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A B S T R A C T

A model of an epidemic outbreak incorporating multiple subgroups of susceptible and infected individuals is
investigated. The asymptotic behavior of the model is analyzed and it is proved that the infected classes all
converge to 0. A computational algorithm is developed for the cumulative final size of infected individuals over
the course of the epidemic. The results are applied to the SARS epidemic in Singapore in 2003, where it is shown
that the two-peak evolution of the infected population can be attributed to a two-group formulation of trans-
mission.

1. Introduction

The evolution of an epidemic disease depends on many factors
specific to the disease setting. One important factor is distinguishing the
capacities of infected and susceptible subpopulations to transmit and
acquire the disease. These capacities vary according to age, sex, genetic,
behavioral, and many other properties of individuals. Inclusion of these
factors in a mathematical model increases its utility for understanding
the dynamics of the disease progression. A central issue is the prediction
of the final size of the epidemic, that is, the number of susceptible in-
dividuals that ultimately acquire the disease.

The classical SIR model takes the following form (Ross [15], Mac-
Donald [11], Anderson and May [1]):
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(1.1)

with the initial distributions = > = > =S S I I R(0) 0, (0) 0, (0) 00 0 .
At time t, S(t) is the number of susceptible individuals (capable of

acquiring the infection), I(t) is the number of infectious individuals
(capable of transmitting the disease), and R(t) is the number of removed
individuals (due to mortality, isolation, recovery with immunity, or
other causes). The parameter β>0 is called the infection rate and η>0

is called the removal rate.
The main tool in understanding the dynamical properties of (1.1) is

the following conservation formula:

⎡
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S t( ) ( ) ln( ( )) 0.
(1.2)

From this formula, Hethcote [9,10] obtained a classical SIR model re-
sult. Define the basic reproduction number =R βS η/ ,0 0 which is inter-
preted as the average number of infections transmitted by an infected
individual through the course of the epidemic.

Theorem 1.1. Let (S(t), I(t)) be a solution of (1.1). If R0≤ 1, then I(t)
decreases to zero as → +∞t . If R0> 1, then I(t) first increases up to a

maximum value = + − − + ( )I S I Sln( ) lnη
β

η
β

η
β

η
βmax 0 0 0 and then

decreases to zero as → +∞t . S(t) is decreasing and the limiting value
+∞S ( ) is the unique root in (0, η/β) of the equation
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The final size of the epidemic, that is, the number of susceptibles
who ultimately become infected, is + + − +∞S I R S ( )0 0 0 . In [13], a
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method to compute the final size for a two group SIR epidemic model
was developed, which for (1.1) has the following formulation: define

= ⎡
⎣⎢

− − ⎤
⎦⎥

g x S
β
η

x S I( ): exp ( ) .0 0 0
(1.4)

g(x) is positive, increasing, strictly convex, and g(S0)< S0. It follows
that +∞S ( ) is the unique fixed point of g in (0, S0) and can be computed
numerically as

+∞ =
→+∞

S g S( ) lim ( ),
n

n
0 (1.5)

where gn(x) is the mapping g composed n-times.
In this article we extend the ideas in [13] to develop an algorithm to

compute the final size of a multi-group epidemic model. We are moti-
vated by the limitation of Theorem 1.1 that requires I(t) to have at most
only one maximal value before decreasing to 0. Many epidemics show
multiple peaks in the number of infected individuals as the epidemic
evolves. Many reasons can explain such oscillations of I(t), including
multiple importation of infected individuals, changes in public health
interventions (Sarakorn–Tang [16]), and consideration of geographical
variations in the epidemic setting (Rass–Radcliffe [14], Arino et al. [3],
Chowell et al. [7]). We show here that multi-group epidemic popula-
tions can also yield multiple peaks in I(t).

2. The SARS epidemic in singapore in 2003

We will illustrate our results with the (SARS) epidemic in Singapore
in 2003. Between February 25, and April 30, of 2003, 201 probable
cases were identified [8]. Of these cases, 153 (76%) were infections that
occurred in hospitals or health-care facilities [8]. Five patients in these
facilities infected 10 or more health-care workers, family members,
social contacts, or visitors to the facilities where they were hospitalized.
These five cases are viewed as super spreaders, in contrast to ordinary
spreaders of the infection. More examples of the role of super spreaders
in epidemics are given in Stein [17]. Fig. 1 diagrams the transmission
network for these five cases. These five super spreaders are responsible
for most of the disease transmission in the epidemic, and 81% of
probable cases had no transmission to other persons [8]. Visually we
see a cascade of transmission, starting with a single individual (patient
1), and spreading out through an oriented graph of transmission.

In Fig. 2 the daily number of new infections in hospitals is re-
presented by date of fever onset and the reported source of infections.
For the single group model (1.1), this data corresponds to newly in-
fected individuals, namely to the mapping t↦βS(t)I(t).

We will focus here on the theoretical aspects of multi-group SIR

models. We will apply our analysis to the 2003 SARS epidemic in
Singapore to explain the role of super spreaders. Another goal of our
investigation will be to explain the two peaks in the infected cases
graph in Fig. 2.

3. Formulation of a two-group SIR epidemic model

The system we consider is the following:
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with the initial distributions
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where S(t) are susceptible, I(t) are infectious, and R(t) are removed
individuals, decomposed according to the populations 1 and 2:
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The removal of individuals is described by the matrix
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⎞
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E
η

η
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0 ,1

2

while the transmission of pathogen is described by the matrix

⎜ ⎟= ⎛
⎝

⎞
⎠

B
β β
β β

.11 12

21 22

The diagram flux of system (3.1) is described in Fig. 3.
System (3.1) can be rewritten as the following system:
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(3.2)

We make the following assumption on the parameters:

Assumption 3.1. B is a nonnegative matrix and η1> 0 and η2> 0.

Remark 3.2. We observe that B irreducible is equivalent to assuming
that

> >β β0 and 0.12 21

If we assume, in addition, that the transmission of pathogen occurs by
criss-cross transmission only (that is, = =β β 011 22 ), it implies that B is
invertible. The matrix B will be non-irreducible if and only if

= =β β0 or 0.12 21

By permuting the groups 1 and 2, we can always assume that =β 012
and the matrix B becomes lower triangular.

We observe that system (3.2) has an infinite number of equilibria.

Fig. 1. The contact network of the five super spreader cases in the SARS epi-
demic in Singapore in 2003 [8]. Patient 1, case 1; patient 6, case 2; patient 35,
case 3; patient 130, case 4; and patient 127, case 5. Reference: Bogatti SP.
Netdraw 1.0 Network Visualization Software. Harvard, Massachusetts: Analytic
Technologies, 2002.
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Namely, every triple of nonnegative vectors

≥ = ≥S I R0, 0 and 0

is an equilibrium of the system. Moreover system (3.2) preserves the
total number of individuals in each subpopulation. Namely, for each
t≥ 0

⎜ ⎟+ + = ⎛
⎝

⎞
⎠

S t I t R t
N
N( ) ( ) ( ) 1

2 (3.3)

where N1> 0 (respectively N2> 0) is the number of individuals in
subpopulation 1 (subpopulation 2), respectively. Further, S(t) and R(t)
are nondecreasing, and = =→∞

+∞
→∞

+∞S t S R t Rlim ( ) and lim ( )t t exist,
since the solutions are nonnegative.

Observe that

∫ ∫+ + + + +

= + + +

∞ ∞
S t S t I t I t η I t dt η I t dt

S S I I

( ) ( ) ( ) ( ) ( ) ( )

(0) (0) (0) (0).

1 2 1 2 1 0 1 2 0 2

1 2 1 2

Therefore, = =→∞
+∞I t Ilim ( ) 0,t since I(t) is nonnegative and the de-

rivative of I(t) is continuous and bounded. The final distribution of
susceptible individuals +∞S is the number of individuals who escape the
epidemic. The final distribution of removed individuals +∞R is the total
number of individuals who have been infected during the epidemic.

The size of each group can be normalize to 1. Consider the matrix

⎜ ⎟= ⎛
⎝

⎞
⎠

D
N
N: diag .1

2

Then, the fractions of individuals in the epidemic populations are given
by

= = =− − −s t D S t i t D I t r t D R t( ): ( ), ( ): ( ) and ( ): ( )1 1 1

and (3.1) can be rewritten as
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( ) ( ),
(3.4)

where
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⎝

⎞
⎠

BD
β N β N
β N β N

.11 1 12 2

21 1 22 2

The existence of solutions to (3.4) is guaranteed by classical methods.
Our goal is to extend Theorem 1.1 to a n-group epidemic model. As

we will see in Section 4 it is possible to extend the first part of
Theorem 1.1, concerning the final size of the epidemic. But we will not
be able to describe the qualitative behavior of the infected classes in the
n-group case. We mention the articles of Andreasen [2], Arino et al.
[4,5], Ma and Earn [12], and Brauer [6] for some results in this di-
rection. In Section 5 we will apply the two-group model to the example
of SARS in Singapore 2003. This example illustrates that multi-group
epidemic models reveal complexity not found in single group epidemic
models.
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Fig. 2. Case 1 generated 21 cases and 3 suspected cases, case 2 generated 23 cases and 5 suspected cases, case 3 generated 23 cases and 18 suspected cases, case 4
generated 40 cases and 22 suspected cases, case 5 generated 15 cases and 0 suspected cases [8].

Fig. 3. The figure represents a transfer diagram of the individual fluxes of
system (3.1). In this diagram each solid arrow represents a flux of individuals,
while the dashed arrows represent the influence of either infectious sub-
population 1 or infectious subpopulation 2.
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4. The final size for a −n group SIR model

Let us consider a multi-group epidemic model with a mass action
law incidence function. More precisely we consider the following
system

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

= − >

= − >

= >

dS t
dt

S t BI t t

dI t
dt

S t BI t EI t t

dR t
dt

EI t t

( ) diag( ( )) ( ), 0

( ) diag( ( )) ( ) ( ), 0

( ) ( ), 0
(4.1)

Subjected to the following initial conditions

� � �= ∈ = ∈ = ∈+ + +S S I I R R(0) , (0) and (0)n n n
0 0 0

where n≥ 2 is a positive integer. Here S(t) denotes the susceptible in-
dividuals, I(t) the infectious individuals, and R(t) the removed in-
dividuals at time t. Each state S(t), I(t) and R(t) consists of a vector

= … = … = …S t S t S t I t I t I t R t R t R t( ) ( ( ), , ( )) , ( ) ( ( ), , ( )) , ( ) ( ( ), , ( )) .n
T

n
T

n
T

1 1 1

The removal rates are given by the matrix

= …E η ηdiag( , , )n1

and the transmission of pathogens is described by the nonnegative
matrix

=
≤ ≤

B β( ) .ij i j n1 ,

We make the following assumption.

Assumption 4.1. ηi>0 for each = …i n1, , .

Therefore the explicit form of our system is given for = …i n1, , by
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with initial conditions

� � �= ∈ = ∈ = ∈+ + +S S I I R R(0) , (0) and (0) .i i i i i i0 0 0

4.1. Derivation of the final size equations

In this section we will derive the final size relation for system (4.2).
By using the Si-equations of (4.2) we obtain for each t≥ 0 and
= …i n1, , ,

∑= −
=

d S t
dt

β I tln( ( )) ( )i

j

n

ij j
1

so that
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n
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j
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0 (4.3)

The sum of the S-equation and the I-equation of system (4.1) yields

+ = − >d S I t
dt

η I t t( )( ) ( ), 0i i
i i

and we deduce that
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Therefore we obtain the following conservation law for each subgroup
= …i n1, ,

∑⎡
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⎤

⎦
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d
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β
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j

n
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j
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Next, integrating (4.5) between 0 and + ∞ yields for = …i n1, , ,
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S
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S
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S I Sln( ( )) ( ) ( (0) (0)) ln( (0))i
j

n
ij

j
j

j

n
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and we derive the following system that will be referred as the final size
relation:
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⎪
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⎠
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η
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1 1 1
1

1
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1 1
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Note that system (4.6) can be rewritten in the following more compact
form

∞ = ∞ − −−S BE S S I S( ) exp(diag[ ( ( ) (0) (0))]) (0).1 (4.7)

Motivated by system (4.6) and (4.7) we consider the map � �→F: n n

defined by

= − −−F X BE X S I S( ) exp(diag[ ( (0) (0))]) (0).1

More precisely F is given by

�= … ∈F X F X F X X( ) ( ( ), , ( )) ,n
T n

1

with

∑ ∑=
⎛

⎝
⎜ − −

⎞

⎠
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F X S
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n
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j
j j

j

n
ij

j
j

1 1

(4.8)

In what follows we will use the following notations. For �∈X Y, n we
define

≤ ⟺ ≤ = …

< ⟺ ≤ < = …

≪ ⟺ < = …

X Y X Y i n

X Y X Y X Y i n

X Y X Y i n

for 1, ,

and for some 1, ,

for 1, , .

i i

i i

i i

It is clear from (4.8) that F is monotone increasing. This means that

≤ ⟹ ≤X Y F X F Y( ) ( ). (4.9)

Hence if 0≪ S0 and 0≤ I0 then

≪ ≤ ≤F F S S0 (0) ( ) .0 0

Therefore by using induction arguments we obtain for each k≥ 1

≪ ≤ ⋯≤ ≤ ≤ ≤ ⋯≤ ≤+ +F F F F S F S S0 (0) (0) (0) ( ) ( )k k k1 1
0 0 0

so that by taking the limit when k goes to + ∞ we obtain

≪ = ≤ = ≤
→+∞

− +
→+∞

F S S F S S0 lim (0) : : lim ( ) .
k

k
k

k
0 0

Then by the continuity of F we have
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≪ = =− − + +F S S F S S0 ( ) and ( ) .

The following lemma holds:

Lemma 4.2. Let Assumption 4.1 be satisfied. Assume in addition that
0≪ S0 and 0≤ I0. Then, all the fixed points of F in [0, S0] lie in the interval

− +S S[ , ].

Let us note that F is continuously differentiable and by using (4.8)
we obtain

�
∂
∂

= ∀ ∈ = …F X
X

β
η

F X X i j n( ) ( ), , , 1, ,i

j

ij

j
i

n

so that

�= ∈−DF X F X BE X( ) diag( ( )) , .n1 (4.10)

Therefore the monotony of DF follows from the monotony of F. More
precisely, for each 0≤ X≤ Y≤ S0 and H≥ 0

≤DF X H DF Y H( ) ( ) .

Furthermore, recalling that

= =+ + − −F S S F S S( ) and ( )

we obtain

= =+ + − − − −DF S S BE DF S S BE( ) diag( ) and ( ) diag( ) .1 1

4.2. Irreducible modes of transmission

In this section we will prove that if B is a nonnegative nonzero ir-
reducible matrix, then (4.7) has a unique solution in [0, S0].

Definition 4.3. The matrix B is irreducible if and only if one of the
following equivalent conditions is satisfied

(i) The matrix +I Bɛ (for ε>0) is primitive. That is, to say, that there
exists an integer n≥ 1 such that + ≫I B(ɛ ) 0n (that is, all the
components of +I B(ɛ )n are strictly positive).

(ii) For each ∈ …i j n, {1, , }, there exists an integer m≔m(i, j)> 0 such
that

>e B e, 0j
m

i

where …e e{ , , }n1 is the canonical basis of �n.

Theorem 4.4. Let Assumption 4.1 be satisfied. Assume in addition that B is
a nonnegative irreducible matrix. Assume that 0≪ S0 and 0≤ I0. Then we
have the following properties

(i) = ⟺ =F S S I( ) 00 0 0 ;
(ii) If 0< I0 then F has a unique fixed point S(∞) satisfying 0≪ S

(∞)< S0.

Remark 4.5. From the above theorem we deduce that the final size of
the epidemic can be computed numerically as follows:

∞ = − ∞R N S( ) ( )

and

= + +N S I R .0 0 0

The final size of the susceptible population is given by

∞ =
→+∞

S F S( ) lim ( )
k

k
0

for any given initial distribution of the infectious population I0.
Furthermore, when 0< I0, the formula

∞ =
→+∞

S F( ) lim (0)
k

k

may also be used to compute the final distribution of the susceptible
population.

Proof. Before proceeding to the proof note that since B is a nonnegative
irreducible matrix, ≪ +S0 and
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⎝
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⎠

−E
η η

diag 1 , , 1 ,
n

1

1

it follows that =+ + −DF S S BE( ) diag( ) 1 is a nonnegative irreducible
matrix.

Proof of (i) : Next we prove that S0≫ 0 is a fixed point of F if and
only if =I 00 . In fact =F S S( )0 0 is explicitly given by
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which holds if and only if

∑ = = ⋯ ⟺ =
=

−
β
η

I i n BE I(0) 0, 1, , 0,
j

n
ij

j
j

1

1
0

and by using the fact that −BE 1 is an irreducible matrix and 0≤ I0, we
obtain

= ⟺ =−BE I I0 0.1
0 0

Proof of (ii) : Assume that 0< I0. Therefore we have

≪ < <+F S S S S0 ( ) and ,0 0 0 (4.11)

and by the monotony of F we also have

= ≤+ +F S S F S( ) ( ).0

To prove that F has a unique fixed point whenever 0< I0 it is sufficient
to show that =− +S S . In what follows we will argue by contradiction,
that is, we assume that <− +S S . Then we have

∫− = − = + − −+ − + − − + − + −S S F S F S DF S l S S S S dl( ) ( ) ( ( ))( )
0

1

and since for all l∈ [0, 1]

+ − − ≤ −− + − + − + + −DF S l S S S S DF S S S( ( ))( ) ( )( )

we obtain

− ≤ −+ − + + −S S DF S S S( )( ). (4.12)

By the Perron–Frobenius theorem there exists a left eigenvector W≫ 0
of +DF S( ) associated to the spectral radius +r DF S( ( )), and

− ≤ − = −+ − + + − + + −W S S W DF S S S r DF S W S S( ) ( )( ) ( ( )) ( ),T T T

and since by assumption >+ −S S , it follows that

≥+r DF S( ( )) 1.

Next note that

∫

− = −

= + − −

≥ −

+ +

+ + +

+ +

F S S F S F S

DF S l S S S S dl

DF S S S

( ) ( ) ( )

( ( ))( )

( )( ).

0 0

0
1

0 0

0

Thus, we obtain

− ≥ −+ + +W F S S r DF S W S S( ( ) ) ( ( )) ( ),T T
0 0

which means

− ≥ − ⟹ ≥+ +W F S S W S S W F S W S( ( ) ) ( ) ( ) ,T T T T
0 0 0 0

which contradicts (4.11). □
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4.3. An algorithm to compute the final size of a multi-group epidemic for
non-irreducible modes of transmission

We provide an algorithm for computation of the final size of the
epidemic whenever the pathogen transmission matrix B is non-irre-
ducible and nonnegative. A case with cascade contamination in three
groups is illustrated in Fig. 4.

More generally we assume we have l subgroups and that B has the
following form

=

⎛

⎝

⎜
⎜
⎜
⎜

⋯

⋱

⋮ ⋱

⋯ ⋯

⎞

⎠

⎟
⎟
⎟
⎟

B

B

B B

B B

0 0

0

0

l ll

11

21 22

1

where each Bii, 1≤ i≤ l is an irreducible nonnegative nonzero square
matrix of dimension ni with + + ⋯+ =n n n nl1 2 . Moreover each bloc
matrix Bij, 1≤ i, j≤ l is a ni× nj nonnegative matrix. Let the removal
matrix E be given by

= …E E Ediag( , , )l1

where each Ej is a nj square diagonal matrix with strictly positive di-
agonal entries.

Therefore, the susceptible, infectious and removed individuals are
divided into l subgroups and the n dimensional SIR epidemic model
takes the following form for each subgroup ∈ …i l{1, , }

⎧

⎨

⎪⎪

⎩
⎪⎪

′ = − ∑

′ = ∑ −

′ =

=

=

S t S t B I t

I t S t B I t E I

R t E I

( ) diag( ( )) ( )

( ) diag( ( )) ( )

( )

i i j
i

ij j

i i j
i

ij j i i

i i i

1

1

(4.13)

where =S t( )i

… = …

= …

( ) ( )
( )

S t S t I t I t I t R t

R t R t

( ), , ( ) , ( ) ( ), , ( ) and ( )

( ), , ( ) .

i in
T

i i in
T

i

i in
T

1 1

1

i i

i

By proceeding as in Section 4.1 we obtain the following system of final
size relations for the subgroups

∑

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

∞ =
∞ − −

∞ =

∞ − − − ∞

−

⋮
∞ =
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⎝
⎜
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⎣
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− −

−

−
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exp(diag[ ( ( ) (0)) (0)]) (0)
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exp(diag[ ( ( ) (0)) ( (0) ( ))

(0)]) (0)

( )
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1 1 11 1
1
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1
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1
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1
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1
1

1

that is for each = …i l1, , , ∞ =S ( )i

∑⎛

⎝
⎜

⎡

⎣
⎢ ∞ − − − ∞

−
⎤

⎦
⎥
⎞
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−

=

−
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Observe that we have

∑ − ∞ + ≥ ∀ = …
=

−
− −B E S S B E I i l( (0) ( )) (0) 0, 2, , .

j

i

ij j j j ii i i
1

1
1 1

Then by using the same arguments in the proof of Theorem 4.4, one
obtains the following algorithm to compute the final size of the sus-
ceptible populations for the subgroups i≥ 1:

Step 1: If =i 1 then define � �→F : n n
1 1 1 by

= − −− −F X B E X S B E I S( ) exp(diag[ ( (0)) (0)]) (0)1 1 11 1
1

1 1 11 1
1

1 1

so that the final size of susceptibles for subgroup 1 is given by

∞ =
→+∞

S F S( ) lim ( (0)).
k

k
1 1 1

Step 2: If =i 2 then define the map � �→F : n n
2 2 2 by

= − − − ∞

−

− −

−

F X B E X S B E S S

B E I S

( ) exp(diag[ ( (0)) ( (0) ( ))

(0)]) (0)
2 2 22 2

1
2 2 21 2

1
1 1

22 2
1

1 2

and we obtain the final size of susceptibles for subgroup 2 by

∞ =
→+∞

S F S( ) lim ( (0)).
k

k
2 2 2

Induction: If i>2 then by induction we obtain the final size of sus-
ceptible poppulations ∞ … ∞−S S( ), , ( )i1 1 . The final size for susceptibles
for subgroup i is then obtained by defining the map � �→F :i n ni i by

∑=
⎛

⎝
⎜

⎡

⎣
⎢ − − − ∞

−
⎤

⎦
⎥
⎞

⎠
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−

=

−
−

−

F X B E X S B E S S

B E I S

( ) exp diag ( (0)) ( (0) ( ))

(0) (0)

i i ii i i i
j

i

ij j j j

ii i i i

1

1

1
1

1

and

∞ =
→+∞

S F S( ) lim ( (0)).i
k

i
k

i

Fig. 4. The figure represents a transfer diagram of the individual fluxes with a
cascade transmission into three groups. Each solid arrow represents a flux of
individuals, while the dashed arrows represent the influence of infectious of
subpopulation 1, infectious of subpopulation 2 or infectious of subpopulation 3.
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5. Application to the SARS Singapore outbreak in 2003

In an earlier work [13] we showed that a two-group model can be
used to distinguish the role of super spreaders and ordinary spreaders in
the 2003 SARS epidemic in Singapore. Here we will use the two-group
analysis above to again connect super spreaders to this epidemic, and
also to connect their role to the two peaks occurring in the graph in
Fig. 2.

Consider the system (3.1) with group 1 transmissions preceding and
initiating group 2 transmissions:

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
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⎪
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⎪
⎪

= −

= − +

= −

= + −

=

=

dS t
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β S t I t

dS t
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S t β I t β I t
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β S t I t η I t
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S t β I t β I t η I t
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η I t

dR t
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η I t

( ) ( ) ( )

( ) ( )( ( ) ( ))

( ) ( ) ( ) ( )

( ) ( )( ( ) ( )) ( )

( ) ( )

( ) ( ).

1
11 1 1

2
2 21 1 22 2

1
11 1 1 1 1

2
2 21 1 22 2 2 2

1
1 1

2
2 2

(5.1)

Then by using the same arguments as in Section 2.3, the final size
relation is given by the following system

∞ = ∞ − −
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− ∑ ⎞
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2

(5.2)

Then by using the same argument as before in (1.5) we have

∞ =
→+∞

S g S( ) lim ( (0)),
n

n
1 1 1 (5.3)

where g1 is the map defined by

⎜ ⎟= ⎛
⎝

− − ⎞
⎠

g x S
β
η

x S
β
η

I( ): (0)exp ( (0)) (0) .1 1
11

1
1

11

1
1

Once the final size in the first group has been computed by using the
iteration procedure (5.3), the final size for the second group can be
computed by using the following iteration procedure:

∞ =
→+∞

S g S( ) lim ( (0)),
n

n
2 2 2 (5.4)

where g2 is the map defined by

⎜ ⎟= ⎛
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∞ = − ∞ + + ≥V S
β
η

S S I
β
η

I( ( )): [( (0) ( )) (0)] (0) 0.1
21

1
1 1 1

22

2
2

We set group 1 to be infected individuals with average lower in-
fection rates and shorter periods of infectiousness. Super spreader cases
1, 2, and 3 belong to group 1, as well as cases that generated no sec-
ondary cases and the few cases that generated a very small number of
secondary cases (see Fig. 2). We set group 2 to be the cases resulting
from infected individuals with average higher infection rates and longer
periods of infectiousness. Super spreader cases 4 and 5 belong to group
2 (see Fig. 2). We merge case 4 and case 5 and their secondary cases in
the group 2. The epidemic began with 3 non-super spreader group 1
cases, which generated the first super spreader case in the hospital
(patient 1). The first group 2 case (patient 4) appeared approximately 4
weeks later. The parameter values for group 1 and group 2 are given in
Table 1.

By using the algorithms (5.3) and (5.4), with the parameter values
in Table 1, we compute ∞ = ∞ =S S( ) 150.4013 and ( ) 1.5153.1 2 There-
fore, the total number of infected individuals in each group is

∞ = − = ∞ = −

=

R N R N( ) 150.4013 200.5987 and ( ) 1.5153

88.4847.
1 1 2 2 In Fig. 5

we graph the model simulation of the flux of new cases over the course
of the epidemic and compare to data from [8]. The two peaks in the
graph and in the data coincide. In Fig. 6 we graph the total number of
cases, each week and the cumulative number of cases over the course of
the epidemic. In Fig. 7 we plot these graphs separately for groups 1 and
2. We conclude that an explanation of the bi-modality of peaks in the
flux of infected cases is due to the distinctions of infectiousness in the
parameters of groups 1 and 2.

Table 1
List of the model parameters used for simulations.

Symbol Description Value Units

S1(0) Number of susceptible individuals in group 1 350 Individuals
S2(0) Number of susceptible individuals in group 2 90 Individuals
I1(0) Number of infectious individuals in group 1 1 Individuals
I2(0) Number of infectious individuals in group 2 0 Individuals
R1(0) Number of removed individuals in group 1 0 Individuals
R2(0) Number of removed individuals in group 2 0 Individuals
N1 Total number of individuals in group 1 351 Individuals
N2 Total number of individuals in group 2 90 Individuals
β11 Infection rate 0.002 Dimensionless
β21 Infection rate −6.3 10 7 Dimensionless
β22 Infection rate 0.0042 Dimensionless
η1 Removal rate 0.475 Day−1

η2 Removal rate 0.091 Day−1

02/25/03 03/07/03 03/17/03 03/27/03 04/06/03 04/16/03 04/26/03
0

5

10

15
Flux of new infected

Fig. 5. Comparison of the data from [8] and the model (5.1). The parameters
values are listed in Table 1. The black curve is the function
↦ + +t β S t I t S t β I t β I t( ) ( ) ( )( ( ) ( ))11 1 1 2 21 1 22 2 which is the flux of new infected at

time t.
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Fig. 6. (a) The flux of new infected ↦ + +t β S t I t S t β I t β I t( ) ( ) ( )( ( ) ( )),11 1 1 2 21 1 22 2 (b) the total number of infected ↦ +t I t I t( ) ( ),1 2 and (c) the total number of removed
individuals ↦ +t R t R t( ) ( )1 2 .
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Fig. 7. (a) The flux of new infected individuals in each group t↦β11S1(t)I1(t) for the group 1 and ↦ +t S t β I t β I t( )( ( ) ( ))2 21 1 22 2 for the group 2, (b) the number of
infected t↦I1(t) and t↦I2(t), and (c) the total number of removed individuals t↦R1(t) and t↦R2(t). In each subfigure (a) (b) (c), the solid line corresponds to the first
group and the dash line correspond to the second group.
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