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Abstract
In this paper, we study a reaction–diffusion vector-host epidemic model. 
We define the basic reproduction number R0 and show that R0 is a threshold 
parameter: if R0 � 1 the disease free equilibrium is globally stable; if R0  >  1 
the model has a unique globally stable positive equilibrium. Our proof 
combines arguments from monotone dynamical system theory, persistence 
theory, and the theory of asymptotically autonomous semiflows.
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1. Introduction

In recent years, many authors (e.g. [1, 5–8, 9–14, 16, 18, 20, 22, 23, 29, 34, 35, 37, 38, 41]) 
have proposed reaction–diffusion models to study the transmission of diseases in spatial set-
tings. Among them, Fitzgibbon et al [11, 12] applied a reaction–diffusion system on non-coin-
cident domains to describe the circulation of diseases between two locations; Lou and Zhao 
[22] proposed a reaction–diffusion model with delay and nonlocal terms to study the spatial 
spread of malaria; and Vaidya, Wang and Zou [34] studied the transmission of avian influenza 
in wild birds with a reaction–diffusion model with spatial heterogeneous coefficients.

New formulations of diffusive epidemic models have been used recently to study epidem-
ics in spatial contexts. In [23] the spatial spread of influenza in Puerto Rico was analyzed 
using a diffusive SIR model based on geographical population data. In [14] the effectiveness 
of a diffusive vector-host epidemic model was demonstrated in understanding the recent Zika 
outbreak in Rio De Janeiro. In these works it was shown that the beginning location and 
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magnitude of an epidemic can have significant impact on the spatial development and final 
size of the epidemic. The simulations in these works highlighted the limitations of incomplete 
spatial epidemic data in the applications of diffusive models to real world situations. Despite 
these limitations, spatial epidemic models offer the possibility of better understanding of the 
evo lution of epidemic outbreaks in regions, and the possibility of mitigating their greater 
regional impact with intervention measures. Our objective in this manuscript is to provide an 
extended analysis of the reaction–diffusion spatial epidemic model proposed in [14]. A more 
complete understanding of the model in [14] can help to predict the possibility that current 
Zika epidemics will become regionally endemic.

Suppose that individuals are living in a bounded domain Ω ⊂ Rn  with smooth boundary 
∂Ω. Let Hi(x, t), Vu(x, t) and Vi(x, t) be the densities of infected hosts, uninfected vectors, 
and infected vectors at position x and time t, respectively. Then the model proposed in [14] to 
study the outbreak of Zika in Rio De Janerio is the following reaction–diffusion system




∂
∂t Hi − � · δ1(x)�Hi = −λ(x)Hi + σ1(x)Hu(x)Vi, x ∈ Ω, t > 0,

∂
∂t Vu − � · δ2(x)�Vu = −σ2(x)VuHi + β(x)(Vu + Vi)− µ(x)(Vu + Vi)Vu, x ∈ Ω, t > 0,

∂
∂t Vi − � · δ2(x)�Vi = σ2(x)VuHi − µ(x)(Vu + Vi)Vi, x ∈ Ω, t > 0,

 (1.1)
with homogeneous Neumann boundary condition

∂

∂n
Hi =

∂

∂n
Vu =

∂

∂n
Vi = 0, x ∈ ∂Ω, t > 0, (1.2)

and initial condition

(Hi(·, 0), Vu(·, 0), Vi(·, 0)) = (Hi0, Vu0, Vi0) ∈ C(Ω̄;R3
+), (1.3)

where δ1, δ2 ∈ C1+α(Ω̄;R) are strictly positive, the functions λ,β,σ1,σ2 and μ are strictly 
positive and belong to Cα(Ω̄;R), and the function Hu ∈ Cα(Ω̄;R) is nonnegative and non-
trivial. The flux of new infected humans is given by σ1(x)Hu(x)Vi(t, x) in which Hu(x) is the 
density of susceptible population depending on the spatial location x. The main idea of this 
model is to assume that the susceptible human population is (almost) not affected by the 
epidemic during a relatively short period of time and therefore the flux of new infected is 
(almost) constant. Such a functional response mainly permits to take care of realistic density 
of population distributed in space. For Zika in Rio De Janerio the number of infected is fairly 
small in comparison with the number of the total population (less than 1% according to [3]). 
Therefore the density of susceptibles can be considered to be constant without being altered 
by the epidemic.

In section 2, we define the basic reproductive number R0 as the spectral radius of  −CB−1, i.e. 
R0 = r(−CB−1), where B : D(B) ⊂ C(Ω̄;R2) → C(Ω̄;R2) and C : C(Ω̄;R2) → C(Ω̄;R2) 
are linear operators on C(Ω̄;R2) with

B =

(
� · δ1� 0

0 � · δ2�

)
+

(
−λ σ1Hu

0 −µV̂

)
and C =

(
0 0

σ2V̂ 0

)
,

with the suitable domain D(B) (see [25, 30]).
The equilibria of (1.1)–(1.3) are solutions of the following elliptic system:
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−� · δ1(x)�Hi = −λ(x)Hi + σ1(x)Hu(x)Vi, x ∈ Ω,

−� · δ2(x)�Vu = −σ2(x)VuHi + β(x)(Vu + Vi)− µ(x)(Vu + Vi)Vu, x ∈ Ω,

−� · δ2(x)�Vi = σ2(x)VuHi − µ(x)(Vu + Vi)Vi, x ∈ Ω,

∂
∂n Hi =

∂
∂n Vu = ∂

∂n Vi = 0, x ∈ ∂Ω.

 (1.4)

The system always has one trivial equilibrium E0 and a unique semi-trivial equilibrium 
E1 = (0, V̂ , 0). In section 2, we prove that E1 is globally asymptotically stable if R0  <  1 in 
theorem 2.4.

Our main result is in section  3, where we show that (1.1)–(1.3) has a unique globally 
asymptotically stable positive equilibrium E2 = (Ĥi, V̂u, V̂i) if R0  >  1 (see theorem 3.12). We 
remark that it is usually not an easy task to prove the global stability of the positive equilib-
rium for a three-equation parabolic system when there is no clear Lyapunov type functional. 
Our proof combines arguments from monotone dynamical system theory, persistence theory, 
and the theory of asymptotically autonomous semiflows.

We briefly summarize our idea of proof here. Adding up the second and third 
equations  in (1.1) and letting V := Vu + Vi , V  satisfies the diffusive logistic equa-
tion ∂tV − � · δ2�V = βV − µV2. Since this equation has a globally stable positive equilib-
rium V̂ , it is tempting to assume that the dynamics of (1.1)–(1.3) is determined by the limit 
system

{ ∂
∂t H̃i − � · δ1�H̃i = −λH̃i + σ1H̃uṼi, x ∈ Ω, t > 0,

∂
∂t Ṽi − � · δ2�Ṽi = σ2(V̂ − Ṽi)

+H̃i − µV̂Ṽi, x ∈ Ω, t > 0.
 (1.5)

However even for ordinary differential equation  (ODE) systems, Thieme [33] gives many 
examples where the dynamics of the limit and original systems are quite different. A remedy 
to this is the theory of asymptotically autonomous semiflows (see [31, theorem 4.1]), which is 
generalized from the well-known theory by Markus on asymptotically autonomous ODE sys-
tems. Applying this theory, to prove the convergence of (Hi(·, t), Vi(·, t)), it suffices to show: 
(a) system (1.5) has a unique positive equilibrium (Ĥi, V̂i); (b) The equilibrium (Ĥi, V̂i) of (1.5) 
is globally stable in W := {(Hi0, Vi0) ∈ C(Ω̄;R2

+) : Hi0 + Vi0 �= 0}; (c) The ω−limit set of 
(Hi(·, t), Vi(·, t)) intersects W. The proof of (a) is given in section 3.1.1. The proof of (b) is pro-
vided in section 3.1.2, where we take advantage of the monotonicity of (1.5). To show (c), we 
use the uniform persistence theory in [15] to obtain lim inf t→∞ ‖Hi(·, t)‖∞ + ‖Vi(·, t)‖∞ � ε 
for some ε > 0 (see lemma 3.11). Interested readers may read the appendix on the ODE sys-
tem for the idea of the proof first.

In section 4, we prove the global stability of E1 for the critical case R0  =  1. Here the main 
difficulty is to prove the local stability of E1 as the linearized system at E1 has principal eigen-
value equaling zero. In section 5, we give some concluding remarks. In particular, we summa-
rize our results on the basic reproduction number R0, which will be presented in a forthcoming 
paper. We also remark that our idea is applicable to other models (e.g. [18, 19, 26, 28]).

2. Disease free equilibria

The objective of this section is to define the basic reproduction number and investigate the 
stability of the trivial and semi-trivial equilibria. The existence, uniqueness, and positivity 
of global classical solutions of (1.1)–(1.3) have been shown in [14]. Let V = Vu + Vi. Then 
V(x, t) satisfies
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Vt − � · δ2(x)�V = β(x)V − µ(x)V2, x ∈ Ω, t > 0,

∂
∂n V = 0, x ∈ ∂Ω, t > 0,

V(·, 0) = V0 ∈ C(Ω̄;R+).

 (2.1)

The following result about (2.1) is well-known (see, e.g. [4]).

Lemma 2.1. For any nonnegative nontrivial initial data V0 ∈ C(Ω̄;R), (2.1) has a unique 
global classic solution V(x, t). Moreover, V(x, t) > 0 for all (x, t) ∈ Ω̄× (0,∞) and

lim
t→∞

‖V(·, t)− V̂‖∞ = 0, (2.2)

where V̂  is the unique positive solution of the elliptic problem
{
−� · δ2(x)�V = β(x)V − µ(x)V2, x ∈ Ω,

∂
∂n V = 0, x ∈ ∂Ω.

 (2.3)

By lemma 2.1, Vu(x, t) + Vi(x, t) → V̂(x) uniformly for x ∈ Ω̄ as t → ∞ if Vu0 + Vi0 �= 0.
As usual, we consider two types of equilibria for (1.1)–(1.2): disease free equilibrium 

(DFE) and endemic equilibrium (EE). A nonnegative solution (H̃i, Ṽu, Ṽi) of (1.4) is a DFE 
if H̃i = Ṽi = 0, and otherwise it is an EE. By lemma 2.1, we must have Ṽu + Ṽi = V̂  or 
Ṽu + Ṽi = 0. It is then not hard to show that (1.1) and (1.2) has two DFE: trivial equilib-
rium E0  =  (0, 0, 0) and semi-trivial equilibrium E1 = (0, V̂ , 0). We denote the EE by 
E2 = (Ĥi, V̂u, V̂i), which will be proven to be unique if exists.

It is not hard to show that E0 is always unstable. Linearizing (1.1) around E1, we arrive at 
the following eigenvalue problem:




κϕ = � · δ1�ϕ− λϕ+ σ1Huψ, x ∈ Ω,

κφ = � · δ2�φ− σ2V̂ϕ+ β(φ+ ψ)− 2µV̂φ− µV̂ψ, x ∈ Ω,

κψ = � · δ2�ψ + σ2V̂ϕ− µV̂ψ, x ∈ Ω,

∂
∂nϕ = ∂

∂nφ = ∂
∂nψ = 0, x ∈ ∂Ω.

 (2.4)

Since the second equation of (2.4) is decoupled from the system, we consider the problem




κϕ = � · δ1�ϕ− λϕ+ σ1Huψ, x ∈ Ω,

κψ = � · δ2�ψ + σ2V̂ϕ− µV̂ψ, x ∈ Ω,

∂
∂nϕ = ∂

∂nψ = 0, x ∈ ∂Ω.

 (2.5)

Problem (2.5) is cooperative, so it has a principal eigenvalue κ0 associated with a positive 
eigenvector (ϕ0,ψ0) (e.g. see [17]).

For δ ∈ C1(Ω̄;R) being strictly positive on Ω̄ and f ∈ C(Ω̄;R), let κ1(δ, f ) be the principal 
eigenvalue of

{
κφ = � · δ(x)�φ+ fφ, x ∈ Ω,

∂
∂nφ = 0, x ∈ ∂Ω.

 (2.6)

It is well known that κ1(δ, f ) is the only eigenvalue associated with a positive eigenvector, and 
it is monotone in the sense that if f1 � ( �=) f2 then κ1(δ, f1) > κ2(δ, f2).

P Magal et alNonlinearity 31 (2018) 5589
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Lemma 2.2. E1 is locally asymptotically stable if κ0 < 0 and unstable if κ0 > 0.

Proof. Since V̂  is a positive solution of (2.3), we have κ1(δ2,β − µV̂) = 0. Therefore, 
κ1(δ2,β − 2µV̂) < 0.

Suppose κ0 < 0. Let κ be an eigenvalue of (2.4). Then κ is an eigenvalue of either (2.5) or 
the following eigenvalue problem:

{
κφ = � · δ2�φ+ βφ− 2µV̂φ, x ∈ Ω,

∂
∂nφ = 0, x ∈ ∂Ω.

Since κ0 < 0 and κ1(δ2,β − 2µV̂) < 0, the real part of κ is less than zero. Since κ is arbitrary, 
E1 is linearly stable. By the principle of linearized stability, E1 is locally asymptotically stable.

Suppose κ0 > 0. Let (ϕ0,ψ0) be a positive eigenvector associated with κ0. By 
κ1(δ2,β − 2µV̂) < 0 and the Fredholm alternative, the following problem has a unique solu-
tion φ0:

{
κ0φ = � · δ2�φ− σ2V̂ϕ0 + β(φ+ ψ0)− 2µV̂φ− µV̂ψ0, x ∈ Ω,

∂
∂nφ = 0, x ∈ ∂Ω.

Hence (2.4) has an eigenvector (ϕ0,φ0,ψ0) corresponding to eigenvalue κ0 > 0. So E1 is lin-
early unstable. By the principle of linearized instability, E1 is unstable. ■ 

We adopt the approach of [32, 36] to define the basic reproduction number of (1.1). Let 
B : C(Ω̄;R2) → C(Ω̄;R2) be the operator such that

D(B) :=


(ϕ,ψ) ∈

⋂
p�1

W2,p(Ω;R2) :
∂

∂n
ϕ =

∂

∂n
ψ = 0 on ∂Ω and B(ϕ,ψ) ∈ C(Ω̄;R2)




and

B(ϕ,ψ) =
(
� · δ1�ϕ
� · δ2�ψ

)
+

(
−λ σ1Hu

0 −µV̂

)(
ϕ

ψ

)
, (ϕ,ψ) ∈ D(B).

Define

C =

(
0 0

σ2V̂ 0

)
.

Let A  =  B  +  C. Then A and B are resolvent positive (see [32] for the definition), and A is a pos-
itive perturbation of B. It is easy to check that the spectral bound of B is negative, i.e. s(B) < 0. 
By [32, theorem 3.5], κ0 = s(A) has the same sign with r(−CB−1)  −  1, where r(−CB−1) is the 
spectral radius of  −CB−1. Then we define the basic reproduction number R0 by

R0 = r(−CB−1).

We immediately have the following result:

Lemma 2.3. R0  −  1 and κ0 have the same sign. Moreover, E1 is locally asymptotically 
stable if R0  <  1 and unstable if R0  >  1.

P Magal et alNonlinearity 31 (2018) 5589
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We then consider the global dynamics of the model when R0  <  1.

Theorem 2.4. If R0  <  1, then E1 is globally asmyptototically stable, i.e. E1 is locally stable 
and, for any initial data (Hi0, Vu0, Vi0) ∈ C(Ω̄;R3

+) with Vu0 + Vi0 �= 0, we have

lim
t→∞

‖(Hi(·, t), Vu(·, t), Vi(·, t))− E1‖∞ = 0. (2.7)

Proof. By lemma 2.3, E1 is locally asymptotically stable and κ0 < 0. Then we can choose 
ε > 0 small such that the following eigenvalue problem




κϕ = � · δ1�ϕ− λϕ+ σ1Huψ, x ∈ Ω,

κψ = � · δ2�ψ + σ2(V̂ + ε)ϕ− µ(V̂ − ε)ψ, x ∈ Ω,

∂
∂nϕ = ∂

∂nψ = 0, x ∈ ∂Ω,

has a principal eigenvalue κε < 0 with a corresponding positive eigenvector (ϕε,ψε). By 
Vu0 + Vi0 �= 0 and lemma 2.1, we know that Vu(x, t) + Vi(x, t) → V̂(x) uniformly on Ω̄ as 
t → ∞ . Hence there exists t0  >  0 such that V̂(x)− ε < Vu(x, t) + Vi(x, t) < V̂(x) + ε for 
x ∈ Ω̄ and t  >  t0. It then follows that

{ ∂
∂t Hi − � · δ1�Hi = −λHi + σ1Hu(x)Vi, x ∈ Ω, t > t0,

∂
∂t Vi − � · δ2�Vi � σ2(V̂ + ε)Hi − µ(V̂ − ε)Vi, x ∈ Ω, t > t0.

So (Hi, Vi) is a lower solution of the following problem



∂
∂t Ĥi − � · δ1�Ĥi = −λĤi + σ1HuV̂i, x ∈ Ω, t > t0,

∂
∂t V̂i − � · δ2�V̂i = σ2(V̂ + ε)Ĥi − µ(V̂ − ε)V̂i, x ∈ Ω, t > t0,

∂
∂n Ĥi =

∂
∂n V̂i = 0, x ∈ ∂Ω, t > t0,

Ĥi(x, t0) = Mϕε(x), V̂i(x, t0) = Mψε(x), x ∈ Ω,

 (2.8)

where M is large such that Hi(x, t0) � Ĥi(x, t0) and Vi(x, t0) � V̂i(x, t0). By the comparison 
principle for cooperative systems (e.g. [27]), Hi(x, t) � Ĥi(x, t) and Vi(x, t) � V̂i(x, t) for all 
x ∈ Ω̄ and t � t0. It is easy to check that the unique solution of the linear problem (2.8) is 
(Ĥi(x, t), V̂i(x, t)) = (Mϕε(x)eκε(t−t0), Mψε(x)eκε(t−t0)). Since κε < 0, we have Ĥi(x, t) → 0 
and V̂i(x, t) → 0 uniformly for x ∈ Ω̄ as t → ∞. Hence Hi(x, t) → 0 and Vi(x, t) → 0 uni-
formly for x ∈ Ω̄ as t → ∞. By Vu(·, t) + Vi(·, t) → V̂  in C(Ω̄;R), we have Vu(x, t) → V̂(x) 
uniformly for x ∈ Ω̄ as t → ∞. ■ 

3. Global dynamics when R0  >  1

The objective in this section  is to prove the convergence of solutions of (1.1)–(1.3) to the 
unique positive equilibrium when R0  >  1.

P Magal et alNonlinearity 31 (2018) 5589
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3.1. The limit problem

By lemma 2.1, we have Vu(·, t) + Vi(·, t) → V̂  in C(Ω̄;R) as t → ∞ if Vu0 + Vi0 �= 0. This 
suggests us to study the following limit problem of (1.1)–(1.3):




∂
∂t Hi − � · δ1�Hi = −λHi + σ1HuVi, x ∈ Ω, t > 0,

∂
∂t Vi − � · δ2�Vi = σ2(V̂ − Vi)

+Hi − µV̂Vi, x ∈ Ω, t > 0,

∂
∂n Hi =

∂
∂n Vi = 0, x ∈ ∂Ω, t > 0,

Hi(x, 0) = Hi0(x), Vi(x, 0) = Vi0(x), x ∈ Ω.

 (3.1)

The equilibria of (3.1) are nonnegative solutions of the problem:



−� · δ1�Hi = −λHi + σ1HuVi, x ∈ Ω,

−� · δ2�Vi = σ2(V̂ − Vi)
+Hi − µV̂Vi, x ∈ Ω,

∂
∂n Hi =

∂
∂n Vi = 0, x ∈ ∂Ω.

 (3.2)

Clearly (0, 0) is an equilibrium. In this section, we prove that if a positive equilibrium of (3.1) 
exists, it is globally stable in {(Hi0, Vi0) ∈ C(Ω̄;R2

+) : Hi0 + Vi0 �= 0}.

3.1.1. Uniqueness of positive equilibrium. In the following lemmas, we prove that the positive 
equilibrium of (3.1) is unique if it exists. We are essentially using the fact that (3.2) is coopera-
tive and sublinear, and similar ideas can be found in [2, 42].

Lemma 3.1. If (Ĥi, V̂i) is a nontrivial nonnegative equilibrium of (3.1), then Ĥi(x), V̂i(x) > 0 
for all x ∈ Ω̄ and V̂i(x0) < V̂(x0) for some x0 ∈ Ω.

Proof. Since (Ĥi, V̂i) is nontrivial, Ĥi �= 0 or V̂i �= 0. Since (λ− � · δ1�)Ĥi = σ1HuV̂i, we 
must have Ĥi �= 0 and V̂i �= 0. By the maximum principle, we have Ĥi(x), V̂i(x) > 0 for all 
x ∈ Ω̄. Assume to the contrary that V̂i(x) � V̂(x) for all x ∈ Ω̄, then

−� · δ2�V̂i = σ2(V̂ − V̂i)
+Ĥi − µV̂V̂i = −µV̂V̂i.

This implies V̂i = 0, which is a contradiction. ■ 

By the previous lemma, any nontrivial nonnegative equilibrium must be positive. For any 
C1, C2 > 0, define

S = {Vi ∈ C(Ω̄;R+) : ‖Vi‖∞ � C1 and Vi(x0) < V̂(x0) for some x0 ∈ Ω̄},

and f : S ⊂ C(Ω̄) → C(Ω̄) by

f (Vi) = (C2 − � · δ2�)
−1

[
σ2(V̂ − Vi)

+(λ− � · δ1�)
−1σ1HuVi + (C2 − µV̂)Vi

]
, Vi ∈ S.

Lemma 3.2. If (Ĥi, V̂i) is a positive equilibrium, then there exists C∗
1 > 0 such that V̂i is a 

nontrivial fixed point of f for all C1 > C∗
1  and C2  >  0.

Proof. By the first equation of (3.2), Ĥi = (λ− � · δ1�)−1σ1HuV̂i. Substituting it into the 
second equation, we obtain

P Magal et alNonlinearity 31 (2018) 5589
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−� · δ2�V̂i = σ2(V̂ − Vi)
+(λ− � · δ1�)

−1σ1HuV̂i − µV̂V̂i.

By lemma 3.1, Vi is a nontrivial fixed point of f if C1 is large. ■ 

Lemma 3.3. For any C1  >  0, there exists C∗
2 > 0 such that f is monotone for all C2 > C∗

2  
in the sense that f (Vi) � f (Ṽi) for all Vi, Ṽi ∈ S with Vi � Ṽi.

Proof. It suffices to prove that f (Vi) � f (Vi + h) for any Vi ∈ S and 0 � h � V̂ − Vi.  
Define

f̃ (Vi) = σ2(V̂ − Vi)
+(λ− � · δ1�)

−1σ1HuVi + (C2 − µV̂)Vi.

Then, we have

f̃ (Vi + h)− f̃ (Vi) =σ2((V̂ − Vi − h)+ − (V̂ − Vi)
+)(λ− � · δ1�)

−1σ1HuVi

+ σ2(V̂ − Vi − h)+(λ− � · δ1�)
−1σ1Huh + (C2 − µV̂)h

� h[−σ2(λ− � · δ1�)
−1σ1HuVi + C2 − µV̂],

where we have used

|(V̂ − Vi − h)+ − (V̂ − Vi)
+| � h.

By the elliptic estimate, the following set is bounded:

{(λ− � · δ1�)
−1σ1HuVi, Vi ∈ S}.

Hence, f̃ (Vi + h)− f̃ (Vi) � 0 if C2 is large. Therefore, f (Vi + h)− f (Vi) � 0, and f is 
monotone if C2 is large. ■ 

For any f1, f2 ∈ C(Ω̄;R), we say f1 � f2 if f1(x) < f2(x) for all x ∈ Ω̄.

Lemma 3.4. For any k ∈ (0, 1) and Vi ∈ S with Vi � 0, kf (Vi) � f (kVi).

Proof. By the definition of S, there exists x0 ∈ Ω̄ such that V̂(x0) > Vi(x0). So 
(V̂(x0)− Vi(x0))

+ < (V̂(x0)− kVi(x0))
+ and (V̂(x)− Vi(x))+ � (V̂(x)− kVi(x))+ for all 

x ∈ Ω̄. It then follows that kf̃ (Vi)(x0) < f̃ (kVi)(x0) and kf̃ (Vi) � f̃ (kVi). The assertion now 
just follows from the fact that (C2 − � · δ2�)−1 is strongly positive (i.e. if g ∈ C(Ω̄;R) such 
that g � 0 and g(x0)  >  0 for some x0 ∈ Ω̄, then (C2 − � · δ2�)−1g � 0). ■ 

Lemma 3.5. The positive equilibrium of (3.1), if exists, is unique.

Proof. Suppose to the contrary that (H1
i , V1

i ) and (H2
i , V2

i ) are two distinct positive equilib-
ria. Then V1

i �= V2
i  by the first equation of (3.2). Without loss of generality, we may assume 

V1
i �� V2

i . Define

k = max{k̃ � 0 : k̃V1
i � V2

i }.

Then k ∈ (0, 1). By the definition of k, kV1
i � V2

i  and kV1
i (x0) = V2

i (x0) for some x0 ∈ Ω̄. We 
can choose C1 and C2 such that V1

i  and V2
i  are fixed points of f, i.e. f (V1

i ) = V1
i  and f (V2

i ) = V2
i . 

By the previous lemmas, we have
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kV1
i = kf (V1

i ) � f (kV1
i ) � f (V2

i ) = V2
i .

Thus kV1
i � V2

i , which contradicts kV1
i (x0) = V2

i (x0). ■ 

Remark 3.6. It is possible to improve lemma 3.1 by proving V̂i(x) < V̂(x) for all x ∈ Ω̄, 
which means that a positive equilibrium of (3.1) is always a positive equilibrium of (1.1). 
To see this, let V̂u = V̂ − V̂i. Since V̂  satisfies −� · δ2�V̂ = βV̂ − µV̂2 and V̂i satisfies 
−� · δ2�V̂i = σ2(V̂ − V̂i)

+Hi − µV̂V̂i, we have
{
−� · δ2�V̂u = βV̂ − σ2HiV̂+

u − µV̂V̂u, x ∈ Ω,
∂V̂u
∂n = 0, x ∈ ∂Ω.

Let x0 ∈ Ω̄ such that V̂u(x0) = minx∈Ω̄ V̂u(x). Assume to the contrary that V̂u(x0) � 0. By a  
comparison principle due to Lou and Ni [21], we have β(x0)V̂(x0)− σ2(x0)Hi(x0) 
V̂+

u (x0)− µ(x0)V̂(x0)V̂u(x0) � 0, which implies V̂u(x0) � β(x0)/µ(x0) > 0. This contradicts 
the assumption V̂u(x0) � 0. Therefore, V̂i(x) < V̂(x) for all x ∈ Ω̄.

3.1.2. Global stability of positive equilibrium. Let F1(Hi, Vi) = −λHi + σ1HuVi and 
F2(Hi, Vi) = σ2(V̂ − Vi)

+Hi − µV̂Vi. Since ∂F1/∂Vi � 0 and ∂F2/∂Hi � 0, system (3.1) 
is cooperative. Let Φ̃(t) : C(Ω̄;R2) → C(Ω̄;R2) be the semiflow induced by the solution of 
(3.1), i.e. Φ̃(t)(Hi0, Vi0) = (Hi(·, t), Vi(·, t)) for all t � 0. Then Φ̃(t) is monotone (e.g. see [27]).

Lemma 3.7. For any nonnegative nontrivial initial data (Hi0, Vi0), the solution of (3.1) 
satisfies that Hi(x,t)  >  0 and Vi(x, t) > 0 for all x ∈ Ω̄ and t  >  0.

Proof. By the comparison principle for cooperative systems, Hi(x, t) � 0 and Vi(x, t) � 0 
for all x ∈ Ω̄ and t � 0. Suppose Vi0 �= 0. Noticing

∂

∂t
Vi − � · δ2�Vi � −µV̂Vi (3.3)

and by the comparison principle, we have Vi(x, t) > 0 for all x ∈ Ω̄ and t  >  0. Then,

∂

∂t
Hi − � · δ1�Hi�− λHi,

where the inequality is strict for some x ∈ Ω̄ as Hu is nontrivial. So by the comparison princi-
ple, Hi(x,t)  >  0 for all x ∈ Ω̄ and t  >  0.

Suppose Vi0 = 0. Since (Hi0, Vi0) is nontrivial, we have Hi0 �= 0. By

∂

∂t
Hi − � · δ1�Hi � −λHi,

and the comparison principle, we have Hi(x, t)  >  0 for all x ∈ Ω̄ and t  >  0. By the continuity 
of Vi(x, t) and Vi(x, 0) = 0, (V̂ − Vi(x, t))+ > 0 for all (x, t) ∈ Ω̄× (0, t0] for some t0  >  0. 
Then by

∂

∂t
Vi − � · δ2�Vi > −µV̂Vi, x ∈ Ω̄, t ∈ (0, t0]
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and the comparison principle, we have Vi(x, t) > 0 for all (x, t) ∈ Ω̄× (0, t0]. Finally by (3.3), 
we have Vi(x, t) > 0 for all x ∈ Ω̄ and t  >  0. ■ 

Lemma 3.8. For any nonnegative initial data (Hi0, Vi0), there exists M  >  0 such that the 
solution of (3.1) satisfies

0 � Hi(x, t), Vi(x, t) � M, for all x ∈ Ω̄, t > 0.

Proof. Let M1 = max{‖V̂‖∞, ‖Vi0‖∞}. By the second equation of (3.1) and the compariso n 
principle, we have Vi(x, t) � M1 for all x ∈ Ω̄ and t  >  0. Then by the first equation of (3.1), 
we have

∂

∂t
Hi − � · δ1(x)�Hi � −λ(x)Hi + σ1(x)Hu(x)M1, x ∈ Ω, t > 0.

So Hi is a lower solution of the problem:




∂
∂t w − � · δ1(x)�w = −λ(x)w + σ1(x)Hu(x)M1, x ∈ Ω, t > 0,

∂
∂n w = 0, x ∈ ∂Ω, t > 0,

w(x, 0) = Hi0(x), x ∈ Ω.

Let M2 = max{‖σ1‖∞‖Hu‖∞M1/λm, ‖Hi0‖∞}, where λm = min{λ(x) : x ∈ Ω̄}. Then we 
have 0 � w(x, t) � M2 for all (x, t) ∈ Ω̄× (0,∞). Hence by the comparison principle, we 
have 0 � Hi(x, t) � w(x, t) < M2. Therefore, the claim holds for M = max{M1, M2}. ■ 

Lemma 3.9. If the positive equilibrium (Ĥi, V̂i) of (3.1) exists, it is globally asymptotically 
stable, i.e. it is locally stable and, for any nonnegative nontrivial initial data (Hi0, Vi0),

lim
t→∞

Hi(·, t) = Ĥi and lim
t→∞

Vi(·, t) = V̂i in C(Ω̄;R).

Proof. By lemma 3.7, we have Hi(x, t)  >  0 and Vi(x, t) > 0 for all x ∈ Ω̄ and t  >  0. So with-
out loss of generality, we may assume Hi0(x)  >  0 and Vi0(x) > 0 for all x ∈ Ω̄.

Suppose that (Ĥi, V̂i) is a positive equilibrium of (3.1), which is unique by lemma 3.5. Let 
(Hi, Vi) = (εĤi, εV̂i) for some ε > 0. We may choose ε small such that the following is satis-
fied:




−� · δ1(x)�Hi � −λ(x)Hi + σ1(x)Hu(x)Vi, x ∈ Ω,

−� · δ2(x)�Vi � σ2(x)(V̂ − Vi)
+Hi − µ(x)V̂Vi, x ∈ Ω,

∂
∂n Hi =

∂
∂n Vi = 0, x ∈ ∂Ω,

Hi(x) � Hi0(x), Vi(x) � Vi0(x), x ∈ Ω.

 (3.4)

Hence by [27, corollary 7.3.6], Φ̃(t)(Hi, Vi) is monotone increasing in t and converges to a 
positive equilibrium of (3.1). Since (Ĥi, V̂i) is the unique positive equilibrium of (3.1), we 
must have Φ̃(t)(Hi, Vi) → (Ĥi, V̂i) in C(Ω̄;R2) as t → ∞.
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Similarly, we may define (Hi, Vi) = (kĤi, kV̂i) with k large such that (3.4) is sat-
isfied with inverse inequalities, and then Φ̃(t)(Hi, Vi) → (Ĥi, V̂i) in C(Ω̄;R2) as 
t → ∞. Since (Hi, Vi) � (Hi0, Vi0) � (Hi, Vi) and Φ̃(t) is monotone, we have 
Φ̃(t)(Hi, Vi) � Φ̃(t)(Hi0, Vi0) � Φ̃(t)(Hi, Vi) for all t � 0. Therefore, Φ̃(t)(Hi0, Vi0) → (Ĥi, V̂i) 
in C(Ω̄;R2) as t → ∞.

For any ε′ > 0 and initial data (Hi0, Vi0) satisfying (1 − ε′)(Ĥi, V̂i) � (Hi0, Vi0) � 
(1 + ε′)(Ĥi, V̂i), similar to the previous arguments, we can show 
(1 − ε′)(Ĥi, V̂i) � (Hi(·, t), Vi(·, t)) � (1 + ε′)(Ĥi, V̂i) for all t � 0. Therefore, (Ĥi, V̂i) is lo-
cally stable. This proves the lemma.  ■ 

3.2. Global stability of E2

In this section, we prove the convergence of solutions of (1.1)–(1.3) to the unique positive 
equilibrium E2 when R0  >  1. We begin by proving the ultimate boundedness of the solutions.

Lemma 3.10. There exists M  >  0, independent of initial data, such that any solution 
(Hi, Vu, Vi) of (1.1)–(1.3) satisfies that

0 � Hi(x, t), Vu(x, t), Vi(x, t) � M, x ∈ Ω̄, t � t0,

where t0 is dependent on initial data.

Proof. By lemma 2.1, we have Vu(x, t) + Vi(x, t) → V̂(x) uniformly on Ω̄ as 
t → ∞ if Vu0 + Vi0 �= 0. Hence there exists t1  >  0 depending on initial data such that 
Vu(x, t) + Vi(x, t) � ‖V̂‖∞ + 1 for t  >  t1 and x ∈ Ω̄. By the first equation of (1.1) and the 
comparison principle, we have Hi � Ĥi on Ω̄× [t1,∞), where Ĥi  is the solution of the prob-
lem




∂
∂t Ĥi − � · δ1(x)�Ĥi = −λ(x)Ĥi + σ1(x)Hu(x)(‖V̂‖∞ + 1), x ∈ Ω, t > t1,

∂
∂n Ĥi = 0, x ∈ ∂Ω, t > t1,

Ĥi(x, t1) = Hi(x, t1), x ∈ Ω.

We know that Ĥi(x, t) → Ĥ∗
i (x) uniformly on Ω̄ as t → ∞, where Ĥ∗

i  is the unique solution 
of the problem

{
−� · δ1(x)�Ĥi = −λ(x)Ĥi + σ1(x)Hu(x)(‖V̂‖∞ + 1), x ∈ Ω,

∂
∂n Ĥi = 0, x ∈ ∂Ω.

Therefore there exists t0 > t1 such that Hi(x, t) � Ĥi(x, t) < ‖Ĥ∗
i ‖∞ + 1 for all x ∈ Ω̄ and 

t � t0. Therefore, the claim holds with M = max{‖V̂‖∞ + 1, ‖Ĥ∗
i ‖∞ + 1}. ■ 

Let (X, d) be a complete metric space and Φ(t) : X → X be a continuous semiflow. The 
distance from a point z ∈ X  to a subset A of X is defined as d(z, A) := infx∈A d(z, x). Suppose 
that X = X̄0, where X0 is an open subset of X. Then X = X0 ∪ ∂X0 with the boundary 
∂X0 = X − X0 being closed in X. The semiflow Φ(t) is said to be uniformly persistent with 
respect to (X0, ∂X0) if there is an ε > 0 such that lim inf t→∞ d(T(t)x, ∂X0) � ε for all x ∈ X0 .
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In the following of this section, let X = C(Ω̄;R3
+) with the metric induced by the supre-

mum norm ‖ · ‖∞. Define

∂X0 := {(Hi, Vu, Vi) ∈ X : Hi + Vi = 0 or Vu + Vi = 0}

and

X0 := {(Hi, Vu, Vi) ∈ X : Hi + Vi > 0 and Vu + Vi > 0}.

Then X = X0 ∪ ∂X0, X0 is relatively open with X̄0 = X, and ∂X0 is relatively closed in 
X. Let w(x, t) = (Hi(x, t), Vu(x, t), Vi(x, t)) be the solution of (1.1)–(1.3) with initial data 
w0 = (Hi0, Vu0, Vi0) ∈ X . Let Φ(t) : X → X be the semiflow induced by the solution of (1.1)–
(1.3), i.e. Φ(t)w0 = w(·, t) for t � 0. Then Φ(t) is point dissipative by lemma 3.10 (see, e.g. 
[15] for the definition). Moreover, Φ(t) is compact for any t  >  0, since (1.1)–(1.3) is a standard 
reaction–diffusion system.

We prove the following persistence result when R0  >  1, which is necessary for proving the 
convergence of solutions to the positive equilibrium.

Lemma 3.11. If R0  >  1, then (1.1)–(1.3) is uniformly persistent in the sense that there exists 
ε > 0 such that, for any initial data (Hi0, Vu0, Vi0) ∈ X0,

lim inf
t→∞

inf
w∈∂X0

‖(Hi(·, t), Vu(·, t), Vi(·, t))− w‖∞ � ε. (3.5)

Moreover, (1.1)–(1.3) has at least one EE.

Proof. We prove this result in several steps.

 Step 1.  X0 is invariant under Φ(t).

  Let w0 = (Hi0, Vu0, Vi0) ∈ X0. Then Hi0 + Vi0 > 0 and Vu0 + Vi0 > 0. Suppose Vi0 = 0. 
Then Hi0 �= 0 and Vu0 �= 0. By the first equation of (1.1), we have

∂

∂t
Hi − � · δ1�Hi � −λHi.

  Then by Hi0 �= 0 and the maximum principle, we have Hi(x, t)  >  0 for x ∈ Ω̄ and t  >  0. 
By the second equation of (1.1), we have

∂

∂t
Vu − � · δ2�Vu � Vu(−σ2Hi + β − µ(Vu + Vi)).

  Then by Vu0 �= 0 and the maximum principle, we have Vu(x, t) > 0 for x ∈ Ω̄ and t  >  0. 
Noticing the third equation of (1.1), we have

∂

∂t
Vi − � · δ2�Vi > −µ(Vu + Vi)Vi, x ∈ Ω, t > 0.

  Then by the maximum principle, we have Vi(x, t) > 0 for x ∈ Ω̄ and t  >  0.

  Suppose Vi0 �= 0. Noticing

∂

∂t
Vi − � · δ2�Vi � −µ(Vu + Vi)Vi
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  and by the maximum principle, we have Vi(x, t) > 0 for all x ∈ Ω̄ and t  >  0. By the first 
equation of (1.1), we have

∂

∂t
Hi − � · δ1�Hi�− λHi, x ∈ Ω, t > 0,

where the inequality is strict for some x ∈ Ω̄ as Hu is nontrivial. So by the comparison prin-
ciple, Hi(x, t)  >  0 for all x ∈ Ω̄ and t  >  0. By the second equation of (1.1), we have

∂

∂t
Vu − � · δ2�Vu > Vu(−σ2Hi + β − µ(Vu + Vi)), x ∈ Ω, t > 0,

  which implies Vu(x, t) > 0 for all x ∈ Ω̄ and t  >  0. Therefore, we have Φ(t)w0 ∈ X0 for 
all t  >  0. Hence X0 is invariant under Φ(t).

 Step 2.  ∂X0 is invariant under Φ(t). For any w0 ∈ ∂X0, the ω-limit set ω(w0) is either {E0} or 
{E1}.

  Suppose w0 = (Hi0, Vu0, Vi0) ∈ ∂X0. Then, Hi0 + Vi0 = 0 or Vu0 + Vi0 = 0. If 
Hi0 + Vi0 = 0 and Vu0 �= 0, then we have Hi(·, t) = Vi(·, t) = 0 for all t � 0 by the first 
and third equations of (1.1). Then the second equation of (1.1) is

∂

∂t
Vu − � · δ2�Vu = Vu(β − µVu).

  Hence by lemma 2.1, we have Vu(x, t) > 0 for x ∈ Ω̄ and t  >  0, and Vu(·, t) → V̂  uni-
formly on Ω̄ as t → ∞. So Φ(t)w0 ∈ ∂X0 with ω(w0) = {E1}.

  If Vu0 + Vi0 = 0, then by the second and third equations  of (1.1), we have 
Vu(·, t) = Vi(·, t) = 0 for all t � 0. Then the first equation of (1.1) is

∂

∂t
Hi − � · δ1�Hi = −λHi,

  which implies that Hi(x, t) → 0 uniformly on Ω̄ as t → 0. Therefore, we have 
Φ(t)w0 ∈ ∂X0 with ω(w0) = {E0}.

  By Step 2, the semiflow Φ∂(t) := Φ(t)|∂X0, the restriction of Φ(t) on ∂X0, admits a com-
pact global attractor A∂. Moreover, it is clear that

Ã∂ := ∪w0∈A∂
ω(w0) = {E0, E1}.

 Step 3.  ̃A∂ has an acyclic covering M = {E0} ∪ {E1}.

  It suffices to show that {E1} �→ {E0}, i.e. Wu(E1) ∩ Ws(E0) = ∅. Suppose to the contrary 
that there exists w0 = (Hi0, Vu0, Vi0) ∈ Wu(E1) ∩ Ws(E0). Let (Hi(·, t), Vu(·, t), Vi(·, t)) be 
a complete orbit through w0. By w0 ∈ Ws(E0) and lemma 2.1, we have Vu0 = Vi0 = 0, and 
hence Vu(·, t) = Vi(·, t) = 0 for all t ∈ (−∞,∞). Therefore Vu(·, t) �→ V̂  as t → −∞, 
contradicting w0 ∈ Wu(E1). Therefore M = {E0} ∪ {E1} is an acyclic covering of Ã∂.

 Step 4.  Ws(E0) ∩ X0 = ∅ and Ws(E1) ∩ X0 = ∅.

  We will actually show:

Ws(E0) = {(Hi0, Vu0, Vi0) ∈ ∂X0 : Vu0 = Vi0 = 0} (3.6)

  and

Ws(E1) = {(Hi0, Vu0, Vi0) ∈ ∂X0 : Hi0 = Vi0 = 0 and Vu0 �≡ 0}.

  By the proof of step 2, it suffices to show that there exists ε > 0 such that, for any initial 
data (Hi0, Vu0, Vi0) ∈ X0, we have
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lim sup
t→∞

‖(Hi(·, t), Vu(·, t), Vi(·, t))− E0‖∞ � ε (3.7)

  and

lim sup
t→∞

‖(Hi(·, t), Vu(·, t), Vi(·, t))− E1‖∞ � ε. (3.8)

  We first prove (3.8). By lemma 2.3 and R0  >  1, we have κ0 > 0. Hence there exists 
ε0 > 0 such that the following problem has a principal eigenvalue κε0 > 0 corresponding 
to a positive eigenvector (φε0 ,ψε0)




κϕ = � · δ1�ϕ− λϕ+ σ1Huψ, x ∈ Ω,

κψ = � · δ2�ψ + σ2(V̂ − ε0)ϕ− µ(V̂ + 2ε0)ψ, x ∈ Ω,

∂
∂nϕ = ∂

∂nψ = 0, x ∈ ∂Ω.

  Assume to the contrary that (3.8) does not hold. Then there exists some 
w0 = (Hi0, Vu0, Vi0) ∈ X0 such that the corresponding solution satisfies

lim sup
t→∞

‖(Hi(·, t), Vu(·, t), Vi(·, t))− E1‖∞ < ε0.

  Hence there exists t0  >  0 such that V̂ − ε0 < Vu(·, t) < V̂ + ε0 and Vi(·, t) < ε0 for all 
t � t0. It then follows from the second and third equations of (1.1) that

{ ∂
∂t Hi − � · δ1�Hi = −λHi + σ1HuVi, x ∈ Ω, t � t0,

∂
∂t Vi − � · δ2�Vi � σ2(V̂ − ε0)Hi − µ(V̂ + 2ε0)Vi, x ∈ Ω, t � t0.

In Step 1, we have shown that Hi(x, t), Vi(x, t) > 0 for all x ∈ Ω̄ and t  >  0. Thus we can 
choose m  >  0 small such that Hi(·, t0) � mφε0 and Vi(·, t0) � mψε0. Hence (Hi, Vi) is an 
upper solution of the problem




∂
∂t H̄i − � · δ1�H̄i = −λH̄i + σ1HuV̄i, x ∈ Ω, t � t0,

∂
∂t V̄i − � · δ2�V̄i = σ2(V̂ − ε0)H̄i − µ(V̂ + 2ε0)V̄i, x ∈ Ω, t � t0,

∂
∂n H̄i =

∂
∂n V̄i = 0, x ∈ ∂Ω, t � t0,

H̄i(·, t0) = mφε0, V̄i(·, t0) = mψε0.

  We observe that the solution of this problem is (H̄i, V̄i) = meκε0(t−t0)(φε0 ,ψε0). By the com-
parison principle of cooperative systems, we have Hi(·, t) � H̄i(·, t) and Vi(·, t) � V̄i(·, t) 
for t � t0. Since κε0 > 0, we have Hi(·, t) → ∞ and Vi(·, t) → ∞ as t → ∞, which 
contradicts the boundedness of the solution. This proves (3.8).

We then prove (3.7). Suppose to the contrary that (3.7) does not hold. Then for given small 
ε1 > 0, there exists initial data (Hi0, Vu0, Vi0) ∈ X0 such that

lim sup
t→∞

‖(Hi(·, t), Vu(·, t), Vi(·, t))− E0‖∞ < ε1.

Hence there exists t1  >  0 such that Vu(·, t) < ε1 and Vi(·, t) < ε1 for all t � t1. However by 
lemma 2.1, we know that Vu(·, t) + Vi(·, t) → V̂  uniformly on Ω̄ as t → ∞, which is a contra-
diction as ε1 is small.
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Finally by steps 1–4 and [15, theorem 4.1], there exists ε > 0 such that (3.5) holds.  
Moreover by [42, theorem 1.3.7], (1.1)–(1.3) has an EE. ■ 

Combing lemmas 3.9 and 3.11, we can prove the main result in this section.

Theorem 3.12. If R0  >  1, then for any initial data (Hi0, Vu0, Vi0) ∈ X0, the solution 
(Hi, Vu, Vi) of (1.1)–(1.3) satisfies that

lim
t→∞

(Hi(x, t), Vu(x, t), Vi(x, t)) = (Ĥi, V̂u, V̂i) uniformly on Ω̄,

where E2 = (Ĥi, V̂u, V̂i) is the unique EE of (1.1).

Proof. By lemma 3.11, there exists an EE, E2 := (Ĥi, V̂u, V̂i), of (1.1)–(1.3) when R0  >  1. 
By lemma 2.1, V̂u + V̂i = V̂ . So (Ĥi, V̂i) is a positive solution of (3.2), which is unique by 
lemma 3.5. Hence, E2 is the unique EE of (1.1)–(1.3).

Let (Hi0, Vu0, Vi0) ∈ X0. Then Vu0 + Vi0 �= 0 and Hi0 + Vi0 �= 0. By lemma 2.1, we have 
Vu(·, t) + Vi(·, t) → V̂  in C(Ω̄;R) as t → ∞. By lemma 3.11, there exists ε > 0 such that

lim inf
t→∞

‖Hi(·, t)‖∞ + ‖Vi(·, t)‖∞ � ε. (3.9)

We focus on the first and third equations of (1.1) and rewrite them as:



∂
∂t Hi − � · δ1�Hi = −λHi + σ1HuVi, x ∈ Ω, t > 0,

∂
∂t Vi − � · δ2�Vi = σ2(V̂ − Vi)

+Hi − µV̂Vi + F(x, t), x ∈ Ω, t > 0,

∂
∂n Hi =

∂
∂n Vi = 0, x ∈ ∂Ω, t > 0,

Hi(x, 0) = Hi0(x), Vi(x, 0) = Vi0(x), x ∈ Ω,
 (3.10)

where

F(·, t) = σ2(Vu(·, t)− (V̂ − Vi(·, t))+)Hi − µ(Vu(·, t) + Vi(·, t)− V̂)Vi(·, t).

Since

|Vu(·, t)− (V̂ − Vi(·, t))+| � |Vu(·, t) + Vi(·, t)− V̂|,

we have F(·, t) → 0 in C(Ω̄;R) as t → ∞. Then by [24, proposition 1.1], (3.10) is asymp-
totically autonomous with limit system (3.1). By (3.9), the ω−limit set of (3.10) is contained 
in W := {(Hi, Vi) ∈ C(Ω̄;R2

+) : Hi + Vi �= 0}. By lemma 3.9, W is the stable set (or basin 
of attraction) of the equilibrium (Ĥi, V̂i) of (3.1). Hence by the theory of asymptotically au-
tonomous semiflows (originally due to Markus. See [31, theorem 4.1] for the generalization 
to asymptotically autonomous semiflows), we have (Hi(·, t), Vi(·, t)) → (Ĥi, V̂i) in C(Ω̄;R2) 
as t → ∞. Moreover, by Vu(·, t) + Vi(·, t) → V̂  and V̂i + V̂u = V̂ , we have Vu(·, t) → V̂u in 
C(Ω̄;R) as t → ∞. This completes the proof. ■ 

P Magal et alNonlinearity 31 (2018) 5589



5604

4. Global stability when R0  =  1

In this section, we prove the global stability of E1 for the critical case R0  =  1. The following 
result is well known. Since we can not locate a reference and for the convenience of readers, 
we attach a proof.

Lemma 4.1. The positive equilibrium V̂  of (2.1) is exponentially asymptotically stable.

Proof. It is easy to see that V̂  is locally asymptotically stable. To see this, linearizing (2.1) 
around V̂ , we obtain

{
κφ = � · δ2�φ+ βφ− 2µV̂φ, x ∈ Ω,

∂
∂nφ = 0, x ∈ ∂Ω.

 (4.1)

Since V̂  satisfies (2.3), we have κ1(δ2,β − µV̂) = 0. Hence a := κ1(δ2,β − 2µV̂) < 0, i.e. 
the principal eigenvalue of (4.1) is negative. Therefore, V̂  is linearly stable. By the principle 
of linearized stability, it is locally asymptotically stable.

Let ε > 0 be given. Since V̂  is locally asymptotically stable, there exists δ > 0 such that 
‖V(·, t)− V̂‖∞ < ε for all V0 ∈ C(Ω̄;R+) with ‖V0 − V̂‖∞ < δ . Let w(·, t) = V(·, t)− V̂ . 
Then w satisfies




wt = � · δ2�w + (β − 2µV̂)w − 2µw2, x ∈ Ω, t > 0,

∂
∂n w = 0, x ∈ ∂Ω, t > 0,

w(x, 0) = V0 − V̂ , x ∈ Ω.

 (4.2)

Let S(t) be the semigroup generated by � · δ2�+ (β − 2µV̂) (associated with Neumann 
boundary condition) in C(Ω̄;R). Then there exists M1  >  0 such that ‖S(t)‖ � M1e−at for all 
t � 0. Then by (4.2), we have

w(·, t) = S(t)w(·, 0)−
∫ t

0
S(t − s)µw(·, s)2ds.

It then follows that

‖w(·, t)‖∞ � ‖S(t)w(·, 0)‖∞ +

∫ t

0
‖S(t − s)µw(·, s)2‖∞ds

� M1e−at‖w(·, 0)‖∞ + εM1‖µ‖∞
∫ t

0
e−a(t−s)‖w(·, t)‖∞ds.

By the Gronwall’s inequality, if ε � a/2‖µ‖∞M1, we have

‖w(·, t)‖∞ � M1‖V0 − V̂‖∞e(M1‖µ‖∞ε−a)t � M1‖V0 − V̂‖∞e−at/2.

Therefore, V̂  is exponentially asymptotically stable. ■ 

We then prove the local stability of E1 when R0  =  1.
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Lemma 4.2. If R0  =  1, then E1 is locally stable.

Proof. Let ε > 0 be given. Denote V = Vu + Vi. By lemma 4.1, there exist δ, M1, b > 0 
such that, if ‖Vu0 + Vi0 − V̂‖∞ < 2δ, then

‖V − V̂‖∞ � M1‖Vu0 + Vi0 − V̂‖∞e−bt. (4.3)

Suppose that (Hi0, Vu0, Vi0) satisfies ‖Hi0‖∞ � δ, ‖Vu0 − V̂‖∞ � δ and ‖Vi0‖∞ � δ  such that 
(4.3) holds.

Since κ0 has the same sign with R0  −  1, we have κ0 = 0. Let T(t) be the positive semi-
group generated by A  =  B  +  C in C(Ω̄;R2). Then there exists M2  >  0 such that ‖T(t)‖ � M2 
for all t � 0 [39, propositon 4.15]. By (1.1)–(1.3), we have
(

Hi(·, t)
Vi(·, t)

)
= T(t)

(
Hi0

Vi0

)
+

∫ t

0
T(t − s)

(
0

σ2(Vu(·, s)− V̂)Hi(·, s)− µ(V(·, s)− V̂)Vi(·, s)

)
ds

� T(t)
(

Hi0

Vi0

)
+

∫ t

0
T(t − s)

(
0

σ2(V(·, s)− V̂)Hi(·, s)− µ(V(·, s)− V̂)Vi(·, s)

)
ds.

Let u(t) = max{‖Hi(·, t)‖∞, ‖Vi(·, t)‖∞}. By (4.3), we have

u(t) � M2u(0) + 2M2 max{‖σ2‖∞, ‖µ‖∞}
∫ t

0
‖V(·, s)− V̂‖∞u(s)ds

� M2δ + δC
∫ t

0
e−bsu(s)ds

where C = 4M1M2 max{‖σ2‖∞, ‖µ‖∞}. Then by Gronwall’s inequality,

u(t) = max{‖Hi(·, t)‖∞, ‖Vi(·, t)‖∞} � M2eCδ/bδ. (4.4)

Moreover, by (4.3), we have

‖Vu(·, t)− V̂‖∞ � ‖Vu(·, t) + Vi(·, t)− V̂‖∞ + ‖Vi(·, t)‖∞ � 2M1δ + M2eCδ/bδ.
 

(4.5)

Combining (4.4) and (4.5), we can find δ = δ(ε) > 0 such that

‖Hi(·, t)‖∞ � ε, ‖Vu(·, t)− V̂‖∞ � ε, and ‖Vi(·, t)‖∞ � ε.

Since ε > 0 is arbitrary, E1 is locally stable. ■ 

We then prove the global attractivity of E1 when R0  =  1.

Theorem 4.3. If R0  =  1, then E1 is globally stable in the sense that it is locally stable and, 
for any nonnegative initial data (Hi0, Vu0, Vi0) with Vu0 + Vi0 �= 0,

lim
t→∞

‖(Hi(·, t), Vu(·, t), Vi(·, t))− E1‖∞ = 0.

Proof. Let

M = {(Hi0, Vu0, Vi0) ∈ C(Ω̄;R3
+) : Vu0 + Vi0 = V̂}.
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It suffices to show: (a) E1 is a locally stable equilibrium of (1.1)–(1.3); (b) the stable set (or 
basin of attraction) of E1 contains M; (c) the ω−limit set of (Hi0, Vu0, Vi0) with Vu0 + Vi0 �= 0 
is contained in M.

By lemma 4.2, E1 is locally stable, which gives (a). If Vu0 + Vi0 �= 0, we have 
Vu(·, t) + Vi(·, t) → V̂  in C(Ω̄;R) as t → ∞, which implies (c).

To prove (b), suppose (Hi0, Vu0, Vi0) ∈ M. Then the solution of (1.1)–(1.3) satisfies 
Vu(x, t) + Vi(x, t) = V̂(x) for all x ∈ Ω̄ and t � 0. Hence (Hi(x, t), Vi(x, t)) is the solution of 
the limit problem (3.1).

Since R0  =  1, we have κ0 = 0. Let (ϕ0,φ0) be a positive eigenvector associated with κ0 of 
the eigenvalue problem (2.5). Motivated by [7, 40], for any w0 := (Hi0, Vi0), we define

c(t; w0) := inf{c̃ ∈ R : Hi(·, t) � c̃ϕ0 and Vi(·, t) � c̃φ0}.

Then c(t;w0)  >  0 for all t  >  0. We now claim that c(t;w0)  >  0 is strictly decreasing. To see 
that, fix t0  >  0, and we define H̄i(x, t) = c(t0; w0)ϕ0(x) and V̄i(x, t) = c(t0; w0)φ0(x) for all 
t � t0 and x ∈ Ω̄. Then (H̄i(x, t), V̄i(x, t)) satisfies




∂
∂t H̄i − � · δ1�H̄i = −λH̄i + σ1HuV̄i, x ∈ Ω, t � t0,

∂
∂t V̄i − � · δ2�V̄i > σ2(V̂ − V̄i)

+H̄i − µV̂V̄i, x ∈ Ω, t � t0,

∂
∂n H̄i =

∂
∂n V̄i = 0, x ∈ ∂Ω, t � t0,

H̄i(·, t0) � Hi(·, t0), V̄i(·, t0) � Vi(·, t0).

 (4.6)

By the comparison principle for cooperative systems, we have (H̄i(x, t), V̄i(x, t)) �
(Hi(x, t), Vi(x, t)) for all x ∈ Ω̄ and t � t0. By the second equation of (4.6), we have

∂

∂t
V̄i − � · δ2�V̄i > σ2(V̂ − V̄i)

+Hi − µV̂V̄i.

By the comparison principle, V̄i(x, t) > Vi(x, t) for all x ∈ Ω̄ and t  >  t0. Then by the first equa-
tion of (4.6),

∂

∂t
H̄i − � · δ1�H̄i�− λH̄i + σ1HuVi,

where the inequality is strict for some x ∈ Ω̄ as Hu is nontrivial. By the comparison princi-
ple, we have H̄i(x, t) > Hi(x, t) for all x ∈ Ω̄ and t  >  t0. Therefore, c(t0; w0)ϕ0(x) > Hi(x, t) 
and c(t0; w0)φ0(x) > Vi(x, t) for all x ∈ Ω̄ and t  >  t0. By the definition of c(t;w0), c(t0; w0) >
c(t; w0) for all t  >  t0. Since t0 � 0 is arbitrary, c(t;w0) is strictly decreasing for t � 0.

Let Φ̃(t) be the semiflow induced by the solution of the limit problem (3.1). Let ω := ω(w0) 
be the omega limit set of w0. We claim that ω = {(0, 0)}. Assume to the contrary that there 
exists a nontrivial w1 ∈ ω. Then there exists {tk} with tk → ∞ such that Φ̃(tk)w0 → w1. Let 
c∗ = limt→∞ c(t; w0). We have c(t; w1) = c∗ for all t � 0. Actually this follows from the fact 
that Φ̃(t)w1 = Φ̃(t) limtk→∞ Φ̃(tk)w0 = limtk→∞ Φ̃(t + tk)w0. However since w1 is nontrivial, 
we can repeat the previous arguments to show that c(t;w1) is strictly decreasing. This is a con-
traction. Therefore ω = {(0, 0)}, and (Hi(·, t), Vi(·, t)) → (0, 0) in C(Ω̄;R2) as t → ∞. Since 
Vu(·, t) + Vi(·, t) = V̂ , we have Vu(·, t) → V̂  in C(Ω̄;R) as t → ∞. This completes the proof.
 ■ 
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5. Concluding remarks

In this paper, we define a basic reproduction number R0 for the model (1.1)–(1.3), and show 
that it serves as the threshold value for the global dynamics of the model: if R0 � 1, then dis-
ease free equilibrium E1 is globally asymptotically stable; if R0  >  1, the model has a unique 
endemic equilibrium E2, which is globally attractive.

As shown in theorem A.4, the global dynamics of the corresponding ODE model of (1.1)–
(1.3) is determined by the magnitude of σ1σ2Hu/λµ. This motivates us to define the local 
basic reproduction number for model (1.1)–(1.3):

R(x) := R1(x)R2(x) =
σ1(x)Hu(x)

λ(x)
σ2(x)
µ(x)

.

Since R0 is difficult to visualize, it is natural to ask: are there any connections between R0 and 
R? As the global dynamics of both models are determined by the magnitude of the basic repro-
duction number, this is equivalent to ask: how the diffusion rates change the dynamics of the 
model (1.1)–(1.3), and what is the relation between the reaction–diffusion model (1.1)–(1.3) 
and the corresponding reaction system (the model without diffusion)? We will explore these 
questions in a forthcoming paper. Our main ingredient is the formula:

R0 = r(L1R1L2R2)

with L1 := (λ− � · δ1�)−1λ and L2 := (µV̂ − � · δ2�)−1µV̂ . This formula establishes an 
interesting connection between R0 and R as we can prove

r(L1L2) = r(L1) = r(L2) = 1.

Consequences of this formula are:

 1.  If Ri(x), i = 1, 2, is constant, then R0  =  R; 
 2.  R0  >  1 if Ri(x)  >  1, i = 1, 2, for all x ∈ Ω̄ and R0  <  1 if Ri(x)  <  1, i = 1, 2, for all x ∈ Ω̄.

Furthermore, when the diffusion coefficients δ1 and δ2 are constant, we prove

 •  lim(δ1,δ2)→(∞,∞) R0 =
∫
Ω
λR1dx∫

Ω
λdx

∫
Ω
µR2dx∫

Ω
µdx ; 

 •  limδ1→0 limδ2→0 R0 = limδ2→0 limδ1→0 R0 = max{R(x) : x ∈ Ω̄}.

Finally, we remark that our approach is applicable to several other reaction–diffusion mod-
els (e.g. [18, 19, 26, 28]). For example, the reaction–diffusion within-host model of viral 
dynamics studied in [26, 28] is





∂
∂t T − � · δ1(x)�T = λ(x)− µT − k1TV(−k2TI), x ∈ Ω, t > 0,

∂
∂t I − � · δ2(x)�I = k1TV(+k2TI)− µiI x ∈ Ω, t > 0,

∂
∂t V − � · δ3(x)�V = N(x)I − µvV , x ∈ Ω, t > 0,

 (5.1)
where T , I  and V  denote the densities of healthy cells, infected cells and virions, respectively. 
If δ1 = δ2 and µ = µi, then E := T + I  satisfies

∂

∂t
E − � · δ1(x)�E = λ(x)− µE.

This equation  has a unique positive equilibrium Ê  and E(·, t) → Ê in C(Ω̄) as t → ∞. 
Therefore (5.1) also has a limit system which is monotone:
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{
∂
∂t I − � · δ2(x)�I = k1(Ê − I)+V(+k2(Ê − I)+I)− µiI x ∈ Ω, t > 0,

∂
∂t V − � · δ3(x)�V = N(x)I − µvV , x ∈ Ω, t > 0.

For the models in [18, 19], our method is applicable when there are no chemotaxis. The analy-
sis of the basic reproduction number of all these models can also be done similarly.
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Appendix

Let Hi(t), Vu(t) and Vi(t) be the densities of infected hosts, uninfected vectors, and infected 
vectors at time t respectively. Then the model is




d
dt Hi(t) = −λHi(t) + σ1HuVi(t), t > 0,

d
dt Vu(t) = −σ2Vu(t)Hi(t) + β(Vu(t) + Vi(t))− µ(Vu(t) + Vi(t))Vu(t), t > 0,

d
dt Vi(t) = σ2Vu(t)Hi(t)− µ(Vu(t) + Vi(t))Vi(t), t > 0

 (A.1)

with initial value

(Hi(0), Vu(0), Vi(0)) ∈ M := R3
+.

The basic reproduction number R0 is defined as

R0 :=
σ1σ2Hu

λµ
.

The equilibria of (A.1) are ss0  =  (0,0,0), ss1 = (0,β/µ, 0), and

ss2 =

(
β(Huσ1σ2 − λµ)

λµσ2
,

βλ

Huσ1σ2
,
β(Huσ1σ2 − λµ)

Huµσ1σ2

)

=

(
β(R0 − 1)

σ2
,

β

R0µ
,
λβ(R0 − 1)

Huσ1σ2

)

:= (Ĥi, V̂u, V̂i),

which exists if and only if R0  >  1.
If we add the last two equations of (A.1) then N(t) := Vu(t) + Vi(t) satisfies the logistic 

equation

d
dt

N(t) = βN(t)− µN2(t). (A.2)

We decompose the domain M := R3
+ into the partition

M = ∂M0 ∪ M0,

where

∂M0 := {(Hi, Vu, Vi) ∈ M : Hi + Vi = 0 or Vu + Vi = 0}
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and

M0 := {(Hi, Vu, Vi) ∈ M : Hi + Vi > 0 and Vu + Vi > 0} = M \ ∂M0.

Biologically, we can interpret ∂M0 as the states without vectors or infected individuals. The 
subregions ∂M0 and M0 are both positively invariant with respect to the semiflow generated 
by (A.1). We can also decompose M with respect to the subdomain

∂M1 := {(Hi, Vu, Vi) ∈ M : Vu + Vi = 0}

and

M1 := {(Hi, Vu, Vi) ∈ M : Vu + Vi > 0}.

Since N(t) := Vu(t) + Vi(t) always satisfies the logistic equation (A.2), the subregions ∂M1 
and M1 are both positively invariant with respect to the semiflow generated by (A.1).

Lemma A.1. Both ∂M1 and M1 are positively invariant by the semiflow generated (A.1). 
Moreover,

 1.  if (Hi(0), Vu(0), Vi(0)) ∈ ∂M1, then

lim
t→∞

(Hi(t), Vu(t), Vi(t)) = (0, 0, 0);

 2.  if (Hi(0), Vu(0), Vi(0)) ∈ M1, then

lim
t→∞

Vu(t) + Vi(t) =
β

µ
.

If (Hi(0), Vu(0), Vi(0)) ∈ M1 the long time behavior of (A.1) is characterized by



d
dt Hi(t) = −λHi + σ1HuVi, t > 0,

d
dt Vi(t) = σ2(β/µ− Vi)

+Hi − βVi, t > 0,

Hi(0) = Hi0 � 0, Vi(0) = Vi0 � 0.

 (A.3)

Lemma A.2. Suppose R0  >  1. Then (A.3) has a unique positive equilibrium (Ĥi, V̂i). More-
over, (Ĥi, V̂i) is locally asymptotically stable, and if Hi0 + Vi0 �= 0, then the solution (Hi, Vi) 
of (A.3) satisfies

lim
t→∞

(Hi(t), Vi(t)) = (Ĥi, V̂i).

Proof. The uniqueness of the positive equilibrium (Ĥi, V̂i) can be checked directly when 
R0  >  1. Let D = R2

+. Then D is invariant for (A.3). It is not hard to show that the solution of 
(A.3) is bounded.

Let F1(Hi, Vi) = −λHi + σ1HuVi and F2(Hi, Vi) = σ2(β/µ− Vi)
+Hi − βVi. Then 

∂F1/∂Vi � 0 and ∂F2/∂Hi � 0 on D. So (A.3) is cooperative. Let Φ̃(t) : D → D be the semi-
flow generated by the solution of (A.3). Then Φ̃(t) is monotone.

If Hi0 + Vi0 �= 0, then Hi(t)  >  0 and Vi(t) > 0 for all t  >  0. So without loss of general-
ity, we may assume Hi0  >  0 and Vi0 > 0. We can choose δ small such that F1(δĤi, δV̂i) � 0, 
F2(δĤi, δV̂i) � 0, Hi0 � δĤi, and Vi0 � δV̂i . By [27, proposition 3.2.1], Φ̃(t)(δĤi, δV̂i) is non-
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decreasing for t � 0 and converges to a positive equilibrium as t → ∞. Since (Ĥi, V̂i) is the 
unique positive equilibrium, we must have Φ̃(t)(δĤi, δV̂i) → (Ĥi, V̂i) as t → ∞.

Similarly, we may choose k  >  0 such that F1(kĤi, kV̂i) � 0, F2(kĤi, kV̂i) � 0, Hi0 � kĤi , 
and Vi0 � kV̂i. Then Φ̃(t)(δĤi, δV̂i) is non-increasing for t � 0 and Φ̃(t)(kĤi, kV̂i) → (Ĥi, V̂i) as 
t → ∞. By the monotonicity of Φ̃(t), we have Φ̃(t)(δĤi, δV̂i) � Φ̃(t)(Hi0, Vi0) � Φ̃(t)(kĤi, kV̂i) 
for t � 0. It then follows that Φ̃(t)(Hi0, Vi0) → (Ĥi, V̂i) as t → ∞.

For any ε′ > 0 and initial data (Hi0, Vi0) satisfying (1 − ε′)(Ĥi, V̂i) � (Hi0, Vi0) � 
(1 + ε′)(Ĥi, V̂i), similar to the previous arguments, we can show (1 − ε′)(Ĥi, V̂i) �
(Hi(t), Vi(t)) � (1 + ε′)(Ĥi, V̂i) for all t � 0. Therefore, (Ĥi, V̂i) is locally stable. This proves 
the lemma.  ■ 

We now present a uniform persistence result.

Lemma A.3. If R0  >  1, then the semiflow generated by (A.1) is uniformly persis-
tent with respect to (M0, ∂M0) in the sense that there exists ε > 0 such that, for any 
(Hi(0), Vu(0), Vi(0)) ∈ M0, we have

lim inf
t→∞

inf
w∈∂M0

|(Hi(t), Vu(t), Vi(t))− w| � ε. (A.4)

Proof. We apply [15, theorem 4.1] to prove this result. Let Φ(t) : R3
+ → R3

+ be the semiflow 
generated by (A.1), i.e. Φ(t)w0 = (Hi(t), Vu(t), Vi(t)) for t � 0, where (Hi(t), Vu(t), Vi(t)) is 
the solution of (A.1) with initial condition w0 = (Hi(0), Vu(0), Vi(0)) ∈ R3

+.

The semiflow Φ(t) is point dissipative in the sense that there exists M  >  0 such 
that lim supt→∞ ‖Φ(t)w0‖ � M  for any w0 ∈ R3

+. Actually, lemma A.1 implies that 
lim supt→∞ Vu(t) � β/µ and lim supt→∞ Vi(t) � β/µ. By the first equation  of (A.1), we 
have lim supt→∞ Hi(t) � σ1βHu/µλ.

We note that M0 and ∂M0 are both invariant with respect to Φ(t). Moreover, the semiflow 
Φ∂(t) := Φ(t)|∂M0, i.e. the restriction of Φ(t) on ∂M0, admits a compact global attractor A∂. If 
w0 = (Hi(0), Vu(0), Vi(0)) ∈ ∂M0 , then the ω−limit set of w0 is ω(w0) = {ss0} if w0 ∈ ∂M1 
and ω(w0) = {ss1} if w0 ∈ ∂M0 \ ∂M1. Hence we have

Ã∂ := ∪w0∈A∂
ω(w0) = {ss0} ∪ {ss1}.

This covering is acyclic since {ss1} �→ {ss0}, i.e. Wu(ss1) ∩ Ws(ss0) = ∅. To see this, suppose 
w0 = (Hi(0), Vu(0), Vi(0)) ∈ Wu(ss1) ∩ Ws(ss0). Since w0 ∈ Ws(ss0), we have w0 ∈ ∂M1. 
Let (Hi(t), Vu(t), Vi(t)) be the complete orbit through w0, then Vu(t) = Vi(t) = 0 for t ∈ R. 
So w0 �∈ Wu(ss1), which is a contradiction.

We then show that Ws(ss0) ∩ M0 = ∅ and Ws(ss1) ∩ M0 = ∅. By lemma A.1, 
Ws(ss0) = ∂M1 ⊆ ∂M0, and hence Ws(ss0) ∩ M0 = ∅. To see Ws(ss1) ∩ M0 = ∅, it suffices 
to prove that there exists ε > 0 such that, for any w0 = (Hi(0), Vu(0), Vi(0)) ∈ M0, the fol-
lowing inequality holds

lim sup
t→∞

|Φ(t)w0 − ss1| � ε. (A.5)

Assume to the contrary that (A.5) does not hold. Let ε0 > 0 be given. Then there exists 
w0 ∈ M0 such that
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lim sup
t→∞

|Φ(t)w0 − ss1| < ε0.

So there exists t0  >  0 such that β/µ− ε0 � Vu(t) � β/µ+ ε0 and Vi(t) � ε0 for t � t0.

By (A.1), we have




d
dt Hi(t) = −λHi + σ1HuVi, t > t0,

d
dt Vi(t) � σ2(

β
µ − ε0)Hi − µ(βµ + 2ε0)Vi, t > t0.

 (A.6)

The matrix associated with the right hand side of (A.6) is

Aε0 :=

[
−λ σ1Hu

σ2(
β
µ − ε0) −µ(βµ + 2ε0)

]
,

whose eigenvalues λ1 and λ2 satisfy that λ1 + λ2 = −λ− µ(β/µ+ 2ε0) < 0 and 
λ1λ2 = λµ(β/µ+ 2ε0)− σ1σ2Hu(β/µ− ε0). Since R0  >  1, we can choose ε0 small such 
that λ1λ2 < 0. Hence either λ1 > 0 > λ2 or λ2 > 0 > λ1. Without loss of generality, suppose 
λ1 > 0 > λ2. Then by the Perron–Frobenius theorem, there is an eigenvector (φ,ψ) associ-
ated with λ1 such that φ > 0 and ψ > 0.

Let (H̃i(t), Ṽi(t)) be the solution of the following problem



d
dt H̃i(t) = −λH̃i(t) + σ1HuṼi(t), t > t0,

d
dt Ṽi(t) = σ2(

β
µ − ε0)H̃i(t)− µ(βµ + 2ε0)Ṽi(t), t > t0,

H̃i(t0) = δφ, Ṽi(t0) = δψ,

 (A.7)

where δ is small such that Hi(t0) � H̃i(t0) and Vi(t0) � Ṽi(t0). By (A.6) and the comparison 
principle for cooperative systems, we have (Hi(t), Vi(t)) � (H̃i(t), Ṽi(t)) for t � t0. We can 
check that the solution of (A.7) is (H̃i(t), Ṽi(t)) = (δφeλ1(t−t0), δψeλ1(t−t0)). It then follows 
from λ1 > 0 that limt→∞ Hi(t) = ∞ and limt→∞ Vi(t) = ∞, which contradicts the bounded-
ness of the solution.

Our conclusion now just follows from [15, theorem 4.1]. ■ 

We now present the result about the global dynamics of (A.1).

Theorem A.4. The following statements hold.

 1.  ss0 is unstable; If (Hi(0), Vu(0), Vi(0)) ∈ ∂M1, then

lim
t→∞

(Hi(t), Vu(t), Vi(t)) = ss0.

 2.  Suppose R0  <  1. Then ss1 is globally asymptotically stable, i.e. ss1 is locally asymptoti-
cally stable and if (Hi(0), Vu(0), Vi(0)) ∈ M1, then

lim
t→∞

(Hi(t), Vu(t), Vi(t)) = ss1.

 3.  Suppose R0  >  1. Then ss1 is unstable, and if (Hi(0), Vu(0), Vi(0)) ∈ ∂M0 \ ∂M1, then

P Magal et alNonlinearity 31 (2018) 5589



5612

lim
t→∞

(Hi(t), Vu(t), Vi(t)) = ss1.

Moreover, ss2 is globally asymptotically stable in the sense that ss2 is locally asymptotically 
stable and for any (Hi(0), Vu(0), Vi(0)) ∈ M0,

lim
t→∞

(Hi(t), Vu(t), Vi(t)) = ss2.

Proof. We only prove the second convergence result in part 3 (see [14] and lemma A.1 for 
the other parts). Since the solution of (A.3) is bounded, the omega limit set of the solution of 
(A.1) exists.

Suppose (Hi(0), Vu(0), Vi(0)) ∈ M0. Then the solution (Hi(t), Vu(t), Vi(t)) of (A.1) 
satisfies that Hi(t), Vu(t), Vi(t) > 0 for all t  >  0. Since Vu(0) + Vi(0) �= 0, we have 
Vu(t) + Vi(t) → β/µ as t → ∞. So,

f (t) := σ2[Vu(t)− (β/µ− Vi(t))+]Hi(t) + (β − µ(Vu(t) + Vi(t)))Vi(t) → 0 as t → ∞,

and the limit system of
{ d

dt Hi(t) = −λHi + σ1HuVi, t > 0,

d
dt Vi(t) = σ2VuHi − µ(Vu + Vi)Vi = σ2(β/µ− Vi)

+Hi − βVi + f (t), t > 0,
 (A.8)

is (A.3). By lemma A.3 and Vu(t) + Vi(t) → β/µ, there exists ε > 0 such that

lim inf
t→∞

|Hi(t)|+ |Vi(t)| � ε.

Hence the omega limit set of (A.8) is contained in W := {(Hi0, Vi0) ∈ R2
+ : Hi0 + Vi0 �= 0}. 

By lemma A.2, W is the stable set of the stable equilibrium (Ĥi, V̂i) of (A.3). By the theory of 
asymptotic autonomous systems, we have Hi(t) → Ĥi and Vi(t) → V̂i as t → ∞. Moreover 
since Vu(t) + Vi(t) → β/µ = V̂u + V̂i, we have Vu(t) → V̂u as t → ∞. ■ 
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