i) The evolution family {UB(t, s)}(t,s)∈∆ has an exponential dichotomy.

ii) For each f ∈ BC(R, X), there exists a unique integrated solution v ∈ BC(R, X0)
of

dv(t)

dt
= Av(t) +B(t)v(t) + f(t), for t ∈ R.
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