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Abstract. The basic reproduction number R0 serves as a threshold parameter of many epidemic
models for disease extinction or spread. The purpose of this paper is to investigate R0 for spatial
reaction-diffusion partial differential equation epidemic models. We define R0 as the spectral radius
of a product of a local basic reproduction number R and strongly positive compact linear operators
with spectral radii one. This definition of R, viewed as a multiplication operator, is motivated by
the definition of basic reproduction numbers for ordinary differential equation epidemic models. We
investigate the relation of R0 and R.
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1. Introduction. For epidemic differential equation models, the basic reproduc-
tion number R0 is a threshold value such that below this value the disease vanishes,
while above this value the disease spreads. The calculation of R0 for ordinary differen-
tial equations epidemic models has been developed extensively based on [9, 10]. Many
authors have used reaction-diffusion partial differential equation models to study the
transmission of diseases in geographical regions (see [1, 5, 6, 7, 8, 11, 12, 16, 19, 20, 22,
23, 27, 29, 30, 32, 33, 34, 35]). The purpose of this paper is to connect basic reproduc-
tion numbers for partial differential equations epidemic models to basic reproduction
numbers for ordinary differential equation models.

In a recent study, Thieme [28] provided a general theoretical approach to define
R0 as the spectral radius of a resolvent-positive operator for a wide range of epidemic
models, which is a generalization of the finite dimensional version in [9, 10]. Another
approach to characterize R0 for reaction-diffusion epidemic models relied on a varia-
tional characterization of R0, which works when the model is relatively simple (the
stability of the disease free equilibrium is determined by the sign of an eigenvalue
problem consisting of only one equation). For example, Allen et al. [1] characterize
R0 for a simple diffusive SIS model by the formula

R0 = sup

\biggl\{ \int 
\Omega 
\beta \varphi 2dx\int 

\Omega 
(dI | \triangledown \varphi | 2 + \gamma \varphi 2)dx

: \varphi \in H1(\Omega ), \varphi \not = 0

\biggr\} 
,

where \beta = \beta (x) is the transmission rate, \gamma = \gamma (x) is the removal rate, and dI is the
diffusion coefficient. This allows the authors to show that R0 is strictly decreasing in
dI , R0 \rightarrow \int \Omega \beta /\gamma dx as dI \rightarrow 0, and R0 \rightarrow \int \Omega \beta / \int \Omega \gamma as dI \rightarrow \infty . Here \beta (x)/\gamma (x) is
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the basic reproduction number for the corresponding model without diffusion (which
we will call the local basic reproduction number).

For some reaction-diffusion epidemic models, R0 is related to the principal eigen-
value of an elliptic system, which makes the analysis more difficult. Peng and Zhao
[27] write R0 as the principal eigenvalue of an eigenvalue problem consisting of a sin-
gle equation. Cui and Lou [6] study the impact of the advection rate on R0 for a
reaction-diffusion-advection SIS model, where they take advantage of the variational
characterization of R0. We note that calculations of R0 for reaction-diffusion epidemic
models have been discussed by Wang and Zhao [31]. We also note the papers [14, 25]
for R0 analysis of stream population models, and [36] for R0 analysis of time-delayed
compartmental population models in periodic environments. Other investigations of
R0 for partial differential equation epidemic models are found in [19, 26, 29, 30, 32],
where the computation of R0 is mostly for constant coefficients in space. Here we
explore this question with nonconstant coefficients, which will allow us to explore the
impact of the (small and large) diffusion coefficients and spatial heterogeneity.

Although our approach is applicable to a wide range of reaction-diffusion epidemic
models, we will focus on the vector-host model in [12] (see also [24]). Suppose that
individuals are living in a bounded domain \Omega \subset \BbbR n with smooth boundary \partial \Omega . Let
Hu(x), Hi(x, t), Vu(x, t), and Vi(x, t) be the density of uninfected hosts, infected hosts,
uninfected vectors, and infected vectors at position x and time t, respectively. Then
the model in [12] to study the outbreak of Zika in Rio De Janerio is the following
reaction-diffusion system:

(1.1)

\left\{             

\partial Hi/\partial t - \triangledown \cdot \delta 1\triangledown Hi =  - \lambda Hi + \sigma 1Hu(x)Vi,

\partial Vu/\partial t - \triangledown \cdot \delta 2\triangledown Vu =  - \sigma 2VuHi + \beta (Vu + Vi) - \mu (Vu + Vi)Vu,

\partial Vi/\partial t - \triangledown \cdot \delta 2\triangledown Vi = \sigma 2VuHi  - \mu (Vu + Vi)Vi,

\partial Hi/\partial n = \partial Vu/\partial n = \partial Vi/\partial n = 0,

(Hi(., 0), Vu(., 0), Vi(x, 0)) = (Hi0, Vu0, Vi0) \in C(\=\Omega ;\BbbR 3
+),

where \delta 1, \delta 2 \in C1+\alpha (\=\Omega ) are strictly positive, and the functions Hu, \lambda , \beta , \sigma 1, \sigma 2, and
\mu are strictly positive and belong to C\alpha (\=\Omega ). It is assumed that uninfected hosts are
stationary in space, and the diffusion of infected hosts corresponds indirectly to the
movement of the Zika virus in the spatial environment. Both uninfected and infected
vectors are assumed to diffuse in the spatial environment.

Following [28, 31], the basic reproduction number R0 for (1.1) is defined as the
spectral radius r( - CB - 1) of  - CB - 1, where B : D(B) \subset C(\=\Omega ;\BbbR 2) \rightarrow C(\=\Omega ;\BbbR 2) and
C : C(\=\Omega ;\BbbR 2) \rightarrow C(\=\Omega ;\BbbR 2) are the linear operators

(1.2) B =

\biggl( 
\triangledown \cdot \delta 1\triangledown 
\triangledown \cdot \delta 2\triangledown 

\biggr) 
+

\biggl( 
 - \lambda \sigma 1Hu

0  - \mu \^V

\biggr) 
, C =

\biggl( 
0 0

\sigma 2 \^V 0

\biggr) 
,

D(B) =

\left\{   (\varphi ,\psi ) \in 
\bigcap 
p\geq 1

W 2,p(\Omega ;\BbbR 2) :
\partial \varphi 

\partial n
=
\partial \psi 

\partial n
= 0 on \partial \Omega and B(\varphi ,\psi ) \in C(\=\Omega ;\BbbR 2)

\right\}   ,

and \^V is the unique positive solution of the elliptic problem

(1.3)

\biggl\{ 
 - \triangledown \cdot \delta 2(x)\triangledown V = \beta (x)V  - \mu (x)V 2, x \in \Omega ,
\partial 
\partial nV = 0, x \in \partial \Omega .
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The system (1.1) in the case without diffusion, and viewed as an ordinary differ-
ential equation system at a specific location x is
(1.4)\left\{   dHi/dt =  - \lambda (x)Hi(t) + \sigma 1(x)Hu(x)Vi(t),

dVu/dt =  - \sigma 2(x)Vu(t)Hi(t) + \beta (x)(Vu(t) + Vi(t)) - \mu (x)(Vu(t) + Vi(t))Vu(t),
dVi/dt = \sigma 2(x)Vu(t)Hi(t) - \mu (x)(Vu(t) + Vi(t))Vi(t).

The basic reproduction number of (1.4) at a specific location x, obtained by the next
generation method, is

(1.5) R(x) = R1(x)R2(x), where R1(x) =
\sigma 1(x)Hu(x)

\lambda (x)
and R2(x) =

\sigma 2(x)

\mu (x)
.

R1(x) and R2(x) have their own biological meanings: at a specific location x, R1(x)
measures the impact of one infected vector on susceptible hosts while R2(x) measures
the impact of one infected host on the susceptible vectors. Since R0 is difficult to
visualize, our main purpose of this research is to study the relation between R0 and
R(x), the latter being a function of x \in \=\Omega .

In sections 3 and 4, we study the relation of R0 and R(x), where our approach is
based on the formula

(1.6) R0 = r(L1R1L2R2), L1 := (\lambda  - \triangledown \cdot \delta 1\triangledown ) - 1\lambda , and L2 := (\mu \^V  - \triangledown \cdot \delta 2\triangledown ) - 1\mu \^V ,

where R1 and R2 are viewed as multiplication operators on C(\=\Omega ), and L1 and L2

are strongly positive compact linear operators on C(\=\Omega ). This formula establishes
an interesting connection between R0 and R as r(L1L2) = r(L1) = r(L2) = 1 (see
Lemma 3.4). Consequences of this formula are

\bullet if R1 and R2 are constant, then R0 = R (see Corollary 3.5);
\bullet R0 \geq 1 if Ri(x) \geq 1, i = 1, 2, for all x \in \=\Omega and R0 \leq 1 if Ri(x) \leq 1, i = 1, 2,

for all x \in \=\Omega (see Theorem 3.6).
When the diffusion coefficients \delta 1 and \delta 2 are constant, we establish a quantitative
connection of R0 and R. To this end, we prove a result (Theorem 4.1) about the con-
vergence of spectral radii for a sequence of strongly positive compact linear operators
in an ordered Banach space. Based on Theorem 4.1, we show

\bullet lim\delta 1\rightarrow \infty R0 =
\int 
\Omega 
\lambda R1(L2R2)dx\int 

\Omega 
\lambda dx

for \delta 2 > 0 and lim\delta 2\rightarrow \infty R0 =
\int 
\Omega 
\mu R2(L1R1)dx\int 

\Omega 
\mu dx

for \delta 1 > 0 (see Theorem 4.5);

\bullet lim(\delta 1,\delta 2)\rightarrow (\infty ,\infty )R0 =
\int 
\Omega 
\lambda R1dx\int 
\Omega 
\lambda dx

\int 
\Omega 
\mu R2dx\int 
\Omega 
\mu dx

(see Remark 4.8).

\bullet lim\delta 1\rightarrow 0 lim\delta 2\rightarrow 0R0 = lim\delta 2\rightarrow 0 lim\delta 1\rightarrow 0R0 = lim(\delta 1,\delta 2)\rightarrow (0,0)R0 =
max\{ R(x) : x \in \=\Omega \} (see Theorems 4.9--4.11).

In section 5, we conduct numerical simulations to illustrate our results. In section 6,
we give concluding remarks and provide two examples about adopting our approach
to analyze R0 for reaction-diffusion epidemic models.

2. Preliminaries. The global dynamics of (1.1) have been analyzed in [24], and
we first summarize here the results that will be used. Let V = Vu + Vi. Then V (x, t)
satisfies

(2.1)

\left\{   Vt  - \triangledown \cdot \delta 2(x)\triangledown V = \beta (x)V  - \mu (x)V 2, x \in \Omega , t > 0,
\partial V/\partial n = 0, x \in \partial \Omega , t > 0,
V (., 0) = V0 \in C+(\=\Omega ).

The following result about (2.1) is well known (see [4, Proposition 3.17] [15, Lemma
A.1], and [18, Proposition 2.5]).
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Lemma 2.1. For any nonnegative nontrivial initial data V0 \in C(\=\Omega ), (2.1) has a
unique global classic solution V (x, t). Moreover, V (x, t) > 0 for all (x, t) \in \=\Omega \times (0,\infty )
and

(2.2) lim
t\rightarrow +\infty 

\| V (\cdot , t) - \^V \| \infty = 0,

where \^V is the unique positive solution of the elliptic problem (1.3). Moreover, if \delta 2
is a constant parameter, then

lim
\delta 2\rightarrow 0

\^V \rightarrow \beta 

\mu 
and lim

\delta 2\rightarrow \infty 
\^V \rightarrow 

\int 
\Omega 
\beta dx\int 

\Omega 
\mu dx

in C(\=\Omega ).

The definition of R0 for (1.1) is closely related to the stability of the semitrivial
equilibrium E1 = (0, \^V , 0) of (1.1). Linearizing the model at E1, one can see that the
stability of E1 is determined by the sign of the principal eigenvalue of the problem:

(2.3)

\left\{   
\kappa \varphi = \triangledown \cdot \delta 1\triangledown \varphi  - \lambda \varphi + \sigma 1Hu\psi , x \in \Omega ,

\kappa \psi = \triangledown \cdot \delta 2\triangledown \psi + \sigma 2 \^V \varphi  - \mu \^V \psi , x \in \Omega ,
\partial \varphi /\partial n = \partial \psi /\partial n = 0, x \in \partial \Omega .

Problem (2.3) is cooperative, so it has a principal eigenvalue \kappa 0 associated with a
positive eigenvector (\varphi 0, \psi 0) [17].

Let A = B + C, where B and C are defined in section 1. Then A and B are
resolvent positive [28], and A is a positive perturbation of B. By [28, Theorem 3.5],
\kappa 0 = s(A) and r( - CB - 1)  - 1 have the same sign, where s(A) is the spectral bound
of A. We then have the following result.

Theorem 2.2. R0 - 1 and \kappa 0 have the same sign. Moreover, E1 is locally asymp-
totically stable if R0 < 1 and unstable if R0 > 1.

The main results proved in [24] about the global dynamics of the model (1.1) are
as follows.

Theorem 2.3. The following hold:
\bullet If R0 \leq 1, then for any nonnegative initial data (Hi0, Vu0, Vi0) \in C(\=\Omega ;\BbbR 3

+)
with Vu0 + Vi0 \not \equiv 0, the solution (Hi, Vu, Vi) of (1.1) satisfies

(2.4) lim
t\rightarrow \infty 

\| (Hi(\cdot , t), Vu(\cdot , t), Vi(\cdot , t)) - E1\| \infty = 0,

where E1 = (0, \^V , 0).
\bullet If R0 > 1, then for any initial data (Hi0, Vu0, Vi0) with Vu0 + Vi0 \not \equiv 0 and
Hi0 + Vi0 \not \equiv 0, the solution (Hi, Vu, Vi) of (1.1) satisfies

lim
t\rightarrow \infty 

\| Hi(\cdot , t), Vu(\cdot , t), Vi(\cdot , t)) - ( \^Hi, \^Vu, \^Vi)\| \infty = 0,

where E2 = ( \^Hi, \^Vu, \^Vi) is the unique epidemic equilibrium of (1.1).

Let X be an ordered Banach space with positive cone X+, and let L1, L2 : X \rightarrow X
be two bounded linear operators. Then it is well known that

(2.5) r(L1L2) = r(L2L1) \leq \| L1\| \| L2\| ,

where r(Li) denotes the spectral radius of Li, i = 1, 2. Indeed, this can be derived
easily from Gelfand's formula

(2.6) r(L1) = lim
n\rightarrow \infty 

\| Ln
1\| 1/n.
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Remark 2.4. It is very important to note that (2.6) does not imply r(L1L2L3) =
r(L3L2L1).

Suppose that X+ has a nonempty interior int(X+). Then L1 is strongly positive
if L1(X+ \setminus 0) \subseteq int(X+). The operator L1 is compact if the image of the unit ball
is relatively compact in X. We will need the following generalization of the Krein--
Rutman theorem [2].

Theorem 2.5. Let X be an ordered Banach space with positive cone X+ such that
X+ has nonempty interior. Suppose that T : X \rightarrow X is a strongly positive compact
linear operator. Then the spectral radius r(T ) is positive and a simple eigenvalue
of T associated with a positive eigenvector, and there is no other eigenvalue with a
positive eigenvector. Moreover if S : X \rightarrow X is a linear operator such that S \geq T ,
i.e., S(v) \geq T (v) for all v \in X+, then r(S) \geq r(T ). If, in addition, S  - T is strongly
positive, then r(S) > r(T ).

3. General diffusion rates. Our basic result about the basic reproduction
number R0 of (1.1) is the following.

Theorem 3.1. Let R0 = r( - CB - 1), where B and C are defined in (1.2). Then,

(3.1) R0 = r(L1R1L2R2),

where R1 and R2 defined in (1.5) are multiplication operators on C(\=\Omega ), and L1 and
L2 defined in (1.6) are strongly positive compact linear operators on C(\=\Omega ).

Proof. It is not hard to compute

B - 1 =

\biggl( 
(\triangledown \cdot \delta 1\triangledown  - \lambda ) - 1  - (\triangledown \cdot \delta 1\triangledown  - \lambda ) - 1\sigma 1Hu(\triangledown \cdot \delta 2\triangledown  - \mu \^V ) - 1

0 (\triangledown \cdot \delta 2\triangledown  - \mu \^V ) - 1

\biggr) 
.

Therefore,

 - CB - 1 =

\biggl( 
0 0

\sigma 2 \^V (\lambda  - \triangledown \cdot \delta 1\triangledown ) - 1 \sigma 2 \^V (\lambda  - \triangledown \cdot \delta 1\triangledown ) - 1\sigma 1Hu(\mu \^V  - \triangledown \cdot \delta 2\triangledown ) - 1

\biggr) 
.

It then follows that

R0 = r( - CB - 1) = r
\Bigl( 
\sigma 2 \^V (\lambda  - \triangledown \cdot \delta 1\triangledown ) - 1\sigma 1Hu(\mu \^V  - \triangledown \cdot \delta 2\triangledown ) - 1

\Bigr) 
= r

\biggl( 
\sigma 2 \^V L1R1L2

1

\mu \^V

\biggr) 
.

From (2.5), we have

R0 = r

\biggl( 
L1R1L2

1

\mu \^V
\sigma 2 \^V

\biggr) 
= r(L1R1L2R2).

It is well known that the elliptic estimates and maximum principles imply that L1

and L2 are strongly positive compact linear operators on C(\=\Omega ).

Lemma 3.2. \| L1\| = 1 and \| L2\| = 1.

Proof. Notice that Li(\pm 1) = \pm 1 for i = 1, 2. For any u \in C(\=\Omega ) with \| u\| \infty \leq 1,
we have  - 1 \leq u \leq 1. By the comparison principle, we have

 - 1 = Li( - 1) \leq Liu \leq Li1 = 1 for i = 1, 2.

Therefore, \| Liu\| \infty \leq 1 = \| u\| \infty , which implies \| Li\| \leq 1 for i = 1, 2. Moreover, since
L11 = 1 and L21 = 1, we must have \| L1\| = \| L2\| = 1.

We immediately have the following result from (2.5).
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Theorem 3.3. If Ri(x) < 1, i = 1, 2, for all x \in \=\Omega , then R0 < 1.

Proof. R0 = r(L1R1L2R2) \leq \| L1\| \| R1\| \| L2\| \| R2\| = \| R1\| \| R2\| < 1.

We apply the Krein--Rutman theorem to study the spectral radii of L1, L2, and
L1L2.

Lemma 3.4. The spectral radii of L1, L2, and L1L2 are all 1, i.e., r(L1) =
r(L2) = r(L1L2) = 1.

Proof. Since L1 and L2 are strongly positive compact operators on C(\=\Omega ), so is
L1L2. By Theorem 2.5, r(L1), r(L2), and r(L1L2) are simple positive eigenvalues of
L1, L2, and L1L2, associated with positive eigenvectors, respectively. Moreover, there
is no other eigenvalue of L1, L2, or L1L2 associated with a positive eigenvector. Since
L11 = L21 = L1L21 = 1, we must have r(L1) = r(L2) = r(L1L2) = 1.

Noticing that R0 = r(L1R1L2R2), Lemma 3.4 implies that there is a significant
connection between the basic reproduction number R0 and the local basic reproduc-
tion number R(x). A consequence of Lemma 3.4 is the following result.

Corollary 3.5. If R1 and R2 are constant, then R0 = R.

Our next result, based on the Krein--Rutman theorem, is stronger than Theorem
3.3.

Theorem 3.6. The following hold:
1. If Ri(x) \geq 1, i = 1, 2, for all x \in \=\Omega , then R0 \geq 1. If, in addition, R1(x) \not \equiv 1

or R2(x) \not \equiv 1, then R0 > 1.
2. If Ri(x) \leq 1, i = 1, 2, for all x \in \=\Omega , then R0 \leq 1. If, in addition, R1(x) \not \equiv 1

or R2(x) \not \equiv 1, then R0 < 1.
3. R1mR2m \leq R0 \leq R1MR2M , where Rim = min\{ Ri(x) : x \in \=\Omega \} and RiM =

max\{ Ri(x) : x \in \=\Omega \} , i = 1, 2.

Proof. We only prove part 1 as the proof of the rest is similar. If Ri(x) \geq 1
for all x \in \=\Omega , then L1R1L2R2 \geq L1L2. By Theorem 2.5 and Lemma 3.4, we have
R0 = r(L1R1L2R2) \geq r(L1L2) = 1.

Let \phi be a positive eigenfunction corresponding to principal eigenvalue R0 of
L1R1L2R2. If, in addition, R1(x) \not \equiv 1 or R2(x) \not \equiv 1, by the strong positivity of L1

and L2, we have
R0\phi = L1R1L2R2\phi >> L1L2\phi .

Therefore, there exists \epsilon > 0 such that R0\phi \geq (1+\epsilon )L1L2\phi . Let \phi m = minx\in \=\Omega \phi (x) >
0. Then, by the positivity of L1L2 and L1L21 = 1, we have

R0\phi \geq (1 + \epsilon )L1L2\phi \geq (1 + \epsilon )L1L2\phi m = (1 + \epsilon )\phi m.

Therefore, R0\phi \geq (1 + \epsilon )\phi m, which implies R0 \geq 1 + \epsilon > 1.

We next study the monotonicity of R0. Here, we need the assumption

(H1) \sigma 1Hu = \sigma 2 \^V or both \sigma 1Hu and \sigma 2 \^V are constants.

Theorem 3.7. Suppose that (H1) holds. If \delta 1 is constant, then R0 is decreasing
in \delta 1.

Proof. Let \kappa = 1/R0. By the Krein--Rutman theory, \kappa is an eigenvalue associated
with a positive eigenvector \phi (we normalize \phi such that \| \phi \| 2 = 1) of the following
problem:

\kappa L1R1L2R2\phi = \phi .
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Therefore, we have

(3.2) \kappa \lambda R1L2R2\phi = (\lambda  - \delta 1\Delta )\phi .

Differentiating both sides with respect to \delta 1, we have

(3.3) \kappa \delta 1\lambda R1L2R2\phi + \kappa \lambda R1L2R2\phi \delta 1 =  - \Delta \phi + (\lambda  - \delta 1\Delta )\phi \delta 1 .

Multiplying (3.3) by \phi and (3.2) by \phi \delta 1 , and integrating their difference over \Omega , we
obtain

\kappa \delta 1

\int 
\Omega 

\phi \lambda R1L2R2\phi dx =

\int 
\Omega 

| \triangledown \phi | 2dx,

where we used the assumption (H1) to derive\int 
\Omega 

\phi \delta 1\lambda R1L2R2\phi dx =

\int 
\Omega 

\phi \lambda R1L2R2\phi \delta 1dx.

Since \lambda R1L2R2 is strongly positive, \lambda R1L2R2\phi > 0. Therefore, \kappa \delta 1 \geq 0 and \kappa is
increasing in \delta 1. Hence, R0 is decreasing in \delta 1.

Remark 3.8. If \beta /\mu is constant, \^V is independent of \delta 2. Then, similarly to The-
orem 3.7, R0 = r(L2R2L1R1) is decreasing in \delta 2 if (H1) holds. Moreover, from the
proof of Theorem 3.7, R0 is strictly decreasing if the eigenvector is nonconstant.

4. Small or large diffusion rates. We prove the following result on the con-
vergence of spectral radii for strongly positive compact linear operators, which is
essential for our investigation of the role of diffusion rates for the basic reproduction
number R0.

Theorem 4.1. Let X be an ordered Banach space with positive cone X+ such
that X+ has nonempty interior. Let Tn, n \geq 1, and T be strongly positive compact

linear operators on X. Suppose Tn
SOT -  -  - \rightarrow T (strong operator topology) which means

Tn(u) \rightarrow T (u) for any u \in X. If \cup n\geq 1Tn(B) is precompact, where B is the closed
unit ball of X, and r(Tn) \geq r0 for some r0 > 0, then r(Tn) \rightarrow r(T ).

Proof. Since T and Tn are compact and strongly positive, by Theorem 2.5, r(T )
and r(Tn) are positive simple eigenvalues of T and Tn, respectively. So there exists
en \in int(X+) with \| en\| = 1 such that Tnen = r(Tn)en for all n \geq 1. Since \cup n\geq 1Tn(B)
is precompact and r(Tn) \geq r0 > 0, \{ en\} is precompact. So there exists a subsequence
\{ enk

\} of \{ en\} such that enk
\rightarrow e for some e \in X.

We claim Tnk
enk

\rightarrow Te. Note that supn\geq 1 \| Tn(u)\| < \infty for any u \in X by the

convergence assumption Tn
SOT -  -  - \rightarrow T . Then by the uniform boundedness principle,

there exists M > 0 such that supn\geq 1 \| Tn\| < M . Let \epsilon > 0 be arbitray. Since enk
\rightarrow e

and Tnk
e\rightarrow Te, there eixsts N > 0 such that \| enk

 - e\| < \epsilon and \| Tnk
e - Te\| < \epsilon for

all k > N . Hence for all k > N , we have

\| Tnk
enk

 - Te\| \leq \| Tnk
(enk

 - e)\| + \| Tnk
e - Te\| \leq M\epsilon + \epsilon .

Since \epsilon > 0 was abitrary, Tnk
enk

\rightarrow Te.
Since Tnk

enk
= r(Tnk

)enk
, Tnk

enk
\rightarrow Te, and enk

\rightarrow e, we have r(Tnk
) =

\| Tnk
enk

\| \rightarrow \| Te\| and Te = \| Te\| e. Since en \in X+ and \| en\| = 1, e \in X+ and
\| e\| = 1. Thus e is a positive eigenvector of T corresponding to eigenvalue \| Te\| .
Again by Theorem 2.5, we have r(T ) = \| Te\| . Hence r(Tnk

) \rightarrow r(T ) and r(Tn) \rightarrow r(T )
(here we use a well-known result: if every subsequence of the sequence \{ an\} has a
convergent subsequence with limit a, then an \rightarrow a).
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The convergence of a sequence of compact operators in the SOT is not sufficient
to guarantee the convergence of their spectral radii. We use the following simple
example to illustrate this fact.

Example 4.2. Let H be a Hilbert space with an orthonormal basis \{ ei\} \infty i=1. For
n \geq 1, define Tn : H \rightarrow H by

Tn(a) = anen for any a =

\infty \sum 
i=1

aiei \in H.

Then \{ Tn\} is a sequence of compact operators with r(Tn) = 1, and Tn
SOT -  -  - \rightarrow 0. Since

r(Tn) = 1 and r(T ) = 0, r(Tn) \not \rightarrow r(T ).

It is interesting to see whether some of the hypotheses in Theorem 4.1 can be
dropped. We leave this as an open problem.

4.1. Large diffusion rates. In the following two subsections, we investigate R0

quantitatively when the diffusion rates are large or small. To this end, we assume that
\delta 1 and \delta 2 are constants. Define two integral operators L1,\infty , L2,\infty : C(\=\Omega ) \rightarrow C(\=\Omega ) by

L1,\infty (\phi ) =

\int 
\Omega 
\lambda (x)\phi (x)dx\int 
\Omega 
\lambda (x)dx

and L2,\infty (\phi ) =

\int 
\Omega 
\mu (x)\phi (x)dx\int 
\Omega 
\mu (x)dx

for any \phi \in C(\=\Omega ).

Lemma 4.3. L1
SOT -  -  - \rightarrow L1,\infty in C(\=\Omega ) as \delta 1 \rightarrow \infty .

Proof. Let u \in C(\=\Omega ) be given. We need to prove that L1(u) \rightarrow L1,\infty (u) in C(\=\Omega )
as \delta 1 \rightarrow \infty . For any \delta 1 > 0, let v\delta 1 = L1(u). Then v\delta 1 is the solution of the problem

(4.1)

\biggl\{ 
\lambda v\delta 1  - \delta 1\Delta v\delta 1 = \lambda u, x \in \Omega ,
\partial 
\partial nv\delta 1 = 0, x \in \partial \Omega .

By the comparison principle, we have  - \| u\| \infty \leq v\delta 1 \leq \| u\| \infty for all \delta 1 > 1. Hence
by the Lp estimate, \{ v\delta 1\} \delta 1>1 is uniformly bounded in W 2,p(\Omega ) for any p > 1. Since
the embedding W 2,p(\Omega ) \subseteq C(\=\Omega ) is compact for p > n, up to a subsequence, v\delta 1 \rightarrow v
weakly inW 2,p(\Omega ) and strongly in C(\=\Omega ) for some v \in W 2,p(\Omega ) as \delta 1 \rightarrow \infty . Moreover,
v satisfies \biggl\{ 

 - \Delta v = 0, x \in \Omega ,
\partial 
\partial nv = 0, x \in \partial \Omega .

By the maximum principle, v is a constant. Integrating both sides of the first equation

of (4.1) and taking \delta 1 \rightarrow \infty , we find v =
\int 
\Omega 
\lambda udx\int 

\Omega 
\lambda dx

.

Lemma 4.4. L2
SOT -  -  - \rightarrow L2,\infty in C(\=\Omega ) as \delta 2 \rightarrow \infty .

Proof. Let u \in C(\=\Omega ) be given. We need to prove that L2(u) \rightarrow L2,\infty (u) in C(\=\Omega )
as \delta 2 \rightarrow \infty . For any \delta 2 > 0, let v\delta 2 = L2(u). Then v\delta 2 is the solution of the problem

(4.2)

\biggl\{ 
\mu \^V v\delta 2  - \delta 2\Delta v\delta 2 = \mu \^V u, x \in \Omega ,
\partial 
\partial nv\delta 2 = 0, x \in \partial \Omega .

Noticing that \^V is the positive solution of\biggl\{ 
 - \delta 2\Delta V = \beta V  - \mu V 2, x \in \Omega ,
\partial 
\partial nV = 0, x \in \partial \Omega ,
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it satisfies

(4.3) \^V \rightarrow 
\int 
\Omega 
\beta dx\int 

\Omega 
\mu dx

as \delta 2 \rightarrow \infty 

(see [4, Proposition 3.17] and [18, Proposition 2.5]). The rest of the proof is essentially
the same as the proof of Lemma 4.3.

We now investigate R0 for large diffusion rates by Theorem 4.1.

Theorem 4.5. The following statements hold:
1. For fixed \delta 2 > 0,

R0 \rightarrow r(L1,\infty R1L2R2) =

\int 
\Omega 
\lambda R1(L2R2)dx\int 

\Omega 
\lambda dx

as \delta 1 \rightarrow \infty .

2. For fixed \delta 1 > 0,

R0 \rightarrow r(L2,\infty R2L1R1) =

\int 
\Omega 
\mu R2(L1R1)dx\int 

\Omega 
\mu dx

as \delta 2 \rightarrow \infty .

Proof. For i = 1, 2, define two bounded linear operators Hi,\infty : C(\=\Omega ) \rightarrow C(\=\Omega ) by

H1,\infty (\phi ) =

\int 
\Omega 
\lambda R1L2R2\phi dx\int 

\Omega 
\lambda dx

and H2,\infty (\phi ) =

\int 
\Omega 
\mu R2L1R1\phi dx\int 

\Omega 
\mu dx

for any \phi \in C(\=\Omega ).

Then H1,\infty = L1,\infty R1L2R2 and H2,\infty = L2,\infty R2L1R1 . By Lemmas 4.3--4.4, we have

L1R1L2R2
SOT -  -  - \rightarrow H1,\infty as \delta 1 \rightarrow \infty and L2R2L1R1

SOT -  -  - \rightarrow H2,\infty as \delta 2 \rightarrow \infty .

Clearly, L1R1L2R2, L2R2L1R1, H1,\infty , and H2,\infty are strongly positive compact oper-
ators on C(\=\Omega ). In the proof of Lemma 3.2, we have shown that Li(B) \subset B, i = 1, 2.
This implies that \cup \delta 1>1L1R1L2R2(B) \subset L1R1(R2MB) and \cup \delta 2>1L2R2L1R1(B) \subset 
L2R2(R1MB) are precompact in C(\=\Omega ), where R1M and R2M are defined in Theo-
rem 3.6. By Theorem 3.6, we have r(L1R1L2R2) = r(L2R2L1R1) \geq R1mR2m > 0.
Then by Theorem 4.1, we have R0 = r(L1R1L2R2) \rightarrow r(H1,\infty ) as \delta 1 \rightarrow \infty and
R0 = r(L2R2L1R1) \rightarrow r(H2,\infty ) as \delta 2 \rightarrow \infty . Finally, we observe that the eigenfunc-
tions of H1\infty and H2\infty must be constants, and

r(H1,\infty ) =

\int 
\Omega 
\lambda R1(L2R2)dx\int 

\Omega 
\lambda dx

and r(H2,\infty ) =

\int 
\Omega 
\mu R2(L1R1)dx\int 

\Omega 
\mu dx

.

Remark 4.6. If R2 is constant, then L2R2 = R2 and

R0 \rightarrow 
\int 
\Omega 
\lambda R1(L2R2)dx\int 

\Omega 
\lambda dx

=

\int 
\Omega 
\lambda Rdx\int 

\Omega 
\lambda dx

as \delta 1 \rightarrow \infty ,

which is independent of \delta 2. Similarly, if R1 is constant, then

R0 \rightarrow 
\int 
\Omega 
\mu R2(L1R1)dx\int 

\Omega 
\lambda dx

=

\int 
\Omega 
\mu Rdx\int 

\Omega 
\mu dx

as \delta 2 \rightarrow \infty ,

which is independent of \delta 1.
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Define

\^R1 :=

\int 
\Omega 
\lambda R1dx\int 
\Omega 
\lambda dx

=

\int 
\Omega 
\sigma 1Hudx\int 
\Omega 
\lambda dx

and \^R2 :=

\int 
\Omega 
\mu R2dx\int 
\Omega 
\mu dx

=

\int 
\Omega 
\sigma 2dx\int 

\Omega 
\mu dx

.

Theorem 4.7. The following statements hold:
1. r(L1,\infty R1L2R2) \rightarrow \^R1

\^R2. as \delta 2 \rightarrow \infty .

2. r(L2,\infty R2L1R1) \rightarrow \^R1
\^R2 as \delta 1 \rightarrow \infty .

Proof. By Lemmas 4.3--4.4, we have

L2R2 \rightarrow 
\int 
\Omega 
\mu R2dx\int 
\Omega 
\mu dx

and L1R1 \rightarrow 
\int 
\Omega 
\lambda R1dx\int 
\Omega 
\lambda dx

in C(\=\Omega ).

Our claim now just follows from Theorem 4.5.

Remark 4.8. By Theorems 4.5--4.7, we have

lim
\delta 1\rightarrow \infty 

lim
\delta 2\rightarrow \infty 

R0 = lim
\delta 2\rightarrow \infty 

lim
\delta 1\rightarrow \infty 

R0 = \^R1
\^R2.

We can actually prove

(4.4) lim
(\delta 1,\delta 2)\rightarrow (\infty ,\infty )

R0 = \^R1
\^R2,

by making use of L1R1L2R2
SOT -  -  - \rightarrow L1,\infty R1L2,\infty R2 and Theorem 4.1.

4.2. Small diffusion rates. We next study R0 when the diffusion rates are
small.

Theorem 4.9. The following statements hold:
1. For fixed \delta 2 > 0, R0 \rightarrow r(RL2) as \delta 1 \rightarrow 0.
2. For fixed \delta 1 > 0, R0 \rightarrow r(RL1) as \delta 2 \rightarrow 0.

Proof. 1. It is well known that, for each \phi \in C(\=\Omega ), L1\phi \rightarrow \phi in C(\=\Omega ) as \delta 1 \rightarrow 0.

So we have R1L2R2L1
SOT -  -  - \rightarrow R1L2R2 as \delta 1 \rightarrow 0. Let B be the closed unit ball

in C(\=\Omega ). Since L1(B) \subseteq B, we have \cup \delta 1<1R1L2R2L1(B) \subseteq R1L2R2(B). By the
compactness of L2, \cup \delta 1<1R1L2R2L1(B) is precompact in C(\=\Omega ). By Theorem 3.6,
we have r(R1L2R2L1) \geq R1mR2m > 0. Noticing that R1L2R2L1 and R1L2R2 are
strongly positive compactor operators on C(\=\Omega ), by Theorem 4.1, we have

R0 = r(R1L2R2L1) \rightarrow r(R1L2R2) = r(R2R1L2) = r(RL2) as \delta 1 \rightarrow 0.

2. By [15, Lemma A.1], \^V \rightarrow \beta /\mu in C(\=\Omega ) and L2\phi \rightarrow \phi for any \phi \in C(\=\Omega ) as

\delta 2 \rightarrow 0. Hence R2L1R1L2
SOT -  -  - \rightarrow R2L1R1 as \delta 2 \rightarrow 0. The rest of the proof is similar

to part 1.

Let RM = max\{ R(x) : x \in \=\Omega \} . The proof of the following result is similar to [21,
Lemma 3.1], and we attach it in the appendix for readers' convenience. Unfortunately,
we cannot apply Theorem 4.1, since R is not compact. Can we generalize Theorem
4.1 so that it can be used to prove the following result? We leave this as an open
question.

Theorem 4.10. The following statements hold:
1. r(RL2) \rightarrow RM as \delta 2 \rightarrow 0.
2. r(RL1) \rightarrow RM as \delta 1 \rightarrow 0.
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Combining Theorems 4.9--4.10, we actually have

(4.5) lim
\delta 1\rightarrow 0

lim
\delta 2\rightarrow 0

R0 = lim
\delta 2\rightarrow 0

lim
\delta 1\rightarrow 0

R0 = max\{ R(x) : x \in \=\Omega \} .

We can apply [17] to prove the following result.

Theorem 4.11. The following statement holds:

(4.6) lim
(\delta 1,\delta 2)\rightarrow (0,0)

R0 = max\{ R(x) : x \in \=\Omega \} .

Proof. Let RM = max\{ R(x) : x \in \=\Omega \} . First, suppose RM = 1 and \^V is indepen-
dent of \delta 2. We need to show that R0 \rightarrow 1 as (\delta 1, \delta 2) \rightarrow (0, 0). Let \kappa = 1/R0 and
view it as a function of (\delta 1, \delta 2). Since R0 is the principal eigenvalue of L1R1L2R2,
there exists a positive \Phi 0 = (\varphi 0, \psi 0)

T (satisfying homogeneous Neumann boundary
conditions) such that \kappa satisfies

(4.7) A\Phi 0 + \kappa B\Phi 0 = 0,

where

A =

\biggl( 
\delta 1\Delta  - \lambda 0

\mu \^V R2 \delta 2\Delta  - \mu \^V

\biggr) 
and B =

\biggl( 
0 \lambda R1

0 0

\biggr) 
.

For any positive a, \delta 1, and \delta 2, let e = e(a, \delta 1, \delta 2) be the principal eigenvalue of the
following eigenvalue problem (with homogeneous Neumann boundary conditions):

(4.8) A\Phi + aB\Phi = e\Phi .

Then, we have e(\kappa , \delta 1, \delta 2) = 0.
It has been shown in [17, Theorem 1.4] that

lim
(\delta 1,\delta 2)\rightarrow (0,0)

e = max
x\in \=\Omega 

\^e(Ca(x)),

where \^e(Ca(x)) denotes the eigenvalue of the matrix Ca(x) with a greater real part
for each x \in \=\Omega (by the Perron--Frobenius theorem, the eigenvalues of Ca(x) are real),
and

Ca =

\biggl( 
 - \lambda a\lambda R1

\mu \^V R2  - \mu \^V

\biggr) 
.

Therefore, for each a, e = e(a, \delta 1, \delta 2) can be extended to be a continuous function of
(\delta 1, \delta 2) on (0,\infty )\times (0,\infty ) \cup \{ (0, 0)\} by e(a, 0, 0) := maxx\in \=\Omega \^e(Ca(x)).

We claim that e is increasing in a for each (\delta 1, \delta 2) \in (0,\infty )\times (0,\infty ). To see this,
we can choose \Phi = (\varphi ,\psi ) to be a positive eigenvector with \| \varphi \| 2 + \| \psi \| 2 = 1 of (4.8).
Then differentiate both sides of (4.8) with respect to a, we obtain

(4.9) A\Phi a + aB\Phi a +B\Phi = ea\Phi + e\Phi a.

Multiplying (4.9) by \Phi T to the left and (4.8) by \Phi T
a to the left, and integrating their

difference over \Omega , we obtain \Phi TB\Phi = ea\Phi 
T\Phi . Therefore, ea =

\int 
\Omega 
\lambda R1\varphi \psi dx > 0 and

e is strictly increasing in a.
Noticing max\{ R(x) : x \in \=\Omega \} = 1, it is not hard to check that e(a, 0, 0) =

maxx\in \=\Omega \^e(Ca(x)) = 0 if and only if a = 1. Moreover, e(a, 0, 0) is strictly increas-
ing in a. Assume to the contrary that \kappa (\delta 1, \delta 2) \not \rightarrow 1 as (\delta 1, \delta 2) \rightarrow (0, 0). Then there
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exists a sequence \{ (\delta 1n, \delta 2n)\} \infty n=1 and a0 \not = 1 such that \kappa n := \kappa (\delta 1n, \delta 2n) \rightarrow a0 as
n\rightarrow \infty . Without loss of generality, we may assume a0 > 1. Choose \epsilon 0 > 0 such that
a0  - \epsilon 0 > 1, which implies \kappa (a0  - \epsilon 0, 0, 0) > \kappa (1, 0, 0) = 0. Then there exists N > 0
such that \kappa n > a0  - \epsilon 0 for all n \geq N . By the monotonicity of e, we have

0 = e(\kappa n, \delta 1n, \delta 2n) > e(a0  - \epsilon 0, \delta 1n, \delta 2n) for all n \geq N.

Taking n\rightarrow \infty and by the continuity of e(a0  - \epsilon 0, \cdot , \cdot ), we have

0 \geq lim
n\rightarrow \infty 

e(a0  - \epsilon 0, \delta 1n, \delta 2n) = e(a0  - \epsilon 0, 0, 0) > 0,

which is a contradiction. Therefore, \kappa (\delta 1, \delta 2) \rightarrow 1 as (\delta 1, \delta 2) \rightarrow (0, 0). This proves
the case max\{ R(x) : x \in \=\Omega \} = 1.

Then, we drop the assumption RM = 1 but still suppose that \^V is independent
of \delta 2. We have

R0

RM
= r

\biggl( 
L1R1L2

R2

RM

\biggr) 
\rightarrow max

\biggl\{ 
R1(x)

R2(x)

RM
: x \in \=\Omega 

\biggr\} 
= 1 as (\delta 1, \delta 2) \rightarrow (0, 0).

This means R0 \rightarrow RM as (\delta 1, \delta 2) \rightarrow (0, 0).
Finally, we drop the assumption that \^V is independent of \delta 2. Let \epsilon > 0 be given.

By Lemma 2.1, there exists \delta > 0 such that \| \^V  - \beta /\mu \| \infty < \epsilon for all \delta 2 < \delta . By the
comparison principle, for \delta 2 < \delta , we have\biggl( 

\mu 

\biggl( 
\beta 

\mu 
+ \epsilon 

\biggr) 
 - \delta 2\Delta 

\biggr)  - 1

\mu 

\biggl( 
\beta 

\mu 
 - \epsilon 

\biggr) 
\leq L2

= (\mu \^V  - \delta 2\Delta ) - 1\mu \^V \leq 
\biggl( 
\mu 

\biggl( 
\beta 

\mu 
 - \epsilon 

\biggr) 
 - \delta 2\Delta 

\biggr)  - 1

\mu 

\biggl( 
\beta 

\mu 
+ \epsilon 

\biggr) 
.

Define

(4.10) \^L2\epsilon =

\biggl( 
\mu 

\biggl( 
\beta 

\mu 
 - \epsilon 

\biggr) 
 - \delta 2\Delta 

\biggr)  - 1

\mu 

\biggl( 
\beta 

\mu 
 - \epsilon 

\biggr) 
and

(4.11) \^R2\epsilon =

\beta 
\mu + \epsilon 
\beta 
\mu  - \epsilon 

R2.

Similarly, we define \v L2\epsilon and \v R2\epsilon only with \epsilon replaced by  - \epsilon in (4.10)--(4.11). Then,
we have

L1R1
\v L2\epsilon 

\v R2\epsilon \leq L1R1L2R2 \leq L1R1
\^L2\epsilon 

\^R2\epsilon for \delta 2 < \delta .

It follows from Theorem 2.5 that

(4.12) r(L1R1
\v L2\epsilon 

\v R2\epsilon ) \leq R0 \leq r(L1R1
\^L2\epsilon 

\^R2\epsilon ) for \delta 2 < \delta .

By the previous step,

lim
(\delta 1,\delta 2)\rightarrow (0,0)

r(L1R1
\v L2\epsilon 

\v R2\epsilon ) = max\{ R1(x) \v R2\epsilon (x) : x \in \=\Omega \} := \v RM\epsilon 

and
lim

(\delta 1,\delta 2)\rightarrow (0,0)
r(L1R1

\^L2\epsilon 
\^R2\epsilon ) = max\{ R1(x) \^R2\epsilon (x) : x \in \=\Omega \} := \^RM\epsilon .
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Taking (\delta 1, \delta 2) \rightarrow (0, 0) in (4.12), we obtain

\v RM\epsilon \leq lim inf
(\delta 1,\delta 2)\rightarrow (0,0)

R0 \leq lim sup
(\delta 1,\delta 2)\rightarrow (0,0)

R0 \leq \^RM\epsilon .

Taking \epsilon \rightarrow 0, we have

lim inf
(\delta 1,\delta 2)\rightarrow (0,0)

R0 = lim sup
(\delta 1,\delta 2)\rightarrow (0,0)

R0 = RM .

By Theorem 4.11, we have the following result.

Proposition 4.12. The following statements hold:
1. If R(x) < 1 for all x \in \=\Omega , then there exists \^\delta > 0 such that R0 < 1 for all

(\delta 1, \delta 2) with \delta 1, \delta 2 \leq \^\delta .
2. If R(x) > 1 for some x \in \=\Omega , then there exists \~\delta > 0 such that R0 > 1 for all

(\delta 1, \delta 2) with \delta 1, \delta 2 \leq \~\delta .

5. Simulations.

5.1. Dependence on \bfitdelta \bfone . In this section, we investigate the dependence of
R0 on \delta 1. Let \Omega = [0, 1] \times [0, 1]. We fix all the coefficients except for \delta 1: \delta 2 =
4, \sigma 1 = 5 sin(x) + 3, \sigma 2 = \mu = \beta = (x + 1)2 + 0.1, Hu = cos(y) + 1.5, \lambda = 12.
Since \beta /\mu = 1, the unique positive solution of (1.3) is \^V = 1. By Theorem 3.6,
R0 \leq max\{ R(x) : x \in \=\Omega \} = 1.5015. Noticing that R2 = \sigma 2/\mu = 1 and \lambda are
constant, by Remark 4.6,

(5.1) R0 \rightarrow 
\int 
\Omega 
\lambda Rdx\int 

\Omega 
\lambda dx

=

\int 
\Omega 
Rdx

| \Omega | 
= 0.5854 as \delta 1 \rightarrow \infty .

We then find r(RL2). Using the fact that \kappa \prime = 1/r(RL2) is the principal eigenvalue
of the following problem (with homogenous Neumann boundary conditions),

(\mu \^V  - \delta 2\Delta )\phi = \kappa \mu \^V R\phi ,

we can compute r(RL2) = 1.0075 numerically. By Theorem 4.9, we expect

(5.2) R0 \rightarrow r(RL2) = 1.0075 as \delta 1 \rightarrow 0.

We now compute R0. By definition, \kappa = 1/R0 is the principal eigenvalue of the
following problem (with homogeneous Neumann boundary conditions):\biggl( 

 - \triangledown \cdot \delta 1\triangledown \varphi 
 - \triangledown \cdot \delta 2\triangledown \psi 

\biggr) 
+

\biggl( 
\lambda  - \sigma 1Hu

0 \mu \^V

\biggr) \biggl( 
\varphi 
\psi 

\biggr) 
= \kappa 

\biggl( 
0 0

\sigma 2 \^V 0

\biggr) \biggl( 
\varphi 
\psi 

\biggr) 
.

For different values of \delta 1 \in [0.001, 400], we solve the eigenvalue problem numer-
ically and plot R0 in Figure 1. In particular, R0 = 1.0074 when \delta 1 = 0.001 and
R0 = 0.5904 when \delta 1 = 400, which agrees with (5.1)--(5.2). Moreover, we observe
that R0 is decreasing in \sigma 1. We conjecture that this is true in general.

5.2. Simulations in a realistic situation. In this section, we will simulate the
model using geometric and population data of Puerto Rico. The domain \Omega is taken
as the geometric boundary of Puerto Rico, which can be obtained from Mathematica
as a polygon. The population density data of the 76 districts of Puerto Rico can
also be found in Mathematica, which can be used to construct the susceptible human
distribution, i.e.,Hu(x), by interpolation. Hi0 is assumed to be 100 people, distributed
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Fig. 1. The basic reproduction number R0 for different values of \delta 1.

Fig. 2. Local basic reproduction number R(x).

normally, centered at (0, - 20). Set Vi0 = 10Hi0, Vu0 = 150, \sigma 1 = 0.000001, \sigma 2 =
0.7, \lambda = 1, \beta = 5, and \mu = 0.0005. The local basic reproduction number R(x) =
\sigma 1\sigma 2Hu/\lambda \mu is shown in Figure 2.

Then we compute max\{ R(x) : x \in \=\Omega \} = 4.3167 and
\int 
\Omega 
\lambda R1(L2R2)dx\int 

\Omega 
\lambda dx

=
\int 
\Omega 
Rdx

| \Omega | =

0.6513. By Theorems 2.3, (4.5)--(4.7), and (4.9)--(4.10), we expect that the solution
of (1.1) converges to a positive steady state when the diffusion rates are small and
to the semitrivial equilibrium (0, \^V , 0) when \delta 2 is large. For verification, we choose
different diffusion rates and use the finite element method in MATLAB to solve (1.1).
Case 1. Set \delta 1 = \delta 2 = 4. We plot the total infected host cases in Figure 3 and the

density of infected hosts for t = 4, 8, 12, 16 in Figure 4. In this case, the
solution converges to the positive steady state and the disease persists.

Case 2. Set \delta 1 = 4 and \delta 2 = 4000. We plot the total infected host cases in Figure
5 and the density of infected hosts in Figure 6. In this case, the density of
infected hosts converges to zero and the disease dies out.

6. Discussion. In this paper, we have shown that the basic reproduction number
R0 of the reaction-diffusion model (1.1) can be written as R0 = r(L1R1L2R2), where
the local basic reproduction number R(x) = R1(x)R2(x) is a multiplication operator
on C(\=\Omega ), and L1 and L2 are strongly positive compact linear operators with spectral
radii one. We are then able to study the relation of R0 and R(x). We prove that
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Fig. 3. Total infected host cases, i.e., \int \Omega Hi(x, t)dx with \delta 1 = \delta 2 = 4.

Fig. 4. The density of infected hosts, i.e., Hi(x, t), at t = 4, 8, 12, 16 with \delta 1 = \delta 2 = 4.

R0 \geq 1 if R1(x) \geq 1 and R2(x) \geq 1 for all x \in \=\Omega , and R0 \leq 1 if R1(x) \leq 1 and
R2(x) \leq 1. Actually, R0 is bounded below and above by the products of the minimum
and maximum of R1 and R2. When the diffusion rates are small, R0 > 1 provided that
R(x) > 1 for some x \in \=\Omega . When the diffusion rates are large, R0 approximates \^R1

\^R2.
Moreover, our numerical simulations suggest that R0 is decreasing in \delta 1, however, we
are only able to prove it under the assumption (H1). The dependence of R0 on \delta 2 is
more difficult to study since \^V is also dependent on \delta 2. We only know that if \beta /\mu is
constant, then \^V is independent of \delta 2 and R0 is decreasing in \delta 2 under the assumption
(H1).

We remark that our approach can be applied to many other reaction-diffusion
epidemic models. For example, if we adopt our approach to analyze R0 for the diffusive
SIS model in Allen et al. [1], we will compute R0 = r( - CB - 1) = r(\beta (\gamma  - dI\Delta ) - 1).
Then we can write R0 as R0 = r(RL), where R(x) = \beta (x)/\gamma (x) is the local basic
reproduction number and L = (\gamma  - dI\Delta ) - 1\gamma is a strongly positive compact linear
operator in C(\=\Omega ) with spectral radius one. To further illustrate this, we briefly adopt
this approach to study the basic reproduction number of some other models in the
following two subsections.
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Fig. 5. Total infected host cases, i.e., \int \Omega Hi(x, t)dx with \delta 1 = 4, \delta 2 = 4000.

Fig. 6. The density of infected hosts, i.e., Hi(x, t), at t = 4, 8, 12, 16 with \delta 1 = 4, \delta 2 = 4000.

6.1. A within-host model on viral dynamics. Suppose that T (x, t), I(x, t),
and V (x, t) are the density of target cells, infected cells, and free virus particles at
position x and time t, respectively. The model proposed in [19] to study the repulsion
effect of superinfecting virion by infected cells is the following:

(6.1)

\left\{     
\partial T
\partial t = DT\Delta T + h(x) - dTT  - \beta (x)TV,
\partial I
\partial t = DI\Delta I + \beta (x)TV  - dII,
\partial V
\partial t = \triangledown \cdot (DV (I)\triangledown V ) + \gamma (x)I  - dV V,

subject to homogeneous Neumann boundary conditions and nonnegative initial con-
ditions.

Let \^T (x) be the unique positive solution of

DT\Delta T + h(x) - dTT = 0.

Linearizing (6.1) at the equilibrium ( \^T , 0, 0), the stability of it is related to the fol-
lowing eigenvalue problem,\biggl\{ 

\kappa \varphi = DI\Delta \varphi  - dI\varphi + \beta \^T\psi ,
\kappa \psi = D0\Delta \psi + \gamma \varphi  - dV \psi ,
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where D0 = DV (0). As before, we define

B =

\biggl( 
DI\Delta 0
0 D0\Delta 

\biggr) 
+

\biggl( 
 - dI \beta \^T
0  - dV V

\biggr) 
and C =

\biggl( 
0 0
\gamma 0

\biggr) 
and the basic reproduction number

R0 = r( - CB - 1).

Similarly to Theorem 3.1, we write R0 as

R0 = r
\Bigl( 
\gamma (dI  - DI\Delta ) - 1\beta \^T (dV  - D0)

 - 1
\Bigr) 
.

We have

(6.2) R0 = r(L1R1L2R2)

with
L1 = (dI  - DI\Delta ) - 1dI , L2 = (dV  - D0\Delta ) - 1dV ,

and

R1 =
\beta \^T

dI
, R2 =

\gamma 

dV
.

The local basic reproduction number is defined as

R = R1R2 =
\gamma \beta \^T

dIdV
.

Here, L1 and L2 are strongly positive compact linear operators on C(\=\Omega ) with spectral
radius one, and \^T = (dT  - DT\Delta ) - 1h satisfies

lim
DT\rightarrow 0

\^T = R3, lim
DT\rightarrow \infty 

\^T =

\int 
\Omega 
dTR3dx\int 
\Omega 
dT dx

,

and
min\{ R3(x) : x \in \=\Omega \} \leq \^T \leq max\{ R3(x) : x \in \=\Omega \} 

with

R3 =
h

dT
.

An immediate consequence of (6.2) is the following result.

Theorem 6.1. The following statements hold:
\bullet If R1 and R2 are constant, then R0 = R.
\bullet Let Rim = min\{ Ri(x) : x \in \=\Omega \} and RiM = max\{ Ri(x) : x \in \=\Omega \} for i = 1, 2,
then

R1mR2m \leq R0 \leq R1MR2M .

\bullet 
lim

(DI ,DT ,DV )\rightarrow (\infty ,\infty ,\infty )
R0 =

\=\beta \=\gamma \=h
\=dI \=dV \=dT

,

where \=f denotes the average of f , i.e., \=f = \int \Omega fdx/| \Omega | for f = \beta , \gamma , h, dI ,
dV , dT .
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\bullet 

lim
DI\rightarrow 0

lim
DV \rightarrow 0

R0 = lim
DV \rightarrow 0

lim
DI\rightarrow 0

R0 = lim
(DI ,DV )\rightarrow (0,0)

R0 = max\{ R(x) : x \in \=\Omega \} .

We notice that R is consistent with the basic reproduction number defined using
[13] (R can be viewed as the total number of newly infected cells produced by one
infected cell) for the corresponding ordinary differential equation model. We will
leave the interested readers to investigate the monotonicity of R0 with respect to the
diffusion rates.

6.2. An HIV model with cell-to-cell transmission. Let T (x, t), T \ast (x, t),
and V (x, t) be the density of healthy T cells, infected T cells, and virions at position
x and time t, respectively. The model proposed in [26] to describe the cell-to-cell HIV
transmission is the following:

(6.3)

\left\{     
\partial T
\partial t = d1\Delta T + \lambda (x) - d(x)T  - \beta 1(x)TV  - \beta 2(x)TT

\ast ,
\partial T\ast 

\partial t = d2\Delta T
\ast + \beta 1(x)TV + \beta 2(x)TT

\ast  - \gamma (x)T \ast ,
\partial V
\partial t = d3\Delta V +N(x)T \ast  - e(x)V,

subject to homogeneous Neumann boundary conditions and nonnegative initial con-
ditions.

Let T0(x) be the unique positive solution of

d1\Delta T + \lambda (x) - d(x)T = 0.

Linearizing (6.1) at the equilibrium (T0, 0, 0), we obtain the following eigenvalue prob-
lem,

(6.4)

\biggl\{ 
\kappa \varphi = d2\Delta \varphi + (\beta 2T0  - \gamma )\varphi + \beta 1T0\psi ,
\kappa \psi = d3\Delta \psi +N\varphi  - e\psi .

We define

B =

\biggl( 
d2\Delta 0
0 d3\Delta 

\biggr) 
+

\biggl( 
 - \gamma 0
N  - e

\biggr) 
and C =

\biggl( 
\beta 2T0 \beta 1T0
0 0

\biggr) 
and the basic reproduction number

R0 = r( - CB - 1).

Similarly to Theorem 3.1, we compute R0 as

R0 = r
\bigl( 
\beta 2T0(\gamma  - d2\Delta ) - 1 + \beta 1T0(e - d3\Delta ) - 1N(\gamma  - d2\Delta ) - 1

\bigr) 
.

So we have

(6.5) R0 = r(L2(R
2
2 +R1

2L3R3))

with
L2 = (\gamma  - d2\Delta ) - 1\gamma , L3 = (e - d3\Delta ) - 1e,

and

R1
2 =

\beta 1T0
\gamma 

, R2
2 =

\beta 2T0
\gamma 

, R3 =
N

e
.

Here L1 and L2 are strongly positive compact linear operators on C(\=\Omega ) with spectral
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radius one, and Li1 = 1 for i = 1, 2. The local basic reproduction number R is defined
as

R = R2
2 +R1

2R3 =
(\beta 1N + \beta 2e)T0

er
,

where T0 = (d - d1\Delta ) - 1\lambda satisfies

lim
d1\rightarrow 0

T0 = R1, lim
d1\rightarrow \infty 

T0 =

\int 
\Omega 
dR1\int 
\Omega 
d
,

and
min\{ R1(x) : x \in \=\Omega \} \leq T0 \leq max\{ R1(x) : x \in \=\Omega \} 

with

R1 =
\lambda 

d
.

We can also prove the following.

Theorem 6.2. The following statements hold:
\bullet If R1

2, R
2
2, and R3 are constant, then R0 = R.

\bullet Let Sm = min\{ S(x) : x \in \=\Omega \} and SM = max\{ S(x) : x \in \=\Omega \} for S =
R1

2, R
2
2, R3, then

R1
2m +R2

2mR3m \leq R0 \leq R1
2M +R2

2MR3M .

\bullet 
lim

(d1,d2,d3)\rightarrow (\infty ,\infty ,\infty )
R0 =

(\=\beta 1 \=N + \=\beta 2\=e)\=\lambda 

\=e\=r \=d
,

where \=f denotes the average of f over \Omega , i.e., \=f = \int \Omega fdx/| \Omega | for f =
\beta 1, \beta 2, e, r, d, \lambda .

\bullet limd2\rightarrow 0 limd3\rightarrow 0R0 = max\{ R(x) : x \in \=\Omega \} .
Proof. We will only sketch the proof of the last part. Noticing that L3\phi \rightarrow \phi 

in C(\=\Omega ), we have L2(R
2
2 + R1

2L3R3)
SOT -  -  - \rightarrow L2(R

2
2 + R1

2R3) = L2R as d3 \rightarrow 0. Let
B \subset C(\=\Omega ) be the closed unit ball, then

\cup \delta 3>0L2(R
2
2 +R1

2L3R3)(B) \subset L2((R
1
2M +R2

2MR3M )B),

which is compact. By Theorem 4.1, we have R0 = r(L2(R
2
2 + R1

2L3R3)) \rightarrow r(L2R)
as d3 \rightarrow 0. The proof of r(L2R) \rightarrow max\{ R(x) : x \in \=\Omega \} as d2 \rightarrow 0 is the same with
Theorem 4.10.

Appendix A. Proof of Theorem 4.10.

Proof. We only prove part 1. Define r\delta 2 =: r(RL2) = r(L2R). Then \kappa \delta 2 = 1/r\delta 2
is the principal eigenvalue of the problem

(A.1)

\biggl\{ 
(\mu V  - \delta 2\Delta )v = \kappa \mu \^V Rv, x \in \Omega ,
\partial 
\partial nv = 0, x \in \partial \Omega .

By (A.1),

\kappa \delta 2 =
1

r\delta 2
= min

\Biggl\{ 
\delta 2

\int 
\Omega 
| \triangledown v| 2dx+

\int 
\Omega 
\mu \^V v2dx\int 

\Omega 
R\mu \^V v2dx

: v \in H1(\Omega ) and v \not = 0

\Biggr\} 

\geq 1

RM
min

\Biggl\{ 
\delta 2

\int 
\Omega 
| \triangledown v| 2dx+

\int 
\Omega 
\mu \^V v2dx\int 

\Omega 
\mu \^V v2dx

: v \in H1(\Omega ) and v \not = 0

\Biggr\} 
=

1

RM
.

It then follows that lim inf\delta 2\rightarrow 0 \kappa \delta 2 \geq 1/RM .
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We only need to show lim sup\delta 2\rightarrow 0 \kappa \delta 2 \leq 1/RM . Assume to the contrary that the
statement does not hold, i.e., lim sup\delta 2\rightarrow 0 \kappa \delta 2 > 1/RM . Then there exists \epsilon 0 > 0 and
a sequence \{ \delta 2,n\} with \delta 2,n \rightarrow 0 such that \kappa \delta 2,n > 1/(RM  - \epsilon 0). Let x0 \in \Omega and a > 0
such that R(x) > RM  - \epsilon 0/2 in B(x0, a). Let v\delta 2,n be a positive eigenvector of (A.1)
associated with the principal eigenvalue \kappa \delta 2,n . Then in B(x0, a), we have

(\mu \^V  - \delta 2,n\Delta )v\delta 2,n = \kappa \delta 2,n\mu 
\^V Rv\delta 2,n >

(RM  - \epsilon 0/2)\mu \^V v\delta 2,n
RM  - \epsilon 0

.

It follows that, in B(x0, a),

 - 
\Delta v\delta 2,n
v\delta 2,n

>
\epsilon 0

2\delta 2,n(RM  - \epsilon 0)
\mu \^V .

Let \kappa \prime be the principal eigenvalue of  - \Delta in domain B(x0, a) with a Dirichlet boundary
condition. By a minimax formulation of \kappa \prime [3], we have

(A.2) \kappa \prime = sup
u\in W 2,p(B(x0,a)),u>0

inf
x\in B(x0,a)

 - \Delta u

u
>

\epsilon 0
2\delta 2,n(RM  - \epsilon 0)

inf
x\in B(x0,a)

\{ \mu \^V \} .

Noticing that \^V \geq min\{ \beta (x) : x \in \=\Omega \} /max\{ \mu (x) : x \in \=\Omega \} , the right-hand side of
(A.2) tends to \infty as \delta 2,n \rightarrow 0. This is a contradiction. Hence, \kappa \delta 2 \rightarrow 1/RM and
r\delta 2 \rightarrow RM as \delta 2 \rightarrow 0.
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