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Abstract

We consider a system of non densely defined Cauchy problems and we investigate
the persistence of normally hyperbolic manifolds. The notion of exponential dichotomy
is used to characterize the normal hyperbolicity and a generalized Lyapunov-Perron
approach is used in order to prove our main result. The result presented in this article
extend the previous results on the center manifold by allowing a nonlinear dynamic in
the unperturbed central part of the system. We consider two examples to illustrate our
results. The first example is a parabolic equation coupled with an ODE that can be
considered as an interaction between an antimicrobial and bacteria while the second
one is a Ross-Macdonald epidemic model with age of infection. In both examples we
were able to reduce the infinite dimensional system to an ordinary differential equation.
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1 Introduction
The invariant manifolds theory plays an important role in understanding the asymptotic be-

havior of dynamical systems. It can be traced back to Poincaré [41], Hadamard [19], Lyapunov
[28] and Perron [38, 39, 40]. Intuitively persistence of normally hyperbolic invariant manifolds (see
Definition 3.9) can be understood as a generalization of the persistence of hyperbolic equilibrium
point to invariant sets (for example a set of equilibrium points, heteroclinic orbit, homoclinic orbit)
[4]. This generalization can be done if we know the dynamic in the invariant manifold as well as the
dynamic on its normal directions. Roughly speaking in this paper the orbits lying in the manifold
behave like in a center manifold while the orbits lying on the normal directions expend or contract
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toward the manifold. To describe such a behavior the notion of exponential dichotomy will be used
rather than the definition introduced in [4, 5, 13, 14, 15, 23]. Exponential dichotomy has been
already used by several authors to describe normal hyperbolicity (see [6, 26, 35, 45, 46] and the
references therein).
This theory has a long and rich history. It was popularized by Fenichel in the series of papers
[13, 14, 15] and Hirsch Pugh and Shub [23] in the context of finite time dimensional settings. Since
then many work have been done in finite and in infinite dimension so that it is very difficult to
give an exhaustive list. We refer to [6, 15, 24, 26, 36, 45, 56] for different approaches and results
on this subject for ordinary differential equations. By contrast of the finite dimensional setting,
normally hyperbolic manifold have been hardly considered in the context of infinite dimensional
dynamical systems. In the best of our knowledge Henry [21] obtained one of the earliest result on
this topic for semilinear parabolic equations with a proof based on Lyapunov-Perron approach. A
remarkable work in this direction can be attributed to Bates, Lu and Zeng [4, 5]. A closely related
result to [4] can be found in [27] where the authors have investigated invariant manifolds for PDEs.
In the present paper we will study the persistence of normally hyperbolic manifolds for a class of
non densely defined problem. We consider the following system of equations{

u̇(t) = F (u(t)) +K (u (t) , v (t)) , t > t0 and u(t0) = x ∈ X,
v̇(t) = [A+B(u(t))] v(t) +G (u(t), v(t)) , t > 0 and v(t0) = y ∈ D(A)

(1.1)

where the dot denote the derivative with respect to t. Here A : D (A) ⊂ Y → Y is an unbounded
linear operator with possibly non dense domain while B(.) : X → L(D (A), Y ). The functions
K : X × D (A) → X and G : X × D (A) → Y are non-linear bounded and Lipschitz continuous
maps while F : X → X can be a bounded linear operator or a Lipschitz continuous non linear
map. We note that the main complexity of such systems arise from the fact that in general we have
D(A) 6= Y .

In order to understand the notion of solution we will use the notion of integrated semigroups.
Integrated semigroup was first introduced in the Hille-Yosida case by Ardent [1, 2, 3], Thieme [48]
and other. See [3, 33] for a nice survey. This theory allows to deal with semilinear Cauchy problem
(see [49, 29]). More recently this theory has been extended to the non Hille-Yosida case by Magal
and Ruan [30, 31, 32] and Thieme [50]. We refer to Magal and Ruan [33] for a updated overview
on the theory of abstract semilinear problem.

Next we briefly describe the main ideas used in order to obtain persistence of a normally hyper-
bolic manifold.
Step 1: System (1.1) might be considered as a perturbation of{

u̇(t) = F (u(t)) , t > t0 and u(t0) = x ∈ X,
v̇(t) = [A+B(u(t))] v(t), t > t0 and v(t0) = y ∈ D(A).

(1.2)

If we set
M := X × {0Y } = {(x, ψ(x)) ∈ X ×D(A) : x ∈ X}

with
ψ(x) = 0, ∀x ∈ X

thenM is an invariant manifold for (1.2) (see Definition 3.9). Thus the normal hyperbolicity ofM
is expressed in term of exponential growth condition for system (1.2). More precisely we assume
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that solution of the u-equation of (1.2) growth sub-exponentially (like in a center manifold) and the
evolution family generated by the v-equation of (1.2) has an exponential dichotomy (see Definition
2.12).
Step 2: We consider{

u̇(t) = F (u(t)) +K(u(t), v(t)), t > t0 and u(t0) = x ∈ X,
v̇(t) = [A+B(u(t))] v(t), t > t0 and v(t0) = y ∈ D(A).

(1.3)

and show that if the Lipschitz norm of K is sufficiently small then the u-equation of (1.3) growth
sub-exponentially and the evolution family generated by the v-equation of (1.3) has an exponential
dichotomy.
Step 3: Finally we come back to system (1.1) to perform a fixed point problem that leads to the
existence of the desired normally hyperbolic manifold

M̂ = {(x, ψ̂(x)) ∈ X ×D(A) : x ∈ X}.

Note that it is not so restrictive to consider X × {0Y } as an invariant manifold since in many
situations a change of coordinates system allows to bring the study in this context. This is the case
when the manifold is expressed as a graph of a function. We also refer to [21] where a coordinates
change is proposed in order to bring the persistence of some general manifold to our context. In
this paper we will show that under sufficient conditions on B,K,F and G, system (1.1) admits a
unique normally hyperbolic invariant manifold.

Note that the assumptions on the operator A (See Assumptions 2.1 and 2.3) in system (1.1)
allows to account several classes of differential equations. More precisely it incorporate retarded
functional differential equations, parabolic differential equations with local or non local boundary
conditions as well as hyperbolic differential equations with linear or non linear boundary conditions.
Therefore the result presented in this paper can be applied to a wide class of differential equations
(see [8, 30, 31] for more details).

To the best of our knowledge, the persistence of normally hyperbolic invariant manifold for
system (1.1), with A non densely defined and non Hille-Yosida operator is not studied in the
literature. When A is Hille-Yosida a resent result on the existence of unstable manifold was obtained
by Jendoubi [25]. In [25] the results are based on the extrapolation method to define the notion
of mild solution for the abstract Cauchy problem and a non-autonomous variation of constants
formula obtain previously by Gühring and Räbiger [17]. Here since A is not Hille-Yosida such
appraoch no longer applies. Instead, we extended Gühring and Räbiger’s [17] non autonomous
variation of constants in Magal and Seydi [34] (see Lemma 2.9).

This paper can be regarded as a first step for a singular perturbation theory in the context of
non densely defined Cauchy problems. Also the results presented in this article can be regarded
as an extension of the center manifold theorem presented in Magal and Ruan [32] whenever F is a
bounded linear map on X and B = 0. To be more precise in [32] the authors proved the existence
of a center manifold for the following system{

u̇(t) = Acu(t) +K (u (t) , v (t)) , t > t0 and u(t0) = x ∈ X,
v̇(t) = Av(t) +G (u(t), v(t)) , t > t0 and v(t0) = y ∈ D(A)

(1.4)

where Ac is a bounded linear operator such that Ac is a bounded linear operator on X satisfying
for each β0 > 0,

sup
t∈R

e−β0|t|‖eAct‖L(X) <∞,
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and the semigroup generated by A0 (the part of A in D(A)) has an exponential dichotomy. Com-
pared to (1.4) the major difficulty arise from the v-equation of system (1.1) where the unperturbed
part [A + B(u(t))]v(t) may depends non linearly in u(t). The foregoing discussion of our method-
ology in Step 1, 2, 3 will be used to generalize the Lyapunov-Perron method in order to deal with
the persistence of the normally hyperbolic manifold.

The paper is organized as follow. In Section 2 we present notions that will be used in this
paper. Namely the notion of mild solutions and exponential dichotomy. We also recall some results
proved in [34]. In Section 3 we present our main result. In Section 4 we illustrate our results by
considering two examples. The first example is a parabolic equation coupled with an ODE that
can be considered as an interaction between an antimicrobial and bacteria while the second one is a
Ross-Macdonald epidemic model with age of infection. In both examples we show that our results
apply to these examples, and permit to reduce an infinite dimensional system to a scalar ordinary
differential equation. The examples serve to illustrate the assumptions of our theoretical results
and show how to verify such assumptions. In Section 5 we prove some crucial results related to the
persistence of exponential dichotomy while Section 6 consists of the proof of the main result of this
paper.

2 Preliminaries
In this section we will give the definitions that will be needed in the sequel. We will briefly

discuss and recall some results proved in [34]. Since the domain of the linear operator A may be
not dense in Y , we need to make some non classical assumption in order to deal with the non-
homogeneous problem. Set Y0 := D(A) and consider A0 : D(A0) ⊂ Y0 → Y0 the part of A in Y0

that is
A0y = Ay, ∀y ∈ D(A0),

and
D(A0) = {y ∈ D(A) : Ay ∈ Y0}.

Let B̄ : R→ L(Y0, Y ) be given. Consider the following non homogeneous Cauchy problem

ẇ(t) =
[
A+ B̄(t)

]
w(t) + f(t), t > t0 and v(t0) = y ∈ Y0, (2.1)

with f ∈ L1
loc(R, Y ). Let us also consider the linear non autonomous Cauchy problem

ẇ(t) =
[
A+ B̄(t)

]
w(t), t > t0 and w(t0) = w0 ∈ Y0. (2.2)

Assumption 2.1 We assume that

(i) There exist two constants ωA ∈ R and MA ≥ 1, such that (ωA,+∞) ⊂ ρ(A) (the resolvent set
of A) and ∥∥∥(λI −A)−k

∥∥∥
L(Y0)

≤MA (λ− ωA)−k , ∀λ > ωA, k ≥ 1.

(ii) lim
λ→+∞

(λI −A)−1y = 0, ∀y ∈ Y .
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It is important to note that Assumption 2.1 do not say that A is a Hille-Yosida linear operator
since the operator norm in (i) is taken into Y0 ⊆ Y (where the inclusion can be strict) instead of Y .
However from [32, Lemma 2.1] we have ρ(A) = ρ(A0). Note that

(λI −A)−1 |Y0= (λI −A0)−1

and Assumption 2.1-(ii) is equivalent D(A) = D(A0) = Y0.
Therefore we have the following lemma.

Lemma 2.2 Assumption 2.1 is satisfied if and only if ρ(A) 6= ∅ and (A0, D(A0)) generates a
strongly continuous semigroup {TA0(t)}t≥0 ⊂ L(Y0) with

‖TA0(t)‖L(Y0) ≤MAe
ωAt, ∀t ≥ 0.

In order to obtain existence and uniqueness of solutions for (2.1) whenever f is a continuous map,
we will require the following assumption.

Assumption 2.3 Assume that for any τ > 0 and f ∈ C ([0, τ ] , Y ) there exists vf ∈ C ([0, τ ] , Y0)
an integrated (mild) solution of

dv(t)

dt
= Av(t) + f(t), ∀t ∈ [0, τ ] and v(0) = 0

that is to say that ∫ t

0
vf (r)dr ∈ D(A), ∀t ∈ [0, τ ]

and

vf (t) = A

∫ t

0
vf (r)dr +

∫ t

0
f(r)dr, ∀t ∈ [0, τ ].

Moreover we assume that there exists a non decreasing map δ : [0,+∞) → [0,+∞) with δ(t) → 0
as t→ 0+ such that for each f ∈ C ([0, τ ] , Y ) and each τ > 0 we have

‖vf (t)‖ ≤ δ(t) sup
s∈[0,t]

‖f(s)‖,∀t ∈ [0, τ ].

Remark 2.4 In Assumption 2.3 the uniqueness of mild solutions is a consequence of a uniqueness
result proved by Thieme [48]. Moreover it is a work in itself to check the existence of such mild
solutions. It is important to observe that we require the mild solutions to exist only for the continuous
function t → f(t). This together with the L∞-estimation, this is the major difference with the
standard Hille-Yosida case.

In the general, necessary and sufficient condition has been obtain in Magal and Ruan [30] (by
using a condition of the resolvent of A) and Thieme [50] (by using a condition of the integrated
semigroup generated by A).

For abstract parabolic equation, the case of almost sectorial operator has been considered. One
can use some sufficient estimation on the resolvent of A to derive Assumption 2.3. We refer to
Ducrot, Magal and Prevost [8] and Ducrot and Magal [7].

We refer to the monograph of Magal and Ruan [33] for more detailed discussions and examples.
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Remark 2.5 Note that Assumptions 2.1 and 2.3 are satisfied whenever A is Hille-Yosida (see [33]
for this result) and we have the following estimate

‖vf (t)‖ ≤
∫ t

0
MAe

ωAsds sup
s∈[0,t]

‖f(s)‖, ∀t ≥ 0.

Assumption 2.6 Assume that {B̄(t)}t∈R ⊂ L(Y0, Y ) is strongly continuous that is to say that for
any y ∈ Y0, the map t→ B̄(t)y is continuous. Assume in addition that t→ B̄(t) is locally bounded
in norm of operator that is

sup
t∈[−n,n]

‖B̄(t)‖L(Y0,Y ) < +∞, ∀n ∈ N.

Define
∆ := {(t, t0) ∈ R2 : t ≥ t0}

Recall that {UB̄(t, t0)}(t,t0)∈∆ ⊂ L(Y0) is an evolution family if and only if

UB̄(t, l)UB̄(l, t0) = UB̄(t, t0), ∀t, l, t0 ∈ R with t ≥ l ≥ t0,

and
UB̄(t, t)y = y, ∀t ∈ R and ∀y ∈ Y0.

Definition 2.7 Let t0 ∈ R and f ∈ C([t0,+∞), Y ) be fixed. We say that w ∈ C([t0,+∞), Y0) is a
mild solution of (2.1) if and only if∫ t

t0

w(r)dr ∈ D(A), ∀t ≥ t0

and

w(t) = y +A

∫ t

t0

w(r)dr +

∫ t

t0

B̄(r)w(r)dr +

∫ t

t0

f(r)dr, ∀t ≥ t0.

Definition 2.8 Let f ∈ C(R, Y ) be fixed. We say that w ∈ C(R, Y0) is a mild solution of (2.1) if
and only if ∫ t

t0

w(r)dr ∈ D(A), ∀(t, t0) ∈ ∆

and

w(t) = w(t0) +A

∫ t

t0

w(r)dr +

∫ t

t0

B̄(r)w(r)dr +

∫ t

t0

f(r)dr, ∀(t, t0) ∈ ∆.

The following result will play a crutial role in the analysis of the problem. This result has been
proved in [34].
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Lemma 2.9 (Non autonomous variation of constants formula) Let Assumptions 2.1, 2.3 and
2.6 be satisfied. Then (2.2) generates a unique evolution family {UB̄(t, t0)}(t,t0)∈∆ ⊂ L(Y0) with
UB̄(·, t0)y ∈ C([t0,+∞), Y0) the fixed point of

UB̄(t, t0)y = TA0(t− t0)y + lim
λ→+∞

∫ t

t0

TA0(t− s)λRλ(A)B̄(s)UB̄(s, t0)yds, ∀t ≥ t0,

where Rλ(A) := (λI −A)−1 is the resolvent of A.

Moreover the following properties hold true :

(i) For all f ∈ C(R, Y ), t0 ∈ R and y ∈ Y0, there exists a unique mild solution w ∈ C([t0,+∞), Y0)
of (2.1). Moreover w is given by the non autonomous variation of constants formula

w(t) = UB̄(t, t0)y + lim
λ→+∞

∫ t

t0

UB̄(t, r)λRλ(A)f(r)dr.

(ii) If supt∈R ‖B(t)‖L(Y0,Y ) < +∞ then there exists some constants M̂ ≥ 1 and ω̂ ∈ R such that

‖UB̄(t, t0)‖L(Y0) ≤ M̂eω̂(t−t0), ∀(t, t0) ∈ ∆.

Remark 2.10 The above result is non trivial since Rλ(A) (the resolvent of A) and UB̄(t, s) do not
commute. One can also prove (see [32, Lemma 2.2]) that

lim
λ→+∞

λRλ(A)y = y ⇔ y ∈ D(A).

Moreover the limit limλ→+∞ λRλ(A)y does not exist in general whenever y ∈ Y \D(A).

The following result is proved in [34, Proposition 5.5] and is a useful tool in studying mild solution
for non Hille-Yosida operators in the non-autonomous case.

Proposition 2.11 Let Assumptions 2.1, 2.3 and 2.6 be satisfied. Assume in addition that

b̄ := sup
t∈R
‖B̄(t)‖L(Y0,Y ) < +∞.

Then there exists a non decreasing map δ∗ := δ∗(A,ωA,MA, b̄, δ) : [0,+∞)→ [0,+∞) with δ∗(t)→
0 as t→ 0+ such that for each f ∈ C(R, Y ) the map

w(t, t0) = lim
λ→+∞

∫ t

t0

UB̄(t, s)λRλ(A)f(s)ds, (t, t0) ∈ ∆

satisfies
‖w(t, t0)‖ ≤ δ∗(t− t0) sup

s∈[t0,t]
‖f(s)‖, ∀(t, t0) ∈ ∆.

In order to state the next result we first recall the notion of exponential dichotomy.
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Definition 2.12 We say that an evolution family {U(t, t0)}(t,t0)∈∆ ⊂ L(Y0) has an exponential
dichotomy on R with constant κ ≥ 1 and exponent β > 0 if and only if the following properties are
satisfied

(i) There exist two strongly continuous families of projections {Π+(t)}t∈R ⊂ L(Y0) and {Π−(t)}t∈R ⊂
L(Y0) such that

Π+(t) + Π−(t) = IL(Y0), ∀t ∈ R.

Then we define for all (t, t0) ∈ ∆

U+(t, t0) := U(t, t0)Π+(t0) and U−(t, t0) := U(t, t0)Π−(t0).

(ii) For all (t, t0) ∈ ∆ we have Π+(t)U(t, t0) = U(t, t0)Π+(t0).

(iii) For all (t, t0) ∈ ∆ the restricted linear operator U(t, t0)Π−(t0) is invertible from Π−(t0)(Y0)
into Π−(t)(Y0) with inverse denoted by Ū−(t0, t) and we set

U−(t0, t) := Ū−(t0, t)Π
−(t).

(iv) For all (t, t0) ∈ ∆

‖U+(t, t0)‖L(Y0) ≤ κe−β(t−t0) and ‖U−(t0, t)‖L(Y0) ≤ κe−β(t−t0).

If Π−(t) = 0L(Y0) for all t ∈ R we say that the evolution family is exponentially stable.

The following results are proved in [34, Theorem 1.10].

Theorem 2.13 Let Assumptions 2.1, 2.3 and 2.6 be satisfied. Assume in addition that

sup
t∈R
‖B̄(t)‖L(Y0,Y ) < +∞.

Then the following assertions are equivalent

(i) The evolution family {UB̄(t, s)}(t,s)∈∆ has an exponential dichotomy.

(ii) For each f ∈ BC(R, Y ), there exists a unique integrated solution u ∈ BC(R, Y0) of (2.1).

From now on define for Z = Y0, Y,X

BCγ(R, Z) :=

{
f ∈ C(R, Z) : ‖f‖γ := sup

t∈R
e−γ|t|‖f(t)‖ < +∞

}
,∀γ ≥ 0.

Then we have the following result which was proved in [34, Theorem 1.11].
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Theorem 2.14 Let Assumptions 2.1, 2.3 and 2.6 be satisfied. Assume in addition that

sup
t∈R
‖B̄(t)‖L(Y0,Y ) < +∞.

If UB̄ has an exponential dichotomy with exponent β > 0, then for each γ ∈ [0, β) and each f ∈
BCγ(R, Y ) there exists a unique integrated solution u ∈ BCγ(R, Y0) of (2.1) which is given by

uf (t) = lim
λ→+∞

[∫ t

−∞
U+
B̄

(t, s)λRλ(A)f(s)ds−
∫ +∞

t
U−
B̄

(t, s)λRλ(A)f(s)ds

]
, ∀t ∈ R. (2.3)

Moreover the following properties hold true

(i) The limit (2.3) exists uniformly on compact subset of R.

(ii) If f is bounded and uniformly continuous with relatively compact range then the limit (2.3) is
uniform on R.

(iii) For each ν ∈ (−β, 0) there exists C(ν, κ, β) > 0 such that

‖uf‖γ ≤ C(ν, κ, β)‖f‖γ , ∀γ ∈ [0,−ν].

Remark 2.15 It is important to point out in Section 6 we will use the fact that the constant
C(ν, κ, β) does not depend explicitly of B̄. But C(ν, κ, β) depends on

b̄ := sup
t∈R
‖B̄(t)‖L(Y0,Y ).

3 Main result
Throughout this section the following series of assumptions will be required.

Assumption 3.1 Assume that F ∈ C1(X) and there exists a constant LF ≥ 0 such that for all
x, x̄ ∈ X {

‖F (x)− F (x̄)‖ ≤ LF ‖x− x̄‖,

‖DF (x)−DF (x̄)‖L(X) ≤ LF ‖x− x̄‖.

Assumption 3.2 Assume that there exist β0 ≥ 0 and κ0 ≥ 1 such that if u1, u2 ∈ C1(R, X) satisfy

u̇(t) = F (u(t)), ∀t ∈ R

then
‖u1(t)− u2(t)‖ ≤ κ0e

β0|t−l|‖u1(l)− u2(l)‖, ∀t, l ∈ R. (3.1)

Remark 3.3 Assumption 3.2 means that the solutions t→ u(t) growth sub-exponentially. A simple
case in which Assumption 3.2 is always satisfied is

F (x) = x0 +Acx, ∀x ∈ X

with x0 ∈ X and Ac is a bounded linear operator on X such that

sup
t∈R

e−β0|t|‖eAct‖L(X) <∞.

This last condition is satisfied whenever the dimension of X is finite and σ(Ac) ⊂ iR.
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Assumption 3.4 Assume that there exist β > β0 ≥ 0 and κ ≥ 1 such that if u ∈ C1(R, X) satisfies

u̇(t) = F (u(t)), ∀t ∈ R

then the evolution family generated by

ẇ(t) = [A+B(u(t))]w(t), t > t0 and w(t0) = w0 ∈ Y0,

has an exponential dichotomy with constant κ and exponent β.

Remark 3.5 When the map u→ B(u) is constant, then the exponential dichotomy can be expressed
in term of spectral properties. To be more precise it has been proved in [31] that the evolution family
generated by

ẇ(t) = [A+B]w(t), t > t0 and w(t0) = w0 ∈ Y0,

has an exponential dichotomy if the following conditions are satisfied :

(i) A satisfies Assumption 2.1.

(ii) σ((A+B)0)) ∩ iR = ∅.

(iii) {λ ∈ σ((A+B)0)) : Re(λ) > 0} is non empty and the essential growth rate of
{
T(A+B)0(t)

}
t≥0

is negative. That is to say that

ω0,ess((A+B)0) := lim
t→+∞

ln(‖T(A+B)0(t)‖ess)
t

< 0 (3.2)

where ‖L‖ess of a bounded linear operator L ∈ L(Y0) is defined by

‖L‖ess = Mes ({Ly : y ∈ Y0, ‖y‖ ≤ 1})

and

Mes(Ω) := inf {ε > 0 : Ω can be covered by a finite number of balls of radius ≤ ε} .

Here Mes(·) is the measure of non compactness of Kuratovsky. We refer to Webb [55], Engel
and Nagel [12] and Magal and Ruan [33] for more results about the spectral theory for strongly
continuous semigroups of bounded linear operators.

We will also need some regularity conditions on the perturbations K,G and the map B.

Assumption 3.6 Assume that there exist ζ > 0, η > 0, σ > 0 and LG > 0 such that if we set

BY0(0, ζ) := {y ∈ Y : ‖y‖ ≤ ζ}

then

(i) The map (x, y) → K(x, y) is continuously differentiable on an open neighborhood of X ×
BY0(0, ζ) and for all (x, y), (x̄, ȳ) ∈ X ×BY0(0, ζ)

‖K(x, y)‖ ≤ η and ‖K(x, y)−K(x̄, ȳ)‖ ≤ η‖x− x̄‖+ η‖y − ȳ‖.
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(ii) The map (x, y) → G(x, y) is continuous on X × BY0(0, ζ) and for all (x, y), (x̄, ȳ) ∈ X ×
BY0(0, ζ)

‖G(x, y)‖ ≤ σ̂ and ‖G(x, y)−G(x̄, ȳ)‖ ≤ LG‖x− x̄‖+ σ‖y − ȳ‖.

Assumption 3.7 The map x→ B(x) is continuous on X and there exists a constant LB ≥ 0 such
that for all x, x̄ ∈ X

‖B(x)‖L(Y0,Y ) ≤ LB and ‖B(x)−B(x̄)‖L(Y0,Y ) ≤ LB‖x− x̄‖.

Before giving our main result we define what we call mild solution for system (1.1) and normally
hyperbolic manifold.

Definition 3.8 We say that (u, v) ∈ C1(R, X) × C(R, Y0) is a mild solution of (1.1) on R if and
only if 

u̇(t) = F (u(t)) +K(u(t), v(t)), t ∈ R

v(t) = v(t0) +A

∫ t

t0

v(l)dl +

∫ t

t0

B(u(l))v(l)dl +

∫ t

t0

G(u(l), v(l))dl, ∀(t, t0) ∈ ∆.

Definition 3.9 Let ψ̂ : X → Y0 be a map. Let M̂ = {(x, ψ̂(x)) ∈ X × Y0 : x ∈ X} be a given
manifold. We say that M̂ is a normally hyperbolic invariant manifold for (1.1) with constants κ̂ ≥ 1,
κ̂0 ≥ 1 and exponents β̂ > 0, β̂0 ∈ [0, β̂) if the following properties are satisfied

(i) For each (x, ψ̂(x)) ∈ M̂ there exists a unique mild solution (u, v) ∈ C1(R, X)×BC(R, Y0) of
(1.1) such that

(u(0), v(0)) = (x, ψ̂(x)) and v(t) = ψ̂(u(t)),∀t ∈ R.

(ii) If (u, v) ∈ C1(R, X) × BC(R, Y0) is a mild solution of (1.1) in M̂ then the evolution family
generated by

ẇ(t) = [A+B(u(t))]w(t), t > t0 and w(t0) = w0 ∈ Y0

has an exponential dichotomy with constant κ̂ ≥ 1 and exponent β̂ > 0.

(iii) If (u, v), (ū, v̄) ∈ C1(R, X)×BC(R, Y0) are mild solutions of (1.1) in M̂ then

‖u(t)− ū(t)‖ ≤ κ̂0e
β̂0|t−l|‖u(l)− ū(l)‖, ∀t, l ∈ R.

Remark 3.10 Observe that according to this definition and Assumptions 3.2, 3.4

M := X × {0Y } = {(x, ψ(x)) ∈ X × Y0 : x ∈ X}

with
ψ(x) = 0, ∀x ∈ X

is a normally hyperbolic invariant manifold for (1.2) with constants κ, κ0 and exponents β > 0,
β0 ∈ [0, β).
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Remark 3.11 Since the map G is only assumed to be Lipschitz continuous, we cannot use the
derivative of G to define the usual normal hyperbolic invariant manifold in the property ii) of Def-
inition 3.9. When G is C1 and ‖G‖Lip is small enough the above property will implies that (see
[34])

ẇ(t) = [A+B(u(t))]w(t) + ∂yG(u(t), v(t))w(t), t > t0 and w(t0) = w0 ∈ Y0

has an exponential dichotomy with constant κ̂ ≥ 1 and exponent β̂ > 0. Due to the fact that G is
not assumed to be differentiable (since G is only Lipischitz continuous) the property ii) of normal
hyperbolicity in the above definition is not the usual one.

The main result of this article is the following.

Theorem 3.12 Let Assumptions 2.1, 2.3 and Assumptions 3.1, 3.2, 3.4, 3.6 and 3.7 be satisfied.
Let β > β0 ≥ 0, κ ≥ 1 and κ0 ≥ 1 the constants defined in Assumptions 3.1, 3.2, 3.4, 3.6 and 3.7.
Let two constants β̂, β̂0 ∈ (β0, β) with β̂0 < β̂. Then there exist κ̂ ≥ κ, σ0 > 0, η0 > 0 and Ĉ0 > 0
such that if

0 ≤ σ ≤ σ0, 0 ≤ η < η0 and 0 ≤ σ̂Ĉ0 ≤ ζ

then there exists a Lipschitz continuous map ψ̂ : X → Y0 with

sup
x∈X
‖ψ̂(x)‖ ≤ σ̂Ĉ0

and the following properties are satisfied

(i) M̂ = {(x, ψ̂(x)) ∈ X × Y0 : x ∈ X} is a normally hyperbolic invariant manifold for (1.1)
with constants κ̂, κ0 and exponents β̂, β̂0. Moreover if we consider u(t) the solution of the
ordinary differential equation

u̇(t) = F (u(t)) +K(u(t), ψ̂(u(t))), ∀t ∈ R, with u(0) = x ∈ X,

then
(
u(t), ψ̂(u(t))

)
is a mild solution of system (1.1).

(ii) If (u, v) ∈ C1(R, X)×BC(R, Y0) is a mild solution of (1.1) on R and

‖v(t)‖ ≤ ζ, ∀t ∈ R,

then (u(t), v(t)) ∈ M̂, ∀t ∈ R which means that

v(t) = ψ̂(u(t)), ∀t ∈ R.
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4 Applications

4.1 A parabolic equation coupled with an ODE
In order to illustrate the application of our results we first consider the following system of

parabolic equation with non local boundary conditions coupled with an ordinary differential equation

du(t)

dt
= εru(t)

[
1− θ−1u(t)

]
− εku(t)

∫ 1

0
c(t, x)dx

∂c(t, x)

∂t
=
∂2c(t, x)

∂x2
− µc(t, x)− γu(t)c(t, x)

∂c(t, 0)

∂x
= 0,

∂c(t, 1)

∂x
= 1− εf

(∫ 1

0
c(t, x)dx

)
u(0) = u0 ∈ [0, θ], c(0, ·) = c0 ∈ Lp+([0, 1],R)

(4.1)

where f : R→ R is given by

f(x) =
k0x

2

1 + x2
, ∀x ∈ R, (4.2)

with k0 ∈ (0, 1]. All the parameters of the system are assume to be positive that is γ > 0, µ > 0, θ > 0
and k > 0.

The model (4.1) is a toy model which is inspried by [47]. Here u(t) is a number of bacteria
and c(t, x) is the density of antimicrobial. In order to simplify the analysis and the presentation we
use some non local mass action interaction between the bacteria population and the antimicrobial.
The non linear and non-local boundary condition corresponds to a negative feedback to control the
quantity of antimicrobial injected through the boundary at x = 1. A more realistic model with
spatially distributed population of bacteria and with local mass action law will be considered in
future work.

The unperturbed system (obtained by fixing ε = 0 in (4.1)) is the following
du(t)

dt
= 0

∂c(t, x)

∂t
=
∂2c(t, x)

∂x2
− µc(t, x)− γu(t)c(t, x)

∂c(t, 0)

∂x
= 0,

∂c(t, 1)

∂x
= 1.

(4.3)

The unperturbed system (4.3) do not have an invariant manifold of the form R × {0Lp} as in the
abstract settings. Therefore we will first find an invariant manifold for system (4.3) as a graph of a
function and make a change of variables. To obtain this manifold we solve the steady states problem

u(t) ≡ u0

∂2c(t, x)

∂x2
= (µ+ γu0)c(t, x)

∂c(t, 0)

∂x
= 0,

∂c(t, 1)

∂x
= 1.

(4.4)

Equilibria: Consider the map ϑ :
(
−µγ−1,+∞

)
→ Lp([0, 1],R) by

ϑ(u)(x) =
1√

µ+ γu

cosh (x
√
µ+ γu)

sinh (
√
µ+ γu)

,∀x ∈ [0, 1], ∀u > −µγ−1. (4.5)
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Then the equilibria of (4.4) (with u ∈ [0, θ]) are given by

E := {(u, ϑ(u)) : u ∈ [0, θ]} .

We will prove the following result.

Theorem 4.1 Let ζ > 0 and 2δ ∈
(
0, µγ−1

)
be fixed. Then we can find two constants ε∗ > 0 and

Ĉ0 > 0 such that if ε ∈ (0, ε∗) then there exists a Lipschitz continuous map ϑ̂ε : R → Lp((0, 1),R)
such that

sup
u∈R
‖ϑ̂ε(u)‖Lp ≤ εĈ0

and the following properties are satisfied:

(i) For each u0 ∈ [0, θ], ∫ 1

0
[ϑ(u0)(x) + ϑ̂ε(u0)(x)]dx > 0.

(ii) The subset
Eε =

{(
u, ϑ(u) + ϑ̂ε(u)

)
: u ∈ [0, θ]

}
.

is locally positively invariant by the semiflow generated by (4.1). That is to say that if we
choose (u0, c0) ∈ [0, θ] × Lp+([0, 1],R) with c0 = ϑ(u0) + ϑ̂ε(u0). Let I ⊂ R+ be the maximal
interval such that t→ (u(t), c(t, ·)) the mild solution of (4.1) satisfies

‖c(t, ·)− ϑ(u(t))‖Lp ≤ ζ,∀t ∈ I.

Then
(u(t), c(t, ·)) ∈ Eε, ∀t ∈ I.

(iii) For each u0 ∈ [0, θ], there exists a unique solution u ∈ C1([0,∞),R) of the scalar ordinary
differential equation

du(t)

dt
= ε

[
ru(t)(1− θ−1u(t))− ku(t)

(∫ 1

0
[ϑ(u(t))(x) + ϑ̂ε(u(t))(x)]dx

)]
satisfying

u(t) ∈ [0, θ], ∀t ≥ 0.

Then t→
(
u(t), ϑ(u(t)) + ϑ̂ε(u(t))

)
is a mild solution of (4.1).

Abstract reformulation : To incorporate the boundary condition into the state variable, we
consider

Y := R2×Lp([0, 1],R)

which is a Banach space endowed with the usual product norm and we set

Y0 := {0R2} × Lp([0, 1],R).
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Let A : D(A) ⊂ Y → Y be the linear operator defined by

A

(
0R2

ϕ

)
:=

 ϕ′(0)
−ϕ′(1)
ϕ′′


with

D(A) := {0R2} ×W 2,p([0, 1],R).

Define R1 : R× Y0 → R by

R1

(
u,

(
0R2

ϕ

))
= ru

(
1− θ−1u

)
− ku

∫ 1

0
ϕ(x)dx (4.6)

R2 : R× Y0 → Y by

R2

(
u,

(
0R2

ϕ

))
=

 0
1

0Lp

 (4.7)

R3 : R× Y0 → Y by

R3

(
u,

(
0R2

ϕ

))
=


0

f

(∫ 1

0
ϕ(x)dx

)
0Lp

 (4.8)

and B̂ : R→ L(Y0, Y ) by

B̂(u)

(
0R2

ϕ

)
=

 0
0

−[µ+ γu]ϕ

 . (4.9)

Thus by setting

w(t) :=

(
0R2

c(t, ·)

)
, t > 0 and w(0) :=

(
0R2

c0

)
= w0,

system (4.1) rewrites as
du(t)

dt
= εR1(u(t), w(t)), t > 0

dw(t)

dt
= [A+ B̂(u(t))]w(t) +R2(u(t), w(t)) + εR3(u(t), w(t)), t > 0

u(0) = u0 ∈ [0, θ] and w(0) = w0 ∈ Y0

(4.10)

and we observe that 
du(t)

dt
= 0, t > 0

dw(t)

dt
= [A+ B̂(u(t))]w(t) +R2(u(t), w(t)), t > 0

u(0) = u0 ∈ [0, θ] and w(0) = w0 ∈ Y0

(4.11)

corresponds exactly to the abstract formulation of (4.3). This implies that

[A+ B̂(u)]

(
0R2

ϑ(u)

)
+R2

(
u,

(
0R2

ϑ(u)

))
= 0, ∀u ∈ (µγ−1,+∞). (4.12)
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Properties of the linear operator A : Observe that by construction A0 the part of A in
Y0 coincides with the usual formulation for the parabolic equation with homogeneous boundary
conditions. More precisely we have A0 : D(A0) ⊂ Y0 → Y0 is the linear operator on Y0 defined by

A0

(
0R2

ϕ

)
=

(
0R2

ϕ′′

)
with

D(A0) = {0R2} ×
{
ϕ ∈W 2,p ((0, 1) ,R) : ϕ′(0) = ϕ′(1) = 0

}
.

The next Lemmas 4.2, 4.3 and 4.4 can be found in [34].

Lemma 4.2 The linear operator A0 is the infinitesimal generator of {TA0(t)}t≥0 an analytic semi-
group of bounded linear operator on Y0. Moreover TA0(t) is compact for each t > 0 and (0,+∞) ⊂
ρ(A0). The spectrum of A0 is given by

σ(A0) =
{
−(πk)2 : k ∈ N

}
and each eigenvalue λk := −(πk)2 is associated to the eigenfunction

ek(x) := sin(πkx), k ≥ 1, e0(x) = 1.

Moreover each eigenvalue λk is simple and the projector on the generalized eigenspace associated to
this eigenvalue is given by

Πk,0

(
0R2

ϕ

)
:=

 0R2∫ 1
0 ek(r)ϕ(r)dr∫ 1

0 ek(r)2dr
ek

 .

Set
Ωω = {λ ∈ C : Re (λ) > ω} , ∀ω ∈ R,

and define for λ ∈ C,
∆ (λ) := µ2(eµ − e−µ),

where
µ :=

√
λ.

Next we give the explicit formula of the resolvent of A.

Lemma 4.3 For each ω ≥ 0, we have

Ωω ⊂ {λ ∈ C : ∆ (λ) 6= 0} ⊂ ρ (A) ,

and the resolvent of A is given for each λ := µ2 ∈ Ωω by(
0R2

ϕ

)
= (λI −A)−1

 y0

y1

ϕ0

⇔
ϕ(x) =

∆1(x)

∆ (λ)

1

µ
y0 +

∆2(x)

∆ (λ)

1

µ
y1 +

∆1(x)

∆ (λ)

1

2µ

∫ 1

0
e−µsϕ0(s)ds

+
∆2(x)

∆ (λ)

1

2µ

∫ 1

0
e−µ(1−s)ϕ0(s)ds+

1

2µ

∫ 1

0
e−µ|x−s|ϕ0(s)ds

where
∆1(x) = µ2

[
eµ(1−x) + e−µ(1−x)

]
and ∆2(x) = µ2

[
e−µx + eµx

]
.

16



Lemma 4.4 The linear operator A satisfies the following estimate

0 < lim inf
λ→+∞

λ
1
p∗
∥∥∥(λI −A)−1

∥∥∥
L(Y )

≤ lim sup
λ→+∞

λ
1
p∗
∥∥∥(λI −A)−1

∥∥∥
L(Y )

< +∞, (4.13)

with p∗ =
2p

1 + p
.

From (4.13) we see that A can not be a Hille-Yosida linear operator when p > 1 since

lim
λ→+∞

λ
∥∥∥(λI −A)−1

∥∥∥
L(Y )

= +∞, if p > 1, (4.14)

which is one of the main difference with respect to the Hille-Yosida case. In fact if A is Hille-Yosida
the above limit (4.14) is finite. However we still have

lim
λ→+∞

(λI −A)−1y = 0, ∀y ∈ Y. (4.15)

By using Lemma 4.3 and the estimate (4.13) we deduce that Assumption 3.4 in Ducrot, Magal and
Prevost [8] is satisfied. Therefore by applying Theorem 3.11 in [8] we obtain the following lemma.

Lemma 4.5 The linear operator A satisfies Assumption 2.1 and Assumption 2.3.

Remark 4.6 Since ρ(A) 6= ∅ one has σ(A0) = σ(A) (see [32]).

A positively invariant set : Here we will show that the semiflow generated by (4.1) leaves
positively invariant the set

Ω =
{

(u0, c0) : u0 ∈ [0, θ], c0 ∈ Lp+([0, 1],R)
}
.

Note that this equivalent to prove that the semiflow generated by (4.10) leaves positively invariant
[0, θ]× Y0+ where we have set

Y+ := R2
+ × L

p
+([0, 1],R) and Y0+ := Y0 ∩ Y+ = {0R2} × Lp+([0, 1],R).

In fact using Lemma 4.3 one can see that A is resolvent positive. More precisely we have

(0,+∞) ⊂ ρ(A) and (λI −A)−1Y+ ⊂ Y0+, ∀λ > 0.

Furthermore for any constant L > 0 there exists λ := λ(L) > 0 such that for any u ∈ R+ and
y ∈ Y0+ with |u|+ ‖y‖ < L we have

λy +R2(u, y) + εR3(u, y) ∈ Y+ and λu+R1(u, y) ∈ R+, ∀ε ∈ (0, 1).

Therefore using the results in [31] it follow that for each u0 ∈ R+ and v0 ∈ Y0+ there exists
a maximally defined mild solution of (4.10) with values in R+ × Y0+. Once the positivity of the
solutions is obtained one can use standard blowup arguments to prove that the solutions are globally
defined in [0,+∞).
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Moreover by using the explicit form of the u-equation of (4.10)

du(t)

dt
= εru(t)(1− θ−1u(t))− ku(t)

∫ 1

0
c(t, x)dx.

we deduce that [0, θ]× Y0+ is positively invariant with respect to (4.10).
Transformed system : To apply our results we will use an alternative system and extend the
perturbations in order to obtain global Lipschitz properties. To do so we first define the map
H : R→ Y0 by

H(u) =

(
0R2

ϑ(u)

)
, ∀u ∈ (µγ−1,+∞)

and recalling (4.12) we have by construction

[A+B(u)]H(u) +R2(u,H(u)) = 0, ∀u ∈ (µγ−1,+∞). (4.16)

Let u0 ∈ R+ and w0 ∈ Y0+ be given. Then u(t) ≥ 0 for all t ≥ 0 and H(u(t)) is well defined for all
t ≥ 0. Hence we can make the following change of variables

v(t) = w(t)−H(u(t)) =

(
0R2

c(t, x)− ϑ(u(t))(x)

)
,∀t ≥ 0.

By using (4.16) together with the fact that the map (u,w) → R2(u,w) is the constant function
defined in (4.7) one can see that t→ (u(t), v(t)) will satisfies

du(t)

dt
= εR1(u(t), v(t) +H(u(t))), t > 0

dv(t)

dt
= [A+ B̂(u(t))]v(t) + εR3(u(t), v(t) +H(u(t)))

−ε∂uH(u(t))R1(u(t), v(t) +H(u(t))), t > 0
u(0) = u0 ∈ R+ and v(0) = w0 −H(u0) ∈ Y0.

(4.17)

The above abstract equation corresponds to the following partial differential equation



du(t)

dt
= εru(t)

[
1− θ−1u(t)

]
− εku(t)

∫ 1

0
c(t, x) + ϑ(u(t))(x)dx

∂c(t, x)

∂t
=
∂2c(t, x)

∂x2
− µc(t, x)− γu(t)c(t, x)

−ε∂uϑ(u(t))
(
ru(t)

[
1− θ−1u(t)

]
− εku(t)

∫ 1
0 c(t, x) + ϑ(u(t))(x)dx

)
∂c(t, 0)

∂x
= 0,

∂c(t, 1)

∂x
= −εf

(∫ 1

0
c(t, x) + ϑ(u(t))(x)dx

)
u(0) = u0 ∈ [0, θ], c(0, ·) = c0 − ϑ(u0) ∈ Lp([0, 1],R).

(4.18)

By using the fact that [0, θ]×Lp+(0, 1) is positively invariant by the semiflow generated by (4.10),
we deduce that system (4.17) leaves positively invariant the subset

M̃ = {(u, v) ∈ R× Y0 : u ∈ [0, θ] and v +H(u) ≥ 0} .
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Truncated system: Let 2δ ∈ (0, µγ−1) be given and fixed. In order to extend the system and
overcome the singularity of H at µγ−1 we introduce the smooth cut-off function ξ ∈ C∞ (R, [0, 1])
defined by

ξ(u) =

{
1 if −δ ≤ u ≤ θ + δ
0 if u < −2δ or u > θ + 2δ.

Therefore by setting for all (u, v) ∈ R× Y0
Kε(u, v) := εξ(u)R1(u, v +H(u))

B(u)v := B̂(uξ(u))v
Gε(u, v) := εξ(u) [R3(u, v +H(u))− ∂uH(u)R1(u, v +H(u)]

we consider the following extended system
du(t)

dt
= Kε(u(t), v(t))

dv(t)

dt
= [A+B(u(t)))]v(t) +Gε(u(t), v(t))

u(0) = u0 ∈ R and v(0) = v0 ∈ Y0.

(4.19)

The corresponding unperturbed system to (4.19) is
du(t)

dt
= 0, t > t0

dv(t)

dt
= [A+B(u(t))]v(t), t > t0

u(0) = u0 ∈ R and v(0) = v0 ∈ Y0.

(4.20)

Since we replaced B̂(u)v by B(u)v = B̂(uξ(u))v we deduce that

M := R× {0Y }

is invariant for (4.20).

Lemma 4.7 Let ζ > 0 be given and define

BY0(0, ζ) := {y ∈ Y0 : ‖y‖ ≤ ζ} .

Then the following properties hold true

(i) The map (u, y) → Kε(u, y) is continuously differentiable on any open neighborhood of R ×
BY0(0, ζ) and there exists a constant LK > 0 such that for all (u, y), (ū, ȳ) ∈ R×BY0(0, ζ)

‖Kε(u, y)‖ ≤ εLK and ‖Kε(u, y)−Kε(ū, ȳ)‖ ≤ εLK |u− ū|+ εLK‖y − ȳ‖.

(ii) The map (u, y)→ Gε(u, y) is continuous on R×BY0(0, ζ) and there exists a constant LG > 0
such that for all (u, y), (ū, ȳ) ∈ R×BY0(0, ζ)

‖Gε(u, y)‖ ≤ εLG and ‖Gε(u, y)−Gε(ū, ȳ)‖ ≤ εLG|u− ū|+ εLG‖y − ȳ‖.
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(iii) The map u → B(u) is continuous from R into L(Y0, Y ) and there exists a constant LB > 0
such that for all u, ū ∈ R

‖B(u)‖L(Y0,Y ) ≤ LB and ‖B(u)−B(ū)‖L(Y0,Y ) ≤ LB|u− ū|.

Remark 4.8 Note that (4.19) is in the general form of (1.1) with F = 0 so that Assumption 3.2
is satisfied for (4.19) with

β0 = 0 and κ0 = 1.

The following lemma shows that Assumption 3.4 is satisfied for (4.19).

Lemma 4.9 Let β ∈ (0, µ− 2δγ) be given. If

du(t)

dt
= 0, ∀t ∈ R, u(t0) = u0

then the evolution family generated by

dv(t)

dt
= [A+B(u(t))]v(t), t > t0, v(t0) = v0

is exponentially stable with constant κ ≥ 1 and exponent β > 0.

Proof. Since u is constant in time we have

dv(t)

dt
= [A+B(u0)]v(t), t > t0, v(t0) = v0. (4.21)

By using Lemma 4.3 and the perturbation result in [31] it follows that (A + B(u0))0 the part of
A + B(u0) in Y0 generates a strongly continuous semigroup in Y0. Let us denote it by {T (t)}t≥0.
Then its corresponding evolution family is given by

U(t, s) = T (t− s), ∀t ≥ s.

Then recalling that
B(u0)v = [µ+ u0ξ(u0)γ], ∀v ∈ Y0

and 2δ ∈ (0, γ−1µ) we obtain

σ(A+B(u0)) = −(µ+ u0ξ(u0)γ) + σ(A) =
{
−µ− u0ξ(u0)γ − (kπ)2 : k ∈ N

}
and we deduce that

ω0(A) = sup{Re(λ) : λ ∈ σ(A+B(u0))}
≤ −µ+ 2δγξ(u0)
≤ −µ+ 2δγ < 0.

Therefore if β ∈ (0, µ − 2δγ) then the evolution family generated by (4.20) is exponentially stable
with some constant κ ≥ 1 and exponent β > 0 = β0.
We can now apply our results to system (4.19).
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Lemma 4.10 Let ζ > 0 be given and fixed such that Lemma 4.9 holds true. Let β ∈ (0, µ− 2δγ) be
given. Let β̂, β̂0 ∈ (0, β) be two constants with β̂0 < β̂. Then there exist κ̂ ≥ κ, ε0 > 0 and Ĉ0 > 0
such that if

0 ≤ ε ≤ ε0

then there exists a Lipschitz continuous map ψ̂ε : R→ Y0 with

sup
u∈R
‖ψ̂ε(u)‖ ≤ Ĉ0ε.

Moreover M̂ε = {(u, ψ̂ε(u)) ∈ R × Y0 : u ∈ R} is a normally hyperbolic invariant manifold for
(4.19) with constants κ̂, κ0 and exponents β̂, β̂0. Hence for each (u0, ψ̂ε(u0)) ∈ M̂ε there exists a
unique mild solution (u, v) ∈ C1(R,R)×BC(R, Y0) of (4.19) such that

(u(0), v(0)) = (u0, ψ̂(u0)) and v(t) = ψ̂(u(t)),∀t ∈ R.

Note that since ψ̂ε : R→ Y0 there exists ϑ̂ε : R→ Lp([0, 1],R) such that

ψ̂ε(u) =

(
0R2

ϑ̂ε(u)

)
, ∀u ∈ R

and we have
sup
u∈R
‖ϑ̂ε(u)‖Lp = sup

u∈R
‖ψ̂ε(u)‖ ≤ Ĉ0ε. (4.22)

In order to get back to system (4.1) we will need the following lemma.

Lemma 4.11 Let

0 < ε < ε∗ := min

{
ε0,

1

Ĉ0
√
µ+ βθ

1

sinh
(√
µ+ βθ

)} . (4.23)

Then we have ∫ 1

0
[ϑ(u)(x) + ϑ̂ε(u)(x)]dx > 0, ∀u ∈ [0, θ].

Proof. Note that
cosh(x

√
µ+ βu) ≥ 1, ∀x ∈ [0, 1], ∀u ≥ 0

providing that

ϑ(u)(x) ≥ 1√
µ+ βu

1

sinh
(√
µ+ βu

) , ∀x ∈ [0, 1], ∀u ≥ 0.

Since the map u→ u sinh(u) and u→
√
µ+ βu are strictly increasing in [0,+∞) we obtain

ϑ(u)(x) ≥ 1√
µ+ βθ

1

sinh
(√
µ+ βθ

) , ∀x ∈ [0, 1], ∀u ∈ [0, θ]

and we set
δ0 :=

1√
µ+ βθ

1

sinh
(√
µ+ βθ

) .
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By the Holder inequality in [0, 1] we have∣∣∣∣∫ 1

0
ϑ̂ε(u)(x)dx

∣∣∣∣ ≤ ‖ϑ̂ε(u)‖L1 ≤ ‖ϑ̂ε(u)‖Lp ≤ Ĉ0ε < δ0

and we obtain ∫ 1

0
ϑ(u)(x)dx+

∫ 1

0
ϑ̂ε(u)(x)dx ≥ δ0 +

∫ 1

0
ϑ̂ε(u)(x)dx > 0.

We are ready to prove Theorem 4.1.
Proof of Theorem 4.1.
From Lemma 4.10 if we consider u(t) the solution of the ordinary differential equation

du(t)

dt
= Kε(u(t), ψ̂ε(u(t))), ∀t ∈ R, with u(0) = u0 ∈ R,

then t ∈ R→
(
u(t), ψ̂ε(u(t))

)
is a mild solution of system (4.19). Moreover we explicitly have the

following form for the u-equation
du(t)

dt
= εξ(u(t))

[
ru(t)(1− θ−1u(t))− ku(t)

(∫ 1

0
[ϑ(u(t))(x) + ϑ̂ε(u(t))(x)]dx

)]
u(0) = u0 ∈ R.

By classical fixed point arguments we know that if u0 ≥ 0 then u(t) ≥ 0 for all t ≥ 0. Therefore if
u0 ∈ [0, θ] then by Lemma 4.11 we have

u(t) ∈ [0, θ], ∀t ≥ 0.

The result now follows by applying Theorem 3.12 to the truncated system (4.19).

4.2 An epidemic model with age of infection
In order to describe malaria, Ross [43] (1911) first and later Macdonald [37] (1957) introduced

several class of epidemic including human and mosquito infection. We refer to Ruan, Xiao and
Beier [44] for a nice survey on this topic. Here we consider a Ross-McDonald’s model with age of
infection for the mosquitoes

du(t)

dt
= ε

[
γ(1− u(t))

∫ +∞

0
Π(a)i(t, a)da− αu(t)

]
∂i(t, a)

∂t
+
∂i(t, a)

∂a
= −µi(t, a)

i(t, 0) = βu(t)

(
1−

∫ +∞

0
i(t, a)da

)
,

(4.24)

with initial conditions

u(0) = u0 ∈ [0, 1] and i(0, ·) = i0 ∈ L1
+((0,+∞),R).
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Here u(t) is the fraction of infected human at time t, while i(t, a) is the density of infected mosquitoes
at time t with respect to the age of infection a. The age of infection is the time since the mosquitoes
become infected, and the term density of population means that∫ a2

a1

i(t, a)da

is the fraction of infected mosquito with age of infection between a1 and a2. The fraction of infected
mosquitoes is

I(t) =

∫ +∞

0
i(t, a)da ∈ [0, 1].

In this model the function a→ Π(a) is the probability for a mosquito to be infectious at the age of
infection a. We assume that

Π ∈ L∞+ ((0,+∞),R).

From the i-equation we deduce that I(t) satisfies

I ′(t) = βu(t) (1− I(t))− µI(t)

therefore the system (4.24) generated a continuous semiflow on

Ω :=

{
(u, i) ∈ [0, 1]× L1

+((0,+∞),R) :

∫ +∞

0
i(t, a)da ≤ 1

}
.

When ε = 0 we formally obtain the following unperturbed system

du(t)

dt
= 0

∂i(t, a)

∂t
+
∂i(t, a)

∂a
= −µi(t, a)

i(t, 0) = βu(t)

(
1−

∫ +∞

0
i(t, a)da

)
,

(4.25)

u(0) = u0 ∈ [0, 1] and i(0, ·) = i0 ∈ L1
+((0,+∞),R).

For each u(t) = u0 fixed, the equilibria for the i-equation is given by

ī(a) = e−µaī0

and ī0 is a real number satisfying

ī0 = βu0

(
1−

∫ +∞

0
ī0e
−µada

)
thus (

1 +
βu0

µ

)
ī0 = βu0

therefore for each u0 ∈
(
−µβ−1,+∞

)
there exists a unique equilibrium for the i-equation which is

given by

ī(a) =
µβu0

µ+ βu0
e−µa.
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Let ϑ :
(
−µβ−1,+∞

)
→ L1((0,+∞),R) be defined for all u ∈

(
−µβ−1,+∞

)
by

ϑ(u)(a) =
µβu

µ+ βu
e−µa, for almost everya ≥ 0.

By construction the subset
M = {(u, ϑ(u)) : u ∈ [0, 1]}

is invariant under the semiflow generated by (4.25). In order to apply our results we will first rewrite
system (4.24) as an abstract Cauchy problem. Consider the Banach space

Y = R× L1((0,+∞),R)

endowed with the usual product norm and set

Y0 = {0} × L1((0,+∞),R).

Let A : D(A) ⊂ Y → Y be the linear operator with

D(A) = {0} ×W 1,1((0,+∞),R)

and

A

(
0
i

)
=

(
−i(0)
−i′ − µi

)
.

Let R1 : R× Y0 → R and R2 : R× Y0 → Y be defined by

R1

(
u,

(
0
i

))
= γ(1− u)

∫ +∞

0
Π(a)i(a)da− αu

and

R2

(
u,

(
0
i

))
=

 βu

(
1−

∫ +∞

0
i(a)da

)
0

 .

By identifying w(t) and
(

0
i(t, ·)

)
system (4.24) rewrites as the following abstract Cauchy system


du(t)

dt
= εR1(u(t), w(t))

dw(t)

dt
= Aw(t) +R2(u(t), w(t))

u(0) = u0 ∈ [0, 1] and w(0) = w0.

(4.26)

Consider the map H : (−µβ−1,+∞)→ Y0 defined by

H(u) =

(
0R
ϑ(u)

)
, ∀u > −µβ−1.

Then we have by construction

AH(u) +R2(u,H(u)) = 0, ∀u > −µβ−1.
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Note that for each u ∈
(
−µβ−1,+∞

)
we have

∂2R2(u,H(u))

(
0
i

)
=

(
−βu

∫ +∞
0 i(a)da

0

)
, ∀
(

0
i

)
∈ Y0.

Next let us use the following change of variable

v(t) = w(t)−H(u(t)), t ∈ R

so that t→ (u(t), v(t)) satisfies the following system as long as u(t) ∈
(
−µβ−1,+∞

)


du(t)

dt
= εR1(u(t), v(t) +H(u(t)))

dv(t)

dt
= Av(t) +R2(u(t), v(t) +H(u(t)))−R2 (u(t), H(u(t)))

−εH ′(u(t))R1(u(t), v(t) +H(u(t)))
u(0) = u0 and v(0) = w0 −H(u0) ∈ Y0.

(4.27)

with

H ′(u) =

(
0R
ϑ′(u)

)
, ∀u > −µβ−1

and

ϑ′(u)(a) =
µ2β

(µ+ βu)2 e
−µa, for almost everya ≥ 0.

In order to avoid the singularity at u = −µβ−1 we need to truncate the system. Let δ ∈ (0, µβ−1).
Let ξ ∈ C∞ (R, [0, 1]) be a cut-off function such that

ξ(u) =

{
1 if 0 ≤ u ≤ 1
0 if u < −δ or u > 1 + δ.

Set for all (u, v) ∈ R× Y0
Kε(u, v) := εξ(u)R1(u, v +H(u))
B(u)v := ξ(u)∂2R2(u,H(u))v

Gε(u, v) := ξ(u)

[
R2(u, v +H(u))−R2(u,H(u))− ∂2R2(u,H(u))v − εdH(u)

du
R1(u, v +H(u))

]
.

Observe that or all (u, v) ∈ R× Y0 we have

R2(u, v +H(u))−R2(u,H(u))− ∂2R2(u,H(u))v = 0

so that
Gε(u, v) := −εξ(u)

dH(u)

du
R1(u, v +H(u)), ∀(u, v) ∈ R× Y0.

Consider the following system
du(t)

dt
= Kε(u(t), v(t))

dv(t)

dt
= [A+B(u(t)))]v(t) +Gε(u(t), v(t))

u(0) = u0 ∈ R and v(0) = v0 ∈ Y0.

(4.28)
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System (4.28) is in the framework of system (1.1) with F = 0 and Assumption 3.2 is satisfied with
β0 = 0 and κ0 = 1. Then one can verifies that there exist LK , LG and LB such that for all ζ ∈ (0, 1),
for all (u1, v1), (u2, v2) ∈ R×BY0(0, ζ) we have

|Kε(u1, v1)−Kε(u2, v2)| ≤ LKε(|u1 − u2|+ ‖v1 − v2‖)
|Kε(u1, v1)| ≤ LKε
‖B(u1)−B(u2)‖L(Y0) ≤ LB|u1 − u2|
‖B(u1)‖L(Y0) ≤ LB

and {
‖Gε(u1, v1)−Gε(u2, v2)‖ ≤ LGε[|u1 − u2|+ ‖v1 − v2‖
‖Gε(u1, v1)‖ ≤ LGε.

By setting
σ̂ = σ = LGε and η = LKε.

it is clear that Assumption 3.6 holds true. In the sequel ζ ∈ (0, 1) is fixed. Assumption 3.1 is
also trivially satisfied. We now show that Assumption 3.4 is satisfied. Consider the following
unperturbed system 

du(t)

dt
= 0

dv(t)

dt
= [A+B(u(t))]v(t)

u(0) = u0 and v(0) = v0 ∈ Y0.

This last system is equivalent to look at the following partial derivative equation

du(t)

dt
= 0

∂i(t, a)

∂t
+
∂i(t, a)

∂a
= −µi(t, a)

i(t, 0) = −ξ(u(t))βu(t)

∫ +∞

0
i(t, a)da,

u(0) = u0 and i(0, .) = i0 ∈ L1(0,+∞).

Let {UB(t, s)}t≥s be the evolution family generated by dv(t)

dt
= [A+B(u0)]v(t)

v(0) = v0 ∈ Y0.

More precisely for any
(

0
ϕ

)
∈ Y0 we have

UB(t, s)

(
0
ϕ

)
=

(
0

i(t− s, ·)

)
(4.29)

where t→ i(t, ·) ∈ L1((0,+∞),R) is the unique mild solution of
∂i(t, a)

∂t
+
∂i(t, a)

∂a
= −µi(t, a)

i(t, 0) = −βu0ξ(u0)

∫ +∞

0
i(t, a)da,

i(0, ·) = ϕ ∈ L1((0,+∞,R).

(4.30)
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Next we give an estimate for the evolution family. Set I(t) :=
∫ +∞

0 i(t, a)da then we have

I ′(t) = −(βu0ξ(u0))I(t)− µI(t)

therefore

I(t) = e−(µ+βu0ξ(u0))t

∫ +∞

0
i0(a)da,∀t ≥ 0. (4.31)

Moreover we have the following estimate

‖i(t, .)‖L1 ≤ e−µt‖i0‖L1 +

∫ t

0
e−µ(t−s)|βu0ξ(u0)||I(s)|ds,∀t ≥ 0,

hence by using (4.31)

‖i(t, .)‖L1 ≤ e−µt‖i0‖L1

[
1 +

∫ t

0
e−(βu0ξ(u0))s|βu0ξ(u0)|ds

]
,∀t ≥ 0,

and by distinguishing the case u0 positive and the case u0 negative, we obtain that

‖i(t, .)‖L1 ≤ e−µt‖i0‖L1

[
1 +

∫ t

0
e−min(0,(βu0ξ(u0)))s|βu0ξ(u0)|ds

]
,∀t ≥ 0,

and −βu0ξ(u0) ≤ βδ whenever u0 ≤ 0, therefore we can find a constant κ∗ ≥ 1 such that

‖i(t, .)‖L1 ≤ κ∗e−µt‖i0‖L1

[
1 +

∫ t

0
βδeβδsds

]
, ∀t ≥ 0,

and by setting β∗ := µ− βδ > 0 we obtain

‖i(t, .)‖L1 ≤ κ∗e−β∗t‖i0‖L1 ,∀t ≥ 0.

It follows that the evolution family {UB(t, s)}t≥s is exponentially stable with constant κ∗ ≥ 1 and
exponent β∗ > 0.

Then as a consequence of Theorem 3.12 we deduce that there exists ε0 > 0 small enough such
that for each ε ∈ (0, ε0) there exists a globally Lipschitz continuous map ϑ̂ε : R → L1((0,+∞),R)
such that the manifold

M̂ε :=

{(
u,

(
0

ϑ̂ε(u)

))
∈ R× Y0 : u ∈ R

}
is invariant by the semiflow generated by system (4.28). Moreover from Theorem 3.12 we also have

‖ϑ̂ε(u)‖L1 ≤ LGεĈ0 ≤ ζ, ∀u ∈ R

with Ĉ0 > 0 the positive constant of Theorem 3.12. Next the semiflow generated by (4.24) restricted
to Ω is asymptotically smooth by using the results of Thieme and Vrabie [51]. Therefore by using
the result of Hale [20] system (4.24) restricted to Ω has a connected global attractor Aε ⊂ Ω. Note
that for ε = 0 the global attractor is

A0 = M = {(u, ϑ(u)) : u ∈ [0, 1]} ⊂ Ω.
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Denote by Lϑ the Lipschitz norm of ϑ in [0, 1]. By using the lower semi-continuity of the attractor
we know that there exists ε1 ∈ (0, ε0) such that for each ε ∈ (0, ε1) the global attractor Aε ⊂ Ω is
contained in the ζ(1 + Lϑ)−1− neighborhood of A0 = M .
Let t ∈ R→ (u(t), i(t, ·) be a complete orbit of (4.24) in the attractor Aε with ε ∈ (0, ε1). Then we
have

u(t) ∈ [0, 1], ∀t ∈ R, i(t, ·) ∈ L1
+((0,+∞),R), ∀t ∈ R

and
‖i(t, ·)− ϑ(u(t))‖L1 ≤ ζ, ∀t ∈ R.

Therefore the map
t ∈ R→ (u(t), v(t)) ∈ [0, 1]× Y0

with

v(t) =

(
0

i(t, ·)− ϑ(u(t))

)
, ∀t ∈ R

is a complete orbit of (4.27) and then a complete orbit of (4.28) because system (4.27) and system
(4.28) coincide as long as u(t) ∈ [0, 1].
Now by Theorem 3.12, all bounded complete orbit (u, v) of system (4.28) satisfying ‖v‖∞ ≤ ζ are
contained in M̂ε. Therefore we must have

v(t) =

(
0

i(t, ·)− ϑ(u(t))

)
=

(
0

ϑ̂ε(u(t))

)
, ∀t ∈ R⇒ i(t, ·) = ϑ(u(t)) + ϑ̂ε(u(t)), ∀t ∈ R.

Our result reads as follows.

Theorem 4.12 There exists a Lipschitz continuous map u→ ϑ̂ε(u)(.) from R into L1((0,+∞),R)
such that for each ε > 0 small enough, system (4.24) can be reduced to a single human equation on
the global attractor Aε ⊂ Ω that is

u′(t) = ε

[
γ(1− u(t))

∫ +∞

0
Π(a)

(
ϑ̂ε(u(t))(a) + ϑ(u(t))(a)

)
da− αu(t)

]
and i(t, a) = ϑ̂ε(u(t))(a)+ϑ(u(t))(a) is a mild solution of the i-equation of system (4.24). Moreover
we have

‖ϑ̂ε(u)‖L1 ≤ LGεĈ0, ∀u ∈ R.

Therefore there are two cases whenever ε > 0 is small enough

(i) If there is no positive interior equilibrium solution in Ω, the global attractor is reduced to the
trivial equilibrium {0};

(ii) If there is one positive interior equilibrium solution in Ω, the global attractor Aε contains both
equilibria and an heteroclinic orbit joining both equilibria.
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5 Growth estimates under small perturbation
In this section we consider the unperturbed equation

u̇(t) = F (u(t)) t > t0 and u(t0) = x ∈ X, (5.1)

and the perturbed one

dû(t)

dt
= F (û(t)) + F̂ (û(t), t), t > t0 and û(t0) = x ∈ X. (5.2)

We prove that when F̂ is sufficiently small then the solutions of (5.2) inherit the properties of the
solutions of (5.1).

As consequence of the estimations obtained in this section, we will prove that the linear evolution
family generated by

ẇ(t) = [A+B(û(t))]w(t), t > t0, w(t0) = w0 ∈ Y0 (5.3)

has an exponential dichotomy whenever F̂ is small enough.

5.1 Nonlinear variation of constants formula
For convenience in the following, we rewrite the system (5.1) as a non autonomous system.

Note that Assumption 3.1 guaranties for each x ∈ X and t0 ∈ R the existence and uniqueness of a
solution u ∈ C1(R, X) of (5.1) with u(t0) = x. For each x ∈ X and t0 ∈ R let

t ∈ R→ Ψ(x, t, t0)

be the unique solution of (5.1) with Ψ(x, t0, t0) = x. Let us now collect some properties of
{Ψ(·, t, t0) : X → X}(t,t0)∈R2 . Indeed by using the uniqueness of the solutions of (5.1) it follows that
{Ψ(·, t, t0)}(t,t0)∈R2 has the evolutionary properties that is{

Ψ(·, t, l) ◦Ψ(·, l, t0) = Ψ(·, t, t0), ∀(t, l), (l, t0) ∈ R2

Ψ(x, t, t) = x, ∀t ∈ R and x ∈ X.
(5.4)

Observe that under Assumption 3.1 one has for any (t, t0) ∈ R2 the map

x ∈ X → Ψ(x, t, t0)

is differentiable on X. Moreover (5.4) implies that for any (t, t0) ∈ R2 the map x ∈ X → Ψ(x, t, t0)
is a diffeomorphism on X with inverse function x ∈ X → Ψ(x, t0, t). In particular for all x ∈ X and
(t, t0) ∈ R2 the linear map

∂xΨ(x, t, t0) ∈ L(X)

is invertible on X with inverse

∂xΨ(x, t, t0)−1 = ∂xΨ(x̂, t0, t) ∈ L(X) with x̂ := Ψ(x, t, t0)
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and {∂xΨ(x, t, t0)}(t,t0)∈∆ ⊂ L(X) is the linear evolution family generated by

dz(t)

dt
= DF (Ψ(x, t, t0))z(t), t > t0 and z(t0) = z0 ∈ X. (5.5)

Furthermore one also has for each t0 ∈ R

∂lΨ(x, t, l) = −∂xΨ(x, t, l)F (x), ∀t ≥ l ≥ t0 and x ∈ X. (5.6)

Lemma 5.1 (Nonlinear variation of constants formula) Let Assumption 3.1 be satisfied. If
û ∈ C1(R, X) satisfies

dû(t)

dt
= F (û(t)) + F̂ (û(t), t), t ∈ R

then

û(t) = Ψ(û(t0), t, l) +

∫ t

t0

∂xΨ(û(r), t, r)F̂ (û(r), r)dr, ∀t ≥ t0.

Proof. Note that for each t ≥ l ≥ t0 we have

dΨ(û(l), t, l)

dl
= ∂xΨ(û(l), t, l)

dû(l)

dl
+ ∂lΨ(û(l), t, l)

and since û(l) ∈ X we obtain from (5.6)

∂lΨ(û(l), t, l) = −∂xΨ(û(l), t, l)F (û(l))

so that by the linearity of ∂xΨ(û(l), t, l)

dΨ(û(l), t, l)

dl
= ∂xΨ(û(l), t, l)

[
dû(l)

dl
− F (û(l))

]
= ∂xΨ(û(l), t, l)F̂ (û(l), l).

Then integrating
dΨ(û(l), t, l)

dl
between t0 and t yields

Ψ(û(t), t, t)−Ψ(û(t0), t, t0) =

∫ t

t0

∂xΨ(û(r), t, r)F̂ (û(r), r)dr

and the result follows by using the fact that Ψ(û(t), t, t) = û(t).

5.2 Growth estimates for the perturbed equation
We start by giving estimates for {∂xΨ(x, t, t0)}(t,t0)∈R2 ⊂ L(X) on the operator norm.

Lemma 5.2 Let Assumptions 3.1 and 3.2 be satisfied. Then the following estimates hold

‖∂xΨ(x, t, t0)‖L(X) ≤ κ0 e
β0|t−t0|, ∀(t, t0) ∈ R2 and x ∈ X, (5.7)

and
‖∂xΨ(x, t, t0)−1‖L(X) ≤ κ0 e

β0|t−t0|, ∀(t, t0) ∈ R2 and x ∈ X. (5.8)
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Proof. Let (t, t0) ∈ R2 and x ∈ X be given. Then using (3.1) one has for each s > 0, x̂ ∈ X and
z ∈ X

1

s
‖Ψ(x̂+ sz, t, t0)−Ψ(x̂, t, t0)‖ ≤ 1

s
κ0e

β0|t−t0|‖Ψ(x̂+ sz, t0, t0)−Ψ(x̂, t0, t0)‖
≤ κ0e

β0|t−t0|‖z‖

so that letting s→ 0+ provides

‖∂xΨ(x̂, t, t0)z‖ ≤ κ0 e
β0|t−t0|‖z‖, ∀(t, t0) ∈ R2.

Hence (5.7) holds by setting x̂ = x while (5.8) is obtained from (5.7) by setting x̂ = Ψ(x, t, t0) and
using the fact that

∂xΨ(x, t, t0)−1 = ∂xΨ(x̂, t0, t).

In what follows our goal is to prove a lemma analogous to Lemma 5.2 but for system (5.2). We will
need the following assumption on F̂

Assumption 5.3 Assume that for each t ∈ R, the map x → F̂ (x, t) belongs to C1(X) and there
exists η̂ > 0 such that

‖F̂ (x1, t)− F̂ (x2, t)‖ ≤ η̂‖x1 − x2‖, ∀x1, x2 ∈ X and t ∈ R.

Assume in addition that for any z ∈ X, the map

(t, x) ∈ R×X → ∂xF̂ (x, t)z ∈ X

is continuous on R×X and for each t ∈ R the map

x ∈ X → ∂xF̂ (x, t) ∈ L(X)

is continuous on X.

Assumptions 3.1 and 5.3 ensure that for each x ∈ X and t0 ∈ R there exists a unique solution
û ∈ C(R, X) of (5.2) with u(t0) = x. For any x ∈ X and t0 ∈ R let

t ∈ R→ Ψ̂(x, t, t0)

be the unique solution of (5.2) satisfying Ψ̂(x, t0, t0) = x. Then we have{
Ψ̂(·, t, l) ◦ Ψ̂(·, l, t0) = Ψ̂(·, t, t0), ∀(t, l), (l, t0) ∈ R2

Ψ̂(x, t, t) = x, ∀t ∈ R and x ∈ X.
(5.9)

Furthermore Assumptions 3.1 and 5.3 together with (5.9) implies that for any (t, t0) ∈ R2 the map

x ∈ X → Ψ̂(x, t, t0)

is a diffeomorphism on X with inverse function x ∈ X → Ψ̂(x, t0, t). Hence for each x ∈ X and
(t, t0) ∈ R2, the linear map

∂xΨ̂(x, t, t0) : X → X
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is invertible on X with inverse

∂xΨ̂(x, t, t0)−1 = ∂xΨ̂(x̂, t0, t) with x̂ := Ψ̂(x, t, t0)

and {∂xΨ̂(x, t, t0)}(t,t0)∈∆ ⊂ L(X) is the linear evolution family generated by

dẑ(t)

dt
= DF (Ψ̂(x, t, t0))ẑ(t) + ∂xF̂ (Ψ̂(x, t, t0), t)ẑ(t), t > t0 and ẑ(t0) = z0 ∈ X. (5.10)

By using comparison principle for ordinary differential equation we have the following result.

Lemma 5.4 Let α : [a, b]→ [0,+∞) with a < b be a continuous function on [a, b]. Let γ ∈ R and
c1 ≥ 1 and c2 ≥ 0 be given. Then the inequality

α(t) ≤ c1α(a)eγ(t−a) + c2

∫ t

a
eγ(t−r)α(r)dr, ∀t ∈ [a, b], (5.11)

implies that
α(t) ≤ c1α(a)e(γ+c2)(t−a),∀t ∈ [a, b], (5.12)

and the inequality

α(t) ≤ c1α(b)eγ(b−t) + c2

∫ b

t
eγ(r−t)α(r)dr, ∀t ∈ [a, b], (5.13)

implies that
α(t) ≤ c1α(b)e(γ+c2)(b−t),∀t ∈ [a, b]. (5.14)

Lemma 5.5 Let Assumptions 3.1, 3.2 and 5.3 be satisfied. Assume in addition that

sup
(x,t)∈X×R

‖F̂ (x, t)‖ ≤ η̂. (5.15)

Then for each x ∈ X, each m > 1 and (t, t0) ∈ R2 we have ‖∂xΨ̂(x, t, t0)‖L(X) ≤ κ0e

(
ln(κ0)
m

+β0+η̂κ̃0(m+1)eβ0m
)
|t−t0|

‖∂xΨ̂(x, t, t0)−1‖L(X) ≤ κ0e

(
ln(κ0)
m

+β0+η̂κ̃0(m+1)eβ0m
)
|t−t0|

(5.16)

where
κ̃0 := max(κ2

0LF , κ0).

Proof. First of all observe that condition

‖F̂ (x1, t)− F̂ (x2, t)‖ ≤ η̂‖x1 − x2‖, ∀x1, x2 ∈ X and t ∈ R

implies that
sup

(x,t)∈X×R
‖∂xF̂ (x, t)‖L(X) ≤ η̂. (5.17)

Let x ∈ X and m > 0 be given and fixed. Let t0 ∈ R and z0 ∈ X. Define

ẑ(t) := ∂xΨ̂(x, t, t0)z0, ∀t ≥ t0.
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Then t ∈ [t0,+∞)→ ẑ(t) satisfies (5.10) which can be rewritten as

dẑ(t)

dt
= DF (Ψ(x, t, t0))ẑ(t) +

[
DF (Ψ̂(x, t, t0))−DF (Ψ(x, t, t0))

]
ẑ(t) + ∂xF̂ (Ψ̂(x, t, t0), t)ẑ(t),

for t > t0 and
ẑ(t0) = z0.

Recalling that {∂xΨ(x, t, t0)}(t,t0)∈∆ is the linear evolution family generated by (5.5) we can use a
variation of constants formula to obtain on one hand

ẑ(t) = ∂xΨ(x, t, l)ẑ(l) +

∫ t

l
∂xΨ(x, t, r)

[
DF (Ψ̂(x, r, l))−DF (Ψ(x, r, l))

]
ẑ(r)dr

+

∫ t

l
∂xΨ(x, t, r)∂xF̂ (Ψ̂(x, r, l), r)ẑ(r)dr, ∀t ≥ l ≥ t0.

(5.18)

On the other hand since for any r ∈ [l, t] ⊂ [t0, t]

∂xΨ(x, t, l) = ∂xΨ(x, t, r)∂xΨ(x, r, l)⇒ ∂xΨ(x, t, l)−1 = ∂xΨ(x, r, l)−1∂xΨ(x, t, r)−1

by applying ∂xΨ(x, t, l)−1 to the left hand side of (5.18) we obtain

ẑ(l) = ∂xΨ(x, t, l)−1ẑ(t)−
∫ t

l
∂xΨ(x, r, l)−1

[
DF (Ψ̂(x, r, l))−DF (Ψ(x, r, l))

]
ẑ(r)dr

−
∫ t

l
∂xΨ(x, r, l)−1∂xF̂ (Ψ̂(x, r, t0), r)ẑ(r)dr, ∀t ≥ l ≥ t0.

(5.19)

We now divide the proof into three steps.
Step 1 : In this step we will prove that ‖∂xΨ̂(x, t, t0)‖L(X) ≤ κ0e

(β0+η̂κ̃0(m+1)eβ0m)(t−t0), ∀t ∈ [t0, t0 +m]

‖∂xΨ̂(x, t, t0)−1‖L(X) ≤ κ0e
(β0+η̂κ̃0(m+1)eβ0m)(t−t0), ∀t ∈ [t0, t0 +m].

(5.20)

Using (5.18) we infer from Lemma 5.2 combined together with Assumption 3.1 and (5.17) that

‖ẑ(t)‖ ≤ κ0e
β0(t−t0)‖ẑ(t0)‖+

∫ t

t0

κ0e
β0(t−r)LF ‖Ψ̂(x, r, t0)−Ψ(x, r, t0)‖‖ẑ(r)‖dr

+

∫ t

t0

κ0e
β0(t−r)η̂‖ẑ(r)‖dr, ∀t ∈ [t0, t0 +m].

(5.21)

Similarly we obtain from (5.19) that for each t ∈ [t0, t0 +m]

‖ẑ(l)‖ ≤ κ0e
β0(t−l)‖ẑ(t)‖+

∫ t

l
κ0e

β0(r−l)LF ‖Ψ̂(x, r, l)−Ψ(x, r, l)‖‖ẑ(r)‖dr

+

∫ t

l
κ0e

β0(r−l)η̂‖ẑ(r)‖dr, ∀l ∈ [t0, t].

(5.22)
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Next by using Lemma 5.1 and (5.15) one obtains for each r ∈ [t0, t0 +m]

‖Ψ̂(x, r, t0)−Ψ(x, r, t0)‖ ≤
∫ r

t0

κ0e
β0(r−l)‖F̂ (Ψ̂(x, l, t0), l)‖dl

≤
∫ r

t0

κ0e
β0(r−l)η̂dl

≤ κ0(r − t0)eβ0(r−t0)η̂
≤ κ0me

β0mη̂

(5.23)

and by plugging (5.23) into (5.21) we obtain for each t ∈ [t0, t0 +m]

‖ẑ(t)‖ ≤ κ0e
β0(t−t0)‖ẑ(t0)‖+

∫ t

t0

η̂
[
LFκ

2
0me

β0m + κ0

]
eβ0(t−r)‖ẑ(r)‖dr

≤ κ0e
β0(t−t0)‖ẑ(t0)‖+ η̂

[
κ2

0LFm+ κ0

]
eβ0m

∫ t

t0

eβ0(t−r)‖ẑ(r)‖dr
(5.24)

Recalling that
κ̃0 = max(κ2

0LF , κ0),

we obtain from (5.24)

‖ẑ(t)‖ ≤ κ0e
β0(t−t0)‖ẑ(t0)‖+ η̂κ̃0(m+ 1)eβ0m

∫ t

t0

eβ0(t−r)‖ẑ(r)‖dr, ∀t ∈ [t0, t0 +m]

and by similar arguments we also obtain

‖ẑ(l)‖ ≤ κ0e
β0(t−l)‖ẑ(t)‖+ η̂κ̃0(m+ 1)eβ0m

∫ t

l
eβ0(r−l)‖ẑ(r)‖dr, ∀l ∈ [t0, t].

Therefore by Lemma 5.4 ‖ẑ(t)‖ ≤ κ0e
(β0+η̂κ̃0(m+1)eβ0m)(t−t0)‖ẑ(t0)‖, ∀t ∈ [t0, t0 +m]

‖ẑ(t0)‖ ≤ κ0e
(β0+η̂κ̃0(m+1)eβ0m)(t−t0)‖ẑ(t)‖, ∀t ∈ [t0, t0 +m]

that is 
‖∂xΨ̂(x, t, t0)z0‖ ≤ κ0e

(β0+η̂κ̃0(m+1)eβ0m)(t−t0)‖z0‖, ∀t ∈ [t0, t0 +m]

‖z0‖ ≤ κ0e
(β0+η̂κ̃0(m+1)eβ0m)(t−t0)‖∂xΨ̂(x, t, t0)z0‖, ∀t ∈ [t0, t0 +m]

and (5.20) follows.
Step 2 : In this step we prove the lemma whenever (t, t0) ∈ ∆. Observe when 0 ≤ t− t0 ≤ m then
the estimates (5.16) follows from Step 1. Now assume that t− t0 > m. Then there exists a positive
integer n and a non negative real number r with 0 ≤ r < m such that

t− t0 = nm+ r.

For more convenience in the notations set

tk := t0 + (k − 1)m+ r, 1 ≤ k ≤ n
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so that 
tn+1 = t
tk+1 − tk = m, if 1 ≤ k ≤ n
t1 − t0 = r < m.

Since {∂xΨ̂(x, t, t0)}(t,t0)∈∆ is a linear evolution family we have

∂xΨ̂(x, t, t0)z0 = ∂xΨ̂(x, tn+1, t0)z0 = ∂xΨ̂(x, tn+1, tn)∂xΨ̂(x, tn, tn−1) · · · ∂xΨ̂(x, t1, t0)z0

and by Step 1

‖∂xΨ̂(x, t, t0)z0‖ ≤ κ0e
(β0+η̂κ̃0(m+1)eβ0m)(tn+1−tn) · · ·κ0e

(β0+η̂κ̃0(m+1)eβ0m)(t1−t0)‖z0‖
≤ κ0κ

n
0e

(β0+η̂κ̃0(m+1)eβ0m)(tn+1−t0)‖z0‖
≤ κ0κ

n
0e

(β0+η̂κ̃0(m+1)eβ0m)(t−t0)‖z0‖.

Then observing that
n =

t− t0 − r
m

≤ t− t0
m

we obtain

‖∂xΨ̂(x, t, t0)z0‖ ≤ κ0κ
t−t0
m

0 e(β0+η̂κ̃0(m+1)eβ0m)(t−t0)‖z0‖ = κ0e

(
ln(κ0)
m

+β0+η̂κ̃0(m+1)eβ0m
)

(t−t0)‖z0‖.

Since
∂xΨ̂(x, t, t0)−1z0 = ∂xΨ̂(x, t1, t0)−1 · · · ∂xΨ̂(x, tn, tn−1)−1∂xΨ̂(x, tn+1, tn)−1z0

by using similar arguments one also obtains

‖∂xΨ̂(x, t, t0)−1z0‖ ≤ κ0e

(
ln(κ0)
m

+β0+η̂κ̃0(m+1)eβ0m
)

(t−t0)‖z0‖.

Step 3 : We can now complete the proof of our lemma by using Step 2. Indeed if (t, t0) ∈ ∆ and
x ∈ X then by setting

x̂ = Ψ̂(x, t0, t) ∈ X

we obtain
∂xΨ̂(x, t0, t) = ∂xΨ̂(x̂, t, t0)−1 ⇐⇒ ∂xΨ̂(x, t0, t)

−1 = ∂xΨ̂(x̂, t, t0)

and the result follows from Step 2.
As a consequence of Lemma 5.5 we obtain the following analogous of Assumption 3.2 for the per-
turbed equation (5.2).

Lemma 5.6 Let Assumptions 3.1, 3.2 and 5.3 be satisfied. For each β̂0 > β0 there exists η̂0 > 0
such that if

sup
(x,t)∈X×R

‖F̂ (x, t)‖ ≤ η̂0

then any two solutions û1, û2 ∈ C1(R, X) of (5.2) satisfies

‖û1(t)− û2(t)‖ ≤ κ0e
β̂0|t−t0|‖û1(t0)− û2(t0)‖, ∀(t, t0) ∈ R2.
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Proof. Let û1, û2 ∈ C1(R, X) be two solutions of (5.2). Then we have

ûi(t) = Ψ̂(ûi(t0), t, t0), ∀(t, t0) ∈ R2, i = 1, 2.

Hence
û1(t)− û2(t) = Ψ̂(û1(t0), t, t0)− Ψ̂(û2(t0), t, t0)

=

∫ 1

0
∂xΨ̂(rû1(t0) + (1− r)û2(t0), t, t0)dr (û1(t0)− û2(t0))

and from Lemma 5.5 if
sup

(x,t)∈X×R
‖F̂ (x, t)‖ ≤ η̂

then for each m > 1

‖Ψ̂(rû1(t0) + (1− r)û2(t0), t, t0)‖L(X) ≤ κ0e

(
ln(κ0)
m

+β0+η̂κ̃0(m+1)eβ0m
)
|t−t0|, ∀r ∈ [0, 1]

and we obtain

‖û1(t)− û2(t)‖ ≤ κ0e

(
ln(κ0)
m

+β0+η̂κ̃0(m+1)eβ0m
)
|t−t0|‖û1(t0)− û2(t0)‖, ∀(t, t0) ∈ R2.

The result follows by taking firstly m > 1 large enough and secondly η̂ > 0 sufficiently small.

5.3 Persistence of exponential dichotomy
In this subsection we will show that if û ∈ C1(R, X) is a solution of (5.2) for F̂ sufficiently small

then the evolution family generated by (5.3) has an exponential dichotomy.

Proposition 5.7 Let Assumptions 2.1, 2.3, 3.1, 3.2, 3.4, 3.7 and 5.3 be satisfied. Let β̂ ∈ (β0, β)
be given. There exists η1 > 0 such that if

sup
(x,t)∈X×R

‖F̂ (x, t)‖ ≤ η1

and û ∈ C1(R, X) is solution of (5.2) then the evolution family generated by (5.3) has an exponential
dichotomy with some constant κ̂ ≥ 1 and exponent β̂.

This proposition is crucial in proving our main result. Before giving its proof we first introduce
some notions and prove a technical lemma.

Definition 5.8 Let û ∈ C1(R, X) be a solution of (5.2) and (tk)k∈Z ⊂ R be a non-decreasing
sequence. We say that the sequence of functions (uk)k∈Z ⊂ C1(R, X) is a tk-approximation of û if
uk satisfies

u̇k(t) = F (uk(t)), ∀t ∈ R and uk(tk) = û(tk),

for each k ∈ Z.

The following lemma gives a relationship between û and its approximation.
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Lemma 5.9 Let Assumptions 3.1 and 5.3 be satisfied. Assume in addition that

sup
(x,t)∈X×R

‖F̂ (x, t)‖ ≤ η̂.

Let û ∈ C1(R, X) be a solution of (5.2) and (tk)k∈Z ⊂ R be a non-decreasing sequence. If (uk)k∈Z ⊂
C1(R, X) is a tk-approximation of û then

‖u(t)− uk(t)‖ ≤ η̂(t− tk)eLF (t−tk), ∀t ≥ tk. (5.25)

Proof. We have 
û(t) = û(tk) +

∫ t

tk

F (û(r))dr +

∫ t

tk

F̂ (û(r), r)dr, t ≥ tk

uk(t) = uk(tk) +

∫ t

tk

F (uk(t))dr, t ≥ tk

and since û(tk) = uk(tk) we obtain

‖û(t)− uk(t)‖ ≤ LF
∫ t

tk

‖û(r)− uk(r)‖dr + η̂(t− tk)

and (5.25) follows by Gronwall’s inequality.
In the proof of Proposition 6.3 we will use the following notion of exponential dichotomy for discrete
time systems.

Definition 5.10 Let C = {Cn}n∈Z ⊂ L(Y0) be a family of bounded linear operators on Y0. Define

UC(n,m) :=

{
Cn−1 . . . Cm, if n > m
IL(Y0), if n = m.

We say that C = {Cn}n∈Z is exponentially dichotomic on Z with constant κ ≥ 1 and exponent β > 0
if and only if the following properties are satisfied

(i) There exist two families of projections {Π+
n }n∈Z ⊂ L(Y0) and {Π−n }n∈Z ⊂ L(Y0) on Y0 such

that
Π+
n + Π−n = IL(Y0), ∀n ∈ Z.

Then we define for all n ≥ m

U+
C (n,m) := UC(n,m)Π+

n and U−C (n,m) := U(n,m)Π−m.

(ii) For all n ≥ m we have Π+
nUC(n,m) = UC(n,m)Π+

m.

(iii) For all n ≥ m the restricted linear operator UC(n,m)Π−m is invertible from Π−m(Y0) into
Π−n (Y0) with inverse denoted by Ū−C (m,n) and we set

U−C (m,n) := Ū−C (m,n)Π−n .
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(iv) For all n ≥ m

‖U+
C (n,m)‖L(Y0) ≤ κe−β(n−m) and ‖U−C (m,n)‖L(Y0) ≤ e−β(n−m).

Now we are in position to prove the main result of this section.

Proof of Proposition 5.7 . Let û ∈ C1(R, X) be a solution of (5.2). Denote by {Uû(t, l)}t≥l ⊂
L(Y0) the evolution family generated by

ẇ(t) = [A+B(û(t))]w(t), t > l, w(l) = w0 ∈ Y0.

The existence of such evolution family is ensured by Assumptions 2.1, 2.3 and 3.7 together with
Lemma 2.9. Let t0 ∈ R be given. Define the non-decreasing sequence

tk := t0 + k, k ∈ Z. (5.26)

Let (uk)k∈Z ⊂ C1(R, X) be a tk-approximation of u with tk defined in (5.26). For each k ∈ Z denote
by {Uuk(t, l)}t≥l ⊂ L(Y0), the evolution family generated by

ẇ(t) = [A+B(uk(t))]w(t), t > l and w(l) = w0 ∈ Y0.

Then due to Assumption 3.4 the evolution family {Uuk(t, l)}t≥l ⊂ L(Y0), k ∈ Z, has an exponential
dichotomy with constants κ and exponent β. Moreover from Assumption 3.7 and Lemma 2.9 we
also have for each k ∈ Z and t ≥ l

‖Uuk(t, l)‖L(Y0) ≤M1e
ω1(t−l) and ‖Uû(t, l)‖L(Y0) ≤M1e

ω1(t−l), (5.27)

for some M1 ≥ 1 and ω1 ∈ R independent of û and uk.
Next define the following sequences of bounded linear operators

Cn := Uû(tn+1, tn) ∈ L(Y0), ∀n ∈ Z,

and
Ckn := Uuk(tn+1, tn), ∀n ∈ Z.

Then for each k ∈ Z, it is easy to see that {Ckn}n∈Z ⊂ L(Y0) is exponentially dichotomic on Z with
constant κ and exponent β.
Next let y ∈ Y0 and n ∈ Z be given. Then t ∈ [tn,+∞)→ Uû(t, tn)y is the mild solution of

ẇ(t) = [A+B(û(t))]w(t), t > tn and w(tn) = y ∈ Y0

which can be rewritten for k ∈ Z as

ẇ(t) = [A+B(uk(t))]w(t) + [B(û(t))−B(uk(t))]w(t), t > tn and w(tn) = y.

Then using lemma 2.9 with f(t) = [B(û(t))−B(uk(t))]w(t) we obtain

w(t) = Uuk(t, tn)y + lim
λ→+∞

∫ t

tn

Uuk(t, r)λRλ(A) [B(û(r))−B(uk(r))]w(r)dr, t ≥ tn
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or equivalently

Uû(t, tn)y = Uuk(t, tn)y + lim
λ→+∞

∫ t

tn

Uuk(t, r)λRλ(A) [B(û(r))−B(uk(r))]Uû(r, tn)ydr, t ≥ tn.

Then by Proposition 2.11 we obtain

‖Uû(t, tn)y − Uuk(t, tn)y‖ ≤ δ∗(t− tn) sup
r∈[tn,t]

‖ [B(û(r))−B(uk(r))]Uû(r, tn)y‖, ∀t ≥ tn

where δ∗ : [0,+∞) → [0,+∞) is a non decreasing function depending only on A,ωA,MA, LB and
δ. Therefore by using Assumption 3.7, Lemma 5.9 and (5.27) we obtain for each t ≥ tn

‖Uû(t, tn)y − Uuk(t, tn)y‖ ≤ LBδ
∗(t− tn)M1e

ω1(t−tn)‖y‖ sup
r∈[tn,t]

‖û(r)− uk(r)‖

≤ LBδ
∗(t− tn)M1e

ω1(t−tk)η̂(t− tn)eLF (t−tn)‖y‖.

providing that

‖Uû(t, tn)− Uuk(t, tn)‖L(Y0) ≤ LBδ∗(t− tn)M1e
ω1(t−tn)η̂(t− tn)eLF (t−tn).

It follows that for each k, n ∈ Z

‖Cn − Ckn‖L(Y0) = ‖Uû(tn+1, tn)− Uuk(tn+1, tn)‖L(Y0)

≤ LBδ
∗(tn+1 − tn)M1e

ω1(tn+1−tn)η̂(tn+1 − tn)eLF (tn+1−tn)

so that for each p ∈ N we obtain

sup
n∈[k,k+p]

‖Cn − Ckn‖L(Y0) ≤ LBδ∗(p)M1e
ω1pη̂peLF p.

Furthermore since we have

sup
n∈Z
‖Cn‖L(Y0) ≤M1e

ω1 and sup
n∈Z
‖Ckn‖L(Y0) ≤M1e

ω1 ,

we infer from [9, Proposition 6.4] that for η̂ sufficiently small {Cn}n∈Z ⊂ L(Y0) is exponentially
dichotomic on Z with some constant κ̃ ≥ κ (independent of t0) and exponent 0 < β̂ < β. Now
using the fact that κ̃ and β̂ do not depend on t0 we are in the situation of [22, Theorem 1.3] so we
conclude that {Uû(t, l)}t≥l ⊂ L(Y0) has an exponential dichotomy with constant κ̂ ≥ κ (possibly
larger than κ̃) and exponent β̂.

6 Proof of the main result
Let β̂ ∈ (β0, β) and β̂0 ∈ (β0, β̂) be given. Let η̂0 > 0 and η̂1 > 0 be the positive constants such

that Lemma 5.5 and Proposition 5.7 hold true. In what follows we always assume that the positive
constant η > 0 in Assumption 3.6 satisfies

0 < η < min(η̂0, η̂1), (6.1)

where η̂0 (respectively η̂1 ) is defined in Lemma 5.6 (respectively in Proposition 5.7).
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6.1 Estimates of the u-equation
Let x ∈ X, t0 ∈ R and v ∈ BC(R, Y0) with ‖v‖∞ ≤ ζ be given where ζ > 0 is the positive

constant in Assumption 3.6. Consider

u̇(t) = F (u(t)) +K(u(t), v(t)), ∀t > t0, u(t0) = x ∈ X. (6.2)

By Assumption 3.1 and Assumption 3.6-(i) for each x ∈ X, t0 ∈ R and v ∈ BC(R, Y0) with
‖v‖∞ ≤ ζ there exists a unique solution u ∈ C1(R, X) of (6.2) such that u(t0) = x. Therefore for
any x ∈ X, t0 ∈ R and v ∈ BC(R, Y0) with ‖v‖∞ ≤ ζ we define

u(t) := Λ0(x, v)(t, t0), ∀t ∈ R⇐⇒ u ∈ C1(R, X) satisfies (6.2) with u(t0) = x. (6.3)

Hence for any x ∈ X and v ∈ BC(R, Y0) with ‖v‖∞ ≤ ζ the family of maps {Λ0(x, v)(t, l)}(t,l)∈R2

satisfies
Λ0(·, v)(t, l) ◦ Λ0(·, v)(l, t0) = Λ0(·, v)(t, t0), ∀(t, l), (l, t0) ∈ R2

and
Λ0(x, v)(t, t) = x,∀t ∈ R and x ∈ X.

Furthermore for each (t, t0) ∈ R2 and v ∈ BC(R, Y0) with ‖v‖∞ ≤ ζ the map

x→ Λ0(x, v)(t, t0)

is a diffeomorphism in X with inverse function

x→ Λ0(x, v)(t0, t)

and {∂xΛ0(x, v)(t, t0)}(t,t0)∈∆ is the linear evolution family generated by

ż(t) = [DF (Λ0(x, v)(t, t0)) + ∂xK(Λ0(x, v)(t, t0), v(t))]z(t), ∀t > t0 and z(t0) = z0 ∈ X.

The next lemma is a direct consequence of Lemma 5.6 applied with F̂ (u(t), t) := K(u(t), v(t)).

Lemma 6.1 Let Assumptions 3.1, 3.2 and 3.6-(i) be satisfied and η > 0 satisfying (6.1). Let
v ∈ BC(R, Y0) with ‖v‖∞ ≤ ζ be given. Then for each x1, x2 ∈ X and (t, t0) ∈ R2 we have

‖Λ0(x1, v)(t, t0)− Λ0(x2, v)(t, t0)‖ ≤ κ0e
β̂0|t−t0|‖x1 − x2‖.

The following lemma is obtained by using the same arguments as in the proof of Lemma 5.2.

Lemma 6.2 Let Assumptions 3.1, 3.2 and 3.6-(i) be satisfied and η > 0 satisfying (6.1). Then for
each x ∈ X, (t, t0) ∈ R2 and v ∈ BC(R, Y0) with ‖v‖∞ ≤ ζ we have

‖∂xΛ0(x, v)(t, t0)‖L(X) ≤ κ0e
β̂0|t−t0| and ‖∂xΛ0(x, v)(t, t0)−1‖L(X) ≤ κ0e

β̂0|t−t0|.

The proof of the next proposition is taken from [21]. This is a key ingredient for our fixed point
arguments.
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Proposition 6.3 Let Assumptions 3.1, 3.2 and 3.6-(i) be satisfied and η > 0 satisfying (6.1). Then
for each x, x̄ ∈ X, (t, t0) ∈ ∆ and v, v̄ ∈ BC(R, Y0) with ‖v‖∞ ≤ ζ and ‖v̄‖∞ ≤ ζ we have

‖Λ0(x, v)(t, t0)− Λ0(x̄, v̄)(t, t0)‖ ≤ κ0e
β̂0(t−t0)‖x− x̄‖+ η

∫ t

t0

κ0e
β̂0(t−r)‖v(r)− v̄(r)‖dr

‖Λ0(x, v)(t0, t)− Λ0(x̄, v̄)(t0, t)‖ ≤ κ0e
β̂0(t−t0)‖x− x̄‖+ η

∫ t

t0

κ0e
β̂0(r−t0)‖v(r)− v̄(r)‖dr.

(6.4)

Proof. Define
vs := sv + (1− s)v̄, ∀s ∈ [0, 1]

Let x0, x1 ∈ X be given. Define

xs := sx1 + (1− s)x0 ∈ X, ∀s ∈ [0, 1].

Since ‖vs‖ ≤ ζ and xs ∈ X for all s ∈ [0, 1] we can define for each (t, t0) ∈ R the map

s→ Λ0(xs, vs)(t, t0),

so that by Lemma 6.2 we have for each s ∈ [0, 1] and (t, t0) ∈ R2

‖∂xΛ(xs, vs)(t, t0)‖L(X) ≤ κ0e
β̂0|t−t0| and ‖∂xΛ(xs, vs)(t, t0)−1‖L(X) ≤ κ0e

β̂0|t−t0|. (6.5)

Note that condition

‖K(x, y)−K(x̄, ȳ)‖ ≤ η(‖x− x̄‖+ ‖y − ȳ‖), ∀(x, y), (x̄, ȳ) ∈ X ×BY0(0, ζ)

with
BY0(0, ζ) = {y ∈ Y0 : ‖y‖ ≤ ζ}

implies that

sup
(x,y)∈X×BY0 (0,ζ)

‖∂xK(x, y)‖L(X) ≤ η and sup
(x,y)∈X×BY0 (0,ζ)

‖∂yK(x, y)‖L(Y0,X) ≤ η. (6.6)

Recalling that the map F : X → X and K : X × Y0 → X are respectively differentiable on X and
X × BY0(0, ζ) combined with the fact that s → vs is differentiable with respect to s we infer from
Gronwall [18] that

s→ Λ0(xs, vs)(t, t0)

is differentiable with respect to s. Moreover (see [18]) if we set{
zs(t) := ∂sΛ0(xs, vs)(t, t0), ∀t ≥ t0
us(t) := Λ0(xs, vs)(t, t0), ∀t ≥ t0

then for any s ∈ (0, 1), the map t ∈ [t0,+∞)→ zs(t) is the solution of dzs(t)

dt
= [DF (us(t)) + ∂xK(us(t), vs(t))]zs(t) + ∂yK(us(t), vs(t))∂svs(t), t > t0

zs(t0) = ∂sus(t0)
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that is dzs(t)

dt
= [DF (us(t)) + ∂xK(us(t), vs(t))]zs(t) + ∂yK(us(t), vs(t))(v(t)− v̄(t)), t > t0

zs(t0) = x1 − x0.

Since {∂xΛ0(x, vs)(t, t0)}(t,t0)∈∆ is the evolution family generated by

dz(t)

dt
= [DF (us(t)) + ∂xK(us(t), vs(t))]z(t), t > t0 and z(t0) = z0 ∈ X,

is an invertible family of linear operators we obtain by the variation of constants formula

zs(t) = ∂xΛ0(xs, vs)(t, t0)(x1 − x0) +

∫ t

t0

∂xΛ0(xs, vs)(t, r)∂yK(us(r), vs(r))(v(r)− v̄(r))dr, ∀t ∈ R.

(6.7)
Integrating equation (6.7) with respect to s between 0 and 1 gives

Λ0(x1, v)(t, t0)− Λ0(x0, v̄)(t, t0) =

∫ 1

0
∂xΛ0(xs, vs)(t, t0)(x1 − x0)ds

+

∫ 1

0

[∫ t

t0

∂xΛ0(xs, vs)(t, r)∂yK(us(r), vs(r))(v(r)− v̄(r))dr

]
ds, ∀t ∈ R

so that by using (6.5) and (6.6) we obtain for x1 = x and x0 = x̄

‖Λ0(x, v)(t, t0)− Λ0(x̄, v̄)(t, t0)‖ ≤ κ0e
β̂0|t−t0|‖x− x̄‖+ η

∣∣∣∣∫ t

t0

κ0e
β̂0|t−t0|‖v(r)− v̄(r)‖dr

∣∣∣∣ , ∀t ∈ R.

The result follows.
An immediate consequence of Proposition 6.3 is the following.

Corollary 6.4 Let Assumptions 3.1, 3.2 and 3.6-(i) be satisfied and η > 0 satisfying (6.1). Then
the following properties hold

(i) For each x, x̄ ∈ X and v, v̄ ∈ BC(R, Y0) with ‖v‖∞ ≤ ζ and ‖v̄‖∞ ≤ ζ we have

sup
(t,t0)∈R2

[
e−β̂0|t−t0|‖Λ0(x, v)(t, t0)− Λ0(x̄, v̄)(t, t0)‖

]
≤ κ0‖x− x̄‖+

ηκ0

β̂0

‖v − v̄‖∞.

(ii) If β̂0 < γ0 then for each x, x̄ ∈ X and v, v̄ ∈ BC(R, Y0) with ‖v‖∞ ≤ ζ and ‖v̄‖∞ ≤ ζ we
have

sup
(t,t0)∈R2

e−γ0|t−t0|‖v(t)− v̄(t)‖ ≤ ‖v − v̄‖∞ < +∞

and

sup
(t,t0)∈R2

e−γ0|t−t0|‖Λ0(x, v)(t, t0)−Λ0(x̄, v̄)(t, t0)‖ ≤ κ0‖x−x̄‖+
ηκ0

γ0 − β̂0

sup
(t,t0)∈R2

e−γ0|t−t0|‖v(t)−v̄(t)‖.

The following lemma is a direct an application of Proposition 5.7 with F̂ (u(t), t) := K(u(t), v(t)).
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Lemma 6.5 Let Assumptions 2.1, 2.3, 3.1, 3.2, 3.4, 3.6-(i) and 3.7 be satisfied and and η > 0
satisfying (6.1). Let x ∈ X, t0 ∈ R and v ∈ BC(R, Y0) with ‖v‖∞ ≤ ζ be given. If

u(t) := Λ0(x, v)(t, t0), ∀t ∈ R,

then the evolution family generated by

ẇ(t) = [A+B(u(t))]w(t), t > t0 and w(t0) = w0 ∈ Y0

has an exponential dichotomy with constant κ̂ ≥ κ and exponent β̂ ∈ (β0, β).

6.2 Fixed point formulation
Let x ∈ X and v ∈ BC(R, Y0) with ‖v‖∞ ≤ ζ be given. Define

Kc(x, v)(t) := Λ0(x, v)(t, 0), ∀t ∈ R. (6.8)

We introduce the following intermediate subset of C(R, X) to simplify the notations.

Notation 6.6 We write
u ∈ ED(κ̂, β̂)

if and only if the evolution family {Uu(t, t0)}(t,t0)∈∆ generated by

ẇ(t) = [A+B(u(t))]w(t), t > t0 and w(t0) = w0 ∈ Y0

has an exponential dichotomy with constant κ̂ ≥ κ and exponent β̂ ∈ (β0, β).

Note that ED(κ̂, β̂) is not empty as long as the conditions of Lemma 6.5 are fulfilled. In particular
we have the following lemma.

Lemma 6.7 Let Assumptions 2.1, 2.3, 3.1, 3.2, 3.4, 3.6-(i) and 3.7 be satisfied and η > 0 satisfying
(6.1). Then

Kc(x, v) ∈ ED(κ̂, β̂)

for all x ∈ X and v ∈ BC(R, Y0) with ‖v‖∞ ≤ ζ.

Remember that the space BCγ(R, Z) is defined for Z = Y0, Y,X by

BCγ(R, Z) :=

{
f ∈ C(R, Z) : ‖f‖γ := sup

t∈R
e−γ|t|‖f(t)‖ < +∞

}
, ∀γ ≥ 0.

Therefore
BC0(R, Z) = BC(R, Z) and BC(R, Z) ⊂ BCγ(R, Z), ∀γ ≥ 0.

In particular we have
‖f‖γ ≤ ‖f‖∞, ∀γ ≥ 0 and f ∈ BC(R, Z).

The following result is obtained from Theorem 2.13 and Theorem 2.14.
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Lemma 6.8 Let Assumptions 2.1, 2.3, 3.1, 3.2, 3.4, 3.6-(i) and 3.7 be satisfied and η > 0 satisfying
(6.1). Let u ∈ ED(κ̂, β̂) (see Notation 6.6) be given. Then for any f ∈ BC(R, Y ) there exists a
unique mild solution w ∈ BC(R, Y0) of

ẇ(t) = [A+B(u(t))]w(t) + f(t), t ∈ R

given by

w(t) = lim
λ→+∞

[∫ t

−∞
U+
u (t, s)λRλ(A)f(s)ds−

∫ +∞

t
U−u (t, s)λRλ(A)f(s)ds

]
, ∀t ∈ R.

Moreover if γ0 > 0 with
−γ0 ∈ (−β̂,−β̂0]

then there exists C(γ0, κ̂, β̂) > 0 (independent of u) such that

‖w‖γ ≤ C(γ0, κ̂, β̂)‖f‖γ , ∀γ ∈ [0, β̂0].

The foregoing lemma will allows us to define our second operator for our fixed point problem. Before
proceeding let us note that for any u ∈ C(R, X) and v ∈ BC(R, Y0) with ‖v‖∞ ≤ ζ the map

t→ G(u(t), v(t))

belongs to BC(R, Y ) and by Assumption 3.6 it satisfies

‖G(u(·), v(·))‖∞ ≤ σ̂. (6.9)

Hence one can define for each u ∈ ED(κ̂, β̂) and v ∈ BC(R, Y0) with ‖v‖∞ ≤ ζ the map

Kh(u, v)(t) := lim
λ→+∞

[∫ t

−∞
U+
u (t, s)λRλ(A)G(u(s), v(s))ds−

∫ +∞

t
U−u (t, s)λRλ(A)G(u(s), v(s))ds

]
,

(6.10)
for all t ∈ R.
Thus due to Lemma 6.8 and (6.9) the map Kh is well defined and we have the following properties.

Lemma 6.9 Let Assumptions 2.1, 2.3, 3.1, 3.2, 3.4, 3.6-(i) and 3.7 be satisfied and η > 0 satisfying
(6.1). Let γ0 > 0 with

−γ0 ∈ (−β̂,−β̂0]

be given and fixed. Let u1, u2 ∈ ED(κ̂, β̂) and v1, v2 ∈ BC(R, Y0) with ‖v1‖∞ ≤ ζ and ‖v2‖∞ ≤ ζ.
Then the following properties hold

(i) For each γ ∈ [0, γ0] and i, j = 1, 2 we have Kh(ui, vj) ∈ BCγ(R, Y0) and

‖Kh(ui, vj)‖γ ≤ C(γ0, κ̂, β̂)σ̂.

(ii) For each γ ∈ [0, γ0]

‖Kh(u1, v1)−Kh(u1, v2)‖γ ≤ C(γ0, κ̂, β̂)σ‖v1 − v2‖γ .
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(iii) For each γ ∈ [0, γ0]

G(u1(·), v2(·))−G(u2(·), v2(·)) ∈ BCγ(R, Y ) and [B(u1(·))−B(u2(·))]Kh(u2, v2) ∈ BCγ(R, Y )

and

‖Kh(u1, v2)−Kh(u2, v2)‖γ ≤ C(γ0, κ̂, β̂)‖G(u1(·), v2(·))−G(u2(·), v2(·))‖γ
+C(γ0, κ̂, β̂)‖[B(u1(·))−B(u2(·))]Kh(u2, v2)‖γ .

(6.11)
If in addition u1, u2 ∈ BCγ(R, X) then

‖Kh(u1, v2)−Kh(u2, v2)‖γ ≤ C(γ0, κ̂, β̂)
[
LG + C(γ0, κ̂, β̂)LBσ̂

]
‖u1 − u2‖γ . (6.12)

Proof. Let us first note that Assumption 3.6 implies that

G(ui(·), vj(·)) ∈ BC(R, Y ), for i, j = 1, 2

so that
G(ui(·), vj(·)) ∈ BCγ(R, Y ), ∀γ ∈ [0, γ0] and i, j = 1, 2.

Therefore
‖G(ui(·), vj(·))‖γ ≤ ‖G(ui(·), vj(·))‖∞ ≤ σ̂, ∀γ ∈ [0, γ0] and i, j = 1, 2 (6.13)

Next we infer from Lemma 6.8 that for i, j = 1, 2

‖Kh(ui, vj)‖γ ≤ C(γ0, κ̂, β̂)‖G(ui(·), vj(·))‖γ , ∀γ ∈ [0, γ0]

and (i) follows from (6.13). To prove (ii) we observe that by Lemma 6.8 and the definition of Kh
we have

‖Kh(u1, v1)−Kh(u1, v2)‖γ ≤ C(γ0, κ̂, β̂)‖G(u1(·), v1(·))−G(u1(·), v2(·))‖γ , ∀γ ∈ [0, γ0].

Since G is Lipschitz continuous with respect to its second variable with Lispchitz constant σ it is
easy to see that

‖G(u1(·), v1(·))−G(u1(·), v2(·))‖γ ≤ σ‖v1 − v2‖γ , ∀γ ∈ [0, γ0],

and (ii) follows.
It remains to prove (iii). To do so note that by (i) and Assumption 3.7 we have

[B(u1(·))−B(u2(·))]Kh(u2, v2) ∈ BC(R, Y )

and it is also clear that

G(u1(·), v1(·))−G(u2(·), v2(·)) ∈ BC(R, Y ).

Next note that by Lemma 6.8, Kh(ui, v2) ∈ BC(R, Y ), i = 1, 2 is the unique mild solution of

ẇ(t) = [A+B(ui(t)]w(t) + fi(t), t ∈ R
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with
fi(t) = G(ui(t), v2(t)), ∀t ∈ R.

This is equivalent to say that

Kh(ui, v2)(t) = Kh(ui, v2)(t0) +A

∫ t

t0

Kh(ui, v2)(r)dr +

∫ t

t0

B(ui(r))Kh(ui, v2)(r)dr +

∫ t

t0

fi(r)dr

for all (t, t0) ∈ ∆ and i = 1, 2. Thus by setting

w(t) := Kh(u1, v2)(t)−Kh(u2, v2)(t), ∀t ∈ R

we obtain for each (t, t0) ∈ ∆

w(t) = w(t0) +A

∫ t

t0

w(r)dr +

∫ t

t0

B(u1(r))w(r)dr +

∫ t

t0

f(r)dr

with

f(·) := G(u1(t), v1(t))−G(u2(t), v1(t)) + [B(u1(·))−B(u2(·))]Kh(u2, v2) ∈ BC(R, Y )

that is to say that w is the unique globally defined mild solution of

ẇ(t) = [A+B(u1(t))]w(t) + f(t), t ∈ R.

Hence by Lemma 6.8 we obtain

‖w‖γ ≤ C(γ0, κ̂, β̂)‖f‖γ , ∀γ ∈ [0, γ0],

and (6.11) follows. The remaining estimate (6.12) is easily obtain from Assumption 3.6 and As-
sumption 3.7.

6.3 Proof of Theorem 3.12
All the materials are now completed in order to give the proof of Theorem 3.12. Let γ0 > 0 with

−γ0 ∈ (−β̂,−β̂0)

be given and fixed. Define

Ω(ζ, γ0) := {v ∈ BC(R, Y0) : ‖v‖γ0 ≤ ζ and ‖v‖∞ ≤ ζ} .

It is easy to prove that Ω(ζ, γ0) is a closed subset of BCγ0(R, Y0).
From now on assume that

0 < η < min (η̂0, η̂1) ,

where η̂0 (respectively η̂1 ) is defined in Lemma 5.6 (respectively in Proposition 5.7).
Then Lemma 6.5 and Lemma 6.8 ensure that for each (x, v) ∈ X × Ω(ζ, γ0) we have

Kc(x, v) ∈ ED(κ̂, β̂)
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so the map
K(x, v) := Kh(·, v) ◦ Kc(x, v)

is well defined.
In order to prove that the map K maps Ω(ζ, γ0) into itself is a contraction with respect to its second
variable we now use the properties of the maps Kc and Kh. Recall that Kc(x, v)(t) = Λ0(x, v)(t, 0)
we have from Corollary 6.4 and Lemma 6.7

Kc(x, v) ∈ ED(κ̂, β̂) ∩BCγ0(R, X), ∀(x, v) ∈ X × Ω(ζ, γ0)

and

‖Kc(x1, v1)−Kc(x2, v2)‖γ0 ≤ κ0‖x1 − x2‖+
ηκ0

γ0 − β̂0

‖v1 − v2‖γ0 , ∀(x1, v1), (x2, v2) ∈ X × Ω(ζ, γ0).

(6.14)
Next by using condition (i) in Lemma 6.9 it is clear that if

C(γ0, κ̂, β̂)σ̂ ≤ ζ

then
‖K(x, v)‖γ ≤ C(γ0, κ̂, β̂)σ̂ ≤ ζ, ∀(x, v) ∈ X × Ω(ζ, γ0), ∀γ ∈ [0, γ0]

that is to say that K(·, ·) maps X×Ω(ζ, γ0) into Ω(ζ, γ0) as long as C(γ0, κ̂, β̂)σ̂ ≤ ζ. We now prove
that K(·, ·) is Lipschitz continuous in X × Ω(ζ, γ0). To do this let (x1, v1), (x2, v2) ∈ X × Ω(ζ, γ0)
be given. Set

u1 := Kc(x1, v1) ∈ ED(κ̂, β̂) ∩BCγ0(R, X) and u2 := Kc(x2, v2) ∈ ED(κ̂, β̂) ∩BCγ0(R, X).

Then
K(x1, v1)−K(x2, v2) = Kh(u1, v1)−Kh(u2, v2)

= Kh(u1, v1)−Kh(u1, v2) +Kh(u1, v2)−Kh(u2, v2)

so that conditions (ii) and (iii) of Lemma 6.9

‖K(x1, v1)−K(x2, v2)‖γ0 ≤ C(γ0, κ̂, β̂)σ‖v1 − v2‖γ0 +C(γ0, κ̂, β̂)[LG +LBC(γ0, κ̂, β̂)σ̂]‖u1 − u2‖γ0 .

Hence we infer from (6.14) that

‖u1 − u2‖γ0 = ‖Kc(x1, v1)−Kc(x2, v2)‖γ0 ≤ κ0‖x1 − x2‖+
ηκ0

γ0 − β̂0

‖v1 − v2‖γ0

providing that

‖K(x1, v1)−K(x2, v2)‖γ0 ≤ C(γ0, κ̂, β̂)[LG + LBC(γ0, κ̂, β̂)σ̂]κ0‖x1 − x2‖

+C(γ0, κ̂, β̂)

[
σ +

ηκ0

γ0 − β̂0

[LG + LBC(γ0, κ̂, β̂)σ̂]

]
‖v1 − v2‖γ0 .

Therefore we let σ > 0 and η > 0 small enough such that

0 < C(γ0, κ̂, β̂)

[
σ +

ηκ0

γ0 − β̂0

[LG + LBC(γ0, κ̂, β̂)σ̂]

]
<

1

2
.
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Then for σ > 0, η > 0 and σ̂ > 0 small enough we have the following properties for Kh{
Kh(x, v) ∈ Ω(ζ, γ0), ∀(x, v) ∈ X × Ω(ζ, γ0)

‖K(x, v1)−K(x, v2)‖γ0 ≤
1

2
‖v1 − v2‖γ0 , ∀x ∈ X and v1, v2 ∈ Ω(ζ, γ0)

(6.15)

and for each (x1, v1), (x2, v2) ∈ X × Ω(ζ, γ0)

‖K(x1, v1)−K(x2, v2)‖γ0 ≤ C(γ0, κ̂, β̂)[LG + LBC(γ0, κ̂, β̂)σ̂]κ0‖x1 − x2‖+
1

2
‖v1 − v2‖γ0 . (6.16)

We divide the remaining part into four steps.
Step 1 (Existence) : Observe that on one hand (u, v) ∈ C1(R, X)×Ω(ζ, γ0) is a mild solution of
(1.1) with u(0) = x if and only if{

u = Kc(x, v)
v = K(x, v) = Kh(·, v) ◦ Kc(x, v)

On the other hand by using (6.15) we infer from the contraction mapping fixed point theorem that
for each (x, v) ∈ X × Ω(ζ, γ0) there exists a unique v ∈ Ω(ζ, γ0) such that

v = K(x, v).

Hence we define for each x ∈ X the map

ψ̂(x) := K(x, v)(0) (6.17)

with v ∈ Ω(ζ, γ0) the unique function satisfying

v = K(x, v)

and we set
M̂ :=

{
(x, ψ̂(x)) : x ∈ X

}
. (6.18)

Step 2 (Invariance) : It is clear from the definition of M̂ that if (x, ψ̂(x)) ∈ M̂ then there exists
a unique mild solution (u, v) ∈ C1(R, X)×Ω(ζ, γ0) of (1.1). We now prove that any given solution
(u, v) ∈ C1(R, X)× Ω(ζ, γ0) of (1.1) satisfies

v(t) = ψ̂(u(t)), ∀t ∈ R.

Let t0 ∈ R be given. Define
û := u(·+ t0) and v̂ := v(·+ t0).

Then (û, v̂) ∈ C1(R, X)× Ω(ζ, γ0) is a mild solution of (1.1) with û(0) = u(t0) which is equivalent
to say that {

û = Kc(u(t0), v̂)
v̂ = K(u(t0), v̂).

Therefore it follows that
v̂(0) = v(t0) = K(u(t0), v̂)(0) = ψ̂(u(t0)).
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Step 3 (Normal Hyperbolicity) : By using Lemma 6.1 and Lemma 6.7 it is straightforward that
M̂ is normally hyperbolic with constants κ̂ ≥ 1, κ0 ≥ 1, exponents β̂ ∈ (β0, β) and β̂0 ∈ (β0, β̂).
Step 4 (Lipschitz continuity) : Let x1, x2 ∈ X be given. Denote by v1 ∈ Ω(γ0, ζ) and v2 ∈
Ω(γ0, ζ) the unique maps such that

v1 = K(x1, v1) and v2 = K(x2, v2).

Then (6.16) gives

‖v1 − v2‖γ0 ≤ C(γ0, κ̂, β̂)[LG + LBC(γ0, κ̂, β̂)σ̂]κ0‖x1 − x2‖+
1

2
‖v1 − v2‖γ0

and we obtain
‖v1 − v2‖γ0 ≤ 2C(γ0, κ̂, β̂)[LG + LBC(γ0, κ̂, β̂)σ̂]κ0‖x1 − x2‖

and since we have

‖ψ(x1)− ψ(x2)‖ = ‖v1(0)− v2(0)‖ ≤ ‖v1 − v2‖γ0 ≤ 2C(γ0, κ̂, β̂)[LG + LBC(γ0, κ̂, β̂)σ̂]κ0‖x1 − x2‖

it follows that ψ̂ is Lipschitz continuous on X. Finally we prove that ψ̂ is uniformly bounded on X.
This is achieved by observing that for each x ∈ X if we denote by v ∈ Ω(γ0, ζ) the unique solution
of the fixed point problem

v = Kh(x, v)

in Ω(γ0, ζ) then
‖ψ̂(x)‖ = ‖Kh(x, v)(0)‖ ≤ C(γ0, κ̂, β̂)σ̂.
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