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1 Introduction

In this article we are interested in a state-dependent delay differential equation
modelling the growth of forest. Following Magal and Zhang [7], when the forest
is composed of a single species of trees, we have the following system

A′(t) = −µAA(t) + βe−µJτ(t) f(A(t))

f(A(t− τ(t)))
A(t− τ(t)),∀t > 0,∫ t

t−τ(t)

f(A(σ))dσ =

∫ 0

−τ0
f(ϕ(σ))dσ, ∀t > 0,

(1.1)

with the initial conditions

A(t) = ϕ(t) > 0,∀t 6 0 and τ(0) = τ0 > 0,

where ϕ belongs to

Lipα :=
{
φ ∈ C(−∞, 0] : e−α|.|φ(.) ∈ BUC(−∞, 0] ∩ Lip(−∞, 0]

}
,
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which is a Banach space endowed with the norm

‖φ‖Lipα := ‖e−α|.|φ(.)‖∞,(−∞,0] + ‖e−α|.|φ(.)‖Lip(−∞,0],

where α > 0, BUC(−∞, 0] denotes the space of bounded uniformly continuous
functions from (−∞, 0] to R, and Lip(−∞, 0] denotes the space of Lipschitz
functions from (−∞, 0] to R.

Equation (1.1) models the dynamics of the adult population of trees. Here
A(t) is the number of adult trees at time t, τ(t) is the time needed by newborns
to become adult at time t, µA > 0 is the mortality rate of the adult trees,
µJ > 0 is the mortality rate of the juvenile trees, β > 0 is the birth rate. In
the context of forest modelling (see [7]), f(A(t)) describes the growth rate of
juveniles, and the function f is capturing the effect of the competition for light
between adults and juveniles. For mathematical convenience, we will make the
following assumption.

Assumption 1.1 We assume that

(i) The coefficients µA > 0, µJ > 0, β > 0;

(ii) The function f : R → (0,+∞) is Lipschitz continuous and continuously
differentiable with

f(x) > 0, lim
x→+∞

f(x) = 0 and f ′(x) 6 0,∀x ∈ R.

Actually system (1.1) has been first derived by Smith [9] from a size-structured
model of the form

A′(t) = −µAA(t) + f(A(t))j(t, s∗),∀t > 0,

∂tj(t, s) + f(A(t))∂sj(t, s) = −µJj(t, s),∀s ∈ [s−, s
∗],

f(A(t))j(t, s−) = βA(t),

A(0) = A0 > 0,

j(0, s) = j0(s) > 0,∀s ∈ [s−, s
∗),

where 0 6 s− < s∗ are the minimal and maximal size of juveniles, and j(t, s)
is the density of juveniles with size s at time t. System (1.1) has also been
extensively studied by Smith in [9, 10, 11, 12], where the author introduced a
change of variable to transform this kind of state-dependent delay differential
equation into a constant delay differential equation. The change of variable is
given by

x =

∫ t

0

f(A(σ))dσ =: Φ(t).

Set

δ :=

∫ 0

−τ0
f(ϕ(σ))dσ > 0,
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then for x > δ,

x− δ =

∫ t

0

f(A(σ))dσ −
∫ t

t−τ(t)

f(A(σ))dσ =

∫ t−τ(t)

0

f(A(σ))dσ = Φ(t− τ(t)),

This means that x − δ corresponds to t − τ(t) under this change of variable.
Moreover by setting W (x) = A(t) and using the same arguments as in Smith
[9], one also has

τ(t) =

∫ 0

−δ
f(W (x+ r))−1dr.

Therefore Smith [9] obtained the following constant delay differential equation

W ′(x) = −µA
W (x)

f(W (x))
+ βe−µJ

∫ 0
−δ f(W (x+r))−1dr W (x− δ)

f(W (x− δ))
,∀x > 0. (1.2)

Based on the analysis of this equation (1.2), Smith [9, 10, 11, 12] was able to
prove the boundedness of solutions whenever δ > 0. Along the same line, he
was also able to analyze the uniform persistence and Hopf bifurcation around
the positive equilibrium.

Let A ∈ C((−∞, r],R) (for some r > 0) be given. Then for each t 6 r, we
will use the standard notation At ∈ C((−∞, 0],R), which is the map defined by

At(θ) = A(t+ θ),∀θ 6 0.

For clarity we will specify the notion of a solution.

Definition 1.2 Let r ∈ (0,+∞]. A solution of the system (1.1) on [0, r) is a
pair of continuous maps A : (−∞, r)→ R and τ : [0, r)→ R+ satisfying

A(t) =

 ϕ(0) +

∫ t

0

F (A(σ), τ(σ), A(σ − τ(σ)))dσ, ∀t ∈ [0, r),

ϕ(t),∀t 6 0,

and ∫ t

t−τ(t)

f(A(σ))dσ =

∫ 0

−τ0
f(ϕ(σ))dσ, ∀t ∈ [0, r),

where

F (A, τ,A1) := −µAA+ βe−µJτ
f(A)

f(A1)
A1.

In this problem the initial distribution is (ϕ, τ0). The semiflow generated by
(1.1) is

U(t)(ϕ(.), τ0) := (At(.), τ(t)),

where A(t) and τ(t) is the solution of (1.1) with the initial distribution (ϕ, τ0).
The existence and uniqueness of a maximal semiflow on Lipα × [0,+∞) (with
blowup property when the time gets close to the maximal time of existence
TBU = TBU (ϕ, τ0)) have been studied in [8].
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In order to obtain a global existence result for the solution, we now focus on
the positive solution. From the form of the equation we can prove that

ϕ > 0⇒ A(t) > 0,∀t ∈ [0, TBU (ϕ, τ0)).

The number of juvenile individuals at time t ∈ [0, TBU (ϕ, τ0)) is given by

J(t) :=

∫ t

t−τ(t)

e−µJ (t−σ)βA(σ)dσ, ∀t ∈ [0, TBU (ϕ, τ0)),

and A > 0 implies that

J(t) > 0,∀t ∈ [0, TBU (ϕ, τ0)).

Moreover we have

J ′(t) = βA(t)− e−µJτ(t) f(A(t))

f(A(t− τ(t)))
βA(t− τ(t))− µJJ(t).

By summing the A and J equations we obtain

[A(t) + J(t)]′ = βA(t)− µAA(t)− µJJ(t). (1.3)

Set
U(t) := A(t) + J(t),

then since A > 0 we have

U ′(t) 6 (β − µ)U(t),

where µ := min{µA, µJ}. By using a comparison argument we deduce that

U(t) 6 e(β−µ)tU(0),∀t ∈ [0, TBU (ϕ, τ0)),

and since J > 0 we deduce that

A(t) 6 e(β−µ)tU(0),∀t ∈ [0, TBU (ϕ, τ0)),

and by using Theorem 1.6 in [8], the maximal time of existence TBU (ϕ, τ0) is
equal to +∞. Therefore the well-posedness and the global existence of solutions
of system (1.1) is guaranteed on M := (Lipα × [0,+∞)) ∩ (C+ × [0,+∞)).

The result on boundedness of solutions for this case is as follows.

Theorem 1.3 Let Assumption 1.1 be satisfied. Assume that τ0 > 0. Then for
each ϕ > 0 and ϕ ∈ Lipα, the corresponding solution of system (1.1) is bounded.

Remark 1.4 One may observe that the boundedness of solutions might not be
true when τ0 = 0. Indeed, by the second equation of (1.1),

τ0 = 0⇒ τ(t) = 0,∀t > 0,

and in this special case the first equation of (1.1) becomes linear:

A′(t) = (β − µA)A(t),∀t > 0. (1.4)

The solution of (1.4) exists but when β−µA > 0, every strictly positive solution
is unbounded.
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In [7], we also constructed a mathematical model for a forest composed of two
species of trees. And by comparing it with the forest model SORTIE, we find
that it is capable of describing the dynamics of the two-species forest. Inspired
by this, we now take a step forward and consider the following n-species model

A′i(t) = −µAiAi(t) + βie
−µJiτi(t)

fi(Zi(t))

fi(Zi(t− τi(t)))
Ai(t− τi(t)),∀t > 0,∫ t

t−τi(t)
fi(Zi(σ))dσ =

∫ 0

−τi0
fi(Ziϕ(σ))dσ, ∀t > 0,

(1.5)
with the initial conditions

Ai(t) = ϕi(t) ∈ Lipα, ϕi(t) > 0,∀t 6 0 and τi(0) = τi0 > 0,

where

Zi(t) =

n∑
j=1

ζijAj(t), Ziϕ(t) :=

n∑
j=1

ζijϕj(t)

with ζij > 0, i = 1, . . . , n. We will use the following assumptions.

Assumption 1.5 We assume that ∀i = 1, . . . , n,

(i) The coefficients µAi > 0, µJi > 0, βi > 0 and ζii > 0;

(ii) The function fi satisfies Assumption 1.1-(ii) and

sup
x>0

fi(x)

fi(cx)
< +∞,∀c > 1. (1.6)

By using the same kind of notion of solutions as in the single species case
(Definition 1.2) and by using the result in [8] the well-posedness of (1.5) and
the global existence of positive solutions follow.

In this article, we will prove the following result for n-species model (1.5).

Theorem 1.6 Let Assumption 1.5 be satisfied. Then for each nonnegative ini-
tial values ϕi > 0 and ϕi ∈ Lipα and each τi0 > 0, the corresponding solution
of equation (1.5) is bounded.

Remark 1.7 The proof of Theorem 1.3 (single species case) uses a similar
argument as the proof of Theorem 1.6 (n-species case), which will be presented
in Section 3. But for the single species case, the condition (1.6) in Assumption
1.5 is no longer needed.

Remark 1.8 For the n-species case we can no longer use the change of variable
employed by Smith in [9, 10] since the delays τi(t) are different in general.
Nevertheless, in this article we show that the arguments employed to prove the
boundedness of solutions and the dissipativity in [9, 10] can be adapted to the n-
species case. The notion of dissipativity will be described in details in Theorem
3.4 and Theorem 5.2.
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Remark 1.9 It is necessary to assume that τi0 > 0 because we possibly have

ζij = 0,∀i 6= j.

Hence it is necessary to assume that in the case of species without coupling, the
solution is bounded.

State-dependent delay differential equations have been used by several au-
thors to describe the stage-structured population dynamics. We refer to [1, 2,
3, 4, 5, 6] for more results on this topic. We also refer to Walther [13] for a very
general analysis of the semiflow generated by state-dependent delay differential
equations.

The paper is organized as follows. In section 2 we will present some results
about the delay τ(t). Section 3 is devoted to the single species model (1.1). The
goal is to clarify the arguments of proof that we will extend later in Sections 4
and 5 to the n-species case. Section 4 is devoted to the proof the boundedness
of solutions for the n-species model (1.5). In section 5, we prove a dissipativity
result for such a system.

2 Properties of the integral equation for τ(t)

For simplicity, we focus on the single species model (1.1) in this section. The
same result can be similarly deduced for the n-species model (1.5). We have
the following lemma of the equivalence of the integral equation for τ(t) and an
ordinary differential equation.

Lemma 2.1 Let A : (−∞, r) → R be a given continuous function with r > 0.
Then there exists a uniquely determined function τ : [0, r)→ [0,+∞) satisfying∫ t

t−τ(t)

f(A(σ))dσ =

∫ 0

−τ0
f(ϕ(σ))dσ, ∀t ∈ [0, r). (2.1)

Moreover this uniquely determined function t 7→ τ(t) is continuously differen-
tiable and satisfies the ordinary differential equation

τ ′(t) = 1− f(A(t))

f(A(t− τ(t)))
,∀t ∈ [0, r), and τ(0) = τ0. (2.2)

Conversely if t 7→ τ(t) is a C1 function satisfying the above ordinary differential
equation (2.2), then it also satisfies the above integral equation (2.1).

Remark 2.2 By using equation (2.2), it is easy to check that

τ0 > 0⇒ τ(t) > 0,∀t ∈ [0, r)

and
τ0 = 0⇒ τ(t) = 0,∀t ∈ [0, r).
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Proof. Let t ∈ [0, r]. Since by Assumption 1.1, f is strictly positive, then by

considering the function τ 7→
∫ t

t−τ
f(A(σ))dσ, and observing that

∫ t

t−0

f(A(σ))dσ = 0 <

∫ 0

−τ0
f(ϕ(σ))dσ and

∫ t

t−(t+τ0)

f(A(σ))dσ >
∫ 0

−τ0
f(ϕ(σ))dσ,

it follows by the intermediate value theorem that there exists a unique τ(t) ∈
[0, t+ τ0].

By applying the implicit function theorem to the map ψ : (t, γ) 7→
∫ t

γ

f(A(σ))dσ

(which is possible since
∂ψ

∂γ
= −f(A(γ)) and by Assumption 1.1, f is strictly

positive), we deduce that t 7→ t − τ(t) is continuously differentiable, and by
computing the derivative with respect to t on both sides of (2.1), we deduce
that τ(t) is a solution of (2.2).

Conversely, assume that τ(t) is a solution of (2.2). Then

f(A(t)) = (1− τ ′(t))f(A(t− τ(t))),∀t ∈ [0, r).

Integrating both sides with respect to t, we have∫ t

0

f(A(σ))dσ =

∫ t

0

f(A(σ − τ(σ))) (1− τ ′(σ)) dσ.

Make the change of variable l = σ − τ(σ), we have ∀t ∈ [0, r),∫ t

0

f(A(σ))dσ =

∫ t−τ(t)

−τ0
f(A(l))dl

⇔
∫ t

t−τ(t)

f(A(σ))dσ +

∫ t−τ(t)

0

f(A(σ))dσ =

∫ t−τ(t)

−τ0
f(A(l))dl

⇔
∫ t

t−τ(t)

f(A(σ))dσ =

∫ t−τ(t)

−τ0
f(A(l))dl −

∫ t−τ(t)

0

f(A(σ))dσ,

this implies that τ(t) also satisfies the equation (2.1).
The delay τ(t) can be regarded as a functional of At ∈ Lipα. Indeed, given

a constant C > 0, we can define the map τ̂ : D(τ̂) ⊂ C(−∞, 0] × [0,+∞) →
[0,+∞) as the solution of the integral equation∫ 0

−τ̂(φ,C)

f(φ(σ))dσ = C (2.3)

and the map τ̂ is defined on the domain

D(τ̂) =

{
(φ,C) ∈ C((−∞, 0])× [0,+∞) : C <

∫ 0

−∞
f(φ(σ))dσ

}
,
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where the last integral is defined as the limit lim
x→−∞

∫ 0

x

f(φ(σ))dσ (which always

exists since f > 0).

Lemma 2.3 Set C0 :=

∫ 0

−τ0
f(ϕ(σ))dσ, then we have the following relation

τ̂(At, C0) = τ(t),∀t ∈ (0, r),

where τ(t) is the solution of (2.1).

Proof. It is sufficient to observe that∫ 0

−τ̂(At,C0)

f(At(σ))dσ =

∫ t

t−τ̂(At,C0)

f(A(σ))dσ = C0.

3 Boundedness and dissipativity of solutions for
single species case

The following property is fundamental in this problem (see [8] for a proof).

Lemma 3.1 Let Assumption 1.1 be satisfied. Then the function t − τ(t) is
strictly increasing with respect to t.

The first step to prove the boundedness is to prove that the map t 7→ t − τ(t)
crosses 0.

Lemma 3.2 Let Assumption 1.1 be satisfied. Then there exists t∗ > 0 such
that t∗− τ(t∗) = 0. Moreover, if A(t) is a solution of system (1.1), ∀t > 0, then
A(t) is bounded on [0, t∗].

Proof. Rewrite the first equation of (1.1) as follows:

A′(t) = f(A(t))[−µAB(A(t)) + βe−µJτ(t)B(A(t− τ(t)))], ∀t > 0,

where
B(x) =

x

f(x)

is an increasing function and B(x)↗ +∞ as x→ +∞, since we have

B(x) >
x

f(0)
when x > 0.

We define t̂ as
t̂ := sup{t > 0 : l − τ(l) 6 0, ∀l ∈ [0, t]}.
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This is well defined because the set on the right side contains at least one element
0. By Lemma 3.1, we know that the function t− τ(t) is strictly increasing, then
we can assume by contradiction that t̂ = +∞, which means that

t− τ(t) < 0,∀t > 0,

or more precisely,
t− τ(t) ∈ [−τ0, 0), ∀t > 0.

Then the equation can be written as

A′(t) = f(A(t))[−µAB(A(t)) + βe−µJτ(t)B(ϕ(t− τ(t)))], ∀t > 0, (3.1)

We define

Γ := βB

(
sup

t∈[−τ0,0]

ϕ(t)

)
> 0,

Then A(t) 6 Â(t),∀t > 0, where Â(t) is the solution of{
Â′(t) = −µAÂ(t) + Γf(Â(t)) =: gΓ(Â(t)),

Â(0) = ϕ(0) > 0.
(3.2)

Apparently gΓ(Â) is monotone decreasing with respect to Â and we have

gΓ(0) = Γf(0) > 0, lim
Â→+∞

gΓ(Â) = −∞.

Fixing Â∗ ∈ [ϕ(0),+∞) such that gΓ(Â∗) 6 0, we have

A(t) 6 Â(t) 6 Â∗,∀t > 0.

Now

1 =

∫ t

t−τ(t)

f(A(σ))dσ >
∫ t

0

f(A(σ))dσ >
∫ t

0

f(Â∗)dσ = tf(Â∗)

which is not possible for all t > 0 (since f(Â∗) > 0).
Proof of Theorem 1.3. We have that

A′(t) = −µAA(t) + βe−µJτ(t)f(A(t))B(A(t− τ(t))) > −µAA(t),

and that the solution of

z′(t) = −µAz(t), z(0) = m. (3.3)

is
z(t) = z(t;m) = me−µAt, t > 0.

Step 1: For each m > 0, we define τm > 0 as the unique solution of the integral
equation ∫ τm

0

f(z(σ))dσ = 1,
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which is equivalent to the integral equation∫ τm

0

f(me−µAσ)dσ = 1.

Then one can prove τm → +∞ as m→ +∞ (see section 4 for a similar detailed
proof).
Step 2: Let m > 0 large enough such that

βe−µJτm < µA. (3.4)

Step 3: Due to the fact that the function B is increasing and unbounded and
B(0) = 0, we can find N > 0, such that

B(x) >
µA
β

B(N)⇒ x > m.

Step 4: By Lemma 3.2, we can find K > N , such that

A(t) 6 K,∀t ∈ [0, t∗].

Step 5: Next we will show that ∀t > t∗, A(t) 6 K. Define

tK := sup{t > 0 : A(l) 6 K, ∀l ∈ [0, t]},

and assume by contradiction that tK is finite. Then tK > t∗ and satisfies the
following properties

A(t) 6 K,∀t ∈ [0, tK);A(tK) = K,A′(tK) > 0. (3.5)

Now by using (3.1) and the fact that A′(tK) > 0, we obtain

βB(A(tK−τ(tK))) > βe−µJτ(tK)B(A(tK−τ(tK))) > µAB(A(tK)) = µAB(K) > µAB(N),

and by using step 3 we deduce that

A(tK − τ(tK)) > m.

By using a comparison principle on

A′(t) > −µAA(t),∀t > tK − τ(tK), A(tK − τ(tK)) > m

and the equation (3.3), we have

A(t) > z(t− tK + τ(tK)),∀t > tK − τ(tK).

Now since x 7→ f(x) is decreasing we deduce that

1 =

∫ tK

tK−τ(tK)

f(A(σ))dσ 6
∫ tK

tK−τ(tK)

f(z(σ−tK+τ(tK)))dσ =

∫ τ(tK)

0

f(z(σ))dσ.
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By the definition of τm, we must have

τ(tK) > τm. (3.6)

By using (3.4)-(3.6), we obtain

0 6 A′(tK) = f(A(tK))
[
−µAB(A(tK)) + βe−µJτ(tK)B(A(tK − τ(tK)))

]
= f(K)

[
−µAB(K) + βe−µJτ(tK)B(A(tK − τ(tK)))

]
6 f(K)

[
−µAB(K) + βe−µJτmB(A(tK − τ(tK)))

]
6 f(K)

(
−µAB(K) + βe−µJτmB(K)

)
6 K

(
−µA + βe−µJτm

)
< 0. (3.7)

This contradiction shows that tK can not be finite. By using the definition of
tK we deduce that A(t) 6 K,∀t > t∗.

In the rest of the section we study the dissipativity of the system, namely we
look for an asymptotic uniform bound for solutions starting in some bounded
sets. In order to study this property we need the following lemma.

Lemma 3.3 Let Assumptions 1.1 be satisfied. Suppose that (A(t), τ(t)) is the
solution of system (1.1), then

lim
t→+∞

[t− τ(t)] = +∞.

Proof. If τ0 = 0, then τ(t) = 0,∀t > 0 and there is nothing to prove. If τ0 > 0,
then by Theorem 1.3 we know that t 7→ A(t) is bounded from above by a certain
constant K > 0. Since τ(t) is the unique solution of the integral equation∫ 0

−τ(t)

f(A(t+ σ))dσ = δ, ∀t > 0

where δ :=

∫ 0

−τ0
f(ϕ(σ))dσ > 0, by using the fact that x 7→ f(x) is decreasing

we deduce that τ(t)f(K) 6 δ, ∀t > 0, and it follows that t 7→ τ(t) is bounded
by f(K)−1δ. This completes the proof.

Theorem 3.4 (Dissipativity) Let α > 0. Let Assumption 1.1 be satisfied.
Let B ⊂ Lipα be a bounded subset and [τmin, τmax] ⊂ (0,+∞) be a fixed interval.
Denote

δmin := inf
(ϕ,τ0)∈B×[τmin,τmax]

∫ 0

−τ0
f(ϕ(σ))dσ.

Then for each initial condition (ϕ, τ0) ∈ B× [τmin, τmax], there exists a constant
M∗ = M∗(δmin) > 0 (independent of the initial condition) such that

lim sup
t→+∞

A(t) 6M∗.
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Proof. Similarly as in step 1 of the proof of Theorem 1.3, we consider τm the
unique solution of the integral equation∫ τm

0

f(me−µAσ)dσ = δmin.

Then we can find M∗ > 0 (large enough) such that for each M > M∗, the two
following inequalities

−µA + βe−µJτm < 0 with m :=
µAM

β
(3.8)

and

−µA + βe−µJ
δmin
f(M) < 0 (3.9)

are satisfied.
Now suppose that we can find t 7→ (A(t), τ(t)) the solution of system (1.1)

with the initial condition (ϕ, τ0) ∈ B × [τmin, τmax] satisfying

M := lim sup
t→+∞

A(t) >M∗.

Then we have the following alternatives:
Case 1: There exists a time sequence {tn}n∈N which satisfies lim

n→+∞
tn = +∞

and for any tn,
A′(tn) = 0,

and
A(tn)→M as n→ +∞.

Then we have

0 = A′(tn) = −µAA(tn) + βe−µJτ(tn) f(A(tn))

f(A(tn − τ(tn)))
A(tn − τ(tn)).

By taking the limit on both sides when n→ +∞, we have

0 6 −µAM + βf(M) lim sup
n→+∞

A(tn − τ(tn))

f(A(tn − τ(tn)))
,

and since the map x 7→ 1

f(x)
is increasing, we deduce that

0 6 −µAM + β
f(M)

f(M)
lim sup
n→+∞

A(tn − τ(tn)).

Hence

lim sup
n→+∞

A(tn − τ(tn)) >
µAM

β
= m. (3.10)
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Now by using the same method as in step 5 of the proof of Theorem 1.3 and
noticing that

δmin 6
∫ tn

tn−τ(tn)

f(A(σ))dσ 6
∫ tn

tn−τ(tn)

f(z(σ−tn+τ(tn)))dσ =

∫ τ(tn)

0

f(z(σ))dσ,

we get τ(tn) > τm. Thus we can repeat the procedure in (3.7) and get a
contradiction

0 = lim
n→+∞

A′(tn) 6M
(
−µA + βe−µJτm

)
< 0.

Case 2: The solution A(t) is eventually monotone. So we can assume that
there exists a time t̄ > 0 such that

A′(t) > 0,∀t > t̄

(the case A′(t) 6 0,∀t > t̄ being similar). Since A(t) is eventually increasing,
we deduce that

lim
t→+∞

At = M in Cα :=
{
φ ∈ C(−∞, 0] : e−α|.|φ(.) is bounded

}
where Cα is the Banach space endowed with the norm ‖φ‖Cα := ‖e−α|.|φ(.)‖∞.

As A(t) is bounded, A′t is relatively compact in Lipα (since α > 0, A(t) satis-
fies system (1.1) and by applying Arzelà-Ascoli theorem locally on the bounded
interval [−θ∗, 0] for each θ∗ > 0 and by using the step method to extend to
(−∞, 0]), we get

lim
t→+∞

A′t = 0 in L∞α :=
{
φ ∈ C(−∞, 0] : e−α|.|φ(.) ∈ L∞(−∞, 0]

}
where L∞α is the Banach space endowed with the norm ‖φ‖L∞α := ‖e−α|.|φ(.)‖L∞ .

Moreover, we have

δmin 6
∫ t

t−τ(t)

f(A(σ))dσ =: δ,

and by taking the limit when t→ +∞ (and since by Lemma 3.3 t−τ(t)→ +∞)
we obtain

lim
t→+∞

τ(t) =
δ

f(M)
>

δmin

f(M)
.

By taking the limit when t→ +∞ in the first equation of system (1.1) we obtain
the following contradiction

0 = lim
t→+∞

A′t 6 −µAM + βe−µJ
δmin
f(M)

f(M)

f(M)
M < 0.

Both cases lead to a contradiction, which implies that

lim sup
t→+∞

A(t) 6M∗.
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4 Boundedness of solutions for n-species case

In this section we will investigate the boundedness of a trajectory of system
(1.5) with the initial conditions satisfying∫ 0

−τi0
fi(Ziϕ(σ))dσ > 0,∀i = 1, ..., n.

Multiplying each of the above integrals by a positive constant, we can assume
without loss of generality that

Assumption 4.1 ∫ 0

−τi0
fi(Ziϕ(σ))dσ = 1,∀i = 1, ..., n.

We have the following lemma from [8].

Lemma 4.2 Let Assumptions 1.5 and 4.1 be satisfied. Then the functions t−
τi(t) are strictly increasing with respect to t, ∀i = 1, . . . , n.

Next we will prove the following result.

Lemma 4.3 Let Assumptions 1.5 and 4.1 be satisfied. Then for each i =
1, . . . , n there exists t∗i > 0 such that t∗i − τi(t∗i ) = 0.

Proof. For each i = 1, . . . , n we define

t∗i := sup{t > 0 : s− τi(s) 6 0,∀s ∈ [0, t]}.

Case 1: We assume that all the elements of {t∗i }ni=1 are infinite, and we will
prove that this is not possible. By the above definition of t∗i , we have ∀t > 0,
t− τi(t) 6 0, or precisely,

t− τi(t) ∈ [−τi0, 0].

Then the equation for Ai(t) becomes

A′i(t) = −µAiAi(t) + βie
−µJiτi(t)

fi(Zi(t))

fi(Ziϕ(t− τi(t)))
ϕi(t− τi(t)),∀t > 0.

We set

Γi := βi sup
t∈[−τi0,0]

ϕi(t)

fi(Ziϕ(t))
> 0.

Since fi(Zi(t)) 6 fi(ζiiAi(t)),∀t > 0, then by the comparison principle, we have
Ai(t) 6 Âi(t), ∀t > 0, where Âi(t) is the solution of{

Â′i(t) = −µAiÂi(t) + Γifi(ζiiÂi(t)) =: gΓi(Âi(t)),∀t > 0,

Âi(0) = ϕi(0) > 0.
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As gΓi(Âi) is decreasing with Âi and we have

gΓi(0) = Γifi(0) > 0, lim
Âi→+∞

gΓi(Âi) = −∞,

so fixing Â∗i ∈ [ϕi(0),+∞) such that gΓi(Â
∗
i ) 6 0, we have

Ai(t) 6 Âi(t) 6 Â∗i ,∀t > 0.

Now since by assumption t− τi(t) 6 0,∀t > 0, we obtain for each t > 0

1 =

∫ t

t−τi(t)
fi(Zi(σ))dσ >

∫ t

0

fi(Zi(σ))dσ > tfi

 n∑
j=1

ζijÂ
∗
j

 (4.1)

which is impossible.
Case 2: We assume that exactly j elements of {t∗i }ni=1 are finite, where 1 6 j <
n, and we will prove that this is not possible, either. Without loss of generality
we might assume that t∗1, . . . , t

∗
j are finite and t∗j+1, . . . , t

∗
n are infinite. Firstly

we prove that A1(t), . . . , An(t) are bounded on [0,+∞).
Following a similar argument as in case 1, for each i = j + 1, . . . , n, as t∗i is

infinite, we can find Â∗i ∈ [ϕi(0),+∞) such that

Ai(t) 6 Â∗i ,∀t > 0.

For each k = 1, . . . , j, consider

zk(t) = zk(t;mk) = mke
−µAk t, t > 0

where mk > 0 will be fixed later on and as before zk(t) is a solution of the
following ordinary differential equation

z′k(t) = −µAkzk(t), zk(0) = mk. (4.2)

We define τk,mk > 0 as the unique solution of the integral equation∫ τk,mk

0

fk(ζkkzk(σ))dσ = 1. (4.3)

By Assumption 1.5-(i), we have ζkk > 0 and∫ τ

0

fk(ζkkzk(σ))dσ >
∫ τ

0

fk(ζkkmk)dσ = τfk(ζkkmk) > 0 when τ > 0,

therefore τk,mk > 0 exists and is finite. Next we observe that we have

τk,mk → +∞ as mk → +∞. (4.4)

Indeed, assume by contradiction that there exists a subsequence {mk,l}l>0 →
+∞ and a sequence {τk,mk,l}l>0 bounded by τ∗ > 0. Then we have

1 =

∫ τk,mk,l

0

fk(ζkkzk(σ))dσ 6
∫ τ∗

0

fk(ζkkzk(σ))dσ → 0 as l→ +∞

15



which is impossible.
By Assumption 1.5-(ii), for each c > 1,

Mfk(c) := sup
x>0

fk(x)

fk(cx)
< +∞.

By using (4.4) we can fix mk (large enough) such that

−µAk + βke
−µJkτk,mkMfk

(
ζk1 + · · ·+ ζkn

ζkk

)
< 0. (4.5)

For a constant K > 0, define

tK := sup{t > 0 : max{A1(s), . . . , Aj(s)} 6 K,∀s ∈ [0, t]}.

Let us now prove that A1(t), . . . , Aj(t) are bounded on [0,+∞). Assume by
contradiction that tK is finite for each K > 0 large enough. Then at least one
of Ak(t), k = 1, . . . , j reaches K at tK . Assume for example that A1(tK) = K.
Firstly we prove that

tK − τ1(tK) > 0 (4.6)

for each K > 0 large enough. Otherwise tK − τ1(tK) < 0 and thus tK must be
smaller than t∗1, then we can use the same comparison principle arguments as
in case 1 on the interval of time [0, t∗1], and we can find Â∗1 > 0 (independent of
K) such that

K = A1(tK) 6 Â∗1,

which becomes impossible whenever K becomes large enough. We deduce that
(4.6) holds true.

Now we will prove A1(tK − τ1(tK))→ +∞ when K → +∞. By assumption
tK is finite, and by definition of tK we have

A1(t) 6 K,∀t ∈ [0, tK ]

and we must have
A′1(tK) > 0.

Then

0 6 A′1(tK) = −µA1A1(tK) + β1e
−µJ1τ1(tK) f1(Z1(tK))

f1(Z1(tK − τ1(tK)))
A1(tK − τ1(tK))

6 −µA1
K + β1

f1(ζ11K)

f1((ζ11 + · · ·+ ζ1n)K̂)
A1(tK − τ1(tK)),

where

K̂ := max

{
K, Â∗j+1, . . . , Â

∗
n, max
t∈[−τ10,0]

ϕ1(t), . . . , max
t∈[−τn0,0]

ϕn(t)

}
.
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Notice that
(ζ11 + · · ·+ ζ1n)K̂

ζ11K
> 1, we have

A1(tK−τ1(tK)) >
µA1K

β1
·f1((ζ11 + · · ·+ ζ1n)K̂)

f1(ζ11K)
>
µA1K

β1
· 1

Mf1

(
(ζ11+···+ζ1n)K̂

ζ11K

) .
Now since for all K > 0 large enough K̂ = K, we deduce that

A1(tK − τ1(tK))→ +∞ as K → +∞.

By using (4.6), we can fix K large enough such that

A1(tK − τ1(tK)) > m1 and tK − τ1(tK) > 0.

By using the comparison principle on equation (4.2) and

A′1(t) > −µA1
A1(t),∀t > tK − τ1(tK)

with
A1(tK − τ1(tK)) > m1,

we have
A1(t) > z1(t− tK + τ1(tK)),∀t > tK − τ1(tK).

An integration shows that

1 =

∫ tK

tK−τ1(tK)

f1(Z1(σ))dσ 6
∫ tK

tK−τ1(tK)

f1(ζ11A1(σ))dσ

6
∫ tK

tK−τ1(tK)

f1(ζ11z1(σ − tK + τ1(tK)))dσ =

∫ τ1(tK)

0

f1(ζ11z1(σ))dσ.

By the definition of τ1,m1 > 0 (defined as the solution of (4.3)), we have

τ1(tK) > τ1,m1 .

Now by using (4.5), we have

0 6 A′1(tK) = −µA1
A1(tK) + β1e

−µJ1τ1(tK) f1(Z1(tK))

f1(Z1(tK − τ1(tK)))
A1(tK − τ1(tK))

= f1(Z1(tK))

[
−µA1

A1(tK)

f1(Z1(tK))
+ β1e

−µJ1τ1(tK) A1(tK − τ1(tK))

f1(Z1(tK − τ1(tK)))

]
6 f1(Z1(tK))

[
−µA1

K

f1(ζ11K)
+ β1e

−µJ1τ1,m1
K

f1((ζ11 + · · ·+ ζ1n)K)

]
=

f1(Z1(tK))K

f1(ζ11K)

[
−µA1

+ β1e
−µJ1τ1,m1

f1(ζ11K)

f1((ζ11 + · · ·+ ζ1n)K)

]
6

f1(Z1(tK))K

f1(ζ11K)

[
−µA1

+ β1e
−µJ1τ1,m1Mf1

(
ζ11 + · · ·+ ζ1n

ζ11

)]
< 0, (4.7)
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which leads to a contradiction. Thus for K > 0 large enough tK is infinite,
namely

Ak(t) 6 K,∀t > 0,∀k = 1, . . . , j.

Observe that by assumption t∗j+1, . . . , t
∗
n are infinite, which means that t−τi(t) 6

0,∀t > 0,∀i = j + 1, . . . , n, therefore we deduce that for all t > 0,

1 =

∫ t

t−τi(t)
fi(Zi(σ))dσ >

∫ t

0

fi(Zi(σ))dσ

>
∫ t

0

fi((ζi1 + · · ·+ ζij)K + ζi,j+1Â
∗
j+1 + · · ·+ ζinÂ

∗
n)dσ

= tfi((ζi1 + · · ·+ ζij)K + ζi,j+1Â
∗
j+1 + · · ·+ ζinÂ

∗
n)

which is impossible when t is large enough. The proof is completed.
Proof of Theorem 1.6. For each i = 1, . . . , n, we define τi,mi satisfying∫ τi,mi

0

fi(ζiizi(σ))dσ = 1,

where zi(t) = mie
−µAi t, t > 0. Same as (4.5) in case 2 of Lemma 4.3, we can

fix mi large enough such that

βie
−µJiτi,miMfi

(
ζi1 + · · ·+ ζin

ζii

)
< µAi .

For a constant K > 0, we define

tK := sup{t > 0 : max{A1(s), . . . , An(s)} 6 K,∀s ∈ [0, t]}.

Then similar to the procedure of case 2 in the proof of Lemma 4.3, we can get a
fixed K large enough and we can deduce that tK = +∞. Thus Ai(t) is bounded
for all t > 0.

5 Dissipativity of the system

In this section we will investigate the dissipativity of system (1.5). First, we
have the following lemma similar as Lemma 3.3.

Lemma 5.1 Let Assumptions 1.5 be satisfied. Suppose that (Ai(t), τi(t)) is the
solution of system (1.5), then

lim
t→+∞

[t− τi(t)] = +∞.

Proof. If τi0 = 0, then again there is nothing to prove. When τi0 > 0, by
Theorem 1.6 we know that t 7→ Ai(t) is bounded from above by a certain
constant K > 0. Since τi(t) is the unique solution of the integral equation∫ t

t−τi(t)
fi(Zi(σ))dσ = δ̂,∀t > 0
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where δ̂ :=

∫ 0

−τi0
fi(Ziϕ(σ))dσ > 0, then similar as the proof of Lemma 3.3, we

deduce that t 7→ τi(t) is bounded by fi((ζi1 + . . .+ ζin)K)−1δ̂. This completes
the proof.

Theorem 5.2 (Dissipativity) Let Assumption 1.5 be satisfied. Let Bi ⊂ Lipα
be a bounded subset and [τi,min, τi,max] ⊂ (0,+∞) be a fixed interval, i = 1, . . . , n.
Let

B :=

n∏
i=1

Bi and Iτ :=

n∏
i=1

[τi,min, τi,max].

Denote

δ̂min := inf
(ϕ,τ0)∈B×Iτ

∫ 0

−τi0
fi(Ziϕ(σ))dσ

where ϕ := (ϕ1, . . . , ϕn) and τ0 = (τ10, . . . , τn0). Then for each initial condition

(ϕ, τ0) ∈ B × Iτ , there exists a constant M∗ = M∗(δ̂min) > 0 (independent of
the initial condition) such that

lim sup
t→+∞

max
i=1,...,n

{Ai(t)} 6M∗.

Proof. Similarly as in case 2 of the proof of Lemma 4.3, we consider τi,mi the
unique solution of the integral equation∫ τk,mk

0

fk(ζkkzk(σ))dσ = δ̂min.

Then we can find M∗ > 0 (large enough) such that for each M > M∗, the two
following inequalities

−µAi + βie
−µJiτi,miMfi

(
ζi1 + · · ·+ ζin

ζii

)
< 0 (5.1)

with mi :=
µAiM

βi
· 1

Mfi

(
ζi1+···+ζin

ζii

) and

−µAi + βie
−µJi

δ̂min
fi(ζiiM)Mfi

(
ζi1 + · · ·+ ζin

ζii

)
< 0 (5.2)

are satisfied for any i = 1, . . . , n.
Now suppose that we can find t 7→ (A(t), τ(t)) the solution of system (1.5)

with the initial condition (ϕ, τ0) ∈ B × Iτ satisfying

M := lim sup
t→+∞

max
i=1,...,n

{Ai(t)} >M∗.

Without loss of generality we might assume that M = lim sup
t→+∞

A1(t). Then we

have the following alternatives:
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Case 1: There exists a sequence {tn}n∈N which satisfies lim
n→+∞

tn = +∞ and

for any tn,
A′1(tn) = 0,

and
A1(tn)→M as n→ +∞.

Then we have

0 = A′1(tn) = −µA1
A1(tn) + β1e

−µJ1τ1(tn) f1(Z1(tn))

f1(Z1(tn − τ1(tn)))
A1(tn − τ1(tn)).

By taking the limit on both sides when n→ +∞, we have

0 6 −µA1
M + β1f1(ζ11M) lim sup

n→+∞

A1(tn − τ1(tn))

f1(Z1(tn − τ1(tn)))
,

and since the map x 7→ 1

f(x)
is increasing, we deduce that

0 6 −µA1M + β1
f1(ζ11M)

f1((ζ11 + . . .+ ζ1n)M)
lim sup
n→+∞

A1(tn − τ1(tn)).

Hence

lim sup
n→+∞

A1(tn − τ1(tn)) >
µA1

M

β1
· 1

Mf1

(
ζ11+···+ζ1n

ζ11

) = m1. (5.3)

Now by using the same method as in case 2 of the proof of Lemma 4.3 and
noticing that

δ̂min 6
∫ tn

tn−τ1(tn)

f1(Z1(σ))dσ 6
∫ tn

tn−τ1(tn)

f1(ζ11A1(σ))dσ

6
∫ tn

tn−τ1(tn)

f1(ζ11z1(σ − tn + τ1(tn)))dσ =

∫ τ1(tn)

0

f1(ζ11z1(σ))dσ,

we get τ1(tn) > τ1,m1 . Thus we can repeat the procedure in (4.7) and get a
contradiction

0 = lim
n→+∞

A′1(tn) 6M

(
−µA1 + β1e

−µJ1τ1,m1Mf1

(
ζ11 + · · ·+ ζ1n

ζ11

))
< 0.

Case 2: The solution A1(t) is eventually monotone. So we can assume that
there exists a time t̄ > 0 such that

A′1(t) > 0,∀t > t̄

(the case A′1(t) 6 0,∀t > t̄ being similar). Since A1(t) is eventually increasing,
we deduce that

lim
t→+∞

A1,t = M in Cα :=
{
φ ∈ C(−∞, 0] : e−α|.|φ(.) is bounded

}
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where Cα is the Banach space endowed with the norm ‖φ‖Cα := ‖e−α|.|φ(.)‖∞.
As A1(t) is bounded, A′1,t is relatively compact in Lipα (since α > 0,

Ai(t), i = 1, . . . , n satisfy the system (1.5) and by applying Arzelà-Ascoli theo-
rem locally on the bounded interval [−θ∗, 0] for each θ∗ > 0 and by using the
step method to extend to (−∞, 0]), we get

lim
t→+∞

A′1,t = 0 in L∞α :=
{
φ ∈ C(−∞, 0] : e−α|.|φ(.) ∈ L∞(−∞, 0]

}
where L∞α is the Banach space endowed with the norm ‖φ‖L∞α := ‖e−α|.|φ(.)‖L∞ .

Moreover, we have

δ̂min 6
∫ t

t−τ1(t)

f1(Z1(σ))dσ =: δ1,

and by taking the limit when t→ +∞ (and since by Lemma 5.1 t−τ1(t)→ +∞)
we obtain

lim
t→+∞

τ1(t) =
δ1

f((ζ11 + . . .+ ζ1n)M)
>

δ̂min

f(ζ11M)
.

By taking the limit when t→ +∞ in the first equation of system (1.5) we obtain
the following contradiction

0 = lim
t→+∞

A′1,t 6 −µA1
M + β1e

−µJ1
δ̂min

f1(ζ11M)
f1(ζ11M)

f1((ζ11 + · · ·+ ζ1n)M)
M < 0.

Both cases lead to a contradiction, which proves that

lim sup
t→+∞

max
i=1,...,n

{Ai(t)} 6M∗.
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