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In this paper, we investigate the existence of a nontrivial fixed point for a continuous map
F: R. — R which has 0 as trivial fixed point. We apply our result to a discrete time model of
population dynamics of exploited fish. Finally, we give for this model. a necessary and sufficient
condition for existence of a nontrivial fixed point.

Keywords: Fixed point; Map; Cone; Population dynamics: Differences equation

Classification Categories: 4TH09, 47TH10, 92D25.

1 INTRODUCTION

In this paper, the problem of interest to us is to show the existence of a non
trivial steady state for an exploited population of fish, described by a discrete
time model. More precisely the dynamic of the population is supposed described
by a difference equation, of the following form

Vi=0,12,..

X(t+ 1) = H(X(1t)) )
X(0) = X, € R" ()

where X(t) is the state variable of the population, and H: R, — R’, is a con-
tinuous map. which satisfies
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H0)=0 (2)

Here we denote by R” the set of the n component real vectors, and by R". the
subset of R” of all the vectors which have all non negative components.

Moreover, a stcady state for the population corresponds to a fixed point of
equation (1), and such a fixed point will be called non trivial if it is not zero.
This problem has already been studied in another context by Krasnoselskii
[KRA] and Browder [BROW]. and they use two different methods to prove an
existence result of a non trivial fixed point. For a comparison of these two
results one can see Hale's book [HA]. Here we prove the existence of a non
trivial fixed point when both Krasnoselskii's and Browder’s theorem do not
apply.

Before giving the results, we present the model which motivated this study. To
do it, we need first to recall some other classical discrete time models, which are
called density-dependent models of age structured populations. If we consider a
population of exploited fish which is structured in n age classes (n = 2). with
some assumptions on the population. we can represent the dynamics of the
population by the following system of difference equations:

Vr=0.1 2..

x(t+ 1) =f,(2 b,.x(1))

x(1+ 1) = x,(r).exp(—(M, + q,E))
U w4 1) = nl)exp(—(My + ¢.E))

L (r+ 1) = x,_ (0).exp(—(M,_, + g,_,E))
with the initial condition:

x(0)=x,=0Vi=12,..,n
where f;: R, — R is a continuous map satisfying

fl(o) = 0'.

and
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M=0,¢,=0Vi=12...n—1.

E=0.

. is the number of individuals produced by individuals of the i age class.
M. is the natural mortality of the individuals of the i’ age class,
g;: is the catchability of the individuals of the i age class. and

E: is the fishing effort.
Several examples of models of this type exist. For fish population. the most
quoted ones are the following:

The Beverton and Holt model [BH] in which:

X
(v) = Vx=0,(B>0)
Ao =17 B B

The Ricker model [R/}:
filx) = xexp(—B.x). Vx = 0. (B > 0),

and the Shepherd model [SH]:

filx) = Vx=0.(B>0.¢c>0).

I+ B

Another example of a density-dependent population dynamics model is the
Liu and Cohen modei [ZC], which takes the following form:

Ve=0.1.2...

x((t+ 1) = (X bx(n) exp(— X px(1))
i= I
xo(t + 1) = x(1).exp(—(M, + ¢E + > Yi-x,(1)))
j=1

< Xt + 1) = xy(r).exp(— (M, + g.E + + > Y- X(1))) )
J=1

n

X”(f + 1) = anl([)'exp(f(Mn—l + qn*lE + E ‘Yn~l.j'xi(t)))
j=1

\

with the initial condition:
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x0)=x=0Vi=12..,n,
Here,
py =0, Vi j=1.2,..,n
y,-/-EO, Vi=1,2,...n—=1,VYj=12,.,n

In the case of system (4), existence of non trivial fixed points is less easy to
prove directly. Nevertheless, a method for showing the result is to use the Brow-
der ejective fixed point theorem [BROW], or the Krasnoselskii fixed point theo-
rem [KRA]. In Liu and Cohen’s paper, those methods to prove existence of non
trivial fixed were not used, but they gave a direct proof of existence and unique-
ness of non trivial fixed point.

On the other hand, in fishery problems, it seems natural to suppose that the
fishing effort is a function of time. Also, by considering the adaptation of the
fishing effort to the yield of catch per unit of fishing effort, one can write:

E(t+ 1) =£ (Y1), Ve =0,1,2,...

where

Y(1): is the Yield of catch per unit of fishing effort, at time ¢.
E(t): is the fishing effort at time 1.

Classically, the yield per unit of fishing effort is:

n—1

Y(r) = ; W,.x(1).

4q;
GEm L T e T g E0)

where Vi = 1,...,n — 1, W, > 0.

A work in this direction is in preparation, and will be published elsewhere. We
give here a possible model which takes into account the adaptation of fishing
effort.

The model is as follows

V=012,
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x,(t+ 1) =£(X bx(t)
i=1
xy(t + 1) = x(1).exp(—=(M, + ¢,E (1))
x3(t + 1) = x5(0.exp(— (M, + g,E (1))

x,(t+ 1) = x,_ (1).exp(—(M,_, + g,_,E (1))

n—1 q
Et+1) = W x(f) ————— (1 — M, + g.E (1))
\ ( b ; x(t) @ ()+M) exp(—( q,E (1)))

&)
with the initial condition:
x0)=x,=0;Vi=1,2....n
and
E0)=E=0

and we make the following assumptions on f; and f.

Assumptions on f, and f,:

(H1) f;: R, — R is a continuous map defined by:
filx) = x.h(x): Vx =0,
where h;: R, — [0, 1] is a strictly decreasing continuous function, satisfying:
h(0) =1

lim h,(x) =0.

X—+%

(H2) f,: R, — R. is a continuous map satisfying:

fz(o) =0

Now, if we denote by F: R""' — R""! the map associated to system (5), this
means that system (5) can be rewritten
Vi=20,1,2..
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Xir+ 1) = KXy (6)

with X(1) = (x,(2). x5(1)..... x,(1). E(t))’.
Then,

FU'(0.....0. E)) = 0.YE = 0. (7)

So, here the trivial fixed point cannot be ejective, and so the Browder ejective
fixed point theorem does not apply. For the same reason, the Krasnoselskii
theorem is also not applicable. This has motivated the search for a result which
would allow us to obviate this problem.

In the sequel, we will denote M,, (R) (resp: M,, (R_)) the set of n X n-matrices
(resp: non-negative n X n-matrices (i.e.: with all the components non-negative)).

)

Lei A € M, (R). We denoie

SplA) the spectrum of A,

and
r(A) the spectral radius of A.
Finally, throughout the paper state, the topo logv on R, (rPQn' M, (R)). is the
topol()gy associated to an arbitrary norm on R” {resp: to the associated operator

in section 2, we wiii show the I()ll()WlIl” theorem.

Throrem 1 Let F: R, — R, be a continuous map, and ler Q € M, (R, ) — {0}
. . . . 2 . .
be a projection marrix (i-e: O° = Q). Let ||| be a norm on R, in which |Q|| =
Suppose the following assertions are satisfied:

i) There exists M > 0, such that:
the compact and convex set
K={XCcR X =

is positively invariant by F (i.e.. F(K) C K)
it) There exists m > 0 (m < M) and € > 0 (& < m), such that:
for Xem — & = |X| = m
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If QX # 0, and QF(X) = «,0X, and (Idg — Q) F(X) = o, (Idge — Q) X with
o, > 1, then o) = 1.
If QX = 0. and (ldg- — Q) FIX) = o, (Idy — Q) X, then a; = 1.

Then, F has a fixed point X with m < |[X|| = M.

One has to note that if the assumptions of Krasnoselskii’s fixed point theorem
are satisfied, then the assumptions of theorem 1 are satistied with Q = Idg-. This
will be shown at the end of section 2.

The authors do not know of any similar result. excepted the Krasnoselskii
theorem in the case where Q = Idg.

In section 3, we will apply our result to equation (5), and we will give a
necessary and sufficient condition for existence of a non trivial fixed point. More
precisely, we will prove the following results.

We will first prove that, under the assumptions (H1) and (H2), a necessary
condition for existence of a non trivial fixed point of equation (5) is:

(H3) S b.1,> 1
=1

1

where

- i—1
1, =Tl exp(=M): Vi=2....n.
j=1i

\

More precisely, when assumption (H3) is not satisfied, we will see that 0 is a
global attractor of the non-negative solutions ot equation (5). This means that all
the non-negative solutions converge to 0 as t goes to infinity. So, in this case,
there is no non-trivial fixed point. This is the goal of lemma 5 in section 3.

Finally we will prove the following theorem, which gives an answer to the
starting problem.

TueoreM 2 Under assumptions (H1). (H2), and (H3), and suppose in addition
that
b, > 0.

Then, equation (5) has a non trivial fixed point X.
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2 PROOF OF THEOREM 1 AND ITS RELATION WITH A
KRASNOSELSKIl THEOREM

Before starting the demonstration of theorem I, we recall the well-known Brou-
wer fixed point theorem [BROU]. We will use this result in the proof of theorem
L.

Tueorem 3: (Brouwer) Let K C R" be a nonempty compact convex set, and

F:K — K be a continuous function. Then, F has a fixed point in K.

In the sequel, we will define an order on R" by

Xz0=XER,,

w
3
j=1

X0 XE iR,

where Inr (R") denotes the interior of R”..
Note that R, is a cone, this means

R + R. CR}
and

VA

v

N i — R n
AR, TR, 0.

Proof of theorem 1 The principle of the proof that we propose here is to derive
a new function F (X) from F(X), satisfying:

FX)=X=FX)=Xandm = |X| = M.

and to prove that F (X) admits a fixed point X, by using the Brouwer fixed point
theorem.

First step: Transformation of F.

Denote VX € R".

FX) = @ (IXID.FIX) + (1 = @,(|X]).COX + e,(X]).E
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where

1<C<M
m
and &£ € R. — {0} is such that,
Qg #0
and
&l <M~ Cm.

and fori = I, 2, ¢ R — R is continuous with:

( o fa) =1, Va=m
lO <@ lo) < L.Va € Jm — eom|.
and

JE—

¢(a)=0,Va<m— &
Finally,

( ¢{a) = 0. Va=m ~ &,
and

0 <o@y(a) < 1,Va e [0,m— ¢l

Second step: Existence of a fixed point of F.

Let us prove that

K={Xe€R:|X|= M

is positively invariant by F.
If IX]| € [m, M]. we have

F(X) = F(X)
and from 1) of Theorem 1, we have

FIX)e k.

73
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It Xl € [m — &. m|. we have

F(X) = o (IXD.FX) + () — ¢ X]h.COX,
thus

IOl = @ (IXDIFOO) + (1 = @y (IXID.ClOX]
= ¢ ([X[DM + (1 = o, ([X[In.Cm

= G XM + (1= g (XM = M

(because C < M i m)
It IXl| € 10, m — &], we have

FX) = COX + ¢ (IX].t,
thi

1 Xl = Clexi + e-(Ixih-fiel
=ClIX|+ gl = Cm + |El=M

(because [|E] < M — C.n).

Eina

Ny K oie nocitively invariant by £ oand we can annly the Rronwer fxe
1 lllull)/ I 1D tJUﬁlllvbl)/ ivalridiit U‘y i . dll\.l \AA™ L(lll ((IJIJI] e pJiruvuvver 1AL
point theorem o £. Thus, there exists X € £ such that F (X) = X.

Third step: Let us show that F admits no fixed point X € R” such
that | X| < m.

First case: 1t |[X|| € Im — &, m| then:
X =F(X)=¢(XDHX + (0 — ¢ (IXN.COX

(since (o) = O forw = m — €).
It OX # 0. then

QX = ¢ (JXP.OFX) + (1 — ¢, (JX]).CO X

and
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(dp — Q) X = ¢,(|X]).(Udp — Q) F(X)

and since 0 < @, (|X]) < 1 we have:

QFX)=a,.0X
and
(ldy — Q) F(X) = ay(ldg — Q) X
with
oy = 1_ >1
¢ (1K)

Since [|X]| € Im — &, m[, assumption ii) implies that
o, =1
So. we have:
h.a, + (1 = ¢, (1XI.C

with 0 < ¢, (|X|) < 1. o, = 1. and C > 1. which is impossible.
If 0 X = 0, then:

X = ¢ (|X|D-F(X)
and since 0 < ¢, (|X]) < 1 we have:
(Id = Q) F(X) = as(ld — Q) X
with

~

oy = 1_ >
¢ (X

in contradiction with assumption ii).
So|X|=mor0=|X|=m— e
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Second case: 10 <Xl =m — &.

If ||X|l = m — & we have:

So.Q0X#0and QX = CO X
and

which is impossible.
Now, if 0 = ||[X|| < m — &, we have:

%= COX+ oul¥ £
This implies, since £ = 0and @ X = 0
X = ex(|X) &
X=C0X
with ¢, (X)) > 0 and Qg # 0.
S0
QX+0
and
0X=CQX
This gives
c=1,

which, once again, is impossible.
So, we proved that, if X = F (X) then ||X]| = m.
Thus

F(X) = F(X)

and the proof of theorem 1 is complete.[]
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Our next purpose is to establish a relationship between a Krasnoselskii theo-
rem [KRA] and theorem 1. We start by a technical lemma that we will use in the
proof of Krasnoselskii’s theorem.

Lemva 4 Ler F: R”. — R, be a continuous function, and |\ a norm on R".
Suppose that there exists M > 0 such that:
ifIX| = M and F(X) = oX then o > 1 (resp: a < 1),
Then, there exists € > 0 such that:
fM—e=<|X| =M+ eand F(X) = aX then a > 1 (resp: a < I).

Proof:  This is just a consequence of F being continuous and compactness of
any closed bounded subset of R".
We will not detail further the proof of this result.[]

We now give a statement in finite dimension of the Krasnoselskii fixed point
theorem. The following statement is a direct consequence of the fixed point
theorem in [KRA] theorem 4.14 p: 148.

Tueorem 5: (KRasNoSELSKID  Ler F: R" — R\ be a continuous function, and |||
a norm on R".
Suppose the following assertion be satisfied:

i) There exists M > 0, such that:
the compact and convex set

K={XER":|X| =M

is positively invariant by F (i.e.. F(K) C K)
ii) There exists m: 0 < m < M such that:
IfIIX|| = m and F(X) = aX then o > 1.
Then F has a fixed point X € R, such that: m < ||X| < M.

Proof: From Lemma 3, there exists £ > 0 such that:
ifm—e=<|X|<=m+ eand FX) = aX then o > 1.
And one can always choose & small enough so that

m—e>0
and
m+e<M

So. as a consequence of theorem 1, for Q = Idg:, we deduce that: there exists
X € R such that: F(X) = Xand m < |X|| < M.O
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Finally. the above result shows that the Krasnoselskii fixed point theorem can
be obtained as a consequence of Theorem 1.

3 APPLICATION TO A MODEL OF POPULATION DYNAMICS

In this section we give a proof of theorem 2. To do it, we first need to prove
some intermediate results, and theorem 2 will follow from this. On the other
hand, in this section, we will use some general properties of non negative ma-
trices. We refer to the book by Horn and Johnson [HJ] or Gantmacher [GA] for
more details.

In the sequel, if X € R" and i € {1...., n] we denote by

X, or (X)),

the /™ component of X.
In particular if A € M, (R.) we denote by

(AX),
the i™ component of AX.

We denote F: R — R""! the map associated to equation (5).
Equation (5) can be written as follows:

Vr=0,1.2,...
Xt + 1) = F(X(1)) o
X(0) = X, € """ )
where
Vr=0,1,2,...
X(1) = (x,(0), %5(0)..s (1), E(1)T 9)

n

We will first prove that, when > b, 1,1 = 1,0 is a global attractor of the

. . L=l ) )
non-negative solutions of equation (5). This means that all the non-negative
solutions converge to 0 as 7 goes to infinity. So in this case, we can not have a
non-trivial fixed point.

Lemma 5 Under the assumptions (H1) and (H2), and if 2=y bi. 17, = 1, then

for all X, € R"™". the solution of equation (5) with X, as initial value. converges

to 0 as t goes to infinity.
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Proof Equation (5) reads
Vi=0 1.2

( vir+ 1) =12 badn)
=

N+ D= x(nexpl (M, + ¢, E (1)

v+ 1) = x,_(exp(—(M, | +q, E

n- 4,
Eir+ 1) W), ——— (1 —exp(—
u = Ny P

Now, make the following change of variable:
Vi=0.1.2..

J—1
yi1) = x(0] exp(M))
=1

Then under this change of variables, equation (5) becomes
Ve=0,1,2..

( USRS :f,tZ b, 1, y10)
vt + 1) = v(Hexpl—q,E (1))

Wyt + 1) = vs().exp(—g,L (1))

v 1+ 1y =xv_ (Nexpt—q, FEN)
n- 1

Eq+ 1= W, l ——
\ ( ( 2 g E(n) = M)

(/I

(1 —exp(—

)

(1 1) = x(n).expl - (M, + g.E (1))

()
(M, + g, E(ON)
(M, + ¢,.E{D)))

79
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Now, we will use the Liapunov direct method to show the result. On this subject,
we refer to the monograph by La Salle [LA].

Denote
Vi=0.1.2....
Y(0) =" (3, (8), vo(0),..., v, (1), E(1)))
and
V(Y(1) = max (1)
We have:

(since h, (x) = 1; Vx = 0)
SO

n

v+ =[S, 7,,.) VIY(n) = V(Y(),

=1

—

(since (D) b; Ti) =1).

2l aQQII0N, QIC Call 5CC ial, Lo U

y+ 1) = vy o (3 b, y,-(t)) —0
=1

(because 0 < hy (x) < I; Vx = 0)
So

W+ D)=V eynit+1)=0 an

and fori = 1, 2,..., n-1, we have:
Vi (t + 1) = ,\'i(t)-exp(—q,E(f))) = .\",'(’) = W(Y(@)

Finally, this yields
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V(Y(t + 1)) = V(Y(1)),Vt=10,1,2,...
So, V(.) is a Liapunov function for equation (10). From (11) we deduce that:

VYt + 1)) = V(Y(0)),Vt=0,1.2....
= (12)
Y(n+1)=0

Now,

V(Y(1)) = 0; Vr = 0. 1, 2....

and the sequence {V(Y (1))},—¢,, . is decreasing. This implies V(¥(1)) — « as
t goes to infinity.
Now, denote

w (Y(0)) = ﬁl clos ({Y (1D)},=,),
pP=
the omega-limit set of {Y (1)},_y,- . We remark that this set is nonempty,

because the solution {Y (1)},- - is bounded.
Let G: R\"' — R""' the map associated to equation (10). We have:

G (0 (Y (0)) = w (¥ (0))
and VZ € o (Y (0))
V(Z)=a.
We conclude by using (12) that:
w (Y (0)) = {0},

and the lemma is proved.[]

Now we show that the assumption ii) of theorem 1 is satisfied by F. the
associated map of system (5), under the assumptions (H1), (H2). and (H3).

Lemma 6: Ler ||| be a norm on R**'.
Under the assumptions (HI1), (H2), (H3), and suppose:

b, > 0.

hn
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Then, if we denote:

Q= o €M, (R).

there exists m > 0, such that:

for all X € R"™', with 0 < |[X]] < m,

If OX # 0 and QF(X) = aQX then a > 1,
If QX = 0 then F(X) = 0.

Proof: Recall that in accordance to formula (9),

X = (X, X 1, BN

n

We will denote

~

X = (X, X900, X

The case OX = 0 is trivial.

Since QX =0=x, =x, =...=x, =0
And from assumption (H2). we have f> (0) = 0.
We have:

OX=0=>FX) =0

Now, consider the QX # 0 and QF(X) = aQX.
We have:

ax; = fil 2 bx;)
=1
ax, = x.exp(—(M, + ¢,E))

oxy = xy.exp(—(M, + ¢,E)) (13)

L ox, = x”,].exp(f'(M” -1 + qn—lE))

Introducing the matrix



Downloaded by [University of Colorado at Boulder Libraries] at 10:41 30 December 2014

A FIXED POINT THEOREM 83

i n \ | n i "
by (S b ] bbb - b |3 b,
=1 =1 =1
expl (M, +q,EN 0 . . 0
LX) = 0 expl—(Ms+qEn
0 . 0 exp(—(M, , +gq, En 0

equation (13) can be rewritten as:

~

aX=L(X) X (14)

Now. we remark that. since b, > 0. for all X € R""' L(X) is an irreducible
non-negative matrix, because the oriented graph of L(X) is strongly connected if
and only if b, > 0.

So, by using the property of irreducible non-negative matrices see [H/J].

VYV e R, — {0} such that LX)V =a Vwitha =0

then o = H(L(X))and V, > 0 Vi = 1,..., n.

In addition, the map L: R”"' — M, (R ) is continuous and in view of (H3) we
have:

r(L(0))>1.

Indeed, the characteristic equation of L (0) is:

~

and, so:

FLO) = b, 1" r (L) +by [ r (LO) 4.+ b, 1,
and
r(L(0))>0

One can rewrite this equation as:
P(r(L(0)) =1
and

r(L(0)) >0

with
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Plx)=3b1,x" ¥Yx>0
i=1

But. the derivative of P(x) satisfies
P {(x)<0,¥Vx>0

and

So
r(L(0))>1.

To conclude, remark that (LX) is a continuous function of X, because L(X)
is a continuous function of X.

So. there exists m > 0 such that:

for all X € R™™', with 0 = |[X]| = m. r (L(X)) > 1.

Now, return to the initial problem.

For all X € R with 0 < IXl| < m. QF(X) = aQX and QX # 0 = L(X) X
=aX

Soa = LX) >1

and lemma 6 is proved.[]

To apply theorem 1, it remains to be shown that assertion i) holds, for equa-
tion (5).

Lemuma 7: Under the assumptions (HI), (H2), and (H3), there exists |||| a norm
on R"™! such thar

K={XeR™"|X|l=1}

is positively invariant by F(X), the associated map to system (5). Moreover, for
this norm we have

ol = 1.

Proof: LetX € RV — {0} X = (x. xo..... X, E)V.
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fl( 2 bi‘xl)
i=1

xy.exp(—(M, + ¢,E))
x.exp(—(M- + g,E))

X,_-exp(—(M

n—1

+ qn—lE))
n-1

5 W.x————
f- zzl ' ‘(([,E + M,)

i

(1 — exp(—(M; + ¢,.E)))
Denote by

j] (x) =/ ((’21 b,)x); VxER,

j=

From (H1), there exists y, > 0 such that:

f1 () <vy,.Vx€[0,v,]
So. if
x€[0, v, Vi=1,..,n

we miust have

f1(21 bix) <,

(since o = 1).

xp.exp(—(M, + ¢q,E)) = x, <v,
x5.exp(— (M, + ¢,E)) = x, <y,

Xn—l'exp(-(Mn*l + .([,,_;E)) = Xn—1 < Yi

and

85
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jn—1 ([’ \
S Wa, ———— (1 — exp(—(M, + g,.E))
) (gll (qE + M) ( Py g

= max  f>(B)

a1y,
0=B= W—y
-1 M, ‘

Finally, if we denote, for all X € R, X = (x,, X5,.... X,21)"

we have
F(K)CK

where K = (X € R"" " |[X]| = 1}.
On the other hand, by a simple computation obtain

1T OUICh 1aiiG,

IQll = sup {loxil: X € R"||Ix| = 1} = 1.

Lemma 7 is proved.[]

Proof of theorem 2: Tt is a direct application of theorem I, by using lemma 6
and lemma 7, and the fact that all norms are equivalent in finite dimension
space.[]

CONCLUSION

Once the fixed point problem has been solved and non trivial steady states have
been determined a fundamental question remains, that is, the stability of those
points.

A related question is to look at the particular role of the various parameters
entering the equation on the appearance of new equilibria. and possibly the
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exchange of stability. Regarding the exploitation parameters. it does not seem to
play any role in the onset of new equilibria.
The condition (H3). that is

Eb,.i,> 1

=1

which yields such equilibria does not involve the function f5 and holds even in
the case when f, = 0, that is, without exploitation.

This apparent independence can be explained by the fact that the exploitation
we are considering here depends on the yield of catch by fishing effort unit. it is
“adapted” to the abundance of the previous year.

The situation would probably be diffcrent if for example we assumed that:

fHix)>E,, >0Vx=0.

nin

In this case, we conjecture that the condition for non extinction ol the popu-
lation (or, existence of a non trivial equilibrium) will involve the parameter £ ;,..
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