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Dirichlet's Theorem (in dimension 1)

For each £ € R and each X > 1, there exists (p, q) € Z? such that

1
1<g<X and |g€—p|< .
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Introduction

Dirichlet's Theorem (in dimension 1)

For each £ € R and each X > 1, there exists (p, q) € Z? such that

1
1<g<X and |g€—p|< .

Corollary : There are infinitely many (p, g) such that ‘5 — B‘
q

Dirichlet's simultaneous approximation Theorem (in dimension n)

Let n > 2 be an integer and let & = (&1,...,&,) € R". For each X > 1
there is an integer point x = (q, p1,. .., pn) € Z"1 such that

1<g<X and max |g§—pi| < X~1n,
1<i<n
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Exponents of simultaneous rational approximation

Definition

We define A(€) (resp. A(€)) as the supremum of all A € R s.t. for each
X > 1 large enough (resp. for arb. large X), there is x € Z"*! satisfying

1<g< X d Cp < XA
<qg< an 12?2(”'0’5’ pi| <
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We define A(€) (resp. A(€)) as the supremum of all A € R s.t. for each
X > 1 large enough (resp. for arb. large X), there is x € Z"*! satisfying

1<g< X d Cp < XA
<qg< an 12?2(”'0’5’ pi| <

~

o (dimension 1) A({) =1 and A(§) + 1 = irrationality exponent of &
for each £ € R\ Q.
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Exponents of simultaneous rational approximation

Definition

We define A(€) (resp. A(€)) as the supremum of all A € R s.t. for each
X > 1 large enough (resp. for arb. large X), there is x € Z"*! satisfying

1<g< X d Cp < XA
<qg< an 12?2(”'0’5’ pi| <

~

o (dimension 1) A({) =1 and A(§) + 1 = irrationality exponent of &
for each £ € R\ Q.

1 .
e We have - < A(€) < A\(&) < oo for each € € R".
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Exponents of simultaneous rational approximation

Definition

We define A(€) (resp. A(€)) as the supremum of all A € R s.t. for each
X > 1 large enough (resp. for arb. large X), there is x € Z"*! satisfying

1<g< X d Cp < XA
<qg< an 12?2(”'0’5’ pi| <

~

o (dimension 1) A({) =1 and A(§) + 1 = irrationality exponent of &
for each £ € R\ Q.

[y

© We have — < ME) < A(€) < oo for each £ € R™.

o A(&) = \(&) = 1/n for almost every £ € R” (w.r.t. Lebesgue
measure)
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Spectra and relation between X and A

LI condition

We denote by R} the set of £ € R" such that 1,&;,...,&, are linearly
independent over Q.

Question : Describe the set of values that A and ) take when & runs
through all points of Rj} 7
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Spectra and relation between X and A

LI condition

We denote by R} the set of £ € R" such that 1,&;,...,&, are linearly
independent over Q.

Question : Describe the set of values that A and ) take when & runs
through all points of Rj} 7

~

ARD) = [%1} and A(R]) = E,+oo}.

Question : joint spectrum of (X, \) ? General case conjectured by

Schmidt-Summerer (2013) and proved by Marnat-Moshchevitin (2020) :

WP(35 Ag)"
A(E) + )\(ﬁ) oot /\(E)n_l

<1 (n>2,€€R}).
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Approximation to real points of a subset Z

Problem

Study of A(€) and A(€) when & belongs to a fixed “interesting” subset of
R"?
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Approximation to real points of a subset Z

Problem

Study of A(€) and A(€) when & belongs to a fixed “interesting” subset of
R"? Set of values? Maximal value taken 7
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Approximation to real points of a subset Z

Problem

Study of A(£) and A(€) when £ belongs to a fixed “interesting” subset of
R"7? Set of values ? Maximal value taken ?

Definition

Let Z C R” be such that Z N R # (). We define

AZ) :=sup{\(&) | € € ZNRE} € [1/n,1].
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Approximation to real points of a subset Z

Problem

Study of A(£) and A(€) when £ belongs to a fixed “interesting” subset of
R"7? Set of values ? Maximal value taken ?

Definition

Let Z C R” be such that Z N R # (). We define

AZ) :=sup{\(&) | € € ZNRE} € [1/n,1].

Classical example : V, := {(£,€%,...,£") | € € R} (Veronese curve).

Motivation : related to approximation of £ by algebraic numbers (resp.
algebraic integers) of degree < n (resp. < n+1).
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Veronese curve V, (in dimension 2)

Remarks :
o We have (&, ...,£") = 1/n almost everywhere.
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Remarks :
o We have (&, ...,£") = 1/n almost everywhere.

o We also have 5\(5, ...,&") = 1/n for each £ € Q of degree at least
n+1.
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Veronese curve V, (in dimension 2)

Remarks :
o We have (&, ...,£") = 1/n almost everywhere.

o We also have 5\(5, ...,&") = 1/n for each £ € Q of degree at least
n+1.
Problem : Do we have A(Va) # {1/n} 7 In other words, can we find
€ € R\ Q such that A(¢, ...,&") > 1/n?
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Veronese curve V; (in dimension 2)

Remarks :
o We have (&, ...,£") = 1/n almost everywhere.

o We also have 5\(5, ...,&") = 1/n for each £ € Q of degree at least
n+1.
Problem : Do we have A(Va) # {1/n} 7 In other words, can we find
€ € R\ Q such that A(¢, ...,&") > 1/n?

Summary (£ e R\ Q)

0 1/2 < A(£,62) <1/y=0.618--- (DS, 1969)
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o We have (&, ...,£") = 1/n almost everywhere.

o We also have 5\(5, ...,&") = 1/n for each £ € Q of degree at least
n+1.
Problem : Do we have A(Va) # {1/n} 7 In other words, can we find
€ € R\ Q such that A(¢, ...,&") > 1/n?

Summary (£ e R\ Q)

0 1/2 < \(£,62) <1/y=0.618--- (DS, 1969)
o Conjecture < 2000 : A(€,£2) = 1/2.
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Veronese curve V; (in dimension 2)

Remarks :
o We have (&, ...,£") = 1/n almost everywhere.

o We also have 5\(5, ...,&") = 1/n for each £ € Q of degree at least
n+1.
Problem : Do we have A(Va) # {1/n} 7 In other words, can we find
€ € R\ Q such that A(¢, ...,&") > 1/n?

Summary (£ e R\ Q)

0 1/2 < \(£,62) <1/y=0.618--- (DS, 1969)
o Conjecture < 2000 : \(&,&2) = 1/2. FALSE
o A\(V2) = 1/7 (Roy, 2004)
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Veronese curve V; (in dimension 2)

Remarks :
o We have (&, ...,£") = 1/n almost everywhere.

o We also have 5\(5, ...,&") = 1/n for each £ € Q of degree at least
n+1.
Problem : Do we have A(Va) # {1/n} 7 In other words, can we find
€ € R\ Q such that A(¢, ...,&") > 1/n?

Summary (£ e R\ Q)

1/2 < M(€,€2) <1/y =0.618--- (DS, 1969)
Conjecture < 2000 : \(£,£2) = 1/2. FALSE

A(V2) = 1/ (Roy, 2004)

(n > 3) Does it exist £ such that A(¢,...,£") > 1/n?
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Veronese curve V; (in dimension 2)

Remarks :
o We have (&, ...,£") = 1/n almost everywhere.

o We also have 5\(5, ...,&") = 1/n for each £ € Q of degree at least
n+1.
Problem : Do we have A(Va) # {1/n} 7 In other words, can we find
€ € R\ Q such that A(¢, ...,&") > 1/n?

Summary (£ e R\ Q)

1/2 < M(€,€2) <1/y =0.618--- (DS, 1969)

Conjecture < 2000 : \(£,£2) = 1/2. FALSE

A(V2) = 1/ (Roy, 2004)

(n > 3) Does it exist & such that A(¢,...,&") > 1/n? OPEN
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Quadratic hypersurface

Let g € Z[to, ..., ts]2 be a rational quadratic form # 0 on R™+1.
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Quadratic hypersurface

Let g € Z[to, ..., ts]2 be a rational quadratic form # 0 on R™+1.
Quadratic hypersurface associated to q :

Zgi={(60,-+1&) € R" | 4(L, &1, &) = 0} C R
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Quadratic hypersurface

Let g € Z[to, ..., ts]2 be a rational quadratic form # 0 on R™+1.
Quadratic hypersurface associated to q :

Zgi={(60,-+1&) € R" | 4(L, &1, &) = 0} C R

The (rational) Witt index mg of g is the integer m such that any
maximal totally isotropic subspace of R™*! defined over Q has dimension
m + dim ker(q). Recall that W C R"*! is totally isotropic iff q;y = 0.

Examples

o Vo ={(£,¢%) | £ € R} = Z, C R? with q(x0, 31, %) = xox2 — X
(here mg = 1).
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Quadratic hypersurface

Let g € Z[to, ..., ts]2 be a rational quadratic form # 0 on R™+1.
Quadratic hypersurface associated to q :

Zgi={(60,-+1&) € R" | 4(L, &1, &) = 0} C R

The (rational) Witt index mg of g is the integer m such that any
maximal totally isotropic subspace of R™*! defined over Q has dimension
m + dim ker(q). Recall that W C R"*! is totally isotropic iff q;y = 0.

Examples
o V2 ={(£€%) | £ € R} = Z; C R? with q(x0, x1,%2) = X0%2 — X}
(here mg = 1).
@ More generally : Quadratic hypersurface in R?> = conic (in that case
mg < 1).
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Quadratic hypersurface

Let g € Z[to, ..., ts]2 be a rational quadratic form # 0 on R™+1.
Quadratic hypersurface associated to q :

Zgi={(60,-+1&) € R" | 4(L, &1, &) = 0} C R

The (rational) Witt index mg of g is the integer m such that any
maximal totally isotropic subspace of R™*! defined over Q has dimension
m + dim ker(q). Recall that W C R"*! is totally isotropic iff q;y = 0.

Examples
o Vo ={(&€%) ] € € R} = Z;, C R? with g(x0, x1, %) = xox2 — X7
(here mg = 1).
@ More generally : Quadratic hypersurface in R?> = conic (in that case
mg < 1).
@ Sphere S"71 C R" with q(xo,..., %) =x¢ — (¢ + -+ + x2).

n
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Quadratic hypersurfaces
oeo

Quadratic hypersurface of R” (n > 2)

Theorem (Kleinbock-Moshchevitin, 2019)

Let g be a rational non-degenerate quadratic form on R"*! such that
ZgNRe # 0 and mg < 1. Then

< \Zy) <1/pn,

S|

where p, € (1,2) is the only positive root of x” — (x"} + .- 4+ x + 1).
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Quadratic hypersurface of R” (n > 2)

Theorem (Kleinbock-Moshchevitin, 2019)

Let g be a rational non-degenerate quadratic form on R"*! such that
ZgNRe # 0 and mg < 1. Then

< \Zy) <1/pn,

S|

where p, € (1,2) is the only positive root of x” — (x"} + .- 4+ x + 1).

Example : sphere S"~1 C R” (with q(x0, ..., xn) = x§ — (62 + -+ + x2)).
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Quadratic hypersurfaces
oeo

Quadratic hypersurface of R” (n > 2)

Theorem (Kleinbock-Moshchevitin, 2019)

Let g be a rational non-degenerate quadratic form on R"*! such that
ZgNRe # 0 and mg < 1. Then

< \Zy) <1/pn,

S|

where p, € (1,2) is the only positive root of x” — (x"} + .- 4+ x + 1).

Example : sphere S"~1 C R” (with q(x0, ..., xn) = x§ — (62 + -+ + x2)).

e 1/pp=1/v=0.6180---

o 1/p3 =0.5436---

e 1/py=05187---

@ (pn)n>2 is increasing and tends to 2 as n — oc.
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Quadratic hypersurface of R” (n > 2)

Theorem (P.-Roy, 2021)
Let g # 0 be a rational quadratic form on R"™! s.t. Z, N R}l # (). Then

% 1/pn if mg <1,
A(Zq) = {1 elseq

Moreover, the set {&€ € Z, NR2 | (&) = \(Z,)} is countably infinite if
mg < 1, and uncountable otherwise.
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Quadratic hypersurface of R” (n > 2)

Theorem (P.-Roy, 2021)
Let g # 0 be a rational quadratic form on R"™! s.t. Z, N R}l # (). Then

% 1/pn if mg <1,
A(Zq) = {1 elseq

Moreover, the set {&€ € Z, NR2 | (&) = \(Z,)} is countably infinite if
mg < 1, and uncountable otherwise.

Remarks.
e (n=2) (& £?) and conics : proved by Roy (in 2004 and 2012 resp.)
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Quadratic hypersurface of R” (n > 2)

Theorem (P.-Roy, 2021)
Let g # 0 be a rational quadratic form on R"™! s.t. Z, N R}l # (). Then

% 1/pn if mg <1,
A(Zq) = {1 elseq

Moreover, the set {&€ € Z, NR2 | (&) = \(Z,)} is countably infinite if
mg < 1, and uncountable otherwise.

Remarks.
e (n=2) (& £?) and conics : proved by Roy (in 2004 and 2012 resp.)
@ g can be degenerate.
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Quadratic hypersurface of R” (n > 2)

Theorem (P.-Roy, 2021)
Let g # 0 be a rational quadratic form on R"™! s.t. Z, N R}l # (). Then

% 1/pn if mg <1,
A(Zq) = {1 elseq

Moreover, the set {&€ € Z, NR2 | (&) = \(Z,)} is countably infinite if
mg < 1, and uncountable otherwise.

Remarks.
e (n=2) (& £?) and conics : proved by Roy (in 2004 and 2012 resp.)
@ g can be degenerate.
o Upper-bound \(Z,) < 1/p, based on Marnat-Moshchevitin (2020)
(relation between A and \).
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Quadratic hypersurface of R” (n > 2)

Theorem (P.-Roy, 2021)
Let g # 0 be a rational quadratic form on R"™! s.t. Z, N R}l # (). Then

% 1/pn if mg <1,
A(Zq) = {1 elseq

Moreover, the set {&€ € Z, NR2 | (&) = \(Z,)} is countably infinite if
mg < 1, and uncountable otherwise.

Remarks.
e (n=2) (& £?) and conics : proved by Roy (in 2004 and 2012 resp.)
@ g can be degenerate.
o Upper-bound \(Z,) < 1/p, based on Marnat-Moshchevitin (2020)
(relation between A and \).
0 Z,NRI =0 for g=x3 —xZ = (xo — x1)(x0 + x1).
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Constructions
@00

Construction - general principles

For any &€ = (&1,...,&,) € Z,NRE and x € Z", we write

x|l = max x| and - Le(x) = max [xo¢; — il

Summary of our strategy

Construct by induction a sequence (x;);>o of points in Z"*1\ {0} s.t. :

o (x;)i>0 converges projectively to a point (1,&) € R"! and
q(x;)/||xi|| tends to 0 as i — co.
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x|l = max x| and - Le(x) = max [xo¢; — il

Summary of our strategy

Construct by induction a sequence (x;);>o of points in Z"*1\ {0} s.t. :

o (x;)i>0 converges projectively to a point (1,&) € R"! and
q(x;)/||xi|| tends to 0 as i — co. Then & € Z,.

@ (n+ 1) consecutive points X;, ..., X;t, are always linearly
independent.
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Construction - general principles

For any &€ = (&1,...,&,) € Z,NRE and x € Z", we write

x|l = max x| and - Le(x) = max [xo¢; — il

Summary of our strategy

Construct by induction a sequence (x;);>o of points in Z"*1\ {0} s.t. :

o (x;)i>0 converges projectively to a point (1,&) € R"! and
q(x;)/||xi|| tends to 0 as i — co. Then & € Z,.

@ (n+ 1) consecutive points X;, ..., X;t, are always linearly
independent. Then £ € RJ].

o Le(x;) < ||xi41||~ for any i > 1 and some « arbitrarily close to the
expected upper bound (1/p, or 1).
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Construction - general principles

For any &€ = (&1,...,&,) € Z,NRE and x € Z", we write

x|l = max x| and - Le(x) = max [xo¢; — il

Summary of our strategy

Construct by induction a sequence (x;);>o of points in Z"*1\ {0} s.t. :

o (x;)i>0 converges projectively to a point (1,&) € R"! and
q(x;)/||xi|| tends to 0 as i — co. Then & € Z,.

@ (n+ 1) consecutive points X;, ..., X;t, are always linearly
independent. Then £ € RJ].

o Le(x;) < ||xi41||~ for any i > 1 and some « arbitrarily close to the
expected upper bound (1/p, or 1). Then A(£) > o
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Constructions
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Constructions used in the proof (ideas)

Hypothesis : Witt index mgq <1

q(xg) = --- = q(x;) = 1. Induction step (rigid) :

Xitnt1 = b(Xixn, Xi)Xitn — q(Xiyn)x;i (i > 0).

where b is the symmetric bilinear form associated to g.
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Constructions used in the proof (ideas)

Hypothesis : Witt index mgq <1

q(xg) = --- = q(x;) = 1. Induction step (rigid) :

Xitnt1 = b(Xixn, Xi)Xitn — q(Xiyn)x;i (i > 0).
where b is the symmetric bilinear form associated to g.

Main difficulty }} : Asymptotic behaviour Lg(x;) < ||x;1]|~Y/7n.
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Constructions used in the proof (ideas)

Hypothesis : Witt index mgq <1

q(xg) = --- = q(x;) = 1. Induction step (rigid) :

Xitnt1 = b(Xixn, Xi)Xitn — q(Xiyn)x;i (i > 0).
where b is the symmetric bilinear form associated to g.
Main difficulty }} : Asymptotic behaviour Lg(x;) < ||x;1]|~Y/7n.

Hypothesis : Witt index mgq > 1

q(x0) = --- = q(x;) = 0. Induction step : we choose z € Z"*! s.t.
q|(x,z) = 0 and we set x;1 = ax; +z (with o € Z "very large”).
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Constructions used in the proof (ideas)

Hypothesis : Witt index mgq <1

q(xg) = --- = q(x;) = 1. Induction step (rigid) :

Xitnt1 = b(Xixn, Xi)Xitn — q(Xiyn)x;i (i > 0).
where b is the symmetric bilinear form associated to g.
Main difficulty }} : Asymptotic behaviour Lg(x;) < ||x;1]|~Y/7n.

Hypothesis : Witt index mgq > 1

q(x0) = --- = q(x;) = 0. Induction step : we choose z € Z"*! s.t.
q|(x,z) = 0 and we set x;1 = ax; +z (with o € Z "very large”).

Main difficulty }} : (n+ 1) consecutive points are linearly independent.
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Thank you. )
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