w/ A. Dixit and R. Murty.

Can you see anything from {1, 3, 8, 120 }? One of the properties : $1 \cdot 3 = 3 = 2^2 - 1$ $3 \cdot 8 = 44 = 5^2 - 1$ $= 31^2 - 1$ 8.120 = 960 $= 11^2 - 1$ 1.120 = 120

discovered by Fermat.

- · The name comes from Diophantus, who discovered Z1, 33, 68, 105 } with property D(156) Euler discovered the infinitely many quadruples with property D(1), namely {a, b, ab+ 2r, 4r(r+a)(r+b)} where $ab+1=r^2$
- . Ary thing beyond ?

On the other hand, for general n # 1, there
are
$$D(n)$$
 - quintuples, for instance,
 $\{1, 33, 105, 320, 18240\}$
is a Diophantine quintuple of $D(256)$.
There are known examples of $D(n)$ - sertuples,
but no soptuple is known.
Q. what is the largest tuple with property $D(n)$?

S

6] Observation : why is it hard to find a large D(n) - tuple? If $S = \{a_1, a_2, a_3\}$ is a set of D(n), then an extra ai for i>3 yields an integer point on the elliptic Curve $y' = (a_1 X + n) (a_2 X + n) (a_3 X + n)$ for 22 1>3. =) By Siegel's theorem. the number of integer points any elliptic curve is Rinite.

Tor this talk, we extend this definition and study:
DEF (Generalized Diophantine m-tuples & Mk(n))
• For k72, a set of natural numbers

$$\Sigma_{a_1, a_2, \dots}$$
, and
is said to satisfy the property Dk(n) if
aig; th is a kth-power for all ifj.
• Define
Mk(n):= Sup 2 ISI: S satisfy Dk(n) 2.
Mk(n):= Sup 2 ISI: S satisfy Dk(n) 2.

8] • Unconditionally Bugeaust er Dujella Showed $M_3(1) \leq 7$, $M_4(1) \leq 5$, $M_k(1) \leq 4$, for $k \geq 5$.

• The Caporaso-Harris Conjecture implies that Mk(n) is uniformly bounded independent of n.

PALEY GRAPHS

A Paley graph is a graph with -vertex set $V = IF_p$ edge set ESuch that $(a, b) \in E$ iff a-b is quadratic residue mod p.

http://cs.indstate.edu/ge/Paley/cliques.html

PALEY GRAPHS ...

From Wolfram Alpha

Paly graph conjecture
Let
$$E > 0$$
, and $S, T \subset IF_p$ for an odd prime p
with $|SI, |T| > p^{E}$, and X be any nontrivial
multiplicative character modulo p . Then
there is some number $\delta = \delta(E)$ for which
 $\left|\sum_{\substack{a \in S \\ b \in T}} \chi(a+b)\right| \leq p^{-\delta}|S||T|$

holds for primes p larger than some constant ((e).

what's the implication of the conjecture on Paleys? T = -S, X: quadratic character.

The clique number := the maximal complete graph of a graph

Sketch of the proof of (c): Step 1 MK (n; 3) is bounded (NON TRIVIAL) Thus it is sufficient to consider an m-ruple $S = \{a_1, a_2, \dots, a_m\}$ with property D_k(n) in [1, n³]. Step 2 For each prime p, Consider Sp = S (mod p), & define for i=0,1,..., k-1, $T_i = \{a \in S_p \mid \chi(a) = S_k\}$

Then

$$|S_{p}| \leq |T_{0}| + |T_{1}| + \cdots + |T_{k-1}|.$$
Assuming the Paley graph conjecture, we deduce

$$|S_{p}| \leq 1 + kp^{\epsilon}$$
for a fixed $\epsilon > 0.$

$$Slep 3 \quad \text{Using Gallagher's large Sieve, we have}$$

$$|S| \leq \frac{\sum k_{0}p - k_{0}N}{\sum k_{0}p - k_{0}N} \implies |S| \leq (k_{0}m)^{\epsilon}.$$