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In this paper, we investigate the existence of a nontrivial fixed point for a continuous map 
F: R': + R': which has 0 as trivial fixed point. We apply our result to a discrete time model of 
population dynamics of exploited fish. Finally, we give for this model. a necessary and sufficient 
condition for existence of a nontrivial fixed point. 

Key~rords: Fixed point: Map: Cone: Population dynamics: Differences equation 

Class$cnriott Categories: 47H09. 47H10, 92D25 

1 INTRODUCTION 

In this paper, the problem of interest to us is to show the existence of a non 
trivial steady state for an exploited population of fish, described by a discrete 
time model. More precisely the dynamic of the population is supposed described 
by a difference equation, of the following form 

Vt = 0, 1, 2, ... 

where X(t) is the state variable of the population, and H: R: + R: is a con- 
tinuous map. which satisfies 
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P. MAGAL and D. PELLETIER 

Here we denote by R" the set of the n component real vectors, and by RT the 
subset of R" of all the vectors which have all non negative components. 

Moreover, a steady state for the population corresponds to a fixed point of 
equation (1). and such a fixed point will be called non trivial if it is not zero. 
This problem has already been studied in another context by Krasnoselskii 
[KRA] and Browder [BROW. and they use two different methods to prove an 
existence result of a non trivial fixed point. For a comparison of these two 
results one can see Hale's book [HA]. Here we prove the existence of a non 
trivial fixed point when both Krasnoselckii's and Browder's theorem do not 

apply. 
Before giving the results, we present the model which motivated this study. To 

do it. we need first to recall some other classical discrete time models, which are 
called density-dependent models of age structured populations. If we consider a 
population of exploited fich which is structured in n age classes ( n  2 2 ) .  with 
some assumptions on the population. we can represent the dynamics of the 
population by the following system of difference equations: 

b't = 0. 1 . 2  .... 

with the initial condition: 

r. (0) = 2 0,Vi = 1 .  2 ...., n - I 

where f,: R, + R,  is a continuous map satisfying 

.f,CO, = 0, 

and 
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A FIXED POINT THEOREM 

E 2 0. 

b,: is the number of indiiiduals produced b l  mdividuals of the it" age clas\. 
MI: 1s the natural mortality uf the individual5 of the it" age class. 
q,: is the catchability of the individuals of the it" age class. and 
E: is the fishing effort. 

Several examples of models of this type exist. For fish population. the most 
quoted ones are the following: 

The Beverton and Holt model [BH] in which: 

The Ricker model [RI]: 

and the Shepherd model [SW: 

Another example of a density-dependent population dynamics model is the 
i i u  and Cohen modei [LCj,  which t a ~ e s  the foiiowing ibrm: 

Vt = 0. 1. 2. . . .  

with the initial condition: 
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P MAGAI.  and D PEI.I.F.TIER 

x,(O) = x, 2 0,Vi = 1 , 2  ,..., r t ,  

In the case of system (4), existence of non trivial fixed points is less easy to 
prove directly. Nevertheless, a method for showing the result is to use the Brow- 
der ejective fixed point theorem [BROU'], or the Krasnoselskii fixed point theo- 
rem [KRA]. In Liu and Cohen's paper, those methods to prove existence of non 
trivial fixed were not used, but they gave a direct proof of existence and unique- 
ness of non trivial fixed point. 

On the other hand, in fishery problems, it seems natural to suppose that the 
fishing effort is a function of time. Also, by considering the adaptation of the 
fishing effort to the yield of catch per unit of fishing effort, one can write: 

where 

Y(r): is the Yield of catch per unit of fishing effort, at time t. 
E(t ) :  is the fishing effort at time t .  

Classically, the yield per unit of fishing effort is: 

where V i  = 1 ,..., rz - 1, W, > 0. 
A work in this direction is in preparation. and will be published elsewhere. We 

give here a possible model which takes into account the adaptation of fishing 
effort. 

The model is as follows 
v t  = 0, 1 ,  2, . . .  
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A FIXED POINT THEOREM 

with the initial condition: 

and 

and we make the following assumptions on f, and f,. 

Assumptions on f, and f,: 

(Hl) f,: R+ -, R+ is a continuous map defined by: 

where h,: R+ + [O, I ]  is a strictly decreasing continuous function, satisfying: 

lim h,(x) = 0. 
x-+== 

(H2) f,: R+ + R+ is a continuous map satisfying: 

Now, if we denote by F: R:+' + R':"' the map associated to system ( 5 ) ,  this 
means that system (5) can be rewritten 

Vr = 0. 1. 2 . . .  
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with k-(t) 
Then. 

So, he[-e the tribial fixed p i n t  cannot he ttjective. and h o  the Browder ejectivi: 

fixed point theorem does not apply. For the same reason, the Krasnoselskii 

theorern is also not applicable. This has motivated the search for a result which 
would allow us to obviate this problem. 

In the sequel. we will denote M,, (R)  (resp: M,, (R,)) the set of 11 X rz-matrices 
(resp: nownegative 11 X 11-matl-ices (i .e.:  with all the components lion-negative)). 

i c i  .4 E iivf,, iii) Vv'c Jctloic 

r ( A )  the spectral radius of A 

Fi!xi!!y, r h m ~ g h m t  the n a n e r  r I , - .  ct:,te the topo!og~ .R,, ( y p ~ p :  .M,,(R)). is the 

topology associated to an arbiuary norm on R" iresp: to [he associared operatot- 
---.-- A /  / D \ ,  
11u1111 I V l , , \ l \ ) ) .  

i n  section 2. we  wiii snow the i'oiiowing theorem. 

K = {XE R':: l/X/I 5 M} D
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A FIXED POINT THEOREM 71 

One has to note that if the assumptions of Krasnoselskii's fixed point theorem 
are satisfied. then the assumptions of theorem 1 are satisfied with Q = Id,.,. This 
will be shown at the end of section 2. 

The authors do not know of any similar result. excepted the Krasnoselskii 
theorem in the case where Q = Id,,'. 

In section 3,  we will apply our result to equation (5), and we will give a 
necessary and sufficient condition for existence of a non trivial fixed point. More 
precisely, we will prove the following results. 

We will first prove that. under the assumptions ( H l )  and (H2), a necessary 
condition for existence of a non trivial fixed point of equation (5 )  is: 

where 

I - 
I , =  1 
and 

- i - l  

1 = n exp( -M,): Vi = 2 , .  . ., n. 
j-i 

More precisely, when assumption (H3) is not satisfied, we will see that 0 is a 
global attractor of the non-negative solutions of equation (5). This means that all 
the non-negative solutions converge to 0 as t goes to infinity. So, in this case, 
there is no non-trivial fixed point. This is the goal of lemma 5 in section 3. 

Finally we will prove the following theorem, which gives an answer to the 
starting problem. 

THEOREM 2 Under assur.nptions (HI 1, (H2) ,  a id  ( H 3 ) ,  and suppose in addition 
that 

b,, > 0. 

Then, equarioiz (5 )  has a non tr i~ial  fixed point . 
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7 2  P. MAGAL and D. PELLEI'IEK 

2 PROOF OF THEOREM 1 AND ITS RELATION WITH A 
KRASNOSELSKII THEOREM 

Befol-e stal-tine the demonstration of theorem I ,  we recall the well-known Rrou- 

wer fixed point theorem [ B K O U .  We will use this result in the proof of theorem 

1. 

In the sequel, we will define an order on R" by 

where Itzt (R'; ) denotes the mter~or  of R: 
Note th,ir RI: Ir a cone. thih means 

and 

Prooj'oj'throre~n 1 The principle of the proof that we propose here is to derive 
a new function F ( X )  from F ( X ) ,  satisfying: 

and to prove that F ( X )  admits a fixed point X, by using the Brouwer fixed point 
theorem. 

First step: Transformation of F. 

Denote V X  E R': 
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4 FIXED POINT THEOREhI 

where 

and 5 E R'i - (0) is such that, 

and for i = 1, 2. cp,: R+ -+ R ,  is continuous with: 

Second step: Existence of a fixed point of F. 

Let us prove that 

K = {XE R':: XI/ 5 M }  

is positively invariant by F. 
If / /XI E [m. MI. we have 

E (X) = F(X) 

and from i )  of Theorem 1 ,  we have 

FIX) E K 
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(because C < M 1 7 7 )  

I t  /IX1 E 10, rrr  - F I ,  w e  have 

Third step: Let us show that F admits no fixed point x E Rf such 
that 1141 c m. 

(\ince q(cu) = 0 tor cu 2 rrr  - t-) 

It QX 1 0. then D
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A FIXED POINT THEOREM 

and 

with 

Since IIRII E 1111 

So. we have: 

>1  012 = - 
(~1(11aI) 

E, In[, assumption ii) implies that 

a ,  2 1 

with 0 < c p ,  (IIXI1) < 1 .  a ,  2 1. and C > 1. which is impossible. 
I f  Q  X = 0, then: 

and since 0 < c p ,  (IIflI) < 1 we have: 

( Id  - Q )  F(X)  = a7(Id - Q )  X 

with 

in contradiction with assumption ii). 
So 1m1 2 m or O 5 IIql 5 In - E.  
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76 P MAGAL and D. PELLETIER 

So. Q X # 0 and Q X = CQ X 
and 

which is impossible. 
Now, if 0 5 llxll < rtz - E ,  we have: 

This gives 

which, once again, is impossible. 
So, we proved that, if X = F (X) then I I x / /  2 rn. 
Thu\ 

F (X) = F ( X )  

and the proof of theorem 1 is complete.0 
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A FIXED POIKT THEOREM 77 

Our next purpose is to establish a relationship between a Krasnoselskii theo- 
rem [KRA] and theorem 1. We start by a technical lemma that we will use in the 
proof of Krasnoselskii's theorem. 

LE.LIM.A 4 Let F:  R'1 + R': be a ~011tii1~i0zf.~,fi~i1rtioi7, m d  I/.)/ CI norm or? R". 
Suppose that there exists M  > 0 such that: 
if / ( X I ~  = M  and FIX) = a X  then a > 1 (resp: a < I ) .  
Then, there ex-ists E > 0 such that: 
i f M  - E 5 //XI1 5 M i- E rrnd F(X) = a X  then a > 1 (resp: a < 1). 

Proof. This is just a consequence of F being continuous and compactness of 
any closed bounded subset of R". 

We will not detail further the proof of this resu1t.O 

We now give a statement in finite dimension of the Krasnoselskii fixed point 
theorem. The following statement is a direct consequence of the fixed point 
theorem in [KM] theorem 4.14 p: 148. 

THEOREM 5 :  JKRAS~SELSKII )  Let F: R'i + R': he a continun~ftfilnrtion, and j /  1 1  
a norm on R". 

S~tppose the following cissertion be satisfied: 

i )  There exists M > 0, such that: 
the compact and convex set 

K = { X E  R':: ! X  5 M }  

is positively invariant by F (i.e.: F(K) C K )  
i i )  There exists m: 0 < in < M  such that, 

If 11x1 = in and F(X) = a X  therl a > 1. 
Then F has a fixed point X E RR': such that: In < 11x1 < M. 

Proof. From Lemma 3, there exists E > 0 such that: 
i f m  - E 5 / x / I  5 in + ~ a n d F ( X )  = a X t h e n a  > 1. 

And one can always choose E small enough so that 

and 

So, as a consequence of theorem 1, for Q = Idp ,  we deduce that: there exists 
2 € RR': such that: F(X)  = X and rn < l l ~ i l  < M . 0  
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78 P M 4 G 4 L  an? D PEL LFTIFR 

Finally. the above result shows that thc Krasnoselskii fixed point theorem can 
be obtained as a consequence of Theorem 1. 

3 APPLICATION TO A MODEL OF POPULATION DYNAMICS 

In this section we give a proof of theorem 2. To do it, we first need to prove 
some intermediate results. and theorem 2 will follow from this. On the other 
hand, in this section, we will use some general properties of non negative ma- 
trices. We refer to the book by Horn and Johnson [HJI or Gantmacher [GA] for 
more details. 

In the sequel, if X E R" and i E { 1, ..., n] we denote by 

the i"' component of X .  
In particular if A E M,; ( R ,  we denote by 

(AX'); 

the if" component of AX. 
We denote F: R':'" + R':" the map associated to equation (5 ) .  
Equation ( 5 )  can be written as follows: 
V t  = 0, 1 .  2 ,  ... 

where 
Vr = 0, 1, 2 , . . .  

I 2  -. 

We will first prove that, when b,. l i  5 1 .  0 is a global attractor of the 
i= l 

non-negative solutions of equation (5). This means that all the non-negative 
solutions converge to 0 as t goes to infinity. So in this case, we can not have a 
non-trivial fixed point. 

LEMMA 5 Under the assuinprions ( H I )  and ( H 2 ) .  and zf zyFl hi. lndi 5 1,  then 
fbr crll X,, E R'I-I. the sol~ition ofeq~iation ( 5 )  rcith X,, as initial value. cnmlerqes 
ro 0 as t goes to injniw 
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A FIXED POINT T H t O K t h l  

Now, make the following change of vat-iable: 
vt = 0, 1. 2.... 

Then under- this change of variables, equation ( 5 )  become4 

tlt = 0, I ,  2.... 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

ol
or

ad
o 

at
 B

ou
ld

er
 L

ib
ra

ri
es

] 
at

 1
0:

41
 3

0 
D

ec
em

be
r 

20
14

 



80 P. MAGAL and D. PELLETIER 

Now. we will use the Liapunov direct method to show the result. On this subject, 
we refer to the monograph by La Salle [LA]. 

Denote 
Vt=O. 1. 2.... 

Y(t) = T  (yl(t), ~ ~ ( t  ),.... yn(t), E(t))) 

and 

We have: 

(since h ,  (x) 5 1 ;  Vx L 0) 
SO 

I1 r, 

(since (x bi l i )  5 1). 

(because 0 < h ,  (x )  < 1; b'x r 0) 
So 

y,(t + 1) = V(Y(t)) o ; , ( t  + 1) = 0 

and for i = 1 :  2,. . ., n-I, we have: 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

ol
or

ad
o 

at
 B

ou
ld

er
 L

ib
ra

ri
es

] 
at

 1
0:

41
 3

0 
D

ec
em

be
r 

20
14

 



A FIXED POINT THEOREM 81 

So, V(.) is a Liapunov function for equation (10). From (11) we deduce that: 

Now. 

and the sequence { V i Y  (tjj},,o,,.z. . is decreasing. This implies V(Y(t)) + a as 
t goes to infinity. 

Now, denote 

the omega-limit set of { Y  ( t ) }  We remark that this set is nonempty, 

because the solution { Y ( t ) )  ,=,,,,,,, is bounded. 
Let G: R;+' + R"+' + the map associated to equation (10). We have: 

and VZ E w ( Y  (0)) 

We conclude by using (12) that: 

and the lemma is proved.0 

Now we show that the assumption ii) of theorem I is satisfied by F. the 
associated map of system ( 5 ) .  under the assumptions ( H I  j, (H2). and (H3). 

LEMMA 6: Let 11.11 be a nonn on R"+'. 
Under the assumptions ( H I ) ,  (H?). (H3). and suppose: 

b,, > 0. 
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82 P. MAGAL and D. PELLETIER 

The11, jf 1c.r denote: 

there exists m > 0, such that: 
for all X E ~ ' j - I .  ~ . i t h  0 < llxll < In, 

I f  QX # 0 and QF(X) = ciQX then ci > 1 .  
I f  QX = 0 thet~ F(X) = 0. 

Proof: Recall that in accordance to formula (9); 

We will denote 

- 
T X = ( x , ,  xz,. . ., X,, )  . 

The case QX = 0 is trivial. 
Since QX = 0 x ,  = xI =. . . = x,, = 0 
And from assumption (H2). we have.f, (0) = 0. 
We have: 

Now, consider the QX f 0 and QF(X) = aQX. 
We have: 

Introducing the matrix 
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A FIXED POINT THEOREM 83 

equation (13) can be rewritten as: 

Now. we remark that. since b,, 1 0, for all X E R y '  L(X) is an irreducible 
non-negative matrix, because the oriented graph of L(X) is strongly connected if 
and only if b,, > 0. 

So. by using the property of irreducible non-negative matrices see [ H J ~ .  
V V  E R': - (0) such that L(X)V = ol V with cu 2 O 
then a = r (L(X))  and V ,  > 0 Vi = 1,. . . , 11.  

In addition. the map L: R:+' + M,, ( R ,  ) is continuous and in view of (H3) we 
have: 

Indeed, the characteristic equation of L (0)  is: 

and. so: 

One can rewrite this equation as: 

with 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

ol
or

ad
o 

at
 B

ou
ld

er
 L

ib
ra

ri
es

] 
at

 1
0:

41
 3

0 
D

ec
em

be
r 

20
14

 



P MAGAL and D. PELLETIER 

P (x) = 2 b, I ,  x-', V.Y > 0 
1 = l  

But, the derivative of P(x) satisfies 

P' (x) < 0, v x  > 0 

and 

To conclude. remark that rcLtX,, is a continuous function of X. because L(X) 
is a continuous function of X. 

So. there exists m > 0 such that: 
for all X E RY*', with 0 5 //X/I 2 171, r (L(Xj j  > 1 .  
Now, return to the initial problem. 
For all X E  R?'. w i t h 0  < /IXI/ < rn. QF(Xj  = a Q X a n d  QX f 0 -  L!X! 

= a x  
S o  a = r ( L ( X ) )  > 1 
and lemma 6 is pr0ved.U 

To apply theorem 1, it remains to be shown that assertion i) holds, for equa- 
tion (5). 

LEMM.A 7 :  Under the assu~nptions ( H I ) ,  (H2) ,  and IH3), there exists //.I/ a norm 
on R"" such that 

is positively invariant by F(X), the associated map to system (5).  Moreover; for 
this norm 1i.e hal'e 

Q l l  = 1. 

T 
Proqt  LetX E R:' - (0 )  X = (x,. x?,. . .. x,,. Ei . 
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Denote by 

From (Hl), there exists y, > 0 such that: 

So, if 

x, E [0, y,];Vi = 1 ,..., 17 

we m!lst have 

(since a 2 1). 

and 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

ol
or

ad
o 

at
 B

ou
ld

er
 L

ib
ra

ri
es

] 
at

 1
0:

41
 3

0 
D

ec
em

be
r 

20
14

 



P. MAGAL and D. PELLETIER 

Let y2 > 0 be a positive constant. such that 

Finally, if we denote, for all X E R"", X = ( x , ,  x,,. . .. x,,, ,)' 

( 1  1 
IlXlI = rnax [ , max [ - l.~-,i ). - i.r,,+ , 1 1 

I I y 1 y2 

we have 

where K = { X  E R"": 1141 5 1 ) .  
On the other hand, by a simple computation obtain 

Proof of tlieorern 2: It is a direct application of theorem 1, by using lemma 6 
and lemma 7, and the fact that all norms are equivalent in finite dimension 
space.0 

CONCLUSION 

Once the fixed point problem has been solved and non trivial steady states have 
been determined a fundamental question remains, that is, the stability of those 
points. 

A related question is to look at the particular role of the various parameters 
entering the equation on the appearance of new equilibria. and possibly the 
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A FIXED POlNT THEOREM 87 

exchange of stability. Regarding the exploitation parameters. it does not seem to 
play any role in the onset of new equilibria. 

The condition (H3). that is 

which yields such equilibria does not involve the function f, and holds even in 
the case when f2 = 0. that is, without exploitation. 

This apparent independence can be explained by the fact that the exploitation 
we are considering here depends on the yield of catch by fishing effort unit. it is 
"adapted" to the abundance of the previous year. 

The situation would probably be diffcrcnt if for example we assumed that: 

In this case. we conjecture that the condition for non extinction of' the popu- 
lation (or, existence of a non trivial equilibrium) will involve the parameter 
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