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ABSTRACT
We consider N oscillators coupled by a mean field as in the Win-
free model. The model is governed by two parameters: the coupling
strength κ and the spectrumwidth γ of the frequencies of each oscil-
lator centred at 1. In the uncoupled regime, κ = 0, each oscillator
possesses its own natural frequency, and the difference between the
phases of any two oscillators grows linearly in time. In the zero-width
regime for the spectrum, the oscillators are simultaneously in the
death state if and only if κ is above some positive value κ∗. We say
that N oscillators are synchronized if the difference between any two
phases is uniformlybounded in time.We identify anewhypothesis for
the existence of synchronization. The domain in (γ , κ) of synchroniza-
tion contains {0}× [0, κ∗] in its closure. Moreover, the domain is inde-
pendent of the number of oscillators and the distribution of the fre-
quencies. We show numerically, on a specific family of Winfree mod-
els, that the above hypothesis seems to be a bifurcation criterion for
the existence of synchronization domain. The transition is not, how-
ever, mathematically sharp.

1. Introduction

In 1967, Winfree [1] proposed a model describing the synchronization of a population of
organisms or oscillators that interact simultaneously.We assume that the state of each oscil-
lator is described by a real number, the phase, that corresponds to a point on the circle. We
call natural frequency, the frequency of each oscillator, as if it were isolated from the others.
The natural frequencies are localized inside an interval [1 − γ , 1 + γ ] for some constant
γ that we call spectrum width. The interaction of the surrounding oscillators on a partic-
ular oscillator has a shape independent of this oscillator. The term mean field is used for
this kind of interaction or coupling. We denote by N the number of oscillators and by κ a
parameter called coupling strength that measures the coupling between these oscillators.

A numerical investigation and a mathematical analysis of the transitions between the
phases show a diagram of four major states (see [2]): a phase called death state where each
oscillator is at rest, a phase called locking statewhere all the oscillators possess the same non-
zero frequency, a phase called incoherence state where any two oscillators have different
frequencies, and a phase called partial death state which is a mixed state where a part of
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DYNAMICAL SYSTEMS 327

the oscillators are in death state and a part is in incoherence state. For small values of κ ,
the Winfree model is reduced to a different model, the Kuramoto model that will not be
studied in this article. For large values of κ , the oscillators are in the death state. We denote
by κ∗ the bifurcation parameter for the death state in the case γ = 0.

We say thatN oscillators are synchronized if max 1 � i, j � N|xi(t)− xj(t)| is bounded from
above uniformly in time. Notice that we do not consider the phase of the oscillators but
rather their lifts. For example, in the case γ = 0, our definition implies that N oscillators
are always synchronized, independently of their initial conditions, thanks to the uniqueness
property of periodic solutions of an ordinary differential equation (ODE). We identify a
new hypothesis of synchronization that produces a domain of parameters (γ , κ) containing
{0} × [0, κ∗] in its closure. We show in addition in a numerical example that the existence
of synchronization seems to disappear when the hypothesis is not anymore realized.

The Winfree model is given by the following differential equation:

ẋi = ωi − κ
1
N

N∑
j=1

P(x j)R(xi), (1)

where P and R are C2 2π-periodic functions, xi(t) is the phase of the i-th oscillator, and
X(t) = (x1(t),… , xN(t)) is the global state of the system. Although xi(t) represents a scalar
in the torus R/2πZ, we actually consider its unique continuous lift in R, that we continue
to call it xi(t). When N = 1 and ω1 = 1, the Winfree model reduces to the equation

ẋ = 1 − κP(x)R(x). (2)

We call locking bifurcation critical parameter, the coupling critical parameter κ∗ which sep-
arates the death state and the locking state in the reduced Winfree model:

κ∗ := max{κ > 0 : 1 − κP(x)R(x) > 0, ∀x ∈ R}. (3)

(Notice that κ∗ = +� if max xP(x)R(x) � 0.) We assume throughout this work the follow-
ing hypotheses:

H1: the coupling strength κ is taken in the interval (0, κ∗),
H2: the natural frequencies ωi are chosen in (1 − γ , 1 + γ ) with γ � (0, 1),

H3: synchronization hypothesis:
∫ 2π

0

P(s)R′(s)
1 − κP(s)R(s)

ds > 0, �κ � (0, κ∗).

For numerical results, we use a simplified version of the Winfree model

ẋi = ωi − κ

N

N∑
j=1

Pβ (x j) sin(xi), where Pβ (x) = 1 + cos(x + β), (4)

and β � [0, π]. It is important to notice that we do not make any assumptions on the
numberN of oscillators; in particular, we do not assume thatN → +�. We do not assume
either that the natural frequencies are distributed according to a particular law as it is done
in [2]. Ourmain objective is to exhibit a domain in the parameter space (γ , κ) independent
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328 W. OUKIL ET AL.

of N and any choice of the natural frequencies satisfying H2 such that the oscillators stay
synchronized for all time and for any initial conditions sufficiently packed.

Synchronization and locking may have several meanings or definitions depending on
the authors. We choose the following definitions.

Definition 1.1 (Synchronization): We say that the oscillators xi(t) are synchronized if
sup1≤i, j≤N |xi(t ) − x j(t )| is bounded from above uniformly in time t � 0.

Definition 1.2 (Periodic locking): We say that the oscillators xi(t) are periodically locked
to the frequency� if they are synchronized and if there exist 2π /�-periodic functions� i(t)
such that

xi(t ) = �t + �i(t ), ∀i = 1 . . .N, ∀t ≥ 0.

Wenotice that in the periodic locking case, the average frequency xi(t )
t admits the limit� as

t→ +� and that this limit is independent of the i-th oscillator. The fact that the limit does
exist has never been addressed mathematically (except of course in the death state). Our
main result is a partial result in that direction in the locking case when κ is any parameter
in (0, κ∗) and γ � (0, 	(κ)) for some 	 : [0, κ∗] → R

+.

Theorem 1.1: We consider theWinfree model given by (1) and satisfying the hypotheses H1–
H3. Then, there exists an open set U in the space of parameters (γ , κ) � (0, 1) × (0, κ∗),
independent of N, containing in its closure {0}× [0, κ∗], such that for every parameter (γ , κ)
� U, for every N � 1 and every choice of natural frequencies (ωi)

N
i=1,

(1) There exists an open set CN
γ ,κ invariant by the flow, and of the form,

CN
γ ,κ :=

{
X = (xi)Ni=1 ∈ R

N : max
i, j

|x j − xi| < 
γ,κ

(
1
N

N∑
i=1

xi
)}

where 
γ,κ : R → (0, 1) is a 2π-periodic C2 function independent of N. In other
words, for every parameter (γ , κ) � U, the oscillators are synchronized for any ini-
tial conditions xi(0) with sufficiently small dispersion.

(2) There exists a particular initial condition (x∗
i (0))Ni=1 ∈ CN

γ ,κ , and a common frequency
�γ , κ > 0 such that

x∗
i (t ) = �γ,κt + �N

i,γ ,κ (t ), ∀i = 1, . . . ,N, ∀t ≥ 0,

where �N
i,γ ,κ : R

+ → R are C2, 2π /�γ , κ -periodic functions, uniformly bounded with
respect toN. In otherwords, the oscillators are periodically locked for a particular initial
condition.

Notice that the simplified Winfree model (4) satisfies hypothesis H3 when β = 0 as it is
proved in Section 3.

For small values of κ <<1, Quinn and Strogatz [3] use the Lindstedt’s method and find
an approximation value of the tangent bifurcation curve of the synchronization sate. We
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DYNAMICAL SYSTEMS 329

mention relative results about the Winfree model in [4–8]. Recently Ha et al. [9] studied
the stability of the stationary state for large coupling.

2. Proof of Theorem 1.1

Let X = (x1,… , xN) be a solution of (1). We call mean μ(t) and dispersion δ(t) of X the
quantities

μ(t ) := 1
N

N∑
j=1

x j(t ), δ(t ) := max
i, j

|δi, j(t )|, δi, j(t ) := xi(t ) − x j(t ). (5)

We want to build a space of parameters U of the form

U = {(γ , κ) ∈ (0, 1) × (0, κ∗) : 0 < γ < 	(κ)},

and a 2π-periodic function 
γ , κ , called dispersion curve such that, if X(t) is a solution of
the Winfree model (1) satisfying H1–H3,

δ(0) < 
γ,κ (μ(0)) =⇒ δ(t ) < 
γ,κ (μ(t )), ∀t ≥ 0.

The dispersion curve is obtained by solving a non-autonomous affine differential equa-
tion with periodic coefficients. The following lemma is standard.

Lemma 2.1: We consider the affine differential equation

d
ds


(s) = α − β(s)
(s), (6)

where α > 0 and β is a C1, 2π-periodic function satisfying

∫ 2π

0
β(s) ds > 0.

Then, there exists a unique C2, positive and 2π-periodic function solution of (6) given by


(s) := α

∫ s+2π
s exp

( ∫ t
s β(u) du

)
dt

exp
( ∫ 2π

0 β(u) du
) − 1

.

Moreover,

max
s∈R


(s) ≤ α2π
exp

( ∫ 2π
0 β−(u) du

)
1 − exp

( − ∫ 2π
0 β(u) du

)

where β− := max (0, −β), and β+ := max (0, β).

Proof: The differential equation (6) is a first-order non-homogeneous linear differential
equation. The general form of solution z(t) of (6) with initial condition z(s0) ∈ R at time
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330 W. OUKIL ET AL.

s0 ∈ R is given by

z(s) = exp
(∫ s

s0
−β(u) du

)
z(s0) + α

∫ s

s0
exp

(∫ s

t
−β(u) du

)
dt.

If z(s) is 2π-periodic, using the 2π-periodicity of β , one obtains a unique z(s0) given by

z(s0) = α

∫ s0+2π
s0

exp
( ∫ s0+2π

t −β(u) du
)
dt

1 − exp
( ∫ s0+2π

s0
−β(u) du

)

and a unique 2π-periodic solution, positive, thanks to α > 0, given by

z(s) = α

∫ s+2π
s exp

( ∫ s+2π
t −β(u) du

)
dt

1 − exp
( ∫ 2π

0 −β(u) du
) .

The maximum of 
 is obtained using the following estimates:

∫ t

s
β(s) ds =

∫ t

s
(β+ − β−)(s) ds ≤

∫ t

s
β+(s) ds ≤

∫ 2π

0
β+(s) ds,

≤
∫ 2π

0
(β+ − β−)(s) ds +

∫ 2π

0
β−(s) ds,

≤
∫ 2π

0
β(s) ds +

∫ 2π

0
β−(s) ds.

�

The following lemma shows that, if the dispersion of a solution X(t) of (1) is a priori
uniformly bounded, δ(t) < D,�t � [0, t∗], then each δi, j(t) is a sub-solution strict of an
affine differential equation as in Lemma 2.1.

Lemma 2.2: Let us assume that for some (γ , κ) � (0, 1) × (0, κ∗), there exist D > 0 and
t∗ > 0 such that for every t � [0, t∗], the solution X(t) of (1) satisfies δ(t)<D. Then, for every
1 � i, j � N, and t � [0, t∗]

d
dt

δi, j < (2γ +CκD2) − κP(μ)R′(μ)δi, j,∣∣∣∣ ddt δi, j
∣∣∣∣ ≤ 2γ +CκD2 + C̃κD,

where δi, j(t) := xi(t) − xj(t), μ(t ) = 1
N

∑N
k=1 xk(t ),

C := ‖P‖∞‖R′′‖∞ + ‖P′‖∞‖R′‖∞, and C̃ := ‖P′‖∞‖R‖∞ + ‖P‖∞‖R′‖∞.
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DYNAMICAL SYSTEMS 331

Proof: By substracting two equations (1), we obtain

dδi, j

dt
= ωi − ω j − κ

N

N∑
k=1

P(xk)
[
R(xi) − R(x j)

]

= ωi − ω j − κP(μ)R′(μ)δi, j + κ

N

N∑
k=1

Ei, j,k

where Ei, j, k = P(μ)R′(μ)(xi − xj) − P(xk)[R(xi) − R(xj)] that we bound from above using
the following estimates:

P(xk)[R(xi) − R(x j)] = P(μ)[R(xi) − R(x j)] + Ẽi, j,k,

|Ẽi, j,k| ≤ ‖P′‖∞‖R′‖∞|xk − μ||xi − x j| < ‖P′‖∞‖R′‖∞D2,

P(μ)[R(xi) − R(x j)] = P(μ)R′(μ)(xi − x j) + Êi, j,k,

|Êi, j,k| < ‖P‖∞‖R′′‖∞D2,

and |ωi − ωj| � 2γ . �

We estimate in the following lemma the velocity of μ. We will later find conditions on
(γ , κ) so that dμ

dt > 0. The constant C̃ is defined in Lemma 2.2.

Lemma 2.3: Assuming the same hypotheses as in Lemma 2.2, we have
∣∣∣∣1 − κP(μ)R(μ) − d

dt
μ

∣∣∣∣ ≤ γ + C̃κD, ∀t ∈ [0, t∗].

Proof: We use indeed the estimates |xi − μ| � D, |1 − 1
N

∑N
k=1 ωk| ≤ γ ,

dμ

dt
= 1 − κP(μ)R(μ) −

[
1 − 1

N

N∑
k=1

ωk

]
+ κ

N

N∑
k=1

Ek, where

Ek = 1
N

N∑
i=1

[P(μ)(R(μ) − R(xi)) − (P(xk) − P(μ))R(xi)].

�

We now assume that (γ , κ) have been chosen so that

1 − γ − C̃κD − κ

κ∗
> 0. (7)

Notice that the equation dxi
dt = 1 − κP(xi)R(xi) corresponds to γ = 0 and identical initial

conditions in Equation (1). By a small perturbation of γ = 0, and a small perturbation
of the initial condition x1(0) = ��� = xN(0), one obtain dμ

dt = 1 ± ε − κP(μ)R(μ) and
d
dt (xi − x j) = ±εi, j − κP(μ)R′(μ)(xi − x j). The synchronization hypothesis H3 may be
interpreted as a stability hypothesis after changing the time variable t to s = μ(t).

We now proceed formally. Thanks to the definition of κ∗ in (3), condition (7) implies
dμ

dt > 0 on [0, t∗]. We then consider the change of variable s = μ(t) from [0, t∗] to [s0, s∗]
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332 W. OUKIL ET AL.

whre s0 = μ(0) and s∗ = μ(t∗). Let τ be the inverse function

τ :
{
[s0, s∗] → [0, t∗]

s �→ τ (s) . (8)

Define x∗
i (s) = xi ◦ τ (s),X∗(s) = (x∗

1(s), . . . , x∗
N (s)), δ∗

i, j(s) = x∗
i (s) − x∗

j (s).With respect
to the new variable s, Lemma 2.2 admits the following equivalent form.

Lemma 2.4: We assume the same hypotheses as in Lemma 2.2 and the new condition (7).
Then,

d
ds

δ∗
i, j(s) < α(γ , κ,D) − βκ (s)δ∗

i, j(s), ∀s ∈ [s0, s∗],

where

α(γ , κ,D) := 2γ +CκD2

1 − κ/κ∗
+ (2γ +CκD2 + C̃κD)(γ + C̃κD)

(1 − γ − C̃κD − κ/κ∗)(1 − κ/κ∗)
,

βκ (s) := κP(s)R′(s)
1 − κP(s)R(s)

.

Proof: The chain rule gives d
dt δi, j = d

dsδ
∗
i, j

d
dt μ, or

d
ds

δ∗
i, j(1 − κP(μ)R(μ)) = d

dt
δi, j + d

ds
δ∗
i, j

(
1 − κP(s)R(s) − d

dt
μ

)
.

The definition of κ∗ implies 1− κP(μ)R(μ)� 1− κ/κ∗ > 0. FromLemma 2.2, one obtains

d
ds

δ∗
i, j ≤

(2γ +CκD2) + d
dsδ

∗
i, j

(
1 − κP(s)R(s) − d

dt μ

)

1 − κP(μ)R(μ)
− βκ (s)δi, j.

From Lemma 2.3, one obtains

d
dt

μ ≥ 1 − κP(μ)R(μ) − γ − C̃κD ≥ 1 − γ − C̃κD − κ/κ∗,∣∣∣∣ ddsδ∗
i, j

∣∣∣∣ ≤ 2γ +CκD2 + C̃κD
1 − γ − C̃κD − κ/κ∗

.

�

Let 
γ , κ , D(s) be the unique C2 2π-periodic solution of the equation

d


ds
= α(γ , κ,D) − βκ (s)


given by Lemma 2.1. The following lemma gives sufficient conditions on (γ , κ , D) so that
max s
γ , κ , D(s) < D.
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DYNAMICAL SYSTEMS 333

Lemma 2.5: There exists an open set U of parameters (γ , κ)whose closure contains {0}× [0,
κ∗], defined in the following way:

U := {(γ , κ) ∈ (0, 1) × (0, κ∗) : 0 < γ < κD2(κ)}, where

D(κ) := min
(
1,

L(κ)

2(2 +C)/(1 − κ/κ∗) + 2C̃(1 + C̃)κ/(1 − κ/κ∗)2

)
,

L(κ) := 1 − exp(− ∫ 2π
0 βκ (s) ds)

2πκ exp(
∫ 2π
0 β−

κ (s) ds)
,

such that, for every (γ , κ) � U,

1 − γ − C̃κD(κ) − κ

κ∗
> 0, and max

s∈[0,2π]

γ,κ,D(κ)(s) < D(κ).

Proof: Thanks to Lemma 2.1, it is enough to check that

α(γ , κ,D(κ))

κL(κ)
< D(κ).

We have

D(κ) <
1 − κ/κ∗
2κ(1 + C̃)

, γ + C̃κD(κ) < κD(κ)(1 + C̃) <
1
2

(
1 − κ

κ∗

)
,

1 − γ − C̃κD(κ) − κ/κ∗ >
1
2

(
1 − κ

κ∗

)
,

α(γ , κ,D(κ)) <
2(2γ +CκD(κ)2)

1 − κ/κ∗
+ C̃κD(κ)(γ + C̃κD(κ))

1
2 (1 − κ/κ∗)2

,

< κD(κ)2
[
2(2 +C)

1 − κ/κ∗
+ 2C̃(1 + C̃)κ

(1 − κ/κ∗)2

]
< κD(κ)L(κ).

�
Definition 2.1: We call dispersion curve the periodic function


γ,κ (s) := 
γ,κ,D(κ)(s), ∀s ∈ R.

We prove the first part of Theorem 1.1. The setCN
γ ,κ defined in Theorem 1.1 is obviously

open and has the shape of a tubular neighbourhood about the line (1, 1, . . . , 1)R with
bounded convex transverse section μ(X) = μ0. We want to prove that CN

γ ,κ is invariant by
the flow of (1). We recall thatU denotes the set of parameters (γ , κ) defined in Lemma 2.5.

Proof of Theorem 1.1 – Item 1: Let X (0) ∈ CN
γ ,κ and

t∗ := sup{t ≥ 0 : ∀ 0 < t ′ < t, δ(t ′) < 
γ,κ (μ(t ′))}.

Assume by contradiction that t∗ < +�. We use the change of variable s = μ(t) for every s
� [s0, s∗], s0 = μ(0) and s∗ = μ(t∗). Then, there exist 1 � i0, j0 � N such that δ∗

i0, j0 (s∗) =
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334 W. OUKIL ET AL.


γ,κ (s∗). Since max
γ , κ < D(κ) and 1 − γ − C̃κD(κ) − κ/κ∗ > 0, Lemma 2.4 implies

d
ds

δ∗
i0, j0 (s∗) < α(γ , κ,D(κ)) − βκ (s)δ∗

i0, j0 (s∗),

= α(γ , κ,D(κ)) − βκ (s)
γ ,k(s∗) = d
ds


γ,κ (s∗).

There exists s< s∗ close enough to s∗ such that δ∗
i0, j0 (s) > 
γ,κ (s), or in other words, there

exists t < t∗ close enough to t∗ such that δi0, j0 (t ) > 
γ,κ (μ(t )). We have obtained a con-
tradiction. �

Wenowprove the secondpart of Theorem1.1.We show there exists a periodically locked
solution X(t) = (x1(t),… , xN(t)) of the system (1) with some initial condition in CN

γ ,κ ,
that is, there exists a common rotation number �γ , κ > 0 such that xi(t) = �γ , κ t + � i(t),
�i = 1,… ,N where � i(t) are periodic functions of period 2π /�γ , κ . Our strategy consists
in constructing, by fixing the mean of X(0), a compact and convex transverse section �γ , κ

to the closure C̄N
γ ,κ , and a continuous Poincaré map Pγ , κ : �γ , κ → �γ , κ by waiting the first

time the mean of X(t) return to 0. We then use Brouwer fixed-point theorem to prove the
existence of a fixed point of Pγ , κ . We denote by �t(X) the flow of Equation (1).

Lemma 2.6: Let (γ , κ) � U where U is defined in Lemma 2.5. Define

�γ,κ = {X ∈ CN
γ ,κ : μ(X ) = 0} and 1 = (1, . . . , 1).

Then, there exist a C2 map (the Poincaré map) Pγ , κ : �γ , κ → �γ , κ and a C2 function (the
return time map) θγ ,κ : �γ,κ → R

+ such that,

�θ(X )(X ) = Pγ ,κ (X ) + 2π1, ∀X ∈ �γ,κ,

2π
1 + γ + κ‖P‖∞‖R‖∞

< θ(X ) <
2π

1 − γ − C̃κD(κ) − κ

κ∗

.

Proof: Let X ∈ CN
γ ,κ such thatμ(X)= 0. Letμ(t) := μ(�t(X)) and τ (s) be the inverse func-

tion ofμ(t) as it has been defined in (5) and (8). We prefer to write the explicit dependence
on X: μX(t) = μ(t) and τX(s) = τ (s). Thanks to Lemma 2.3, we obtain

1 − γ − C̃κD(κ) − κ

κ∗
< μ̇X (t ) < 1 + γ + κ‖P‖∞‖R‖∞.

Define θ(X) := τX(2π). Then,
∫ τX (2π)

0 μ̇X (t )dt = 2π implies the second estimate of the
lemma. Let Pγ ,κ (X ) := �θ(X )(X ) − 2π1. Then,

μ(Pγ ,κ (X )) = μX (θ (X )) − 2π = μX ◦ τX (2π)) − 2π = 0,

δ(Pγ ,κ (X )) = δ(�θ(X )(X )) < 
γ,κ (μX (θ (X )) = 
γ,κ (2π) = 
γ,κ (0).

We have shown that Pγ , κ is a map from �γ , κ into itself. �
Corollary 2.1: The Poincarémap Pγ , κ defined in Lemma 2.6 admits a fixed point X∗ � �γ , κ .
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Proof: �̄γ ,κ is compact and convex; Pγ ,κ : �̄γ ,κ → �̄γ ,κ is continuous. By Brouwer fixed-
point theorem, Pγ , κ admits a fixed point in X∗ ∈ �̄γ ,κ . We claim that X∗ �∈ ∂�̄γ ,κ . Suppose
by contradiction X∗ ∈ ∂�̄γ ,κ . Let

δ∗
i, j(t ) := x∗

i (t ) − x∗
j (t ), δ∗(t ) := max

i, j
δ∗
i, j(t ) and μ∗(t ) := 1

N

N∑
i=1

x∗
i (t ).

Then, there exist 1 � i0, j0 � N, such that δ∗
i0, j0 (0) = 
γ,κ (0). As in the proof of item 1 of

Theorem 1.1, there exists t0 > 0 small enough such that, for every 0 < t < t0, δ∗
i0, j0 (t ) <


γ,κ (μ∗(t )). By repeating this argument for every 1 � i1, j1 � N satisfying the equality
δ∗
i1, j1 (t ) = 
γ,κ (μ∗(t )), we obtain for some t′ > 0, δ∗(t′)< 
γ , κ(μ∗(t′)). The invariance of
CN

γ ,κ implies δ∗(t)< 
γ , κ(μ∗(t)) for every t> t′. We have obtained a contradiction with the
fact that

δ∗(θ (X∗)) = δ∗(0) = 
γ,κ (0) = 
γ,κ (2π) = 
γ,κ (μ∗(θ (X∗)).

�
Proof of Theorem 1.1 – Item 2: Corollary 2.1 implies the existence of a point X∗ ∈ CN

γ ,κ and
a time θ∗ > 0 such that �θ∗ (X∗) = X∗ + 2π1. By the uniqueness property of the solutions
of an ODE, we have

�θ∗+t (X∗) = �t (X∗) + 2π1, ∀t ≥ 0.

Let �(s) := �s(X∗) − 2πs
θ∗ 1 = (�1(s), . . . , �N (s)), �s � 0. Then, � is periodic of period

θ∗. We have indeed

�(s + θ∗) = �s+θ∗ (X∗) − 2π
s + θ∗

θ∗
1 = �s(X∗) + 2π1 − 2π

s + θ∗
θ∗

1 = �(s).

Moreover, the return time θ∗ is uniformly bounded from above with respect to N as in
Lemma 2.6. �

3. Numerical results

The study of organized populations has been modelled by Winfree in [1] in 1967. He
observed that aweek coupling between independent individuals tends to synchronize them.
An example of biological synchronization is given by flashes of tropical fireflies. The syn-
chronization appears when the individuals emit their flashes simultaneously with the same
frequency. In this section, we analyze a simplified Winfree model given by Equation (4)
with Pβ(x) = 1 + cos (x + β) and R(x) = sin (x).

When β = 0, the synchronization hypothesis H3 is satisfied. Indeed,

d
ds

(ln(1 − κP0R)) = −κ(P′
0R + P0R′)

1 − κP0R
,

D
ow

nl
oa

de
d 

by
 [

Se
ou

l N
at

io
na

l U
ni

ve
rs

ity
] 

at
 0

1:
49

 2
5 

A
ug

us
t 2

01
7 



336 W. OUKIL ET AL.

(a) β = 0 (b) β = π
2 − 0.5 (c) β = π

2 − 0.25

Figure . Numerical domain of synchronization Uβ of model (). In all cases, we choose initial conditions
randomlydistributed in [− π

2 , π
2 ]andN= oscillatorswithorderedandequidistantnatural frequencies

ωi in [− γ , + γ ].Uβ is in grey and obtained by testing the largest γ satisfying dX(T)< π . In Figure (a),
T = , β =  and κ∗(β) � .. In Figure (b), T = , β = π

2 − 0.5 and κ∗(β) � .. In Figure
(c), T= , β = π

2 − 0.25 and κ∗(β)� ..

and
∫ 2π

0

P0R′

1 − κP0R
ds = −

∫ 2π

0

P′
0R

1 − κP0R
ds

=
∫ 2π

0

sin2(s)
1 − κ(1 + cos(s)) sin(s)

ds >
π

3
.

The numerical value of κ∗ is 4
3
√
3 ∼ 0.769 and the two constants C and C̃ of Lemmas 2.2

and 2.3 are bounded from above by 3. The theoretical domain of parameters U for which
the Winfree model is synchronized is built in Lemma 2.5 using D(κ) and L(κ). Its size
is very small, 10−3 smaller than the size of the numerical domain one can expect as in
Figure 1(a).

In order to analyze numerically the hypothesis H3, we discuss model (4) for different
values ofβ � [0,π].We use two different order parameters tomeasure the synchronization

rX (β) := 1
N

N∑
j=1

eix j (T ), dX (T ) := max
i

|xi(T ) − μ(T )|.

Figure 1 shows the numerical domains Uβ of synchronization for three different values of
β . The domain decreases along the γ -direction as β increases to π

2 as we shall see. The
critical parameter giving the transition to the death state is defined as in Equation (3) by
κ∗(β) := max{Pβ (x)R(x) : x ∈ R}−1.

We show in Figure 2(a) the variation of the critical parameter κ∗(β) for β � [0, π]; we
notice that the minimum is obtained at κ∗(0) � 0.769. Let

Hκ (β) :=
∫ 2π

0

Pβ (s)R′(s)
1 − κPβ (s)R(s)

ds.

We also show numerically in Figure 2(a), that the grey region corresponds to the domain of
(β , κ) satisfying β � [0, π], κ � [0, κ∗(β)], andHκ(β)> 0, that is to the domain β < π

2 . As
noticed by the referee, the symmetry Hκ(β) = −Hκ(π − β) implies Hκ (

π

2 ) = 0 for every
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(a) (b)

Figure . We plot in Figure (a) the critical parameter of the death state transition κ∗(β). We choose in
Figure (b) κ = ., T= ×  and draw the desynchronization curve, the largest γ for which dX(T)< π .
We use the same experiment parameters as in Figure .

(a) (b) (c)

Figure . The plot the order parameter |rX(β)| at T=  and κ = .. The other parameters are chosen
as in Figure . (a) γ  = , (b) γ  = ., (c) γ  = ..

κ ∈ [0, κ∗( π

2 )]. We choose κ = 0.6 in Figure 2(b) and compute the largest γ satisfying
dX(T) < 3π , that is, the boundary of Uβ at κ = 0.6. We notice that the numerical domain
of synchronization is negligible if and only if β ∈ [π

2 , π].
We study in Figure 3 the variation of the order parameter |rX(β)| as β increases in [0,

π] at a given time T and coupling strength κ . A numerical value |rX(β)| � 1 suggests a
very tight cluster of almost all oscillators on the circle; a value |rX(β)| � 0 suggests on the
contrary symmetrically distributed oscillators. We observe a sharp decrease of |rX(β)| at
β = π

2 , that is, when Hκ(β) becomes negative.
Figure 4 shows the graph of dX(t) as a function of t� [0, 3× 104] for different values of γ

and β at a given κ = 0.6. It also shows the location of the oscillators on the circle at the final
time T= 3× 104. Synchronization has been defined by the condition supt>0 dX (t ) < +∞.
For β > π

2 , except at γ � 0, t �→ dX(t) does not seem to be bounded: the oscillators are
desynchronized. This observation corroborates the disappearance of the synchronization
domain in Figure 2 when β > π

2 . For γ = 0, the oscillators have identical natural frequen-
cies; the comparison principle of ODEs in the periodic case implies, if max 1 � i, j � N|xi(0)
− xj(0)| � 2π , that dX(t) � 2π for every t > 0, the oscillators are always synchronized. For
β < π

2 , we choose two values of γ which are close, but above, the desynchronization curve:
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(a)

(b)

(c)

Figure . We choose κ = ., random initial conditions in [ − π , π ], and the other parameters as in
Figure . We choose vertically from bottom to top, γ  = , γ  = . and γ  = ., horizontally from
left to right, β = , β = π

2 − 0.5, β = π
2 − 0.25, β = π

2 + 0.25 and β = π
2 + 0.5. We plot the order

parameter dX(t) for t� [, × ], the oscillators on the circle (bold dots) and the order parameter rX(β)
(circle dot) at time T= × . (a) γ  = ., (b) γ  = ., (c) γ  = .

γ1 > γ (π

2 − 0.25) and γ2 > γ (π

2 − 0.5). The plots suggest a non-decreasing function t �→
dX(t) going to infinity with flat parts.

4. Conclusion

We defined synchronization as a state where the dispersion of the oscillators is uniformly
bounded in time. For every given coupling strength κ , corresponding to the non-death
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state, we showed analytically the existence of synchronized oscillators when hypothesis H3
is satisfied and when the spectrum width γ is sufficiently smaller than some value depend-
ing on κ . In addition, under the same hypothesis, we showed the existence of N periodic
synchronized oscillators with the same strong rotation number. We also showed numeri-
cally, for a parametrized simplifiedWinfreemodel at a given coupling strength, that hypoth-
esis H3 seems to be necessary for the existence of synchronization.
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