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∂u

∂t
+

∂f(u)

∂x
= ν

∂2u

∂x2
+ S(x) t > 0, x ∈ RInitial and/or boundary onditions (1)with ν ≥ 0 and S is a soure term. Examples are given by a transport equation with f(u) = au, S =

0, the Burgers equation with f(u) = 1
2u2, the heat equation where f = 0 or even a Laplae equationwhere f = 0 and a time independent solution. Of ourse, in eah ase, the boundary onditionshave to be adapted to the ase under study.In this paper, we assume in addition that the initial ondition is a random variable u0 := u0(x, ω)where ω ∈ Ω a probabilisti spae. We assume that u( . , ω) has a known distribution law dµ whihmay or may not have a density. Examples are given by the uniform distribution, the Gaussiandistribution, of a ombination of a pdf with a density with Dira-like distributions. In that asethere is no density. In this work, we assume to know the pdf. The problem of knowing thedistribution law of the solution of (1) is a di�ult problem in general whih is still open up to ourknowledge.There are many situations where one wants to estimate some statistis on the solution of aPDE. Consider the �ow around an airraft for example. The boundary onditions (in�ow mahnumber, Reynolds number, some geometrial parameters) may only be known approximately eitherin a nozzle �ow or a true �ight. In hyper-sonis, the equation of state or the visous model play animportant role and they are sometimes known very approximately. The same is true for multiphase�ows. One may also wish to �extrapolate� experimental results whih are partialy known to �owonditions that are not ontained in the experimental data base : what is the on�dene one mayhave ? The question is not only to know the sensitivity of the solution of (1), but also to tounderstand the importane (i.e. the weight) of these variations. In other terms, assuming thelikely-hood of relative variations, how an we weight their in�uene on the solution ?The aim of this paper is to propose a general method whih enables to ompute (approximationsof) the statistis of the exat solution with the smallest possible modi�ation of an existing ode.In partiular we are interested in developing general purpose methods able to easily handle, withlittle or no ode/sheme modi�ation, the following list:2



1. the pdf is general and may hange either in time or through some optimisation loop forexample,2. the pdf may or may have a density, may or may be not ompatly supported, or an be knownonly trough an histogram,3. The initial solution may depend on several orrelated or unorrelated random variables.4. no modi�ation of the ode has to be done when one hanges the pdf,5. as little as possible modi�ation of an existing deterministi ode/method is needed.Namely, when one approximates (1) or more omplex onservation systems, the oding e�ort is puton the spatial disretisation, the approximation of the �ux and the time approximation.The problem (1) is a very rude approximation of the above mentioned problem. Our aim isto develop a general methodology that ould easily be extended to these more omplex physialproblems.In most engineering situations, the numerial method is at most seond order aurate. Sayingthis, we have in mind the ase of a non linear problem of hyperboli type or possibly with seondorder terms but whih role is signi�ant only in a small part of the omputational domain. Theprototype example is again (1) with ν << 1. In engineering appliations, this is the Navier Stokesequations. In these ases, sine deterministi methods are generally seond order aurate in timeand spae, our belief is that there is no need to have a method able to ompute statistial quantitieswith an extremely high auray. The best would be to have a method where the dominant soureof error omes from the deterministi method. The aim of this paper is to propose a method thatis able to ombine all these requirements.The paper is organised as follow. First we review several existing tehniques. In a seondsetion, from several omputational remarks, we propose a general framework to ahieve our goal.This framework is illustrated by several examples, ranging from standard ODEs, to Euler equations,via an ellipti problem and several salar hyperboli problems. Every time this is possible, errorwith respet to the exat solution are given.2 Review of existing tehniquesIn many ases, the de�nition of the physial problem is not fully known. This may be the ase forseveral reasons inluding:
• The geometry may be known only partially. Imagine that the body surfae is rough, one anertainly parametrize the roughness by some random parametrisation
• The boundary onditions may be partially known only, for example in the ase of �utuationsof some parameters,
• Some onstants in the model an be unertain, think for example of a turbulene model orthe parametrization of the equation of state. This is a very important pratial problem forindustry. 3



In eah ase, even if the model, hene the numerial method . . . , su�ers from de�ienies, there isstill a need to ompute and simulate !In order to takle this issues, there are urrently several tehniques available in the engineeringommunity, and this is a very ative researh topi.One tehnique relies on polynomial haos expansion. Assuming that the random inputs datawhih depends on spae x ∈ A ⊂ R
d and a a random parameter, say the boundary onditions to�x ideas, is de�ned on a probabilisti spae (Ω,A, P ) and has a �nite variane, we an de�ne theovariane matrix

C(x, y) = E(X(x, .)X(y, .)), for x, y ∈ A.If fk is the k�th eigenfuntion
∫

A
C(x, y)fk(y)dy = λkfk(x),one an write the Karhunen-Loève expansion of X,

X(x, ω) =

∞
∑

k=0

√

λkfk(x)ζk(ω) (2)where the ζk are unorrelated Gaussian random variables. Then, following [1℄, one an expand thesolution of (1) as
u(t, x, ω) = a0Γ0 +

∞
∑

i1=1

ai1Γ1(ζ1(ω)) +

∞
∑

i1=1

∞
∑

i2=1

ai1i2Γ2(ζ1(ω), ζ2(ω))

+ . . .

+

∞
∑

i1=1

∞
∑

i1=1

. . .

∞
∑

ik=1

ai1i2...ikΓk(ζ1(ω), ζ2(ω), . . . , ζk(ω))

+ . . .

(3)
The funtions Γk are de�ned by

Γk(ζ1, ζ2, . . . , ζk) = (−1)keζ·ζT ∂ke−ζ·ζT

∂ζ1 . . . ∂ζk
.The idea is, after trunation both in the random input and (3), to introdue this relation into (1),then to use a spetral method (beause of the form of the Γk). There are other versions of thispolynomial haos, see for example [2, 3℄.In our opinion, there are at least three drawbaks to this approah. First, it is not lear at allwhat should be the right trunation level in the expansion (3), see for example [4℄. Seond, if onehas a good numerial method to solve one problem, the numerial strategy has to be revisited fromA to Z to go to another one, whih is not aeptable from an engineering point of view. It is alsonot lear how to handle disontinuities in the formulation. The last one is that if one hanges thestruture of the input random funtion, every thing has to be restarted from srath. This is thease in partiular when new informations are introdued to the system.The seond problem of the previous approah, that the method is intrusive, an be takled bya method whih is in between the spetral expansion that has been skethed above and the Monte4



Carlo method. One hooses a �good� set of random realisations and one run the baseline numerialsheme for these random parameters. Sine the output of the whole omputation is to evaluateexpetation of a funtional f of the the solution, say the pressure distribution to �x ideas, thesefuntional depend on ζ1, . . . , ζN . The random parameters are hosen suh that the expetany
E(f) =

∫

Ω
f(ζ1, . . . , ζN )dµan be evaluated easily with a good auray. This amounts to �nd quadrature points for thisintegral. These quadrature points are related in general to zeros of some orthogonal polynomials.The urse of dimensionality an be takled by mean of the Smolyak quadrature formula, for example.This path has been explored by several researhers, see for example [5℄.In our opinion, one of the weakness of this tehnique is that if the probability density funtionsare not smooth enough � this may our in some ombustion problems, see [4, 6℄ for example�, theonvergene of the integral may be very slow.In both ases, an other major drawbak is the following: the pdf is in general not known, sothat the whole proess ollapses. The numerial proedure may be one part of a more general loopin whih a learning proess is implemented, via some optimisation loop for example. Clearly, onethe expansion (2) has been hosen, there is no spae for any learning proess so that the expetedresults of the whole methodology an be disappointing. How an we onstrut a numerial method,able to handle true �uid problems, for whih a learning proess an be implemented ?3 Priniples of the method3.1 Some omputational remarksLet dµ a probability measure and X a random variable de�ned on the probability spae (Ω, dµ).Assume we have a deomposition of Ω by non overlapping subsets Ωi, i = 1, N of stritly positivemeasure:

Ω = ∪N
i=1Ωi.We are given the onditional expetanies E(X|Ωi). Can we estimate for a given f , E(f(X)) ? Weassume X = (X1, . . . ,Xn)The idea is the following: For eah Ωi, we wish to evaluate a polynomial Pi ∈ R

n[x1, . . . , xn] ofdegree n suh that
E(X|Ωj) =

∫

Rn 1Ωj
(x1, . . . , xn)P (x1, . . . , xn)dµ̃

µ(Ωi)
for j ∈ Si (4)where dµ̃ is the image of dµ and Si is a stenil assoiated to Ωi. 1This problem is reminisent of what is done in �nite volume shemes to ompute a polynomialreonstrution in order to inrease the auray of the �ux evaluation thanks the MUSCL extrapo-lation. Among the many referenes that have dealt with this problem, with the Lebesgue measure1for example dµ is the sum of a Gaussian and a Dira at x0,

Z

Rn

P (x)dµ̃ = α
1

√

2πσ

Z

R

P (x)e−
(x−m)2

2σ dx + (1 − α)P (x0)5



dx1 . . . dxn, one may quote [7℄ and for general meshes, one may quote [8, 9℄. A systemati methodfor omputing the solution of problem (4) is given in [10℄.Assume that the stenil Si is de�ned, the tehnial ondition that ensure a unique solution toproblem (4) is that the Vandermonde�like determinant (given here for one random variable for thesake of simpliity)
∆i = det

(

E(xl|Ωj)

)

0≤l≤n,j∈Si

.is non zero. In the ase of several random variable, the exponent l above is replaed by a multi�index.One the solution of (4) is known, we an estimate
E(f(X)) ≈

N
∑

j=1

∫

Rn

1Ωj
(x1, . . . , xn)f

(

P (x1, . . . , xn)

)

dµ̃.We have the following approximation results : if f ∈ Cp(Rn) with p ≥ n then
∣

∣

∣

∣

E(f(X)) −
N
∑

j=1

∫

Rn

1Ωj
(x1, . . . , xn)f

(

P (x1, . . . , xn)

)

dµ̃| ≤ C(S)max
j

[

µ(Ωj)
p+1

p
]for a set of regular stenil whih proof is straightforward generalisation of the approximation resultsontained in [11℄.In all the pratial illustrations, we will use only one or two soures of unertainty even thoughthe method an be used for any number of unertain parameters, this leading to other knownproblems suh that the urse of dimensionality. The spae Ω is subdivided into non overlappingmeasurable subsets. In the ase of one soure of unertainty, the subsets an be identi�ed, via themeasure dµ, to N intervals of R whih are denoted by [ωj, ωj+1]. The ase of multiple soures an beonsidered by tensorisation of the probabilisti mesh. This formalism enables to onsider orrelatedrandom variables, as we show later in the text.Let us desribe in details what is done for one soure of unertainties. In the ell [ωi, ωi+1], thepolynomial Pi+1/2 is fully desribed by a stenil Si+1/2 = {i + 1/2, i1 + 1/2, . . .} suh that in theell [ωj, ωj+1] with j + 1/2 ∈ Si+1/2 we have

E(Pi+1/2|[ωj , ωj+1]) = E(u|[ωj , ωj+1]).It is easy to see that there is a unique solution to that problem provided that the elements of
{[ωj , ωj+1]}j+1/2 ∈ Si+1/2 do not overlap, whih is the ase. In the numerial examples, we onsiderthree reonstrution mehanisms :

• a �rst order reonstrution: we simply take Si+1/2 = {i + 1/2} and the reonstrution ispiee-wise onstant,
• a entered reonstrution: the stenil is Si+1/2 = {i − 1/2, i + 1/2, i + 3/2} and the re-onstrution is piee�wise quadrati. At the boundary of Ω, we use the redued stenils

S1/2 = {1/2, 3/2} for the �rst ell [ω0, ω1] and SN−1/2 = {N − 1/2, N − 3/2} for the last ell
[ωN−1, ωN ], i.e. we use a linear reonstrution at the boundaries.6



• An ENO reonstrution : for the ell [ωi, ωi+1], we �rst evaluate two polynomials of degree 1.The �rst one, p−i , is onstruted using the ells {[ωi−1, ωi], [ωi, ωi+1]} and the seond one, p+
i ,on {[ωi, ωi+1], [ωi+1, ωi+2]}. We an write (with ωi+1/2 = ωi+ωi+1

2 )
p+

i (ξ) = a+
i (ξ − ωi+1/2) + b+

i and p−i (ξ) = a−i (ξ − ωi+1/2) + b−i .We hoose the least osillatory one, i.e. the one whih realises the osillation min(|a+
i |, |a−i |).In that ase, we take a �rst order reonstrution on the boundary of Ω.Other hoies are possible suh as WENO-like interpolants. Again, the ase of multiple soure ofunertainties an be handled by tensorisation.3.2 A general strategyLet us start from a PDE of the type

L(u, ω) = 0 (5)de�ned in a domain K of R
d, subjeted to boundary onditions. Sine the disussion of this setionis formal, we put the di�erent boundary onditions of the problem in the symbol L. The term ωis a random parameter, i.e an element of a set Ω equipped with a probability measure dµ. In (5),the unertainty is weakly oupled with the PDE, i.e. ω does not depend on any spae variables.However, the measure dµ may depend on some spae variable. The examples we have in mind aresuh that for a given realisation ω0 ∈ Ω, L(u, ω0) = 0 is a �standard� PDE, suh as the Laplaeequation, Burgers equation, the Navier Stokes equations, et. To make things even more lear, andto give an example, let us onsider the heat equation

∂T

∂t
= div (κ∇T ) + S(t, x), t > 0, x ∈ K ⊂ R

dwith Dirihlet boundary onditions
T = g on ∂Kand initial onditions

T (x, 0) = T0(x).In this example, κ, the soure term S, the boundary ondition g, the domain K and the initialondition T0 may be random. For any realisation of Ω, we are able to solve the heat equation bysome numerial method. What we are looking for is, for example, statistis on the approximatesolution T when ω follows a given probability law.We are given a numerial method for solving L(u, ω0) = 0, say
Lh(uh, ω0) = 0.for any ω0 ∈ ΩThis gives birth to a method for solving (5) that we denote Lh(uh, ω) = 0. One this is done,we have to disretise the probability spae Ω: we onstrut a partition of Ω, i.e. a set of Ωj,

j = 1, . . . , N that are mutually independent
µ(Ωi ∩ Ωj) = 0 for any i 6= j7



and that over Ω
Ω = ∪N

i=1Ωi.We assume µ(Ωi) > 0 for any i. Our problem is to estimate E(uh|Ωj) from L(u, ω) = 0.For example, if an iterative tehnique is used for solving the deterministi problem, say
un+1

h = J (un
h),this leads to

un+1
h (ω) = J (un

h, ω),so that
E(un+1

h |Ωj) = E(J (un
h)|Ωj).In the examples we have in mind, the operator J is a suession of additions, multipliations andfuntion evaluations. The average onditional expetanies, as we have explained in the previoussetion, enable to ompute approximations of the average onditional expetanies of any funtional,so that the evaluation of E(J (un

h)|Ωj) an be done in pratie: we are able to onstrut a sequene
(

E(un+1
h |Ωj)

)

n≥0
. If this sequene onverges in some sense, the limit is the sought solution.This example is also useful for larifying what we are not looking for. It may well be that thefuntional oming into J depend on several instane of uh, for example the value of uh at severalmesh point loations. In our method, we need that the probability law be the same all over theomputational domain K, or we would need joint probabilities between the various variables ominginto play. If this is doable in theory, we do not believe it is doable in pratie. Moreover, for all theexamples we have in mind, it is reasonable to assume that the probability law is the same all overthe omputational domain.In the next setions, we provide examples of realisations of this program on ellipti, paraboliand hyperboli equations with some non linear examples.4 Example of an ODEOur �rst example is a simple ODE equation with initial ondition,

du

dt
= f(u, t)

u(x, t = 0, ω) = u0(x, ω)
(6)where f is assumed to be smooth enough for having a unique solution. Here, we assume that f is

C1, but this assumption is ertainly too strong and ould be lower by a deeper analysis, This is notour point here.The equation (6) is disretised, for any ω, by an ODE solver. To make things simple, but withoutloss of generality, assume that we use the �rst order Euler forward method
un+1(ω) = un(ω) − ∆t f(un(ω), tn).Then we have, for any Ωi

E(un+1|Ωi) = E(un|Ωi)) − ∆t E(f(un, tn)|Ωi). (7)8



The problem is to evaluate E(f(un, tn)|Ωi). This an be done via a numerial quadrature thanksto the reonstrution we have developed in setion 3.1. Let us give an example, say
f(u, t) =

{

u(u − 1
2)(1 − u) if u ∈ [14 , 3

4 ]
0 else. (8)In that example,

u∞ = lim
t→+∞

u(t) =







u0 if u0 < 1
4

1
2 if 1

4 ≤ u0 < 3
4

u0 if u0 > 3
4 .From this, we see easily that if u0 is random with probability law dµ, the repartition funtion of

u∞ is
Φ(u) := P (ω|u∞(ω) ≤ u) =















P (s ≤ u) if u < 1
4

P (s ≤ 1
4) if 1

4 ≤ u < 1
2

P (s ≤ 3
4) if 1

2 ≤ u < 3
4

P (s ≤ u) if u ≥ 3
4Take the sheme is (7) with a third order reonstrution (with a entered stenil) exept on theboundaries of Ω where, if Ω0 and ΩN are the boundary ells, we take the following stenils

• for Ω0, S = {0, 1},
• for ΩN , S = {N − 1, N}.The results are independent of the high order reonstrution formula beause the solution limitvalue u∞ = 1

2 is stable.A third order quadrature Gaussian formula is used in the ase of a probability with a density
∫ b

a
f(x)dx ≈ b − 1

2

(

f
(a + b

2
+ θ(b − a)

)

+ f
(a + b

2
− θ(b − a)

)

)

, θ =
1√
3
.An optimal 6th order Gauss quadrature formula ould have been used, but sine the time steppingis only �rst order, and sine the numerial examples we onsider are steady, there is no need to dealwith optimally order quadrature formula. When there is no density, for example if dµ = fdx+Cδa,the regular part of µ is dealt with the previous formula, and the singular one by an ad ho one.In order to illustrate the method, we onsider three pdfs. Here, we set dµ = f(x)dx

• a uniform distribution :
f(x) = 1[0,1],

• A Gaussian distribution on [−2, 2] with 0 mean and variane σ = 1,
f(x) =

e−x2/2

∫ 3

−3
e−s2/2ds

,

• A Poisson distribution on [0, 2],
f(x) = 1[0,2]

e−x

1 − e−2
,, 9



In these example, any of the three reonstrution methods presented in setion 3.1 works �ne. Wehave hosen the entered one for the numerial illustration sine it is a priori the most aurate one.We show how the method approximates the values P (s ≤ 1
4) and P (s ≤ 1

2). We have hosen avery rude way of the repartition funtion of the random variable u∞,
Ψ(U∞) ≈

∑

j

P (s ∈ [ωj, ωj+1]suh that u∞(s) ≤ U∞).This explains the stairase like behavior of the urves of Figure 2 where we have displayed theresults for these three pdfs. This method is aurate however when 1/4 and 1/2 are mesh points inthe probability spae, in whih ase the only approximation holds on the quadrature de�ning theterms P (s ∈ [ωj , ωj+1]). We see on �gure 1 that the method has the auray of the quadratureformula (fourth order aurate) when the probability mesh meet this ondition; this test has beenonduted with the Gaussian pdf. Other results obtained for the other pdfs and 101 points aredisplayed in Table 1.

0.01 0.1
-14

-12

-10

-8
P1
P2
slope 4

Figure 1: Error in the evaluation of Ψ(U∞) when U∞ ∈]14 , 1
2 [ and U∞ ∈]12 , 3

4 [ for optimal meshes.
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Figure 2: Repartition funtion for the EDO (8) and the three pdf.10



The error between the exat and numerial results for P1 = Ψ(1
4) and P2 = Ψ(3

4) in the ase ofthe Gaussian distribution is displayed in Figure 1.
Ψ(U∞) Uniform Gauss Poisson

U∞ ∈]14 , 1
2 [ 1

2

erf(1/4) − erf(−1)erf(1) − erf(−1)

1 − e−1/2

1 − e−2exat ≈ 0.64458450997090083670 ≈ 0.2558207969omputed 0.25 0.644584509951823 0.246768643147764

U∞ ∈]12 , 3
4 [ 3

4

erf(3/4) − erf(−1)erf(1) − erf(−1)

1 − e−3/4

1 − e−2exat ≈ 0.90043482545390904212 0.6102173907Computed 0.75 0.900434825432325 0.615653168991007Table 1: Numerial values found for Ψ at the ritial points. There are 101 points in the probabilitymesh.At �rst glane, it might look strange that a entered reonstrution works well for a problem thatadmits disontinuous results. It is well known that suh reonstrution su�ers from a Gibbs�likephenomena. However here, the problem a bit speial. The two solutions u∞ = 0 and u∞ = 1 areunstable and the way we have proeed avoid them. We have kept only the the stable one u∞ = 1
2 .More over, if u ∈ [14 , 3

4 ] we have u∞ = u0 and the initial ondition is linear. Thus the reonstrutionis exat here. If any osillation develop ( i.e. when in the transient, we are out are out of [14 , 3
4 ]),the solution will be attrated to the losest stable limit solution, i.e. u∞ = 1

2 . two possible ases5 Example of an ellipti problemAs an illustration, we onsider the simple problem
(κ(x, ω)u′)′ = 0 , x ∈]0, 1[
u(0) = 0 , u(1) = 1

(9)where ω ∈ Ω is random with a given pdf, and κ(x, ω) > κ0 > 0 on ]0, 1[×Ω whih solution is
u(x, ω) =

∫ x
0

1
κ(x,ω)dx

∫ 1
0

1
κ(x,ω)dx

.Equation (9) is approximated on the mesh xi = i∆x, i = 0, . . . , N by (the mesh is uniform)
κi+1/2(ui+1 − ui) − κi−1/2(ui − ui−1) = 0 1 ≤ i ≤ N − 1

u0 = 0, uN = 1that is
ui =

κi+1/2ui+1 + κi−1/2ui−1

κi+1/2 + κi−1/2

u0 = 0, uN = 1,

(10)11



and κj+1/2 := κ(xj+1/2, ω).The rest of the method is similar, and we have used the same quadrature formula as in theprevious paragraph.In the numerial examples, we have hosen
κ(x, ω) = 4(x − 0.5)2 + 0.33 cos

(2πω

4

)

(x − 0.5) + 0.01Here κ ≥ 0.003. The pdf is a Gaussian distribution with mean 0.5 and variane 0.5.In �gure 3, we show the result obtained for 101 points in the spae diretion and 21 points inthe probability diretion. Again a entered reonstrution is used.
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Figure 3: Mean and variane for 101 points in the spae diretion and 21 points in the probabilitydiretion.The exat solution is
u(x, ω) =

arctan
(x−ϕ

δ

)

+ arctan
(ϕ

δ

)

arctan
(1−ϕ

δ

)

+ arctan
(ϕ

δ

)with
ϕ = 0.5 − 0.33

8
cos(2πω), δ =

√

0.0025 −
(0.35

8

)2
cos2

(2πω

4

)

.so that it is easy to estimate the L∞ and L2 errors of the mean and variane. This is done on �gure4. The results are seond order aurate with respet to the spae variable. We see also that theresults are almost independent of the disretisation in the probability diretion. �Converged� resultsare obtained already with 9 ells in the probability diretion.6 Example of the onvetion and Burgers equationsOur next example is the Burgers equation (1). In order to illustrate the strategy, we start from aMUSCL type preditor�orretor seond order sheme.
∂u

∂t
+

∂f(u)

∂x
= 0 t > 0, x ∈ R

u(x, t) = u0(x) x ∈ R

(11)12
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(a) (b)Figure 4: Errors in the mean and variane. (a) represents the error for a �xed spae disretisation(∆x = 10−2) and a varying probability disretisation (from 10 to 80) points. (b) represents theerror for a �xed probability disretisation (50 points) and a varying spae disretisation (from 20 to
101 points). The slope −2 is represented. The results are obtained with a entered reontrution.with periodi boundary onditions on [0, 2π]. For the onvetion problem, we take f(u) = u and forthe Burgers equation, we take f(u) = u2/2. The interval [0, 2π] is subdivided into equally spaedsub�intervals [xi−1/2, xi+1/2] where xj+1/2 =

xj+xj+1

2 with xj = j∆x.A standard onservative formulation for (11) writes, in its �rst order version,
un+1

i = un
i − λ

(

f̂(un
i , un

i+1) − f̂(un
i−1, u

n
i )

) (12)with λ = ∆t/∆x. The seond order preditor orretor sheme we use is
u

n+1/2
i = un

i − λ

2

(

f̂(un,L
i+1/2, u

n,R
i+1/2) − f̂(un,L

i−1/2, u
n,R
i−1/2)

) (13a)
un+1

i =
un

i + u
n+1/2
i

2
− λ

(

f̂(u
n+1/2,L
i+1/2 , u

n+1/2,R
i+1/2 ) − f̂(u

n+1/2,L
i−1/2 , u

n+1/2,R
i−1/2 )

) (13b)where
uR

j+1/2 = uj + δj/2, uL
j−1/2 = uj − δj/2and δj = L(uj+1 − uj , uj − uj−1) and L is a standard limiter. In this paper, we have hosen thesuperbee limiter,

L(a, b) = max
(

0,min(2a, b),min(a, 2b)
)

.The �ux is the Murman�Roe �ux with Harten's entropy �x for the Burgers equation,
f̂(a, b) =

1

2

(

f(a) + f(b) − λ(a, b)(b − a)

) (14)13



where, if f̃ ′(a, b) is the Roe average,
λ(a, b) =







|f̃ ′(a, b)| if |f̃ ′(a, b)| > ε

|f̃ ′(a, b)|2 + ε2

2ε
else.Here, we have taken ε = 0.01.We have also run a ase where S(x) = (sin2(x))′. Here, the �ux in (14) is modi�ed by replaing

f(a) and f(b) by
f(a) − sin2(xa), f(b) − sin2(xb)where xa and xb are the physial loations of the unknown a and b, i.e.

f̂(a, b) =
1

2

(

f(a) + f(b) − λ(a, b)(b − a)

)

− 1

2

(

sin2(xa) + sin2(xb)

)

. (15)Assume now that the initial ondition, though still periodi of period 2π depends on a randomparameter. Eah of (12), (13a) and (13b) is similar, so we onentrate on (12). We have again, forany physial ell [xi=1/2, xi+1/2] and any Ωj,
E(un+1

i |Ωj) = E(un
i |Ωj) − λ

(

E
(

f̂(un,L
i+1/2, u

n,R
i+1/2)|Ωj

)

− E
(

f̂(un,L
i−1/2, u

n,R
i−1/2)|Ωj

)

) (16)This amounts to omputing the �ux expetanies, E
(

f̂(un,L
i+1/2

, un,R
i+1/2

)|Ωj

). For this, again, wereonstrut the variables un,L
i+1/2 and un,R

i+1/2 with the tehnique of setion 3.1. In the numerialexamples, we have either used a third order aurate entered reonstrution or the seond orderENO one in the probability diretion. As expeted, the entered reonstrution generates (slight)osillations. We only display the results with the ENO one. In the probability dimension, we usea Gaussian quadrature formula with two points. Hene, if we have Nprob ells in the probabilitydiretion, we need 2Nprob solution evaluations. The time step, i.e. λ is hosen by a worst asesenario, but this strategy might be over pessimisti. Further studies are ertainly needed.6.1 Convetion problemThe example is the onvetion equation (veloity of unity) with an initial ondition u0. Sine theexat solution is u(x, t) = u0(x− t) it is easy to evaluate the error on the mean and the variane. Inthe example, the pdf is N (1, 1). In �gure 5, we have displayed the results for 11, 21 and 41 pointsin the probability spae. The results are seond order aurate in spae. We have also displayedthe same results but for a Gaussian law with the same mean and the variane σ = 0.1. In thatase, the gradient of the pdf is larger and then the quadrature formula (two point Gaussian) isless e�ient. This ould be improved by an adapted mesh, i.e. a mesh where the measure, withrespet to the probability law, of eah probability ell would be the same [12℄. However, the resultsof Figure 6 indiate the same type of errors. This is on�rmed by �gure 7 where the same ase arererun with a �xed number of mesh points and 11 to 41 points in the probability spae. Note thatthe same example gives, in the deterministi ase, the following errors : 0.799 10−2 in the max normand 0.7919 10−3 for the L2 norm. This shows that the main soure of error omes from the spaedisretisation, as in the ellipti ase. 14
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41 points in prob spaeFigure 5: Errors in mean and variane for the onvetion problem with the pdf N (1, 1), the CFLnumber is 0.75. The �nal time is t = 1.5 and the domain is [0, 2π]. The slope limiter is enter inthe probability spae.6.2 Burgers equationThe initial ondition is
u0(x, ω) = |a(ω)| sin(2x − a(ω))with a(x) = x. This results in a a disontinuous solution with a disontinuity loalised at xω = a(ω).Three pdfs were used:1. A Gaussian pdf: N (m,σ) with m = 1 and σ = 0.1 or 1 onditioned by x ∈ [−3, 3].2. A disontinuous pdf de�ned by dµ = f

wdx with
f(x) =















0 if x ≤ −1
0.1 if x ∈] − 1, 0.5[
1 if x ∈ [0.5, 1[
0 if x ≥ 1and w = 0.65 (i.e. the weighting fator so that the integral of f/w is equal to 1.)15
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u(x, 0) = β sin x16
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u∞(x, β) = lim

t→+∞
u(x, β, t) =

{

u+ = sin x if 0 ≤ x ≤ Xs

u− = − sin x if Xs ≤ x ≤ πwhere the shok loation is
Xs =

{

arcsin
√

1 − β2 if − 1 < β ≤ 0

π − arcsin
√

1 − β2 if 0 < β ≤ 1If |β| ≥ 1, the solution is smooth.In [5℄ is onsidered the ase of β random where α =
β

1 − β2
is Gaussian with mean m andvariane σ. We have

β =







−1 +
√

1 + α2

2α
if α 6= 0

0 else.We see that β de�ned as this is always in [−1, 1], so a shok always exists. The density of the shokloation is
p(x) =







1

σ
√

2π

1 + β2

(1 − β2)2
e−[(x−m)2/2σ2] sin(x) if x ∈ [0, π],

0 elseIn the numerial setion, we are going to evaluate the repartition funtion x 7→ Pσ,m(Xx ≤ x). Aneasy alulation shows that
Pσ,m(x) = P (Xs ≤ x) =

1

σ
√

2π

∫ − cosx

sin2 x

−∞
e−

(x−µ)

2σ2 dx =







erf(− cosx

sin2 x
−m

σ
√

2
) if 0 ≤ x ≤ π

2

1
2 + erf(− cosx

sin2 x
−m

σ
√

2
) if π

2 ≤ x ≤ π17
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with the Gaussian pdfs with the disontinuous pdfFigure 8: Plot of eah realisation for the Gaussian pdfs and the disontinuous one.In order to show the �exibility of the method, we also onsider the sum of the previous pdf anda Dira measure. More preisely,
dµ =

1

I

(

1

σ
√

2π
e−[(x−m)2/2σ2]1[A,B]dx + θδωc

) (17a)where ωc ∈]A,B[, θ ≥ 0, I is the normalizing fator
I =

∫ B

A

1

σ
√

2π
e−[(x−m)2/2σ2]dx + θ. (17b)and δωc is the Dira distribution at ω = ωc. In that ase, the repartition funtion is

Pµ(x) = Pσ,m(x) + θ1[Y,B]where Y is the shok loation for α = xc, i.e.
Y = π − arcsin

(

√

1 − β2

)

, xc =
β

1 − β2
.The simulation is initialised with, in eah ell, the expetany of the spatial averaged solution.The solution develops shoks. Sine the method is a �nite volume one, these shoks are at bestknown with an auray of O(∆x). We have adopted the following proedure to loalize the shokposition: for eah ell [ωj−1/2, ωj+1/2], we determine the ell ]xij−1/2, xij+1/2[ suh that

∣

∣

∣

∣

∣

E(ui+1|Ωj) − E(ui|Ωj)

∆x

∣

∣

∣

∣

∣is maximal. If this ours at two di�erent loations, we hoose the smallest index. One the index
ij is known, we ompute

p(xij ) = P (x ≤ xij )18
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2 for eah pdf.Note that for many j, |ij − ij+1| > 1: this means that there are �holes� in the numbering sine theshok detetion proedure may well deide that for j and j + 1, the shok has the same loation.See �gure 10 for an illustration. It order to �ll these gaps and to be able to draw xi 7→ p(xi), wemake a linear interpolation between two onseutive gaps. The numerial repartition funtion isompared to the exat repartition one, and to the repartition funtion omputed for the exat shokloations orresponding to the events ωl+ωl+1

2 , l = 1, · · · .In the �rst set of example, we have onsidered a Gaussian distribution with m = 1 and σ = 1for 101 and 151 mesh points in spae, and 5 and 11 points in the probability diretion. Thisorresponds to 100 and 150 'spae� ells and 4 and 10 �probability� ells. The point repartition isuniform in both diretions. The results are displayed in Figure 11. A good agreement is obtained:remember that the shok loations are at most known with an O(∆x) error. A lose inspetion ofthe �gure indiates that for x ≈ π, the numerial repartition funtion has a disontinuity whih isnot existing in the exat one. The explanation is the following: our variables are the expetaniesof the averaged variables : E(ui|Ωj), whih an be though as the value of ui at ωj+1/2 =
ωj+ωj+1

2 .Hene, the shok loation for this random parameter does not orrespond to the random parameter
α for whih xl = arcsin

(

√

1 − β2(α)

). The di�erene is the most visible for the �rst row. This is19
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ωc = 0.5. This orresponds to the shok loation xc ≈ 1.997874914. The same omments as in theprevious examples an be given.7 Example of the Euler equationsThe method is easily extended to the Euler equations. The base sheme is the seond Roe shemeusing the superbee limiter on the harateristi variables. We use the wave interpretation of theRoe sheme to onstrut the seond order sheme (see [13℄). Even-though the sheme use theonservative variables W = (ρ, ρu,E) for the time evolution, the main variables are the density ρ,the veloity u and the pressure p. The total energy is related to these variable via an equation ofstate. Here, we have hosen a perfet gas EOS,

E =
p

γ − 1
+

1

2
ρu2,where the ratio of speif heats γ may be non uniform. In that ase, we use the version of the Roesheme developed in [14℄. Examples of this type have been suessfully run, but are not reportedhere.In order to show the versatility of our method, we have run the method on two lasses ofexamples, namely a shok tube like problem, and the interation of a density sine wave with a shok(as proposed by Shu and Osher). 20



1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Numerics
Exact using space mesh
Exact using prob mesh

2 3
0

0.2

0.4

0.6

0.8

1

Numerics
Exact using space mesh
Exact using prob mesh

spae: 101, prob: 5 spae: 101, prob: 11

2 3
0

0.2

0.4

0.6

0.8

1

Numerics
Exact using space mesh
Exact using prob mesh

2 3
0

0.2

0.4

0.6

0.8

1

Numerics
Exact using space ,esh
exact using prob mesh

spae: 151, prob: 5 spae: 151, prob: 11Figure 11: Solution for the double nozzle problem obtained with the Gaussian law. Numeri: distribution obtained from the solver. Exat : exat distribution. Exat from prob mesh :distribution at the points ωj+1/2.The unertainty parameters are now two dimensional, and in the examples we show, we havehosen a Gaussian type law where the unertainty are orrelated. The pdf is
f(ω1, ω2) = Ke−

ω2
1−(ω2−1)2−ω1(ω2−1)

2 , (18)and K is a normalizing oe�ient and (ω1, ω2) ∈ [−3, 3]2.7.1 Shok tube like test asesThe initial onditions are
• If x ≤ 0.5,

ρ(x) = ρL(1 + 0.2 sin(ω1))
u(x) = uL

p(x) = pL(1 + 0.2 sin(ω2))21
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• else

ρ(x) = ρR(1 + 0.2 sin(ω1))
u(x) = uL

p(x) = pR(1 + 0.2 sin(ω2))with γ = 1.4. The density of the random variables ω1 and ω2 is given by (18). The CFL onditionis set to 0.75. The results are displayed in Figure 14. Again several resolution in the probabilitydiretions have been run. Again, we see that the results, on that ase, are indistinguishable.7.2 Shok-turbulene interationThe initial onditions are, with ρL = 3.857143, uL = 2.629369, pL = 10.333333 and uR = 0.,
pR = 1., and sloc = −4,

• If x ≤ sloc,
ρ(x) = ρL

u(x) = uL

p(x) = pL

• else
ρ(x) = 0.5 (1 + 0.2 sin(5x))
u(x) = uR

p(x) = pR(1.0 + 0.2 sin(ω1 + ω2))On �gure 14, the simulation is done with 400 points in the spae diretion and 10× 10 or 20× 20 inthe probability spae. Again the same onlusion holds: there is little dependeny on the probabilitydiretion resolution.
22
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