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ABSTRACT

We consider a two-sided sequence of bounded operators in a Banach
space which are not necessarily injective and satisfy two properties
(SVG) and (Fl). The singular value gap (SVG) property says that two
successive singular values of the cocycle at some index d admit a
uniform exponential gap; the fast invertibility (FI) property says that
the cocycle is uniformly invertible on the fastest d-dimensional direc-
tion. We prove the existence of a uniform equivariant splitting of the
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Banach space into a fast space of dimension d and a slow space of in Banach spaces

codimension d. We compute an explicit constant lower bound on the

. . MATHEMATICAL SUBJECT
angle between these two spaces using solely the constants defin- CLASSIFICATION
ing the properties (SVG) and (Fl). We extend the results obtained 37130

by Bochi and Gourmelon in the finite-dimensional case for bijective
operators and the results obtained by Blumenthal and Morris in the
infinite dimensional case for injective norm-continuous cocycles, in
the direction that the operators are not required to be globally injec-
tive, that no dynamical system is involved and no compactness of the
underlying system or smoothness of the cocycle is required. More-
over we give quantitative estimates of the angle between the fast
and slow spaces that are new even in the case of finite-dimensional
bijective operators in Hilbert spaces.

1. Introduction

Let X be a real Banach space and (Ag)xez be a bi-infinite sequence of bounded operators
of X which are not required to be injective, nor compact or quasi-compact. The cocycle
associated to (Ag)kez is the sequence of iterated operators

A(k,n) = Agyp—1-Ags14r, VkeZandVn =0,

with the convention A(k,0) := Id. Our main objective is to find simple conditions on the
sequence (Ag)kez which guarantee the existence of a dominated equivariant uniform split-
ting, that is the existence of an integer d > 1, a sequence (Ey)ez of subspaces of dimension
d on which Ay is injective, a sequence (Fg)kez of subspaces of codimension d, and two
constants D > 1 and T > 0 satisfying the 4 conditions referred as (DEUS) condition,

o VkeZ, X =Ex®Fy, (splitting property)
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e infycy v (Ex, Fx) > 0, (uniform angle property)
o VkeZ, AxEr= Eriqand AgFy < Fyyq, (equivariance property)

|A(kn) | Fe
o VkeZ, Vn=1,
(Ak n) | Ex) =1~

<De ", (domination property)

where y (Ex, Fx) denotes the minimal gap between Ey and Fy (a notion of minimal angle
between two complementary spaces, see Definition A.19),

v (Ex, Fy) := inf{dist(u, Fy) : u € Eg, ||u| = 1},

and |(A(k,n)|Ex)~!|~! and |A(k,n) | F| denote, respectively, the lowest and largest
expansion of the cocycle restricted to Ex and Fy,

|A(k,n) | i := sup{||A(k, n)v] : v € Fy, o] = 1},
[(A(k,n) [ Ex) |71 o= inf{|A(k, n)u| : u € Ep, [u] =1},

(The notation [(A|E)~!||~! will be used only when dim(E) < +o0 and A: E — X is
injective).

In order to distinguish the two equivariant subspaces in this exponential dichotomy,
we will use the terminology fast space for Ex and slow space for F although both operators
A(k,n) : Ex — Exynand A(k,n) : Fx — Fy, may be expanding or contracting. The index
k denotes the position of the cocycle along the sequence (A )rez and n represents the order
of iteration or shift. We interpret A(k, n) as an operator acting from a space above k to a
space above k+n; in particular the dual operator A(k,n)* acts on the dual space as an
operator from a space above k+n to a space above k.

Our main assumption is related to the existence of a uniform gap in the singular value
decomposition (SVD) at index d. The notion of singular values for an operator in a general
Banach space is not well defined. We define the singular value of index d > 1 of an operator
A, to be the number

A
04(A):= sup inf M
dim(E)—d ueE\{0} |||

Equivalent definitions 0;(A), 07/ (A) are given in A.29 and A.31. In the Hilbert case, all
these definitions are equal. To simplify the notations, we use

oq(k,n) :=o4(A(k,n)).

The top singular value is o1 (k,n) = |[A(k,n)| and, in the particular case dim X = d and
A(k, n) is invertible, the bottom singular value is o4(k, n) = |A(k, n)~!||7L.

Main Hypothesis 1.1: Let X be a real Banach space and (A )kez be a sequence of bounded
operators (not necessarily injective nor surjective). We assume there exist an integer d > 1
and constants Dgyg, Dpr = 1, T, 0 > 0 such that
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o the sequence admits a uniform singular value gap at index d

01 (k1) Akn|

< Dsyge ™"
k,n+1
(SVG) VkeZVn>0, oallon 1)
addoank+1m)
oalkn+1) v

(We implicitly assume that o4(k,n) > 0 for every k € Z and n > 0),
o the sequence is d-dimensionally fast invertible

d

(FI) ¥m>0, inf oilk —m.m+ n)
keZ, n>0+ 1 oi(k — m, m)oi(k,n)

Property (FI) is a new property that can be used as a substitute for uniform invert-
ibility along d-dimensional spaces. It is an asymmetric property with respect to forward
and backward iterations related to the fact that the fast space (respectively the slow
space) has dimension d (respectively, codimension d). We will show, thanks to the super-
multiplicative property of a similar quotient, that (FI) is equivalent to a seemingly weaker
property with m =1,

d

eV inf O','(k — 1,1+ 1’1)

FI FI
(FI) = (FD) wezonz0 L L oi(k— 1, D)oi(kon)

> 0.

weak

We have chosen the other form to quantify precisely the minimal gap between the fast and
slow spaces in our main Theorem 1.2 in the Banach spaces case. In the Hilbert spaces case
we may choose Dp; = land v = p.

Property (FI) is used as a sufficient and necessary hypothesis in a bootstrap argument.
Our main result actually shows that the cocycle must satisfy a stronger property (FI)
with a uniform lower bound independent of m,

strong

d oi(k — m,m + n)

FI inf inf > 0.
( )St“’“g rhnzo keZlfanO H oi(k — m,m)o;(k, n)

We will show
(SVG) and (FI) = (FI)

strong*
Notice that we do not assume that the norm of the operators Ay, is uniformly bounded from
above. Notice also that A; may not be invertible.

If the cocycle is uniformly invertible (UI) in the sense

(UI) sup|Axl| < M* and inf HA,:IH_I > M,
keZ keZ

for some constants M*, M > 0, property (FI) is automatically true with Dy = land u :=
dlog(M*/M,). In that case our main result implies

(UI) = (FI), (SVG) and (UI) = (FI)

strong*

The SVG property admits a weaker form. This weaker form is actually equivalent to the
strong one for uniformly invertible cocycles and was introduced by Bochi and Gourmelon
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in [3] for the first time,

oq11(k n)
od(k,n)

nt

(SVG) Kk VkeZ,Vn=0, < Dgyge™

wea!

The strong form (SVG) was introduced by Blumenthal and Morris in [2] in order to
extend the results of Bochi and Gourmelon to the infinite-dimensional case. They nev-
ertheless assume the cocycle to be norm-continuous over a compact dynamical system
and each operator A to be injective. Our property (FI) is used instead of the injectiveness
assumption. Moreover we do not assume that the cocycle is defined over a dynamical sys-
tem, nor do we require regularity conditions as in [2, 3]. Our main objective is to obtain
an effective splitting of the Banach space into a fast and a slow space, equivariant under the
cocycle, for which the angle between the two spaces can be explicitly bounded from below
using only the constants (Dsyg, Dy, 7, i) while avoiding the use of compactness of the
underlying dynamical system and regularity assumptions on the cocycle.

Our estimates depend on a constant K which is only a function of the dimension d and
the Banach space. For a Hilbert space K; = 1, for a general Banach space, K is explicitly
computed given a volume distortion A ;(X) (see Definition A.4) which measures the dis-
tortion of the unit Banach ball to the best fitted Euclidean ball. We have that A 4(X) < v/d
for Banach spaces and A4(X) = 1 for Hilbert spaces. We give an estimate of Ay(X) in
Proposition A.5 when X = Z‘Z is the space of dimension d equipped the p-norm. We do
not intend to undertake a systematic study of A;(X). We have chosen to give a unified
proof for both Banach and Hilbert spaces in such a way the constants appearing in the
estimates become optimal in the Hilbert case.

Our main result is the following theorem that we can summarize by

(SVG) and (FI) — (DEUS).

Theorem 1.2: Let X be a Banach space, d > 1, and (Ax)kez, be a sequence of bounded
operators satisfying the two assumptions (SVG) and (FI) at the index d, for some con-
stants Dsyg, D1 = 1 and ©, 0 > 0. Then there exist a constant Ky depending only on the
dimension d and the Banach norm such that,

(1) there exists an equivariant splitting X = Ej @ Fy, satisfying for every k € Z,
o dim(Ex) = d,Ak(Ek) = Ek+1,Ak(2Fk) C Fiy1s
1 (3d+7)7 1—e 7 ll(/l+4'f)/2772 .

° Ey,Fy) = = Vi
v (EoFi) 5K4Dyr ~ 2KgDpr  Dsyge® v
(2) (FI) < (FI)gyong More precisely for every k € Z, m,n > 1,
oi(lk—m—n,m+n) 3 (3d+7)21—e" n+spr8es) 2e?
b 2 :
,1] oi(k — m,m)oi(k,n) ~ 25K;D3; [ 2K;Dpr Dsvg ef]

(3) The spaces Ex and Fy are called the fast and slow spaces, respectively, and satisfy: for
every k € Z and n such that,

47)\ 1 Dsvg e®
n> (HM) —log( VG € 2(3d+7)21<d),
T

272 1—e 7



DYNAMICAL SYSTEMS (&) 521

o [(A(k,n) | Ex)7 7! = 2Ky (Ex, Fi)oa(k, n),
o [A(k,n) | Fi| < 3Kay (Fiqns Exsn) oy (k ),

[AGkm)[F|  _ 5KDsva

[(Ak, m) [ B) =]~ vi

—nt

Using the definition of A4(X) in Equation (A3), and the constants Cy g4 and éo,d in
Theorems A.35 and A.43, with € = 0, we obtain

~ - - 3
Kq = CjCoi® Ay(X)* A 4(X)3 < (2d) 207
If X is a real Hilbert space then K3 = 1 and Dgy may be chosen equal to 1 in (FI).

Our main result extends the results of Bochi and Gourmelon [3] in the case X = R in
three ways: we do not assume the cocycle to be invertible, we do not introduce a dynam-
ical system, we do not assume either C° regularity or compactness. The proof used in [3]
requires all these assumptions and actually needs the ergodic Oseledets theorem for invari-
ant probability measures. We have chosen to work in two directions: a direction which
gives explicit estimates, especially for the lower bound of the angle, with respect to the ini-
tial data, and a direction which gives an unified proof for Banach and Hilbert spaces. In
order not to introduce artificial constants in the Banach setting, we found it necessary to
develop in Appendix 1 a theory of volume distortion A 4(X) which enables us to quantify
on each d-dimensional space the distortion of the Banach norm with respect to the best
fitted Euclidean norm. The volume distortion Ay4(X) is 1 in the Hilbert case. We express
all estimates in terms of a constant K that is only a function of A4(X) and satisfies K; = 1
in the Hilbert case.

In item (1) we obtain an explicit lower bound of the angle between the fast and slow
spaces depending only on DsyG, D1, 7, i and the dimension d. We have chosen to give
a uniform estimate for every k € Z instead of an asymptotic estimate as k — +00. This
choice has led to additional computation.

In item (2) we prove the strong form (FI) This is actually a simple consequence of

strong*
Lemma A.44 and the uniform bound infycz y (Egk, Fx) > 0. We nevertheless give a precise
estimate valid for all iterates m,n and not just for m,n — +00. In the Hilbert case, the
estimate is simpler with Ky = 1 and Dg; = 1 in (FI).

In item (3) we show that the two equivariant splittings correspond indeed to the fast
and slow spaces; we again made the decision to give explicit but not optimal estimates. The
singular value of index d of the cocycle restricted to the fast space is comparable up to a
factor given by the minimal gap y (Ex, Fx) to the original d-dimensional singular value. A
similar result is obtained for the slow space. For large n and in the Hilbert case, the two
constants %Kd_l and 3K; may be replaced by 1.

The proof of our main result is divided into three parts. In Section 2, we show
how property (SVG) implies the existence of two fast and slow spaces that may not be
complementary. This mechanism is standard in finite dimension since Oseledets [16],
Raghunathan [21], in Hilbert spaces since Ruelle [22], in Banach spaces since Maiié [13],
Thieullen [25, 26], Lian-Lu [11], Blumenthal-Morris [2], Blumenthal [1], and simplified
in Gonzélez-Tokman-Quas [8]. Our proof quantifies precisely the speed of convergence
of the approximate spaces. In Section 3, we show how property (FI) implies that the two
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fast and slow spaces give a splitting of the ambient space. This part is at the heart of the
proof and is new. In Section 4, we show that (FI) is a necessary and sufficient condition
and actually equivalent to a stronger condition (FI)Strong. In the appendix, we recall basic
definitions of the geometric theory of Banach spaces. We recall different notions of distance
between subspaces, several notions of singular values, some facts about the projective norm
on the exterior product. The main purpose of this appendix is to recall without proofs the
standard approximate SVD Theorem A.35.

We would like to thank the referee for his/her careful reading. In the references [12, 14,
15, 18-20, 24] suggested by the referee, the authors extend the well-known Krein-Rutman
theorem, for cocyles of positive and compact linear operators acting on an ordered Banach
space above a measurable dynamical system. The existence of an equivariant d-cone is the
main assumption that implies the existence of a dominated equivariant uniform splitting
where the fast space has dimension d. The domination property is called in that theory
exponential separation, or exponential dichotomy. Observed by the referee, Theorem 1.2
admits a converse statement: the existence of a dominated equivariant uniform splitting
satisfying the extra condition sup, . |Ax | Exll/||(Ax | Ex) '[! < +o0 implies (SVG) and
(FI) gtrong- Without the extra condition, we would only obtain (SVG),ey- The uniform
angle property implies easily the fast invertibility property (FI) (see Lemma A.44). The
converse is the main objective of our paper. The (FI) property is also a necessary condi-
tion in finite dimension if the base dynamical system is not compact. It is indeed easy to
construct an heteroclinic sequence of 2 x 2 invertible matrices between a rank one matrix
and an hyperbolic matrix that admits a splitting which is dominated and equivariant but
does not satisfy the uniform angle property nor the (FI) property. Also observed by the
referee, the only place where the arguments in [2] is non-constructive is in Section 3.2
where the continuity of the fast space is proved and the volume growth of the cocycle along
the fast space is uniformly bounded from below (corollary 23) thanks to the compactness
of the base dynamics. Lastly it would be very interesting to apply these theoretical tech-
niques to more concrete problems: random cocycles of Perron-Frobenius operators as in
[4] where the authors study the notion of coherent structures, or derivative cocycles of
retarded integro-differential equations as in [23].

2. Construction of the fast and slow spaces

The proof of our main result is based on a version of the SVD theorem for a single bounded
operator in the Banach setting. The (SVD) theorem is well known for compact operators in
a Hilbert space (see [17]). We did not find a version of the (SVD) theorem adapted to our
needs in the literature. Appendix 1 fills in this missing piece. The main interest of Appendix
is Theorem A.35 which shows the existence of approximate singular spaces at every index d.
The singular spaces may not be exact because of the non-compactness of the operators and
are thus non-canonical. They depend for instance on an arbitrarily small constant € > 0
coming from the fact that, in the case of infinite Banach or Hilbert spaces, the norm of an
operator may not be attained by a vector of the unit sphere. Notice that we shall not use
the (FI) condition in this section.

The following theorem is a special version of Theorem A.35 applied to each operator
A(k,n) = Agyn—1 - Ak+1Ak. We fix € > 0 and the index d > 1. We show there exist a
pair of complementary spaces X = U(k,n) @ V(k,n) of the source space and a pair of
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complementary spaces X = U(k + n,n) @ V(k + n,n) of the target space that are related
by A(k,n) and A(k, n)*. We replace the usual notion of orthogonality by a weaker notion
using C-Auerbach families (see Definition A.12 for more details). We show that the two
splittings are C, 4-orthogonal in the sense of the following definition.

Definition 2.1: Let X be a Banach space,d > 1,C > 1.

e We say that a family of vectors (uy, . .., uy) is C-Auerbach if
Vi=1,....,d C ' <dist(ujspan(u;:i=j)) < |y <C

e We say a splitting X = U@ V with dim(U) = d is C-orthogonal if there exist a C-
Auerbach basis (ey, . . ., e4) spanning U and a C-Auerbach basis (¢, . . ., ¢4) spanning
VL in the dual space X* which are dual to each other, that is {¢; | ¢}y = &;j, V i,j =
L...,d.

If V  Xis a subspace of X, the annihilator of U is the subspace in the dual space, U~ :=
{peX*:{¢p|uy=0,Vue U}.IfH c X*, the pre-annihilator of H is the subspace in X,
HY = {veX:{(g|v)=0,VYneH).

Theorem 2.2 (Approximate SVD): Let X be a Banach space, d > 1, € > 0, and (Ag)kez
be a sequence of bounded operators. Then there exists a constant Kg > 1 depending only on
the Banach norm and d, such that for everyk € Z,n > 1,and C. 4 := (1 + €)Ky,

(1) there exist two C¢ 4-orthogonal splittings:
e X=U(kn)®V(kn)X=Ulkn) @ V(kn),
e dim(U(k,n)) = dim(U(k,n)) = d,
o Al mU(n) = Ok mn) Ak )Vl n) < T+ ),
o Alkn)* Ok +nn) © UGk m)Y, Ak m V(K + )t = V(k )L,
(2) the singular values of A(k,n) and A(k, n)* restricted to this splzttmg are comparable to
those of A(k,n) on X: forevery1 < i < d,
o oi(k,n) = 0i(A(k,n) | U(k,n)) = oi(k,n)/Ce 4,
o oi(k,n) = oi(A(k,n)* | V(k + n,n)t) = oi(k,n)/Cea,
o o41(kn) < ||A(k,n) | V(kn)| < og41(kn)Cea,
o oy1(kn) < |A(kn)* | Uk + nn)t| < o4e1(kn)Cegs
(3) the minimal gap of the two splittings is uniformly bounded from below,

y(Ulk,n),V(kn)) = 1/Cear  y(V(kn),U(k,n)) = 1/Cea
y(U(k,n), V(k,n)) = 1/Cea, v (V(k,n), Uk, n)) = 1/Cea,

(4) there exits a pair of C. g-Auerbach families of (the source space) X, X*,
(er(k,n),....eq(k,n)), (¢p1(k,n),...,¢4(k n))
and a pair of Cc 4-Auerbach families of (the target space) X, X*,

@k +mn),....eqk+nn)), (1(k+nn),...,¢4(k+nn))
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satisfying
(¢i(k,n) | e](k n)) = 8ijs <¢(k n) ’ej(k n)) = 8ijo
A(k,n)ei(k,n) = ai(k,n)e;(k + n,n),

A(kn)*¢i(k + n,n) = oi(k, n)¢i(k, n),

U(k,n) = span(e; (k, n),...,eqs(k,n)),

V(k,n) = span(¢y (k, n), ..., ¢q(kn))
U(k + n,n) = span(é; (k + n,n),...,e4(k + n,n)),

o V(k+nn) =span(¢pi(k+n,n),...,¢a(k + nn))t.

(5) Moreover Ky = 1 if X is a Hilbert space and € may be chosen to be zero if X is finite-
dimensional.

We call U(k, n) and V(k, n), the approximate fast and slow forward spaces above k. Sim-
ilarly we will call U(k, n) and V (k, 1), defined using A(k — n, n), the approximate fast and
slow backward spaces above k. Since the approximate forward spaces are built using the
sequence of operators (A, Ak+1, - - -, Ak+n—1) and the approximate backward spaces are
built using (Ag—p, Ak—n+15- - -»Ax—1), the two splittings above k, X = U(k,n) ® V(k,n)
and X = U(k,n) ® V(k, n), need not be closely related.

We first consider the construction of the slow spaces (Fj)xez using the forward cocycle
(An)% and their approximate slow forward spaces V (k, n).

The following lemma shows an exponential contraction between the two approximate
slow forward spaces. The maximal gap §(V, W) between V and W is a standard notion of
distance between two subspaces (see Definition A.17 and equivalent formulations - note
the asymmetry in the definition).

§(V, W) = sup{dist(v, W) : v e V, |v]| = 1}.

Lemma 2.3 (Raghunathan estimate I): Suppose that the sequence of operators (Ax)
satisfies (SVG). Then for everyk € Z and n = 1,

8(V(k,n),V(k,n+ 1)) < C2 ;Dsyge ",

(1)
S(V(k,l’l + l) (k n)) C? dDSVGe m/(l — dDSVG e_”f).

Proof: Letv € V(k,n)and¢ € V(k,n + 1)+ be of norm 1. Choose ¢ € V(k + n + 1,n +
1)+ such that ¢ = A(k,n + 1)*@. Using item (2) of Theorem 2.2 one obtains on the one
hand

oa(k,n+1)

3l
Sl

lol = lA(k n+1)"¢] =
and on the other hand
(plv) =<p|A(kn +1)v)
<[l |Atkn + 1)v]| < 18] Aenl Ak n)v]
< CedllAxsnlloari(kn)[d[]v]

< C2 . HAk-i-nHUd-H (k, 1’1)
4 oglk,n+1)

2 —nt
< C 4Dsvge ™,

[#lllv]
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where the last line follows from (SVG). The first estimate in (1) then follows from (A7).
The second estimate is obtained using equation (A11),

8(V(kn),V(kn + 1))
8(V(k,n+1),V(kn)) < 1—s(V(kn), V(kn+1)) .

The previous lemma shows that the gap between two successive V(k,n) is exponen-
tially small. This implies in particular that (V(k,n)),>1 is a Cauchy sequence and that
V(k,n) — Fx uniformly in k to a subspace Fy of codimension d that we will call the slow
space. We will need a more precise statement where Fy is understood as a graph over a
fixed splitting uniformly in k (see Definition A.22). The reference splitting will be given by
X = U(k,Nx) @ V(k,Ny) for some N, chosen sufficiently large. An initial choice of N
is made in the following lemma and will be subsequently tightened in Lemmas 3.3, 3.8,
and finally in Assumption 3.11. It will be convenient to choose at each step of the proof N
depending on a parameter 6, € (0,1) as in (2), (5) and (7).

Lemma 2.4 (Existence of the slow space): Let 6, € (0,1) and N, satisfy

(2)

Then for every k € Z, for every n = Ny, the following 5 items are satisfied.

(1) V(k,n) = Graph(®(k, n)) for some ©(k,n) € B(V(k,Ny), U(k,Ny))
8(V(k,Ny), V(k,n)) < [|O(k,n)| <6y, 8(V(kn), V(k Ny)) < Oy.
(2) (O(k,n))n=n, is a Cauchy sequence, for every n =1
10k, n+1) — Ok, n)| < Oxe”Ne)T(1 —e7T),
(3) Let Ok(Ny) := limy— o O(k,n) and Fy := Graph(©k(Ny)). Then
S(V(E N2, i) < [OkND)| < s 8(Fe VI Ns) <

Fy. is called the slow space of index d; Fy is independent of the choice of Ny.
(4) V(k,n)*+ = Graph(©=(k, n)) for the bounded operator

OL(kn) = =7 (k,N)*O(k,n)* p(k, Ny )* € B(V(k, No) 5, U(k, Ni) L),

where 1 (k,n) is the projection onto V(k,n) parallel to U(k,n) and p(k,n) is the
inclusion operator U(k, n) < X. Moreover

O (Ny) := HETOO Ot (k,n) exists,
BE = Graph(OF (L)), [0 (k) < 6s, [OF(N,)] <6

(5) ||(A(k,n) | U(k,Ni) 7|71 /oq(k, n) is uniformly bounded from below,
L4 X (k> N*) (—B Fka
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e YVueU(kNy), |A(k,n)ul = C;j(l — 0x)204(k, n)|ul,
o y(U(kNy),Fx) = C_j(1—6.)%

Proof: In order to simplify the notations, fix k and denote
Vn = V(k, n), V* = V(k,N*), U* = U(k,N*)

We want to apply Lemma A.25 for the initial splitting X = U, @ V.. where V. plays the
role of Up. An additional complication comes from the fact that the minimal angle is not
symmetric. We shall show by induction for every n > N,

¢ |0, —0,_1] <,—1(1 —by), (On,—1 = 0 by convention),
e V, = Graph(®,) for some ©, € B(Vy, Uy) with |0, < 04(1 — 04)y (U, Vi),
hd 5(Vn’ V*) gQ*V(U*,V*)s

where 6, := 0, e~ (""N$)T(1 — e~ 7)y (U,, Vi) < 6s.
Suppose that the above conditions are satisfied for the index n. We first claim that the
choice of N, implies

8(Vit1, Vi) < 0n(1 = 6,)(1 — 9*)2V(U*, Vi) < On.
To see this, on the one hand, from Equation (A16), we have

J/(U*) V*) - 8(Vn) V*)
1+ 8(Vi V)

> (1 - 9*))’((]*’ V*)
1+ 9*)’<U*V*)

On the other hand, from the definition of N, we have
C2 Dsvge " < 0x(1— ;)0 e N7 (1 — e77)y (Uy, V)%,
< 0u(1 — 04)°y (Us, Vo).

V(U*y Vn) 2

> (1—04)%y(Us, Vy).

Combining both estimates, Lemma 2.3 and Equation (A11), one obtains
S(Vn’ Vn+1) < CidDSVG e "’ < 911(1 - 9*)4)/((]*’ Vn) < Oy < Oy,

On(1 — 9*)4)’(U*) V)
1 - 9*

The claim is proved. We now show the three conditions for the index n+1. From item (2)

of Lemma A.25, V, 11 = Graph(®,) for some ©,,.4; € B(V,, U,) and

8(Vut1, V. U, V.
( l’l+1 11) y( * *) < 9,1(1 _ 9*)’
y(U*, Vn) _S(Vn_l,_l, Vn) V(U*, V*) _5(Vn, V*)
n

5(V*, Vn+1) < H®n+1” < Z ek(l - 9*) < 9*(1 - 9*))/(U*,V*),
5(V*’ Vn+1)
I_S(V*a VnJrl)

8(Vua1, Vi) < < 0,(1 —6,)(1 — 04)y (Uy, V).

[CASECHIES

5(Vn+1,V*) < <9*V(U*;V*)‘
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The induction is complete and the three first items are proved.
The fact that F is independent of the initial choice N is proved in the following way.
Let w € Fx, w = v + Ok (Ny)v for some v € V(k, N). Then

— [v+ O(k,n)v] = [Ok(Nx)v — O(k,n)v],
|Ok(Nx) — O(k,n)

dist(w, V(k ) < [©4(Ny) — Ok n)] o] < L,

¥ (Vi Us)
8(Fr, V(k,n)) < ‘®k(NZ\),*,U*() )H e e %

Let F, as in item (3) with another choice of 6}, and N,. Using the weak triangle inequality
8(Fx, F) < 28(Fi, V(k,n)) +28(V(k,n), F})

and letting n — +00, one obtains §(Fy, F;) = 0 and Fy = F,.
Item (4) is a consequence of Lemma A.23. Item (5) is a consequence of item (2) of
Theorem 2.2 and Equation (A16),

Ui, Vi) = 8(Vy, V. 1—6
V( * *) ( n *) > y(U*,V*) *
14+ 8(Va, Vi) 1+6,

V(U Fr) = y(Us, Vi) (1 — 64)%  (by taking the limit n — 4-00).

V(U*’ Vn) = (U*>V*)(1_9*)2»

Moreover for every € Us such that [u] = 1,
Al n)ul > sup{(B| Ak muy : § € V(k + mm)L, 8] = 1}
> supl(@uy: ¢ € Vi, ¢r\:1}inf{'*‘(’i+>“’3':$ev<k+n,n>i}
oq(k,n) oq(k, n)

> dist(u, Vi) >y (Us, Vi)

€,d Ce,d

od(k,n)
Ce,d .

>y (Uy, Vi) (1 — 64)?

Lemma 2.5 (Equivariance of the slow space): For every k € Z,

AxFx < Fiy.

Proof: Let ve V(k,n+1), and ¢ € V(k+ 1,n). Then there exists ¢ € V(k + n +
1,n)+ such that ¢ = A(k + 1,1)*¢. On the one hand, item (2) of Theorem 2.2 implies

Gd(k + 1, 1’1)

o]
ol

|¢]l = oa(Alk + Ln)* | V(k+n+1,n)7)|d] >
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On the other hand, item (2) also shows

(¢|Awv) = @Ak n+ 1)) < @Atk + 1) | V(kn+1)] v],

2 O'd_;,_l(k;”l + 1)

“d gk + 1,n)

|Ak+1]oa+1(k+2,n—1)
oq(k+1,n)

< C2 | Ak Dsvg e V7 g |Ju].

[#] [1v]

< Gl

lol vl

We have thus obtained for every v € V(k,n + 1),
dist(Agv, V(k + 1,n)) = sup{(p | Apv) : ¢ € V(k + 1,n)*, o] = 1},
< C2 | Ak Dsvg e V7 Ju].
Let 0, and N, satisfy Equation (2). Assume n > Ny. Let vs € V(k,Ny) and wy, :=
O(k,n + 1)vs + vy Then there exists v}, € V(k + 1, Ny) such that
wh = O(k + 1,n)v], + v, satisfies | Agw, — w/,|| — 0.
Since w, — w:= Ok(Nx)vs + vs, the sequences (Axwn)n, (W,), and (v}), are

Cauchy sequences. We obtain therefore the convergence of v/, —» v’ € V(k + 1,N,) and
Ak(Ok(Ni)vg + vy) = Opp1 (Ny ) + 0. [ |

We now consider the construction of the fast spaces (Ex ez using the backward cocycle
(An)"=5~1 and their approximate fast backward spaces U(k, n). The following lemma is

analogous to Lemma 2.3.

Lemma 2.6 (Raghunathan estimate II): Foreveryn > 1,k € Z,

5(0(](, n-+ 1), f](k,n)) < CZ’dDSVG e ',

€
N N (3)
8(U(k,n), U(k,n + 1)) < C? jDsyge " /(1 — CZ ;Dsyge ).

€

Proof: Letiie U(k,n+ 1)and ¢ € U(k,n)* of norm 1. On the onehand it = A(k — n —
1,n+ 1)uforsomeu € U(k—n— 1,n+ 1) and item (2) of Theorem 2.2 implies

|i] = oa(k —n—1,n+ 1) |ul /Ce.a.
On the other hand, item (2) also implies
(p|uy={p|A(k—n—1,n+1)u)y={Ak—n—Ln+1)*¢|u)
< JAk—n—r A Gk = n,n)* |l |u]
< JAk—n—1lloar1(k — nn)Ceal@lu]

|Ak—n—1llogs1(k — n,n)
oilk—n—1,n+1)

2
< Ce,d

bl

The second inequality is a consequence of Equation (A11). |
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The following lemma is analogous to Lemma 2.4. We show that the sequence of sub-
spaces (U(k,n))n>1 is a Cauchy sequence converging uniformly in k to a subspace Ey of
dimension d. We see Ey as a graph over U(k, N, ) in the splitting X = U(k, Ni) ® V (k, Ny)
for some large N, defined in (2).

Lemma 2.7 (Existence of the fast space): Let 0, € (0,1) and Ny satisfy Equation (2). Then
for every k € Z, for every n = Ny, the following 4 items are satisfied.
(1) U(k,n) = Graph(O(k, n)) for some O (k,n) € B(U(k,Ny), V(k, Ny)),
8(U(k,Ny), U(k,n)) < ||O(k,n)| < 0s,  8(T(k,n), Uk, Ni)) < bs.

2) (O(k,n))u=N, is a Cauchy sequence, for every n > 1

1Ok n+1) — Ok, n)| < O e”TTN6)T(1 — &7,
(3) Let Or(Ny) := lim,_, o O(k, 1) and Ex := Graph(©y(Ny)). Then

8(U(k,Ny),Ex) < |Ox(Nu)| < 04, 8(Ex U(k,Ny)) < 64

Ey is called the fast space of index d; Ey, is independent of the choice of Ny.
4) ||(A(k — n,n)*|V(k,N&)2) "~ Jog(k — n,n) is bounded from below,
o X =FE®V(kN,),
e Voe V(k,N*)i,
Ak = mn)*¢] = C_4(1 = 0x)20a(k — n,m) ],
o y(U(kn), V(kNy)) = (1—64)*C_.

Proof: The proof of items (1)—(3) is similar to the one in Lemma 2.4 by permuting the role
of U and V. For instance we also obtain by induction

8(U(k,Ny), U(k,n)) < 0,y (U(k,Ny), V(k,Ny)).

For the last item, we choose ¢ € V(k, Ny )L,
Ak — n,n)*|

> sup{{¢ | A(k — n,n)u) : ue U(k — n,n),

> sup{( | @) : n e Ulk,n), | = 1}mf{

5| = 1, then using (A6),

ul = 1)
JAGk = n,m)u]

[l
>y (V(kNo) " Uk n) ")

ue U(k—n,n)}

o4(k—n,n)
Ced

o k—n,
> dist(, Uk n) L) 22K =)
Ce,d

and by using Equations (A16) and (A17) one concludes

y(V(kNy)*, Uk, n)t) = y(U(k,n), V(k,N))
v (U(k,Ni), V(k,Nx)) — 8(U(k,Ny), U(k, n))
1+ 8(U(k Na), U(k,n))

1 + 60y

y (O(k Ny, 7(kNi)) = (1 - 0,)°C. ). n
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Lemma 2.8 (Equivariance of the fast space): For every k € Z,

AkEx = Ek41.

Proof: Letite U(k,n)and ¢ € U(k + 1,n + 1) Then there exists u € U(k — n,n) such
that # = A(k — n,n)u. On the one hand

||| = oa(k — n,n)|ul /Ce.a.
On the other hand
(@ | Aty = (A(k —nn+ 1)*¢ | u) < [A(k — n,n + 1) u]

2 Oap1(k—nn+1)

< Ceaoan(k—mn+ DGl < C2,7 Z= g

og+1(k —n,n—1)||Ak—1 |

< CeallAdl ol ]

o4(k —n,n)
< C A Dsvg e "7 ).
We just have proved for every i € U(k, n),

dist(Axit, U(k + 1n + 1) < C2 ;| Ak Dsvg e "= D7 .

Let 6y, Ny as in Equation (2). Let ity € U(k,Ny) and w,, := ity + O(k, n)it«. Then there
exists &1, € U(k + 1, Ny) such that

wl, =i + O(k + 1,n + 1)i, satisfies | Agw, — wl| — 0.

n

Since wy, — @iy + Ok (Ny)ity, it — i/, w, — w' = i/ + O, (Ny)i/'. We have proved
Ap(tty + O(Ny )ty ) = ' + Oy 1(Ny )it and the equivariance of the fast space. [

3. Proof of item (1) of Theorem 1.2

We present the proof of the bound from below (item (1) of Theorem 1.2) of the angle
between Ej and Fj, uniformly in k € Z. We use for the first time the property (FI). Although
there should exist a direct proof for any dimension d, we reduce our analysis to the case
d =1 by introducing the exterior product /\d X. The cocycle A(k,n) admits a canonical
extension to the exterior product that we denote

d
Alk,n) == /\ A(k,n).

The approximate SVD obtained in Theorem 2.2 for the cocycle A(k,n) can be extended
to the cocycle A(x, n) by applying Theorem A.43 to each A(k, n). We use Definition A.39

for the notation U and V, for every subspace U of dimension d and V of codimension d,
respectively. We obtain the following theorem.
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Theorem 3.1: Let X be a Banach space,d = 1,€ > 0, and (Ay) ez be a sequence of bounded
operators. Let X = U(k,n) ® V(k,n) = U(k,n) @ V(k, n) be the approximate SVD given
in Theorem 2.2 spanned, respectively, by the bases (e1,...,eq), (¢1,-. ., ¢a), (€1,-..,%a),
(@1, ..,¢q). Then there exists a constant Ky depending only on the Banach norm and d,
such that foreveryke Z,n > 1,Ceq:= (1 + €)Ky,

co

M) AX=0Ulk,n) @ V(kn), N°X = Ulk,n) ® V(k n),

) U(kn) = span(A ¢ k,n) = span( AL, ¢i(k, n))L-
(3) 5(k,n) = span( k,n) = span( ;1=1 bi(k, n))*L,
(4) dim(U(k,n)) = dim(U(k,n)
(5)
(6) I1 ) <
7) C ) T1L, ailkon) <
) |A(kn)| V(kn)| <
9) y(U(kn), V(k,

This theorem is a direct consequence of Theorem A.43. We now recall some notations
introduced in item (3) and (4) of Lemma 2.4. We consider Ej and Fy as graphs over a fixed
splitting X = U(k,Nx) ® V(k,Nx) and X = U(k, Ny.) @ V(k, Ny) respectively.

Notation 3.2: Let 6, € (0,1) and N, satisfy Equation (2). Then

e Ej; = Graph(®(Ny)) for some Ok (Ny) : U(k, Ny) — V(k,Ny),

e Fj = Graph(®; (Ny)) for some ;" (Ny) : V(k, Ny )t — U(k,Ni)+,

o Br = span(AL, (1d @ O(N))z(k Ni)),

o Fy:=span( AL, (1d ® OF (No)gi(k, Ny)) 1,

o Fi = Graph(©Ok(N,)) for some O(Ny) : V(k,Ny) — U(k,Ny),

o [Ok(N:)| < bs, O (N < 64, |Ox(N,)|| < CZdeG*( + 6,)%71, (using Lemma
A.42 for some constant K; = Ad(X)d given by (A3)).

The strategy of the proof is based on two steps. In the first step we show that, for some
N, large enough,

VkeZ, y(A(k—NyNy)U(k— Ny, Ny),F) = c(Ny),

with a constant that depends on N (and goes to zero as Ny, — +00). This estimate may

be considered as a bootstrap argument; this is the only place where property (FI) is used.
In the second part, we analyse the special backward cocycle associated to the sequence of

operators ( (k — nNy, Ny));"%,. We improve the previous estimate and show that actually

Vn>1,VkeZ y(A(k—nNy nN;)U(k — nNy,nNy), Ex) > constant.

The proof is complicated by the fact that we are in a Banach space and look for an explicit
lower bound. The proof’is also new in the finite dimensional setting. We conclude the proof
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by observing

A(k — nNy, nN3)U(k — nNy, nN,) = U(k, nNy) — Ex.

We obtain a uniform bound from below of y (/I;’k, ﬁk) and therefore a uniform bound from
below of y (Ex, Fx) by using Lemma A.40.

We show in the followmg lemma that the smallest expansion of A(k, n) on U(k, m) is
bounded from below by 1_[ i, 0i(k, n) uniformly in m,n large enough,

d
VkeZ Ymn=Ny |[A(kn)|U(km)| > constant [H oi(k,n)] : (4)

i=1

We now choose N satisfying a more restrictive condition than the one in (2).

Lemma 3.3: Let 0, € (0,1) and Ny satisfy

1 _ T
Dsvge ™M < 0, (1 — 6,) 5e . (5)
Ce,d
Then for every n,m = Ny and k € Z,
d
VueUlkm), [|A(kn)ul>C "K' (1—6.) (H ) uls

where Kg := Ag(X)3.

Proof: Part 1. We prove in both cases, n > m and m > n, that there exists an operator
V(k,m)+ — U(k, m)* such that V(k,n)+ = Graph(@i) and O] < 6.
For n > m the existence of ®1 is a consequence of item (4) of Lemma 2.4 taking
N, = m.
Form = n,let 0" := 0,(1 — 0,)/C 4, then

Dsyvge™ ™ < Dgyg e NVxT < 9/(1 — 9/)

5(V(k,m), V(kn)) <6 < 6.(1 — 62)y (V(k,m), Uk, m)).

In particular, from item (1) of Lemma A.25,

§(V(k,m), V(k,n)) < y(V(km),U(k,m)),
s(V(k,n)t, Vik,m)t) < y(U(k,m)t, V(k,m)t),
V(k,n)* = Graph(©1), for some ©* : V(k,m)* — U(k,m)*,

8(V(k,n)t, V(k,m)*)
y (U(k,m)L, V(k,m)L) — §(V(k,n)L, V(k,m)l)

ot < < O
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Part 2. We now prove the relative rate of expansion of ;\(k, n). From Lemma A.26, one
obtains with K/, = A 4(X)*

det ([<¢i(k>”) | ej(k,m)>],.j) > (K))'e (1 —6.)"
As A* (k, n)q?,-(k + n,n) = oi(k,n)¢i(k, n), using Equations (A21) and (A22), one obtains

s (ot o) = = O S —— )
H/\z L Bi(k +n, H)H HA(k, n) /\?Zlei(k)m)H
[T, ik, n)

From Proposition A.34, we have $4(X) < A4(X)?. From the definition of the projective
norm (A20), we have

d

[\t

and

The next lemma gives a lower bound of the angle between the approximate fast space
Wy := Ak — Ny, Ni)U(k — Ny, m) and the slow space Ey for m > Ny. This estimate is
non-trivial as Wy is defined using the operators (Ax_,),>1 and Fy is defined using the
operators (Akin)n>0. Property (FI) forces the two spaces to be complementary. It is the
only place where (FI) is used.

Lemma 3.4 (First crucial step): Let 0, € (0,1), Ny satisfy Equation (5), k € Z, and m >
N... Denote Wy := A(k — Ny, N )U(k — Ny, m). Then
y(Wi ) > C_1C 1K (1 — 6,) "Dyt e et

€,

where Kz := A4(X)>?

Proof: As V(k n) — Fj in the co-Grassmannian topology, it is enough to bound from
below y (Wi, V(k,n)) for large n > m. We first show that Wi is the graph of some oper-
ator I'(k,n) : U(k,n) — V(k,n). We then give an upper bound for [Id® Tk n)];
equivalently a lower bound for the angle y (Wy, V(k,n)). Let

we Wy, w=w+w", weUlkn) and w' e V(kn).

On the one hand w = A(k — Ny, Ny )u for some ue U(k— Ny,m). Then using
Lemma 3.3 with K = A;4(X)? and item (6) of Theorem 3.1, one gets

|A(k, m)w| = |A(k — Ny, Ny + n)u
d
—4d 1 —
= Ce,;l Ky'(1— 9*)d1_[0i(k — Ny, Ny + n) ||ul,
i=1
R d
|w < Cea [ [oi(k — Nu, N ) .

i=1
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Thus

dl_[ 1 0i(k — Ny, Ny + n)
[T, oi(k — NNy

On the other hand using items (6) and (8) of Theorem 3.1,

|A(k myw] > C_iCoa"Ky (1~ 6) [wll

ai(k.n) | W],

:]:._

|A(k m)w!| < Cea

Il
,_.._.

h..

|A(km)w"| < Cea )| o1l n)[w"],

U
" - a / Ud+1(k ”) W
(A < G | ot [ Wi+ 2B .

Property (FI) implies

[T, oi(k — N, Ni + 1)
H —10i(k — Ny, Ny H —10i(k,n)
Combining the two estimates of | A(k, n)w/| and using property (SVG), one obtains,
(@ T (k, n))w'| = [w]

< C2C4Ka(1 — 02) =i |1 4 Dsvae™ [Pl m)]| | [,

—1 o—Nyu
= Dy e .

In particular || T (k, n)| is uniformly bounded from above. Using Lemma A.24 and item (9)
of Theorem 3.1

y(Okn), V(kn) _ Coa

y (W, V(kn)) = = > =
[1d@T (k)] [1d@T (k)|

> CiC 1Ky (1= 0,) Dy e Nert [1 + Dsvge "L (k, n)H]_
We conclude by letting n — +00. |

Similarly to Lemma 3.3, we show that the largest expansion of ;l(k, n) restricted to Fy is
bounded from above by []_L 1 0i(k, n)]e~"" uniformly for n large enough,

d
VkeZ ¥n=Ny |A(kn)]|E| < constant (H ai(k,n)> e ", (6)

i=1

Equation (6) together with equation (4) show that the cocycle X(k, n) satisfies property
(SVG) at index 1. Estimate (6) is the main reason to introduce the exterior product. The
simplest proof based on the original cocycle seems to require a comparison between the
two ratios o4(k, n) /o1 (k,n) and 0441 (k, n)/o4(k, n).
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Lemma 3.5: Let 0, € (0, 1) and N, satisfy Equation (5). Then for everyn > Ny and k € Z,
|A(k,n) | Fe| < 2C2 Cz%KdQ* +0,)% <H oi(k,n ) (n=Ny)r

where Kg = Ag(X)“.

Proof: Let Fy = Graph(©;(n))* and Fy = Graph(O(n)) as in Notations 3.2. We first
notice

1—e 7
Dsyge " < e—(n—N*)rDSVG e NxT < 9/(1 . 9/)6—
€,d

with 6/ := 6, e~ (n=Nax)T Substituting 6 for 0, and n for N in item (4) of Lemma 2.4, one
obtains @} ()| < 6’. Then Lemma A.42 and Proposition A.34 imply

|Ok(n)]| < CP4K40' (1 + 0,)4!

Letwe Fr,w = w' + w', w" € V(k,n) and w' = Or(n)w" € U(k,n). Then

W1 < 15y | e 19 < C

d
|A(km)wW|| < Cea | [ [oitkn) | |Ok(m)[w"],
i=1

|A(k, n)w"|| < Cegor(kon) - o4-1(k n)ogs(k n)

p )
~ ~ A~ k,n)

Ak, < 2 (K, m )
Attt < S| [t | 185001+ TG0 | 1w

We conclude using property (SVG),

ody1(k,n
oa1(k 1) < Dsvge " <0 < CPUK0'(1+6,)7 L. |
o d(k, n) ?

We now change notation and rewrite the cocycle (A (k — nNy, Ny )% as block matri-
ces along the following splitting. Notice the small circumflex for the new notation.
Define

LJ Af ;&( —nN*,N*),VYIZl

o U_, f]( — 1Ny, nNy), V_, = \v/(k — nNg,nNg),Vn > 1,
o Up:= U k,Ny), Vo := V(k Ny),

o E ,:=Er N, Fp:=Fi_un,,Vn =0
e NiX=U_,®F ,Vn=o

Notice that the first crucial step, Lemma 3.4, implies that Ug = A_l U_l and 1:"0 are
indeed two complementary spaces. We consider the following block splitting
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e p_, the projector onto U_, parallel to F_,,¥n=o0,
e g_, the projector onto F_,, parallel to U_,, ¥ n > 0,

. A_n = [:_" O ],Vn >1
e 4_, = P—(n-1)© (A_n | U_n) U, — ﬁ—(n—1)>

Con =q—(n—1)© (A—n | U—n) U — F_(n-1),
d_pn=(A_,|F_y) : F_, — F_(n-1)-

By the equivariance of the slow space A_jf_, c 1:"_(,1_1), we obtain

o A" :=A A ,---A_, = A(k — nNy,nNy),
o &' i=a_ 18 -y = poo (A(k — nNy,nNy) | U(k — nNy, nNy)),
(] din = d_ld_z N d_n = (A(k - nN*,nN*) |Fk—nN*)-

Lemma 3.4 implies that A_,U_, and f?_(n_l) are complementary. In particular a_,, :

A

U_, — f]_(n_l) is bijective. Define for n > 1,

e A, U_q = Graph(f‘_n) for some operator I_,:0_,>F_,, by convention,
I'y:=0,
o A" U_, = Graph(Eg) for some operator Zf : Uy — Fo. Notice that the choice of Uy
implies @(1) =0.
Lemma 3.6: Let 6, € (0,1) and N, satisfy Equation (5). Then
V=1, [§on| < CcaC?4Ka(l + 65)%,
where Kg = Ag(X)4.

Proof: From Notations 3.2 one obtains F_, = Graph(é)_,,) for some operator ©_,, :=
Ok—nn, (nNy) : V_, — U_,. Moreover

Gn=(1d®6_,)om s
|6l < CKa0: (1 + 0,)*1,
13-l < Cea(1 + [6-n]) < CeaCZiKa(1 + 64)°. .
Lemma 3.7: Let 0, € (0,1) and Ny satisfy Equation (5). Then
Vn=1 [[_,) <C!CKq(1 — 6,) "Dy M,
where K := Ag(X)*.

Proof: Since I'_, = §_,(Id ® I'_,), we obtain using Lemmas A.24, 3.6 and 3.4

> Hé_nH ~ ~3 4d -1 —d N.
Pl s ol e 13 K - 6,) g e,
! V(Afnfl U_n—1, an) redTe

with K, = A4(X)%. [ |
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We now show that the minimal gap between A" ,U_, and Fj is bounded from below
uniformly in n. Since A" ,U_, = Graph(&l!) for some & : Uy — Fy, it is enough to
bound from above |Id ® &[. We show how to estimate [Id @ Zq | in terms of |[Id @

g7|. Since A" ,U_,, = U(k, nN*) — Ep, we obtain a bound from below of y (o, Fo).

Lemma 3.8 (Second crucial step): Let 6, € (0,1) and N, satisfy

Os (1 — B, )31 1—e®
DeveNet < P07 (g 1o o)
2C€’dC€)deDFI Ce,d
with Kg := A4(X)>2. Then for every n > 1,
—p.)ip=1 n—2 -1
)/(A'Lnf],n,f?g) = —(1A3 9*)dDFI e Nxit H [1 + eNxH e_kN*T] .
Ce,dcg,de k=0
Proof: Define
9/ B 9*(1 _ 9*)3(171
T 507 8d )
ZCE’dCE’deDFI
Notice that N satisfies Equation (5) with 6 instead of 6,
1—e 7
Dsvge M < 0'(1 -0 —
C
e,d

Part 1. We estimate the norms | (2" ,)~!| and |d” ,||. On the one hand, using item (6) of
Theorem 3.1, one gets

(a2,)"" = (A, | U—) " o (1d® &),

~1
[@",) 7" < Cea [H ok — nN*,nN*)] lld® &5

On the other hand, using Lemma 3.5, one gets

d
lan,| < 2C2 ,CH4KL' (1 + 6')4 [H oi(k — nN, nN*)] e~ (n=DNxr
i=1

-

with K, = Ag(X)“
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Part 2. We bound from above ||[Id @ Z7"|| in terms of |Id ® &|. Notice first that
f_, = ¢_n_1(@—p—1)"'. Moreover

An+1 eyl ~
Anl a_, 0 _laZ, 0 a_n—1 0
—n—1 — | an+1 n+1 | an n A g >
¢ d_ ct, dl, | [c-n—1 denr

—n—1 n

Sl = a4+ d e,
Eri—;l—l(ali—;l—l)_l = 2}in(ain)_l + an—nefnfl(afﬂfl)_l(ain)_l'

)~ 1, we obtain (Id ® @g“) =(ld® @8) + an_nf‘,n(&'in)_l,

|2zznf_n||<a'1n>l||>
lde &g

: an o __an (An
Since 8§ = " ,(a”,

ld® &' < d® &g (1 +

Using the estimates of part 1 and ¢’ instead of 6, in Lemma 3.7, we obtain

a7 —al @)~
l1d® &g

< 2C7 jCK 0" (1 — 0') T DppeNer e (DN«
< eN*/,L e*(l’l*l)N*f.

Using [1d ® &} = 1, one obtains
. n—2 1
e &gl <[] [1 + Nt e—kN*f] .
k=0

Using the bound from below in Lemma 3.4 for y (Up, Fy) and the comparison estimate in
Lemma A.24, one gets

X P o Ndp-l n—2 .
y(A",U_,, Fo) = J/(Uo,Fo) = <1A ) Dy e Nkt H [1 + el e_kN*T] .
l1d @ &g C?,dcé‘féKd k=0

We now explain how to choose 6, so that N, is the smallest possible. We use the
following lemma whose proof is left to the reader. We will choose later « = 3d + 6.

Lemma 3.9: Leta > 1. Then

e 0y:=1/(1+«a) =argmax{f(1—6)*:1 <0 <1},
e 0.(1—60,)%>0.(1—0aby)=1/(a+1)%

We estimate the infinite product in Lemma 3.8 using the following lemma. We will
choose later p = 1/t and a = e N+7,



DYNAMICAL SYSTEMS (&) 539

Lemma 3.10: Leta € (0,1) and p > 0. Then

o0 p(p+2)2
H[l—i—a”_p]éexp(i—i_a) (l> .
—a) \a

n=0

Proof: We choose n,. such that n, < p < n, + 1. We split the infinite product in two
parts. On the one hand

M 1 ZZioP*”
[T[1+a""] Ha""—i—l() ,
n=0

M 1 (g +1)p—ny (ng+1)/2
<exp Zapfn <—>
a

aP M 1 p(p+2)/2
)
1—a a
On the other hand

ng+1—p
n—p n—p a
|| [l—i-a ]<exp< E a )éexp(—l_a>.

n=nyg+1 n=ny+1

Using the convexity of the function p € [ny, 1y + 1] +> a™*T17P 4 P+ we obtain
a=T1=P 4 gP~"x < 1 + g and conclude the proof. |

Assumption 3.11: Let 6, = 1/(3d + 7) and N, satisfy

1—e"
Dsvge N*T < 0, (1 — 0,)3F° R < Dgyge M#TeT, (8)
2Ce,dce,d K;Drp
with Ky := Ag(X)%.
Proof of Theorem 1.2, item (1): Using the estimate
d 2d+7 _ 2
(1—-06.)%=1~— = >

3d+7 3d+77 3
the second crucial step Lemma 3.8, and Lemma 3.10 with

—N. Ik —N.
*T = e NVxH — aﬂ,

we obtain for every n > 0,

A r 7 2"_3 1 14+a /2
(AL, U_n, Fo) = gCe,dC ‘K Dy exp< . >av(/>+ )/
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with K4 = A4(X)%. Using a < 16,, we obtain

l1+a 6d+15 15 2 <1+a> 1
< < — >

< <—, -—-ex -
1—a 6d + 13 13 3 p 1—a 5
("n o ) ar(p+4)/2
v(AL U nFo) > ————. ©)
5C€’dC€’deDFI
Using
R (3d+7)7%2 1—e" (10)
2C7 dCﬁ‘ffSKdDFI Dgyge?
we obtain

4)/2
1 (3d+7)2 1—e" G

)/(A”_ U_ ,1:"0) = —= =
e 5C3 ,CH KyDrr | 2C7 ,C3%F5KyDpy Dsvae®

We conclude by using A’inf],n — Ey and the comparison between the minimal gaps,
v (Eo Fo) = v (Eo, Fo) /K, where the constant K/, = A,(X)*A 4(X)3? is given by Lemma
A.40. |

4, Proof of items (2) and (3) of Theorem 1.2

We first show that property (FI) is related to a super-multiplicative sequence (11)
(fm(k))m=0. We use the notion of Jacobian of index d, introduced in definition in A.30
and denoted by £4(A). Proposition A.32 implies,

d d
[ [oi(a) < Za(a) = [ [o(4) < Ka[ [ ai(4),
i i=1 i=1
where Ky = A4(X)** . In the Hilbert case K; = 1and $4(A) = Hle oi(A). Proposition
A.34 shows that the Jacobian is sub-multiplicative,
VkeZ Ymy,my =0, ik m+my)<Zy(km)Zgk+ my,my),
where £;4(k, n) := Z;(A(k, n)). We define for every k € Z and m > 0,

) Y4k —m,m+n)
k) := inf
Jn(K) n20 Yk —m,m)Zy(k,n)

. (11)

We have obviously f,, (k) < K4(X)~! < 1. We show in the following lemma that f,, (k) is
super-multiplicative and that the ratio appearing in property (FI) is comparable to f;, (k).

Lemma 4.1: For every k € Z,

(1) Vmi,my =0, fony4my (k) = fn, (K)fimy (k — m1) and fin (k) < 1,
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d d
Ul(k_m’m+n))<fm(k)<Kdinf oi(k —m,m + n)

2) K72 inf
(2) K ;igoi:l oi(k — m,m)oi(k,n

d

(3) Vmn=0, H

i=1

oi(k —m,m + n)

< K3,
oi(k — m,m)oi(k,n) d

with Kg = Ag(X)*,

Proof of item (1): As X4(k —my —mp, my + my) < gk — my — ma, mp) Ty(k — my,
my),

Y4(k —my — my,my + my + n)
Xi(k —my —my,my + my)X4(k,n)
Y4k —my — my,my + my + n) Y4(k — my, my + n)
~ Sa(k —my — my,my) T gk — my,my +n) Ta(k —my,m)Ta(k,n)

The first quotient is bounded from below by f,,, (k — m; ), the second by fy,, (k).
Proof of items (2) and (3) The proof follows the comparison between X;(k,n) and

[, oi(k,n). n

In the following lemma we estimate a bound from below of f,, (k) from partial informa-
tion on f,n, (k).

Lemma4.2: Let N, > 1, > 1, and (Ay)rez be a sequence of operators satisfying property
(FI). Then for every k € Z,

>

inf fu(k) > K; ' Dt e (1FeNsn jnf Z4(k — mNy, mNy + n)
m=>1 d —H m=1,n>aNy Lq(k — mNy, mNy)Za(k,n
* d *> * d\ K

where Ky = Ag(X)8%.

Proof: We claim for every m > 1,

P . ¥ 4(k — mNy, mNy + n)
k) = K; Dt e *N«l inf .
Ji (k) = Ky D e o N mN2) S (ko)

It is enough to bound from below in the definition of f,un,, (k),

) Y 4(k — mNy, mNy + n)
in
1<n<eNy Xg(k — mNy, mNy).Zg4(k, n)

Consider 1 < n < aN, and choose p such that N, < p. Then

Yi(k — mNy, mNy + n)Z4(k + n,p — n) = X4(k — mNy, mNy + p).
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Dividing by £4(k — mN,, mNy) X ;(k, n) and rewriting in a different way, we obtain
Y(k — mNy, mN, + n)

- Y 4(k — mNy, mNy + p) ik +n—n,p)
Sa(k — mNe, mN)Za(k,p) | | Salk+ n—nn)Zg(k+np—n) |

The second bracket is bounded from below using property (FI) by
fern(n) = K7Dy e = Ky Dyt e,

where K/, = = Ag(X)H * is obtained from Lemma 4.1. The claim is proved. We conclude by
using the super-multiplicative property

VY0 < 1< Nuy fungn(k) = founy ()fu(k + mNy) = frun, (K, D' e M2 W

Proof of Theorem 1.2, item (2): Step 1. We use Lemma A.44 to bound from below the ratio
in property (FI) by the angle between the fast and slow local spaces,

Vm,n= E szk mmmr)nazk”l) > 66’ ((:}(k m), V(k,n)).

Step 2. We show for every n > (1 + M)N* andm > 1,

5

my(ﬁ(k, mN,.), Fy).

8(V(k,n), Fr) <
From the definition of N, in Assumption 3.11, we obtain

L e (100
ct U 207 CSd“K D
ed ed dLFI

>

Dgyge ™ < 9/(1 — 0’)

with K := A4(X)%¥. From Notations 3.2 and Lemmas 2.4 and A.42,
Ft = Graph(®x(n)t) for some O(n)t : V(k,n)t — U(k,n)*,
F = Graph(©g(n)) for some O(n) : V(k,n) — U(k,n),
|Ok(m) | <0’ |Ok(n)] < C4K6" (1 + 6"
with K} := A4(X)?. Using (1 + 6’) < (1 — 6,) ! and Lemma A.25, we obtain
K
2C7 ,COH K 4Dy

(S(‘V/(k, I/l),Pk) < H@)k(n)H < 9*(1 _ 9*)2d+1 ef(an*)r

—1 7t (a—Nyz\P(P+4)/2
SCEURL fai
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On the other hand, using Equation (3),
Bliomy, iy 5 L
Y sMINg ), Uk ) 2 -~
> Cg,dcgfileDFI
and using the bound K; < C, 4, we conclude the proof of the claim,

5

my(ﬁ(k, mN ), Br).

5(V(k,n), B <

Step 3. We conclude the proof of item (2) of Theorem 1.2. Equations (A16) imply

Y (T(k, mNy ), V(k,n)) =

v (U(k, mNy), E) — 8(V(k,n), Fy)
1+ 8(V(k,n), Fy)

6d+9 = y

> %4 v (U(k,mNy), Fx) =

~6d+19

v (T(k, mNy), Ey).

U‘IIUJ

Using Lemma 4.2 with = 1 + p(p + 4)/2, one gets

(e—N*M)2+ﬂ(P+4)/2

>

3 ~ Y
inf f,,(k) > = inf y (U(k,mNy), F) ~——
inf fin(k) > 2 inf y (U(k, mNx), Fy) & KIDR,

where K/} = Ag(X )8¢* Using Equation (10),

w=1p, Ad(X)&i +5d < Czd’

p(p+4)+p<2+p(p+ 4)

1 2
> 5 ) Sp(p0" +50 +8)

and item (2) of Lemma 4.1, one obtains

d
oi(k —m,m + n)
Aol

i(k — m,m)oj(k,n)
2
s e p(p*+5p+8)/2
= 6 36d 3 [ A7(3d8—;—+75) — r] o
25C¢ 4C4Dsy | 2C7 4,C%5 " KaDrr Dsvae

Proof of Theorem 1.2, item (3): We assume n > (1+ p(p +4)/2)N, and write
Assumptions 3.11 on 6y, N in the form

—(n=Ny)t

Dsve e 17 < 9/(1 _ 9/)6 . , _
8d+1
Ced 2C7 ,C " KyDrr

with Kg := A4(X)>?. Notice that 36, (1 — 6,)* < 5.



544 A.QUAS ETAL.

Part 1. We first estimate y (Ex, V(k, n)) by y (E, Fx). Equation (A16) gives,

v (Ex, F) — 8(V (k,n), Fx)
1+68(V(kn),F)

Item (1) of Lemma 2.4 and (n — Ni)t = (p(p + 4)/2)N.7 gives

v (Ex V(kn)) =

5(V(k.n), Fe) < 6" < HCC 8 K Dt (e7Nsm)plo+)/2,

By taking n — 400 in Equation (3) and by using Lemma A.40, one obtains,
y(EoFe) = Ky 'y (B F) = 571CJC 1K, Ky Dyt (e Nem)Plet/2,
where K/, = Ay(X)4A4(X)*. As K/}Kq = Ay (X)1A4(X)8 < Cc 4, we have,
8(V(kn),Fy) < 0" < v (B Fr), v (B V(kn)) = 2y (Ex, Fr).
Using item (4) of Theorem A.35, we have for every w € Ey,
[AGkm)wl > |G AGKmw, (¥ ¢ T(k+nmn)*, 1] = 1)
|A(k,n)*o| = C;;Ud(k, n)|l, (item (2) of Theorem 2.2)

A(k, n)*d? N
Ak n)w] > <m \ w> Ak n)*3

> sup{|(@ | w)| - ¢ € V(kin)™, 9] = 13C_jou(k,n)
> y(Ex, V(k, n))C;;ad(k, n)|w|, (EquationA12)

Vv

> 3y (Ex, Fx)C_joa(k, n)|wl.

Part 2. We estimate y (Fy, U(k,n)) by y (F, Ex). Using Equation (A16) and item (1) of
Lemma 2.7, we have

v (P Ex) — 8(U(k,n), Ey)

1+ 8(U(k,n), Ex)
8(U(k,n),Ex) < 0" < Yy (Ex Fx) < 1y (Fr Ex)
v (Fi U(k,n)) = 37 (Fi Ex).

Let w € Fy, w=u+v where u € U(k,n) and v € V(k,n). Then |v|| < C, 4|/w| thanks to
item (3) of Theorem 2.2,

V(Fk’ U(k> I’l)) =

Alk,m)yw=1a+v, weUk+nn), ve Vik+nn),
[ < Ceoari(kon) vl < C yoari(kn)|wl,
[8]l = [A(k, n)w|| y (Fiens Uk + 1, m)).
Hence

|A(k, n)w| < 3C§,dV(Fk+n,Ek+n)_10d+1<k’ n)|wl. u
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Appendix

The purpose of this appendix is to clarify the notion of approximate SVD of a bounded operator in
a Banach space. We need two precise Theorems A.35 and A.43. The first theorem is usually stated
for compact selfadjoint operators in an Hilbert space (see [17]). In Hilbert spaces, for non-compact
operators, we did not find good references, although the results are certainly known by the specialists.
In Banach spaces, we are not aware of any statements as in A.35 and A.43. Nevertheless quite similar
ideas may be found in [1, 2, 8].

A.1 Basicresults in Banach spaces

Let (X, | - |) be a real Banach space. We do not assume X to be reflexive. We call X* the topological
dual space and denote by (5 | u) the duality between n € X* and u € X. If X is an Hilbert space we
identify X* = X and the duality (- | -) with the scalar product. If U is a closed (vector) subspace of
X, U becomes a Banach space with the induced norm, U* denotes the corresponding dual space,
and U denotes the annihilator of U, the subspace of linear forms of X* vanishing on U. Conversely
if H < X* is a subspace, the pre-annihilator of H is the subspace H- := {ue X : (n|u) =0, Vn €
H}. Write B(X) for the space of bounded linear operators on X. If (Y, || - ||) is another Banach space,
write B(X, Y) for the space of bounded linear operators from X to Y. If U — X is a closed subspace of
X, we denote by A|U the restriction to U of A € B(X, Y). We say that a splitting X = U @ V of two
closed subspaces is topological if the projector 7717 | v onto U parallel to V (or equivalently ryyy) is a
bounded operator. For a Bounded operator A € B(X, Y), we call A* € B(Y*, X*) the dual operator.

A.1.1 Auerbach basis and distortion

The purpose of this section is to clarify the notion of a distortion of a Banach norm with respect to
the best euclidean norm. We use the notion of Auerbach bases as a substitute for orthonormal bases.
We begin by recalling the notion of Auerbach families.

Definition A.1: Let X be a Banach space, and d > 1.

o A family of vectors (u1, . .., uy) in X is said to be Auerbach if
Vi=1,....d, |uj| =1 and dist(ujspan(uy:k=j)) =1

e If (u,...,uy) are linearly independent in X, a dual family is any family of linear forms
(1, ..., na) of X* satisfying (n; | u;) = 8. Similarly if (91, ...,174) are linearly independent in
X*, a predual family is any family of vectors (u1, ..., ug) of X satisfying (n; | uj) = 8j;.

If dim(X) = d, dual bases and predual families do always exist and they are unique. We show
in the following lemma that Auerbach families can be characterized by the existence of normalized
dual families.

Lemma A.2: Let X be a Banach space, and d > 1.
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(1) A family of vectors (u1,...,uq) of X is Auerbach if and only if |uj| = 1 for everyj=1,...,d
and there exists a dual family (n1, .. .,n4) of X* satisfying ||n;| = 1 foreveryj =1,...,d.

(2) Suppose dim(X) = d. A family of linear forms (n1,...,n4) of X* is an Auerbach basis if and
only if |ni|| = 1 and its unique predual family (uy, . ..,uq) of X satisfies |u;| = 1 for every j =
L,...,d.

Ifdim(X) = +00,an Auerbach family in X* does not admit in general a predual Auerbach family.
We will show in Lemma A.11 that such predual families do exist if we relax a little the notion of
Auerbach family. If X is an Hilbert space of finite dimension, an Auerbach family is an orthonormal
family, and two families of vectors (u1, . ..,u4) and (11, ..., n4) are dual to each other if and only if
they are equal.

The following lemma shows that Auerbach families exist in any Banach space. We will see that
this notion is a key tool for the notion of singular values of bounded operators.

Lemma A.3: Let X,Y be Banach spaces, dim(X) = d > 1, A € B(X, Y) injective, and X = AX. Let
(1, ..., uq) be vectors of X and (71, . . ., 714) be linear forms of X* realizing the supremum in
ZaA) = sup {det ([ Aty rcigea) <7 € K% € X, [l = gl = 1}.

Let n; be a Hahn-Banach extension to Y of 7j; with ||n;| = 1. Then (w1, . . ., uy) is an Auerbach family
of X, (01, ...,1m4) is an Auerbach family of Y*, and

Ta(A) = sup {det ([(&i | Aupli<ijea) - i € Y5 € X, &l = uj] =1}

Notice in the previous lemma that, in the case X=Y and A = 1d, (11, ...,n4) and (u1, ..., uy)
are not a priori dual to each other. We call the particular constant ¥;(A) appearing in Lemma A.3
when A = 1d, the projective distortion

24(X) := sup {det ([(ni | uj>]1<i,j<d) :ni € X*uj € X, |ni| = ||u] = 1} . (A1)

The name “projective distortion’ is related to the notion of projective norm introduced in (A20) and
the estimate of the distortion of the canonical duality (A21) and (A22).

A Banach norm introduces a distortion in the volume of unit balls of finite-dimensional sub-
spaces. This distortion may depend on the dimension of the subspace. In order to obtain optimal
estimates when X is actually an Hilbert space, we introduce a notion of volume distortion that turn
out to be trivial for Hilbert spaces.

Definition A.4: Let X be a Banach space and d > 1. The volume distortion is

d
| 251 A . .
Ay(X) :=sup{ ———————— : uisan Auerbach familyandA =0 3, (A2)
J NE
(Zj:l |)‘j | )
where the supremum is realized over every u = (uy, . ..,u;) Auerbach family of X and every non-

zero A = (Ay,...,Aq) € R If X is a Hilbert space A4(X) = 1. In general we have 1 < Ay(X) <
+/d. In order to simplify the estimates, we will use instead a simplified volume distortion

Ag(X) == max(Ag(X), Ag(X*), Ag(X**). (A3)

Although we do not intend to compute this constant for different Banach spaces, we give an

exact estimate of A4(X) for X = Zfl the space RY endowed with the norm ||x|, = (ZZ:I |xa|P) /P,
x = (x1,...,%4), with natural change for p = +00. Recall that the Banach-Mazur distance between

two isomorphic spaces X and Y is the number

dpy (X, Y) = inf{| T[T~

, T: X — Y linear bounded isomorphism}.
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1 1
Proposition A.5: For every p € [1,2], Ad(Zg) = dBM(Z‘Z,Zé) = d?» 72!, Hence

lim Ay(¢h) = 1.
p—>27

If U < X isasubspace of X, then A;(U) < Ay(X). We have for instance A4(X) < Ay(X**). By
extending any Auerbach family (71, . . ., n4) of U* by Hahn-Banach while keeping ||n;|| = 1, we still

obtain an Auerbach family in X* and thus A;(U*) < A4(X*). We show in the following lemma
that A4(X) and A4(X*) admit equivalent definitions in the case dim(X) = d.

Lemma A.6: Let be d > 1 and X be a Banach space of dimension d. Then

4 1/2
(=L 14P)

d
DaE
1/2
d
(Z )
HZL Aili

(3) Au(X) = Ag(X**).

(1) Ay(X*) =sup : uis an Auerbach basis of X, A = 0} ;,

(2) A4(X) =sup : 7 is an Auerbach basis of X*, A = 0 ,

In particular we obtain an ‘explicit’ bound between the Banach norm and the Euclidean norm
either in U or in U*.

Corollary A.7: Let d > 1 and X be a Banach space of dimension d.

(1) If (w1, ..,uq) is an Auerbach basis of X, then

1/2 1/2

d d d
1
j=1 j=1

(2) If(m,...,nq) is an Auerbach basis of X*, then

) d 1/2 d 1/2
VieRY, ) <Z I)\i|2> < < Ag(X¥) (Z IAi|2> :
i=1 i=1

Every subspace U X of finite dimension d admits a topological complement (a closed subspace
V such that X = U @ V). For instance, if (11, . . ., #4) is an Auerbach basis of U, if (71, . . ., n4) isan
Auerbach basis in U* dual to (u1,. .. uy), that has been extended to X by Hahn-Banach as linear
forms of norm one, then (71, .. .,74) is again an Auerbach family in X*, and V = ﬂ?:l ker(n;) is
a topological complement to U where the projector 7y onto U parallel to V' is given by

d
Z Aini
i=1

d
yv(w) = Z<ni |wiui, VYweX. (A4)
i=1
Notice thatif (u1,...,u4) and (11, . .., n4) are dual to each other but not necessarily Auerbach, then
in addition to (A4), we have,
vy =Id—myy =mgo---om, where

(A5)
r(w) = w— (o | woug, VweX.
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Definition A.8: Let X be a Banach space,d > 1,and X = U @ V be a splitting such that dim(U) =
d. We say that the splitting is orthogonal if there exist Auerbach families (uy,...,u4) of X and
(7, ...,n4) of X* dual to each other such that

d
U = span(uy,...,uq) and V= m ker(n;) = span(n1,...,n4).

i=1

If X is a Hilbert space, we recover the usual notion of orthogonal complements. In particular the
two projectors 7y |y and 7y have norm one. In general if X is a Banach space, the norm of the
projectors is not any more one. We give two results giving the bound of the norm of these projectors
in terms of the volume distortion. We use the simplified volume distortion given in (A3).

Lemma A.9: Let X be a Banach space, u € X, n € X*, such that (n |uy = 1, and ||n| = 1. Let U =
span(u), V = ker(n), and K := Ay(X)>. Then

lzuv] = llu|, and |lzyu] < Kqlull.
For any dimension, we obtain the following bound.

Lemma A.10: Let X be a Banach space, d > 1, dim(U) = d, and X = U@V be an orthogonal
splitting. Let Ky := Ay (X)*A4(X)%. Then

o Vsl + ol? < flu vl < Ko/ + o]

1
YueU VveV, —
d

In particular ||my)y | < Kg and ||y | y| < K.

We are now able to extend item (2) of Lemma A.2 to Banach spaces of infinite dimension.
Lemma A.11: Let X be a Banach space and d > 1. Let be K; := Ay (X)?. Then for every Auerbach
Sfamily (n1,...,n4) of X*, for every € > 0, there exist a predual family (uy, . .., ug) in X satisfying

1 < dist(ug,span(u;: I =k)) and |ux| < (1+€)Ky, Vk=1,...,d.
If X is a Hilbert space,e = 0, Ky = land (u1,...,ug) = (1,-..,04).

The previous result suggests the following definition.

Definition A.12: Let X be a Banach space,d > 1and C > 1. A family of vectors (uy, .. ., ug) is said
to be a C-Auerbach family if

C7! < dist(ug, span(uy: I =k)) and |u| <C Vk=1,...,d

A splitting X = U@ V where dim(U) = 4, is said to be C-orthogonal if there exist C-Auerbach
families (u1,...,uq) of Xand (n1,...,n4) of X* dual to each other such that U = span(u, ..., uq)
and V = span(n1,...,nq)".

Lemma A.11 shows that, if V is a subspace of X of codimension d, and € > 0, then there exists U
such that X = U@ Visa (1 + €)Ky-orthogonal splitting.

If X is a Hilbert space, a 1-Auerbach family corresponds to an orthonormal family, a C-Auerbach
family represents a distorted orthonormal family. We give in the following lemma several equivalent
characterizations of C-Auerbach bases in the case X is a finite dimensional Hilbert space.

Lemma A.13: Let P = [P;;]i<ij<d be a real matrix and C > 1. R4 is equipped with the standard
euclidean norm | - ||2. The following 3 conditions are equivalent.
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(1) The column vectors 6]) i= (Pij)%_, form a C-Auerbach basis.
(2) The singular values of P satisfy C > o1 = -+ 2 04 = 1/C.
(3) Forevery (Ay,...,1q) € RY,

1/2 1/2
d / d /

d
é 2l < NG| <c | X InP
i—1

j=1 ) j=1

In particular, since the singular values of P and P* coincide, the 3 conditions are also equivalent
to

(4) The row vectors R; := (P; ,j)]‘-izl form a C-Auerbach basis.

(5) Forevery (Ay,...,0q) € RY,
i 1/2
<C <Z |A,»|2> .
2 i=1

J 1/2

1

c (Z W) <
i=1

If X is a Banach space, many previous results involving Auerbach families can be extended to C-
Auerbach families. The volume distortion of a C- Auerbach family can be expressed using the volume
distortion defined in Definition A.4.

d
Z AR
i=1

Lemma A.14: Let X be a Banach space,d > 1,and C > 1. Define Ky := Ay(X)%. If (e1, ..., eq) isa
C-Auerbach family, then for every (A1, ..., q) € RY,

1/2 1/2

1 d R d d )
o | ) <o ne] < CKa | X1
d j=1 j=1 j=1

We extend Lemma A.10 to C-Auerbach families.

Lemma A.15: Let X be a Banach space,d > 1and C > 1. Let X = U @ V be a C-orthogonal splitting
with diim(U) = d. Define Kz := Ay(X)*Ag(X)*. Then

Vul? + o2 < flu + v < CRan/lul? + o]

We also extend Lemma A.2 to C-Auerbach families.

YueU, VYvevV,

C2K,

Lemma A.16: Let X be a Banach space, C > 1,d > 1, and Kz := Ay(X)* A4(X)2.

o If(u1,...,uq) is a C-Auerbach family of X, then there exists a C-Auerbach family (n1,...,n4) of
X* dual to (uy,...,uq).

o If (m,...,nq) is a C-Auerbach family of X*. Then for every € > 0, there exists a CKy(1 + ¢€)-
Auerbach family of X predual to (n1,. .., n4)-

o IfUisasubspace of dimensiond, (7)1, .. .,74) is a C-Auerbach basis of U* and (1, . .., n4) is some
Hahn-Banach extension such that || 7j;| = ||ni||, then (n1, . . ., na) is again a C-Auerbach family and
there exists a C-Auerbach basis (u1,. .., ug) in U predual to (n1,...,n4).

A.2 Grassmannian, gaps, and graphs

The geometry of Grassmannian spaces is a well studied object in the case of Hilbert spaces. For
Banach spaces, the notion of angle is not canonically well-defined and several equivalent definition
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could be used. The d-dimensional Grassmannian space is the set, Grass(d, X), of all subspaces of X
of dimension d > 1. The d-dimensional coGrassmannian space is the set, coGrass(d, X), of all closed
subspaces of X of codimension d. We denote by Sx the unit sphere of X. We first recall two estimates
(see also Kato [10], Chapter 4, Section 2.3); for every closed non-trivial subspace N of X,

dist(u,N) = sup{¢¢ |u): p € N*, |p]| =1}, VueX,

(A6)
dist(¢, N1) = sup{(p|u): ueN, |u| =1}, V¢eX*

Definition A.17: Let X be a Banach space and M,N be two closed non-trivial subspaces of X. The
maximal gap between M and N is

8(M,N) := sup {dist(u,N) : u € M, ||u| =1},

=sup{(p|uy:ueM, ¢ eN, [u] =[] =1}, (A7)
We also define another equivalent distance
d(M,N) := sup {dist(u, Sn) : u € M, |u| = 1}, (A8)

and observe that d satisfies the triangle inequality and the estimate
8(M,N) < d(M,N) < 28(M,N). (A9)
The notion of maximal gap between subspaces §(M, N) was introduced by Gohberg and Marcus
[7], (see also Kato [10], Chapter 4, Section 2.1), under the name opening or aperture. We use mainly

8(M, N) in two cases: either for dim(M) = dim(N) < +00 or for codim (M) = codim (N) < +o0.
We recall the duality identity (see equation (2.19) in Kato [10], Chapter 4, Section 2.3)

8(M,N) = §(N*, M%), V¥ M,N closed subspaces of X. (A10)

In general the maximal gap is not symmetric, but for finite-dimensional subspaces of equal dimen-
sion we have (see [9], Lemma 213)

8(N, M)

dimM = dimN < +0 = §(M,N) < ———.
im im +00 = §( ) T 5(N, M)

(Al1)
We use another estimate which enables us to recover the standard estimate in the Hilbert case.

Lemma A.18: Let X be a Banach space and d = 1. Define
Ky := min(2, Ay(X)* Ay (X*)?).
For every subspaces M,N of X, ifdim M = dim N = d, then
8(M,N) < K38(N, M).
In particular, if X is a Hilbert space, §(M,N) = §(N, M).

For complementary subspaces we use another notion called the minimal gap (see Kato [10],
Chapter 4, Section 4.1).

Definition A.19: Let X be a Banach space and M,N be two closed non-trivial subspaces of X. The
minimal gap is

y(M,N) := inf {dist(u, N) : u € M, |u| = 1}. (A12)
A similar notion has been introduced in [5]
L(M,N):=inf{|u—v|:ue M, veN, |u| = |v| =1}. (A13)

The second definition is more symmetric and equivalent to the first one

y(M,N) < L(M,N) < 2y(M,N). (A14)
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The notion of minimal gap is equivalent to the notion of minimal angle 6(M, N) that is used in
Gohberg and Krein [6] (Chapter VI, Section 5.1) where

O(M,N) := arcsiny (M,N), 6 ¢€[0,7/2],

We use mainly the notion of minimal gap for complementary subspaces X = M @ N where M and
N are closed. The norm of the projector onto M parallel to N is not necessarily bounded. Whether
it is bounded or not, we have (see Equation (4.7) in Kato [10], Chapter 4, Section 4.1),

X=M®N = y(MN) = |y n| " (A15)

Notice that Lemma A.15 shows that, if the splitting X = M @ N, with dim(M) = d, is C-orthogonal,
then y (M, N) > 1/(C?Kj). If X is an Hilbert space, y (M, M*) = 1. If two closed subspaces N and
N’ are complementary with respect to the same M, X = M @ N = M @ N/, then their minimal gaps
are comparable (see Equation (4.34) in Kato [10], Chapter 4, Section 4.5) provided §(N, N') is small
enough

Y (M,N) = 8(N',N) y (N, M) = 8(N,N')

1+ 8(N',N) 1+ 8(N,N)

The duality identity (A10) is also valid for the minimal gap (see Equation (4.14) Kato [10], Chapter
4, Section 4.2)

y(M,N") > . Y(N,M) > (Al6)

X=M®N = y(N*,M*) = y(M,N). (A17)
The minimal gap can also be computed using duality between subspaces of complementary dimen-
sion. Let M — X, E < X*, such that dim(M) = d and dim(E) = d. Define

(8| M) := sup {det([<§,~ |up]i<ij<d) : & € B, uj € M, |&| = |uj] = 1}. (A18)
Notice that

Z4(X) = sup{{E|M)y: M c X, E < X*, dim(M) = dim(E) = d}.
Lemma A.20: Let X be a Banach space,d > 1, M and N be two closed subspaces such thatX = M @ N
and dim M = d. Define K := A4(X)* and K; := Ay(X)*® Ag(X)*. Then

(K 'y (M,N)? < (N*+| M) < Kgy(M,N).

The topology on the Grassmannian space Grass(d, X) and coGrassmannian space coGrass(d, X)
is given by a fundamental system of open neighbourhoods.

Definition A.21: Let X be a Banach space and Vj be a subspace of X of finite dimension or
codimension. The basic neighbourhood complementary to Vy is the subset
N (V) = {U c X: Uisaclosed subspace and X = U @ Vj is topological }.
The set {N'(Vp) : codim (V) = d} defines a topology of Grass(d, X); similarly the set {\/(Up) :
dim(Uy) = d} defines a topology of coGrass(d, X).

Each basic neighbourhood is modelled on a Banach space. The following construction shows that
N (Up) is bijectively mapped to B(Vj, Up).

Definition A.22: Let X = Uy @ V) be a topological splitting of closed subspaces.

(1) If© € B(Vp, Uy), the graph of ® is the closed subspace
Graph(®) := {v+ Ov: v € Vo} € N(Up).
(2) Conversely every V € N (Up) is the graph of some operator ® € B(Vy, Up).

Notice that V € N (Uj) ifand only if V- = Graph(®1) € N'(U;") for some ©+ € B(Vy, Uy ).
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Lemma A.23: Let X be a Banach space, d > 1, and X = Uy @ Vy be a splitting of closed sub-
spaces of X where diim(Uy) = d. Assume Uy = span(uy, ..., ug) and Vo = span(ny,...,n4)*". Let
Ve N(Uy), ® € B(Vy, Uy) such that V = Graph(®), and O+ € B(V, Uy) such that Vv =
Graph(©+1). Then

d
e VveV, 0()=—Y" (0n|vou,
o OF = _ﬂ;o\Uo ° ©* O’Ozkfo
where py, : Uy — X is the canonical injection.

In the following lemma, we show that the norm of Id @ ® and the minimal gap y (U, Vy) are
inverse proportional. We interpret
d®O: Uy — U= Graph(@), ®e B(Uo, V()), (A19)

asan isomorphism between Uj and U and call it the canonical isomorphism between Uy and U parallel
to V. Notice that (Id® ©)~! = (7, | v, | U).

Lemma A.24: Let X be a Banach space and X = Uy @ Vy be a topological splitting of X of subspaces
of finite dimension or codimension. Then for every U € N'(Vy) and ® € B(Up, Vo) such that U =
Graph(®),

¥ (Uo, Vo) < v (U, Vo)[ld@ O] < 1.

The following lemma shows that the maximal gap between two subspaces U and U’ of N (V)
sufficiently close to some fixed Uy € N'(V)) is equivalent to the distance |© — ©’|.

Lemma A.25: Let X be a Banach space, X = Uy @ Vy be a topological direct sum of subspaces of X
of finite dimension or codimension. For every ®,®’ € B(Uy, Vo) define U := Graph(®) and U’ :=
Graph(®'). Then

, i 5(U, Up)
(1) lf(S(U, U()) < )/(V(), Uo), then ”()H < y(Vo, Ug) — S(U, Uo))
(2) if8(U,Up) < y(Vo,Up) and §(U’,U) < y(Vo, U), then
)/(V(), Uo) ] S(U/, U)
]/(Vo, UO) —5(U, U()) )/(V(), U) —(S(U/, U)

s(UUp) 171
k| s < je e
v (Vo, Up)

lo' 6] < [
(3) S(U(), U) < ||@H, [1 +

Let X = Uy @ Vo = U@ V be two splittings of X by closed subspaces where dim(Up) = d and
dim(U) = d. Assume Uy € N'(V) or U € N'(Vy). The following lemma shows that the minimal
gap y (Up, V) or y (U, V) can be measured by a d-dimensional determinant adapted to (V*, Up)
or (V3, U) that are both of dimension d.

Lemma A.26: Let X be a Banach space,d = 1, Cy = 1, and X = Uy @ Vy be a Cy-orthogonal split-
ting with dim Uy = d. Let (ey,...,eq) and (¢1,...,Pq) be Co-Auerbach bases dual to each other
generating Uy and V. Let Ky := Ag(X)*.

(1) Let®t € B(Vy, Uf), |4 <1,V = Graph(©1) Y and (Y1, . . ., ¥a) be a C-Auerbach basis
of V. Then

J— @ J‘ d
(O [y > |dex([Cileply)] > - <1(?8|> |
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(2) Let® € B(Uy, Vo), |©] < 1,U = Graph(®) and (f1, . . ., fa) be a C-Auerbach basis of U. Then

1 (1-]8]
(GO |0y > [aalonl 1) > 1 (e )
A.3 Singular values decomposition

The notion of singular values for operators in Banach spaces is not canonically well-defined. Our
starting definition is the following.

Definition A.27: Let X,Y be Banach spaces, A € B(X,Y), and d > 1. We define the singular value
of A of index d by

o4(A) == sup inf{ T | we U\{O}}

dim(U)=d
where the supremum is realized over every subspace U of X of dimension d.

We recall some elementary properties.

Lemma A.28: Let X,Y be Banach spaces, A € B(X,Y), and d > 1. Then

(1) 04(A) > 0a11(A),
(2) 04(AB) < |Aloa(B), 0a(AB) < 0a(A)|B|,
(3) 04(A) >0and o4, 1(A) = 0 < codim (ker(A)) =

Another definition could be used instead of 4(A). It coincides with the first one when X and Y
are Hilbert spaces.

Definition A.29: Let A € B(X,Y). For every d > 1, define

oi(A) =

. |Aw||
codim pymd1 T {| ik GV\{O}}

where the infimum is realized over every closed subspace V of codimension d—1.
It will be convenient to introduce a third notion of singular values using the notion of Jacobian.

Definition A.30: Let A € B(X,Y). The Jacobian of A of index d is defined by,
Sa(A) = sup {det ([{¢i| Aupli<ijea) s Gi € V¥, € X, g = || =1},
By convention £o(A) = 1. Notice that, if dim(U) = d,
24(A|U) = 0 < dim(AU) < d < A is not injective on U.
We may choose in the previous definition 7j; € Im(A) * and take ¢ an extension of 7}; to Y* by

the Hahn-Banach theorem. If U is a closed subspace of X, we define the Jacobian of A restricted to U
of index d, denoted T ;4(A | U), to be the Jacobian of A | U € B(U, Y). If U has finite dimension and
AlU is injective, the supremum is attained by vectors u; € U and linear forms j; € U*, U = AU, of
norm one. Both (u1,...,u4) and (71, . .., 74) are Auerbach bases by Lemma A.3.

The third definition of singular values is based on the notion of Jacobian.

Definition A.31: Let A € B(X,Y), define (assuming by convention £¢(A) = 1),

Za(4)
o”(A) =
d ( ) Ed—l (A)
If U is a closed subspace of X, we define similarly o/ (A | U) of the restriction of (A | U) € B(U, Y).

if 24_1(A) =0, oj(A)=0 ifZ;_;(A)=0.
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The three definitions 04(A), 05(A) and 0] (A) are comparable in Banach spaces, and equal in
Hilbert spaces.

Proposition A.32: Let X, Y be Banach spaces, d > 1, and K; := [Ag(Y*)Ag(X)]?. Then for every
Ae B(X,Y),

0a(A) < 0)(A) < ol/(A) < Kgoa(A).

It may not be true that the singular values of A and A* coincide. On the other hand the Jacobian
admits a very symmetric definition using the identity

(7| Auy = (A% | u), VueX, Viev.

Proposition A.32 and the following proposition shows that 04(A) and o4(A*) are comparable
modulo a constant depending only on the Banach norm of X. This constant is 1 for Hilbert spaces.
Proposition A.33: Let X,Y be Banach spaces, A€ B(X,Y), d =1, and K;:= max(Ay(X),
Ay(Y))?. Then

(1) Za(A) = E4(A%),
2) K;'oa(A) < 0q(A*) < Kgoq(A).

The following lemma shows that the projective distortion $4(X), Equation (A1), may not be
equal to one and that the Jacobian may not be multiplicative. This anomaly disappears when the
spaces are Hilbert.

Proposition A.34: Let X,Y,Z be Banach spaces, A€ B(X,Y), Be B(Y,Z), d > 1, and K;:=
Ag(X)4. Then

(1) 1< 34(X) <Ky,
(2) Z4(BA) < Za(B)Za(A),
(3) if Uis a subspace of dimension d, £4(B|AU)Z4(A|U) < Z4(X)Z4(BA).

In the case X,Y are Hilbert spaces, the previous inequalities are equalities.

The following theorem is the main result of this appendix. The existence of singular vectors
depends on a small parameter € > 0 that can be as small as we want. We do not assume that the
operators are compact nor asymptotically compact, and there is thus no reason to find true eigen-
vectors even in Hilbert spaces. The parameter € measures the discrepancy between a true and an
approximate eigenvector. The estimates depend moreover in Banach spaces on the volume distortion
introduced in Definition A.4. Although the following result is certainly well known to specialists, we
did not find a good reference adapted to our needs.

Theorem A.35 (Approximate SVD): Let X,Y be Banach spaces, A € B(X,Y), and d > 1. Assume
04(A) > 0 and choose € > 0. Define

- - 2 2
Ag=max(Ag(X),Ad(Y)), Cea(X,Y):= (1 +e)Af T3+ A0 HadH
Then A admits an approximate SVD of index d and distortion C. 4 = Cc4(X,Y), defined in the
following way:

e there exist two C, 4-orthogonal splittings X = U@V, Y =U @V,
o there exist C 4-Auerbach bases, (e1, . ..,e4) of Uand (¢1,...,¢q) of V* dual to each over, such
that U = span(ey, . ..,eq) and V = span(¢y, ..., ¢q)",
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o there exist Cc g-Auerbach bases, (¢1, . ..,¢4) of U and ((}31, <. .s@q) of V* dual to each over, such
that U = span(ey, . ..,¢4) and V = span(éy,. .., ¢4)"*

satisfying the following properties, for everyi = 1,...,d,

(1) AU = U, AV c V,A*VL = vE A*Ut < UL, dim(U) = dim(0) = 4,
(2) Aej = 0i(A)e;, A*¢; = 0i(A) i,

(3) C_joi(A) < ai(A|U) < 0i(A),

(4) CE dGz(A) < 0i(A* | Vl) 0i(A),

(5) 0at1(A) <A V] < Ceaoari(A)
(6) o111(A) < [4% | U] < Cotoap (4)
7 y(U.V), y(V,U), y(T. V), y(V.0) = C_.

If X is a Hilbert space, one may choose C. g = 1 + €. If X, Y are of finite dimension, one may choose

€ = 0. If X,Y are Hilbert spaces of finite dimension, one may choose V.= UL, V. = Ut, C.y = 1,
ei = ¢i, & = ¢i, (e1,...,eq) and (¢1,. .., &4) are orthonormal bases.

A.4 Exterior product

The algebraic exterior product /\dX is defined canonically of the following procedure. We first
consider the space of almost null functions of X¢ — R,

.7:_{2 kwaw:)\WER) Card{w:kw_0}<+oo}’

weXxd

where §8,, : X? — R is the Dirac function at w € X. We next consider the subspace G of F defined
by

g:= Span{S(Awl-kuw{,wz,...,wd) - )‘8(W1,W2>-~,Wd) - I’Ls(w{,wz,...,wd)’
S(Wl,--qufl)W,{,W,{_*_l)WH»Z ,,,,, x) T 5(W1 Wi LW W Wig 2,eWg)
1<i<d-—1, wl,...,wd,wll,...,wfieXd, A GR}.

The algebraic exterior product the vector space of equivalent classes

d
N\X:=F/G={w+G:we F}.

We define the canonical injection X4 — /\d X into the quotient space by

d
(Wis oo wg) EXT s wi A vee A g = S(wi,owg) TG E /\X.

It is then easy to check that /\dX is spanned by simple vectors, vectors of the form wy A -+ A wy.
The canonical map (wy,...,wg) — w1 A - -+ A wy is multilinear alternating, and its image gen-
erates /\d X. Moreover /\dX satisfies the universal property: every multilinear and alternating
function f : X¢ — Y, where Y is any vector space, factorizes uniquely through a linear map F :
AX > YbyF(wi A - Awg) = flwi, ..., wa).

Several norms may be chosen for the exterior product. In the case where X is a Banach space, we
choose the projective norm defined in the following way. Every w € /\d X is a finite sum of vectors
of the form w{ A - -+ A w§ where & is an index. As this representation is not unique, we introduce
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the projective norm of |w|| defined by

d
[w] :—inf{zn|w§-"|:w—2w‘fA--~/\w‘;‘}. (A20)

a i=1 a
It is easy to check that || - | is a genuine norm: w = 0 = ||w| = 0. In the case X is a Hilbert space,
we choose instead the Euclidean norm associated to the scalar product defined by extending by
bilinearity to A X x A?X

Wi A Awa | WA A wl = det([(wi | whli<ij<a)-

The projective norm and the Euclidean norm are not equal in general when X is a Hilbert space. We
call the completion of the algebraic exterior product with respect to the chosen norm, the normed

exterior product, and we denote it by /\d X. We point out that /\d(X *) denotes the normed exterior
product of X* and not the dual of A? X. If X is a Hilbert space, X* = X and A/ (X*) = A?X =
(A"x)*.

We define a canonical duality between /\d(X*) and /\dX by extending by linearity for every
;€ X* and wj € X,

<91 Ao NBg ‘ W1 A A Wd> := det ([<9i | Wj>]1<i,j<d> . (A21)

We notice that the canonical linear map A%(X*) — (A X)* is injective but may have a norm
34(X) greater than one (see Proposition A.34 for a bound from above of ¥ ;(X)),

>

d d
voe \x*),vwe AX [0]w)] < Sa(x)]0]|w

VwieX, sup </\6’i /\Wj>> /\wj .
lei=1 \i=1 | j=1 j=1
In particular, for every Auerbach family (u, .. .,uz) of X,
i) < Jur A Aug| S 1 (A23)
Let (ug,...,uq) be a linearly independent family of X, U = span(uy,...,u4),and 1 < r < d. For
every sequence I = (i, ...,i,) of r ordered elementsin {1,...,d}, we denote uy := u;; A -+ A u,.

Then {u;}isabasis of /\" X spanning /\" U. The following lemma gives an estimate on the volume
distortion of this basis in /\" X.

Lemma A.36: Let X be a Banach space, 1 < r < d, (u1,...,ug) be a C-Auerbach family of X dual

to a C-Auerbach family (n1,...,nq) of X*. Then {ur}; and {n1}1 are a C",(X)-Auerbach families
dual to each other of /\" X and /\" X* respectively.

Let0 < r < d. Wedenote by (w,w') € A"X x A“"X — w A w € A?X the canonical bilin-
ear map extending

(WL A AW)A(Wrpl Acos AWg) =W Ao A Wg.

Lemma A.37: If X is a Banach space and | - | is the projective norm, or if X is a Hilbert space and
| - || is the Euclidean norm, then for every 0 < r < d

r d—r
Ywe AXVwe AX |waw|<|wl||w].

The following lemma extends the volume distortion estimate of Lemma A.36.
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Lemma A.38: Let X be a Banach space, d > 1,C =1, X = U@ V be a C-orthogonal splitting of
closed subspaces with diim(U) = d. Let (uy,...,uq) and (n1,...,n4) be C-Auerbach bases dual to
each other spanning Uand V*. Let V! < V be a subspace of V of dimensiond’ = 0and X' := U® V',
Define

Ky := Ed(X)A(Hdd’) </\dX)2 max <Z,(X)A(d,/) (/\YX>2> Ay(X)3Ag(x)%,

o<r<d’

Then every w € /\d X' admits a unique decomposition w = Y, ur A vy where the summation is real-

. . . d—r <1 -
ized over every ordered sequence I = (i1, ..., i;) of {L,...,d},ur = ujy A - Auj,vp€ N V'is
any vector, and 0 < r < d. Moreover

1/2
CK, ! (2 |v1|2> < wl < c¥K, (Z w)
I I

Non-zero simple vectors in /\dX are in one-to-one correspondence with subspaces of X of
dimension d. We introduce the following notations to clarify this correspondence.

1/2

Definition A.39: Let X be a vector space and d > 1.

(1) If Uisasubspace of X of dimension d, we call
d d
U:= span{/\wi:Vi, w; € U} c /\X
i=1
(2) If V is a subspace of codimension d, we call

d d
V:zspan{/\wi:ﬂi, w; eV, Vi, wieX}C/\X.

i=1

Then dim(U) = 1 and codim (V) = 1.

IfX = U® V with dim(U) = d, then A?X = U@ V.If (1, . ., nq) are linearly independent
and V = span(ny,...,74)", then V is the kernel of a simple linear form of /\d X,

d a \t
V={w€/\X:<n1/\~-~/\nd|w>=0}=span</\n,~> .
i=1

The following lemma compares the angle between U and V and the angle between Uand V.
Using Equation (A15), we also obtain a comparison between |7y v | and |7 |, (see (A4) for

the definition of 7y v).

Lemma A.40: Let X be a Banach space, d = 1, X = U@ V be a splitting of closed subspaces with
dim(U) = dand Ky := Ay (X)*Ag(X)3. Then A°X = U@ V and

Ky (U,V) < y(U,V) < Kay (0, V)4,
1/d

_ d
Ky g vV < oy vl < Kdllmg vl

In the case the splitting X = U@ V is C-orthogonal, using Lemma A.9, the norm of the two
projectors admits a simpler estimate.
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Lemma A.41: Let X be a Banach space,d > 1,C > 1,X = U@ V be a C-orthogonal splitting with
dim U = d and K; := Ay(/\? X)3. Then

I7g vl < Za(X)C, and |7y gl < Ba(X)KaCH.

Angles between subspaces can also be measured by the norm of some graphs over a reference
splitting as in Lemma A.24. Consider a splitting X = Uy @ Vp with dim(Uy) = d and a subspace
V € N(Up). Then V = Graph(®) for some operator ® € 3(Vy, Up) or equivalently, as explained
in Lemma A.23, V! = Graph(©+1) for some ©+ € B(Vy-, U;-). Lemma A.40 implies

d
/\X:ffo(-BVo:ﬁo@V,

and in particular V € N () is equal to the graph of some © € B(Vy, Up). The following lemma
gives an estimate of | ®| with respect to @]

Lemma A.42: Let X be a Banach space, d =1, C>1, and X = Uy @V, be a C-orthogonal

splitting of closed subspaces with dim(Uy) = d. Let (u1,...,uq) and (n1,...,14) be C-Auerbach
families in X and X* respectively, dual to each over, such that Uy = span(uy,...,uy) and Vo =

span(ny, . ..,1q4)".
Let ®1 € B(Vy, Uf) and V = Graph(©1)*. Then

o V= span(/\;izl(ld@ ®©L)n;)LL = Graph(®) for some © € B(Vy, Up),
o Vwe Vo, O(w) = (AL (mi+ 65 n) [w) AL, i
o |6 < zy0|et](1+[et])

The next theorem shows that the approximate SVD of index d of abounded operator A € B(X, Y)
admits a particular form when the operator is considered in the exterior product. Let

- Awea(Anir)

Theorem A.43: Let X,Y be Banach spaces, d > 1, € > 0, and A € B(X,Y) satisfying o4(A) > 0.
Lt X=U@VandY = U®V, be the approximate SVD of index d and distortion C.q given in
Theorem A.35. Let

d 2 . 2
Ced = cgszd(x)(é(zj) (/\X)) [max, 2, (X) (5(5) (/\X)) Ay ()24 4 (x) 2,
Then

(1) (/\;1:l e;) and (/\?:1 i) are Ce g-orthogonal bases dual to each over,

d d -
U = span (/\e,-), stpan(/\d),-) .
i=1

i=1

2 ( /\fl:1 &) and ( /\fl:1 ;) are Cc g-orthogonal bases dual to each over,

U = span (/\éi>, V = span (/\J’:) .
i=1 i=1

B ANx=UeV,A\Y= TV, dim(U) = dim(fl) =1,



560

4)
©)
(6)
(7)
(8)
)
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AU = 0, AV < V,A*VL = 7L A% 0L < O,

Coi T oi(A) < |A| O] < JA| < Cea TTE, 0i(A),
Col TTE oi(A) < JA* | V4| < JA*] < Cea [T, 0i(A),
02(A) < |A| V] < Cegor(A) -+ 0 1(A)oa(4),
02(A) < |A*| UL < Ceqor(A) - 0a1(A)oas1(A),
y(0,V) = Cy(V,0) = C

In the following lemma we consider a product BA of two operators and the relative position of

the approximate SVD of A and B.

Lemma A.44: Let X,Y,Z be three Banach spaces, A€ B(X,Y), BE B(Y,Z), d > 1, and € > 0.
Assume 04(A) > 0 and o4(B) > 0. Let

be

d d ~ . d A~ .
/\X:ﬁA@VA, /\Y:UAC-BVAZGB@VB, /\ZZUB@VBs

the two approximate SVDs of index 1 and distortion ée,d of;\ and B obtained in Theorem A.43.

Then

O','(BA) ~_3 P
———— 2= C Ua, VB).
E oAJor(B) = Ced V(UaVe)
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