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ABSTRACT
In this article we prove the stability of some mean field systems sim-
ilar to the Winfree model in the synchronized state. The model is
governed by the coupling strength parameter κ and the natural fre-
quencyof eachoscillator. The stability is proved independently of the
number of oscillators and the distribution of the natural frequencies.
The main result is proved using the positive invariant cone method
for the linearized system. This method can be applied to other mean
field models as in the Kuramoto model.
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1. Introduction andmain result

In 1967Winfree [8] proposed ameanfieldmodel describing the synchronization of a popu-
lation of organisms or oscillators that interact simultaneously [1, 7]. Themean fieldmodels
are used, for example, in the Neurosciences to study of neuronal synchronization in the
brain [2, 3]. The Winfree model is given by the following differential equation

ẋi = ωi − κσ(x)R(xi), t ≥ 0, x = (x1, . . . , xn),

σ(x) := 1
n

n∑
j=1

P(xj), ∀x = (x1, . . . , xn) ∈ R
n,

sup
x∈R

P(x)R(x) > 0, P,R ∈ C2(R) are 2π-periodic, (1)

where n ≥ 1 is the number of oscillators, σ(x) is the mean field interaction, xi(t) is the
phase of the ith oscillator, and x(t) = (x1(t), . . . , xn(t)) is the global state of the system.We
assume that the natural frequencies are chosen indifferently in some interval about ω = 1,

ωi ∈ (1 − γ , 1 + γ ), where γ ∈ (0, 1). (2)
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The coupling strength κ is taken in the interval (0, 1). Let

M := 16max{‖P(i)‖∞‖R(j)‖∞ : 0 ≤ i, j ≤ 2}, (3)

be a constant used explicitly in some estimates measuring the size of the mean field.
We first define the notions of invariance and stability. Let n ∈ N∗ and F : Rn → Rn be

a C1 vector field. Denote DF its Jacobian and assume

max
{
sup
z∈Rn

‖F(z)‖ , sup
z∈Rn

‖DF(z)‖
}

< ∞.

where ‖·‖ is the usual matrix norm. Let φt : Rn → Rn be the flow of the autonomous
system

ẋ = F(x), t ≥ 0. (4)

Definition 1.1 (Invariance): Let C ⊂ Rn be an open set. We say that C is φt-positively
invariant for the system (4), if φt(C) ⊂ C for all t ≥ 0.

Definition 1.2 (Stability): Let C ⊂ Rn be an open set. We say that the system(4) is φt-
positively stable on C, if C is φt-positively invariant and

∃λ > 0, ∀ x ∈ C, ∃δ > 0, ∀y ∈ C :∥∥x − y
∥∥ < δ =⇒ ‖φt(x) − φt(y)‖ ≤ λ

∥∥x − y
∥∥ , ∀t ≥ 0.

Let 
t be the flow of theWinfree model (1). The existence of a synchronization state in
the Winfree model is proved in [5] for every number n of oscillators and every choice of
natural frequencies. We recall the main synchronization hypothesis used in [5],∫ 2π

0

P(s)R′(s)
1 − κP(s)R(s)

ds > 0, ∀ κ ∈ (0, κ∗), (H)

where κ∗ is the locking bifurcation critical parameter κ∗ defined by

κ∗ :=
(
sup
x∈R

P(x)R(x)
)−1

. (5)

We proved in [5] there exists an open set

U ⊂
{
(γ , κ) ∈ (0, 1) × (0, κ∗) : 1 − γ − κ

κ∗
> 0

}

containing in its closure {0} × [0, κ∗], such that for every n ≥ 1 and every parameter
(γ , κ) ∈ U there exist two constants D ∈ (0, 1) and α(γ , κ ,D),

1 − γ − MκD − κ/κ∗ > 0,

α(γ , κ ,D) := 2γ + MκD2

1 − κ/κ∗
+ (2γ + MκD2 + MκD)(γ + MκD)

(1 − γ − MκD − κ/κ∗)(1 − κ/κ∗)
, (6)

and a C2 2π-periodic function �γ ,κ : R → (0,D) solution of

d
ds

�γ ,κ(s) = − κP(s)R′(s)
1 − κP(s)R(s)

�γ ,κ(s) + α(γ , κ ,D), (7)
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and a
t-positively invariant open setCn
γ ,κ independent of choice of the natural frequencies

(ωi)
n
i=1,

Cn
γ ,κ :=

{
x = (xi)ni=1 ∈ R

n : max
i,j

|xj − xi| < �γ ,κ

(
1
n

n∑
i=1

xi
)}

. (8)

The following main result asserts that Cn
γ ,κ is positively stable.

Consider the Winfree model (1) and assume that hypothesis (H) is satisfied. Then
for every parameter (γ , κ) ∈ U, for every n ≥ 1 and every choice of natural frequencies
(ωi)

n
i=1 as in (2), the Winfree model (1) is 
t-positively stable on Cn

γ ,κ .
Using a more refined version of Theorem 2 in Saito, see [4, 6], one can prove the

existence of a uniform rotation vector ρ ∈ Rn such that for every initial condition x ∈ Cn
γ ,κ


t(x) = ρt + px(t), ∀ t ≥ 0

where px(t) is an almost periodic function.

2. Invariant cone and stability

We study in this section the stability of a system of the form (4) using the positive invari-
ant cone method for the linearized equation. Propositions 2.3 and 2.5 are the two main
ingredients that guarantee the stability of the Winfree model. We actually consider more
generally a parametrized linear system of the form,

ẏ = A(x, t)y, t ≥ 0, x ∈ C, (9)

whereC is an open set andA(x, t) is a continuous n × nmatrix function onC × R+. Let� t
x

be the fundamental matrix of (9) parametrized by x ∈ C. The fundamental matrix cocycle
of the system (9) is denoted by

� t,t′
x (z) := � t

x
(
� t′

x
)−1

(z), ∀ z ∈ R
n, ∀ t ≥ t′ ≥ 0.

Let V+ be the positive cone defined by

V+ := {(z1, . . . , zn) ∈ R
n : zi ≥ 0, ∀ i = 1, . . . , n}. (10)

Definition 2.1: Consider the linear system (9). We say that the cone V+ is � t
x-positively

invariant uniformly in x ∈ C if

∃δ > 0, ∀ x ∈ C, ∃tx ∈ [0, δ] : � t,tx
x (V+) ⊂ V+, ∀ t ≥ tx.

Definition 2.2: Consider the linear system (9). Let � t
x be its fundamental matrix. We say

that (9) is � t
x-positively stable uniformly in C if

∃λ > 0, ∀ x ∈ C, ∀ t ≥ 0,
∥∥� t

x
∥∥ ≤ λ.

We study in the next proposition the stability of some classes of nonlinear systems using
the positive invariant cone method.
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Proposition 2.3: Consider the system (4). Let be F := (f1, . . . , fn). Suppose that there exists
a φt-positively invariant open set C ⊂ Rn and there exists α > 0 such that

fi(φt(x)) ≥ α, ∀ x ∈ C, ∀ t ≥ 0, ∀i ∈ {1, . . . , n}.

Let x ∈ C and � t
x be the fundamental matrix of the linearized system

ẏ = DF(φt(x))y, t ≥ 0. (11)

Suppose that V+ as in (10) is� t
x-positively invariant uniformly in C, then (4) is φt-positively

stable on C.

To prove Proposition 2.3 we use the next Lemma which gives a sufficient condition of
the stability of the system (4) as defined in Definition 1.2.

Lemma 2.4: Consider the system (4). Suppose that there exists a φt-positively invariant open
set C ⊂ Rn such that the linear system

ẏ = DF(φt(x))y, ∀ t ≥ 0, ∀ x ∈ C, (12)

is � t
x-positively stable uniformly in C. Then (4) is φt-positively stable on C.

Proof: The system (4) can be written as

d
dt
Dφt(x) = DF(φt(x))Dφt(x) with � t

x = Dφt(x).

Since the system (12) is � t
x-positively stable uniformly in C, we have

∃λ > 0, ∀ x ∈ C, ∀ t ≥ 0, ‖F(z)‖ (x) ≤ λ. (13)

Let (z1, z2) ∈ C × C such that z(s) := (1 − s)z2 + sz1 ∈ C for all s ∈ [0, 1]. Then

∥∥φt(z1) − φt(z2)
∥∥ =

∥∥∥∥
∫ 1

0

d
ds

φt(z(s))ds
∥∥∥∥ =

∥∥∥∥
∫ 1

0
Dφt(z(s))

dz(s)
ds

ds
∥∥∥∥ ,

=
∥∥∥∥
∫ 1

0
Dφt(z(s))(z1 − z2) ds

∥∥∥∥ ≤ sup
s∈[0,1]

∥∥Dφt(z(s))(z1 − z2)
∥∥ .

Finally, use the fact z(s) ∈ C and use equation (13) to obtain

∥∥φt(z1) − φt(z2)
∥∥ ≤ λ‖z1 − z2‖, ∀t ≥ 0,

which implies that the (4) is φt-positively stable on C. �
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Proof: Since V+ is � t
x-positively invariant uniformly in C,

∃δ > 0, ∀ x ∈ C, ∃tx ∈ [0, δ] : z ∈ V+ =⇒ � t,tx
x (z) ∈ V+, ∀ t ≥ tx.

Let be η := α−1, x ∈ C, y ∈ Rn, and denote

z+ := η
∥∥y∥∥ F(φtx(x)) + y and z− := η

∥∥y∥∥ F(φtx(x)) − y.

On the one hand, z+ := (z+1 , . . . , z+
n ) ∈ V+ and z− := (z−1 , . . . , z−

n ) ∈ V+,

min
1≤i≤n

{z−
i , z

+
i } ≥ η

∥∥y∥∥ min
1≤i≤n

{
inf
x∈C

fi(φtx(x))
}

− ∥∥y∥∥ ≥ (ηα − 1)
∥∥y∥∥ = 0.

On the other hand, F(φt(x)) is solution of the linearized system (11)

d
ds
F(φs(x)) = DF(φs(x))F(φs(x)),

F(φt(x)) = � t,t∗
x F(φt∗(x)).

Since V+ is � t
x-positively invariant uniformly in C, we obtain

η
∥∥y∥∥ F(φt(x)) + � t,tx

x (y) = � t,tx
x (z+) ∈ V+, ∀ t ≥ tx,

η
∥∥y∥∥ F(φt(x)) − � t,tx

x (y) = � t,tx
x (z−) ∈ V+, ∀ t ≥ tx.

Put r := max{∥∥F(φt(x))
∥∥ , ∥∥DF(φt(x))

∥∥} < +∞ we obtain
∥∥�t,tx

x (y)
∥∥ ≤ ηr‖y‖, ∀t ≥ δ,

∥∥� t
x
∥∥ ≤ exp(rδ), ∀t ∈ [0, δ],∥∥� t

x(y)
∥∥ ≤ λ‖y‖, ∀x ∈ C, ∀t ≥ 0,

where λ := ηr exp(rδ). The linearized system (11) is � t
x-positively stable uniformly in C.

Lemma 2.4 implies that (4) is φt-positively stable on C. �

We give in the following proposition a sufficient condition for the invariance of the cone
V+.

Proposition 2.5: Let p, q : R → R be continuous 2π-periodic functions, and gi, hi,j :
[0,+∞) → R, 1 ≤ i, j ≤ n, be continuous functions. Consider the linear non-autonomous
ODE

dzi
ds

= gi(s)zi + 1
n

n∑
j=1

(
p(s) + hi,j(s)

)
zj, ∀ s ≥ 0, ∀ 1 ≤ i ≤ n. (14)

Assume there exists a constant D>0 and a continuous 2π-periodic function δ : R → (0,D)

such that

• ∫ 2π
0 p(s) ds > 0,

• dδ/ds = −p(s)δ + q(s), ∀ s ≥ 0,
• 0 ≤ gi(s) ≤ q(s)/4D, |hi,j(s)| ≤ q(s)/8D, ∀ s ≥ 0.
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Let �s,s′ be the fundamental matrix of (14). Then there exists s∗ ∈ [0, 2π] such that
�s,s∗(V+) ⊂ V+ for all s ≥ s∗.

Proof: Let be s∗ ∈ [0, 2π] satisfying

max
s∈[0,2π]

δ(s) = δ(s∗). (15)

Let �s,s′ = (�
s,s′
1 , . . . ,�s,s′

n ) be the fundamental matrix cocycle of (14). Let V+ be the
interior of the set V+, z∗ ∈ V+ fixed, and z(s) = �s,s∗(z∗). By continuity,

∃s1 > s∗ : z(s) ∈ V+, ∀ s ∈ [s∗, s1).

Define

S := sup
{
s > s∗ : z(s′) ∈ V+, ∀ s′ ∈ [s∗, s)

}
.

The proposition is proved if we show S = +∞. By contradiction, suppose that S < +∞,
then

z(S) /∈ V+. (16)

Define

μ(s) := 1
n

n∑
i=1

zi(s).

By uniqueness of solutions μ(s) > 0, ∀ s ∈ [s∗, S]. Then for all s ∈ [s∗, S],

dzi
ds

= gi(s)zi + (p(s) + hi(s))μ(s),

where

hi(s) :=
∑n

j=1 hi,j(s)zj(s)∑n
j=1 zj(s)

.

Define

g(s) :=
∑n

i=1 gi(s)zi(s)∑n
i=1 zi(s)

, and h(s) := 1
n

n∑
i=1

hi(s).

Then

0 ≤ g(s) ≤ q(s)
4D

, |hi(s)| ≤ q(s)
8D

, |h(s)| ≤ q(s)
8D

.

Define

a(s) := g(s) + p(s) + h(s), ∀ s ≥ s∗.

Then
dμ
ds

= a(s)μ, μ(s) = μ(s∗) exp
( ∫ s

s∗
a(ζ ) dζ

)
.
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Since |p(s) + hi(s) − a(s)| = | − g(s) + hi(s) − h(s)| ≤ q(s)/(2D), we have

dzi
ds

≥ (p(s) + hi(s))μ(s),

≥ (p(s) + hi(s))μ(s∗) exp
( ∫ s

s∗
a(ζ ) dζ

)
,

zi(s) − zi(s∗)
μ(s∗)

≥
∫ s

s∗

(
p(s′) + hi(s′) − a(s′)

)
exp

(∫ s′

s∗
a(ζ ) dζ

)
ds′

+
∫ s

s∗
a(s′) exp

( ∫ s′

s∗
a(ζ ) dζ

)
ds′

≥ exp
( ∫ s

s∗
a(ζ ) dζ

)
− 1 −

∫ s

s∗

q(s′)
2D

exp
(∫ s′

s∗
a(ζ ) dζ

)
ds′.

Multiplying by δ(s∗) exp(−
∫ s
s∗ a(ζ ) dζ ) and using δ(s∗) < D, we get

δ(s∗)zi(s)
μ(s)

≥ δ(s∗) − δ(s∗) exp
(

−
∫ s

s∗
a(ζ ) dζ

)

−
∫ s

s∗

q(s′)
2

exp
(

−
∫ s

s′
a(ζ ) dζ

)
ds′.

Let δ̃(s) be the unique solution of

dδ̃
ds

= −a(s)δ̃ + q(s)
2

, ∀ s ∈ [s∗, S], δ̃(s∗) = δ(s∗).

Then

δ̃(s) = δ(s∗) exp
(

−
∫ s

s∗
a(ζ ) dζ

)

×
∫ s

s∗

q(s′)
2

exp
(

−
∫ s

s′
a(ζ ) dζ

)
ds′,

δ(s∗)zi(s)
μ(s)

≥ δ(s∗) − δ̃(s), ∀ s ∈ [s∗, S]. (17)

Notice that

a(s) = g(s) + p(s) + h(s) ≥ p(s) − q(s)
2D

, ∀ s ∈ [s∗, S].

Then

dδ̃
ds

≤ −p(s)δ̃ + q(s)
2

(
1 + δ̃

D

)
, ∀ s ∈ [s∗, S].

To obtain z(S) ∈ V+ and get a contradiction with (16), it is sufficient to prove that δ̃(s) ≤
δ(s), ∀ s ∈ (s∗, S]. For that, we use the comparison principle of differential equations. Since
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0 < δ̃(s∗) = δ(s∗) < D and

dδ̃
ds

(s∗) < −p(s∗)δ̃(s∗) + q(s∗) = dδ
ds

(s∗)

there exists ε > 0 such that δ̃(s) < δ(s) for all s ∈ (s∗, s∗ + ε). Define

S̃ := sup
{
s ∈ [s∗, S] : δ̃(s′) < δ(s′), ∀ s′ ∈ (s∗, s]

}
.

We show that that S̃ = S. By contradiction, if S̃ < S, then δ̃(S̃) = δ(S̃),

dδ̃
ds

(S̃) < −p(S̃)δ̃(S̃) + q(S̃) = dδ
ds

(S̃),

and we could find s < S̃ close enough to S̃ such that δ̃(s) > δ(s). We have obtained a con-
tradiction. Then S̃ = S and δ̃(S̃) < δ(S̃) ≤ δ(s∗). Equation (17) implies z(S) ∈ V+, which
is a contradiction with (16). We have obtained z(s) ∈ V+ for all s ≥ s∗. By continuity of
the fundamental matrix cocycle, we have proved that z(s) ∈ V+ for all z(s∗) ∈ V+ and all
s ≥ s∗. �

3. Proof of themain result

We prove in this Section the Main result of Section 1. We consider the Winfree model (1)
and its associated flow 
t . We recall that the Winfree model satisfies the hypothesis (H).
The linearized Winfree model is given by

dy
dt

= DW(
t(x))y, t ≥ 0, y = (y1, . . . , yn),

Wi(x) := ωi − κσ(x)R(xi), x = (x1, . . . , xn) ∈ R
n,

∂Wi

∂xj
= −κ

[
σ(x)R′(xi)δi,j +

R(xi)P′(xj)
n

]
. (18)

We fix (γ , κ) ∈ U and an initial condition x∗ ∈ Cn
γ ,κ defined in (8). We denote by � t

x∗
the fundamental matrix of (18). Let x(t) = 
t(x∗) be the solution of (1) starting at x∗, and

μ(t) := 1
n

n∑
i=1

xi(t), ∀ t ≥ 0.

The main idea of the proof is to rewrite the linearized Winfree model by making a change
of time t ↔ s and a linear change of the tangent vectors y ↔ z. We first notice that the
velocity of μ is strictly positive,

dμ
dt

= 1
n

n∑
i=1

ωi − κσ(x)
1
n

n∑
i=1

R(xi),

≥ (
1 − κσ(μ)R(μ)

) − (
γ + κMD

) ≥ 1 − κ/κ∗ − γ − κMD > 0.

The first inequality uses the definition of the constant M in (3), the estimates (2) on the
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natural frequencies, the fact that Cn
γ ,κ is positively invariant, that �γ ,κ defined in (7) is

bounded from above by D, and the simple estimate,

|xi − μ| ≤ �γ ,κ(μ) ≤ D, ∀ 1 ≤ i ≤ n,
∣∣∣∣σ(μ)R(μ) − 1

n

n∑
i=1

σ(x)R(xi)
∣∣∣∣ ≤ M

n

n∑
i=1

|xi − μ| ≤ MD.

The second inequality uses the definition of κ∗ in (5) and the third inequality uses the
bound from below (6). Let be s∗ := μ(0). The map

t ∈ [0,+∞) �→ μ(t) ∈ [s∗,+∞)

is a smooth diffeomorphism admitting as inverse map

s ∈ [s∗,+∞) �→ τ(s) ∈ [0,+∞).

Define for t = τ(s) ⇔ s = μ(t),

v(s) := dμ
dt

(t),

fi(s) := κσ(x(t))R′(xi(t))
v(s)

f (s) := max
1≤i≤n

fi(s),

zi(s) := yi(t) exp
( ∫ s

s∗
f (u) du

)
,

gi(s) := f (s) − fi(s),

p(s) := − κP′(s)R(s)
1 − κP(s)R(s)

,

q(s) := (1 − κ/κ∗)α(γ , κ ,D)

1 − κP(s)R(s)
,

hi,j(s) := −κR(xi(t))P′(xj(t))
v(s)

+ κP′(s)R(s)
1 − κP(s)R(s)

.

Lemma 3.1: Then

(1) dzi/ds = gi(s)zi + (1/n)
∑n

j=1(p(s) + hi,j(s))zj, ∀ s ≥ 0, ∀ 1 ≤ i ≤ n,
(2)

∫ 2π
0 p(s) ds > 0,

(3) p, q : R → R are continuous and 2π-periodic,
(4) 0 ≤ gi(s) ≤ q(s)/4D, |hi,j(s)| ≤ q(s)/8D.
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Proof: Using the change of variable z̃i(s) = yi ◦ τ(s), x̃i(s) = xi ◦ τ(s), equation (18)
becomes, v(s) := d/dtμ ◦ τ(s),

dz̃i
ds

(s) = 1
v(s)

dyi
dt

(t) = − κ

v(s)

(
σ(x̃)R′(x̃i)z̃i + 1

n

n∑
j=1

R(x̃i)P′(x̃j)z̃j
)
,

= −fi(s)z̃i + 1
n

n∑
j=1

(
p(s) + hi,j(s)

)
z̃j

Making the scaling zi(s) := z̃i(s) exp(
∫ s
s∗ f (u) du), one obtains item (1). Item (2) is a

consequence of hypothesis (H) and

d
ds

log
(

1
1 − κP(s)R(s)

)
= p(s) − κP(s)R′(s)

1 − κP(s)R(s)
,

∫ 2π

0
p(s) ds =

∫ 2π

0

κP(s)R′(s)
1 − κP(s)R(s)

ds > 0.

Item (3) is true by definition of p and q. Using |x̃i(s) − s| ≤ D, the estimate on hi,j is given
by

|hi,j(s)| ≤ κ|R(s)P′(s) − R(x̃i)P′(x̃i)|
1 − κP(s)R(s)

+ κ|R(x̃i)| |P′(x̃i)| |v(s) − (1 − κP(s)R(s))|
v(s)(1 − κP(s)R(s))

≤ κM
8(1 − κP(s)R(s))

[
D + γ + κMD

1 − κ/κ∗ − γ − κMD

]

≤ α(γ , κ ,D)

8D
1 − κ/κ∗

1 − κP(s)R(s)
= q(s)

8D
.

The estimate on gi is given by

gi(s) ≤ max
1≤i,j≤n

κ|σ(x̃)| |R′(x̃i) − R′(x̃j)|
v(s)

≤ κMD
4(1 − κP(s)R(s))

+ κMD(1 − κP(s)R(s) − v(s))
4v(s)(1 − κP(s)R(s))

≤ κMD
4(1 − κP(s)R(s))

[
1 + γ + κMD

1 − κ/κ∗ − γ − κMD

]
≤ q(s)

4D
. �

We now conclude the proof of the main results: we will show that V+ is � t
x-positively

invariant uniformly in Cn
γ ,κ ; proposition 2.3 will imply that the Winfree model is 
t-

positively stable uniformly on Cn
γ ,κ .

The fact that V+ is positively invariant is a direct consequence of Proposition 2.5
applied to the linearized Winfree model written in terms of the new variables z(s) =
(z1(s), . . . , zn(s)). Part of the hypotheses of Proposition 2.5 have been proved in Lemma3.1.
We prove in the following lemma the remaining hypothesis.
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Lemma 3.2: There exists a continuous 2π-periodic function δ : R → (0,D) such that

dδ
ds

= −p(s)δ + q(s), ∀ s ≥ 0.

Proof: Let �γ ,κ(s) be the positive 2π−periodic function as in (7). Define

δ(s) := 1 − κ/κ∗
1 − κP(s)R(s)

�γ ,κ(s).

Then δ ≤ �γ ,κ < D, and

dδ
ds

= (1 − κ/κ∗)κ(P′(s)R(s) + P(s)R′(s))
(1 − κP(s)R(s))2

�γ ,κ + 1 − κ/κ∗
1 − κP(s)R(s)

d�γ ,κ

ds
,

= κP′(s)R(s)
1 − κP(s)R(s)

δ + (1 − κ/κ∗)α(γ , κ ,D)

1 − κP(s)R(s)
= −p(s)δ + q(s). �

4. Conclusion

We studied the stability of the Winfree model in its synchronized state. The proof is based
on the positive invariant cone method. The main synchronization hypothesis used in [5]
is again a critical hypothesis for the linear stability.
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