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Recent years have seen a growing interest in developing numerical algorithms
for compressible multifluids. Computations ran into unexpected difficulties due to
oscillations generated at material interfaces, and understanding of the underlying
mechanisms was needed before these oscillations could be circumvented. This paper
reviews some of the recent models and numerical algorithms that have been proposed
and points to key ideas that they have in common. Noting the known fact that such
oscillations do not arise in single-fluid computations, an extremely simple algorithm
is proposed which circumvents the oscillations and amounts to computing two dif-
ferent flux functions across material fronts, to update the different fluids on both
sides. c© 2001 Academic Press

1. INTRODUCTION

Recent years have witnessed a growing interest in developing numerical methods suitable
for computing multimaterial flows and in their efficient implementation to studying complex
flow phenomena [1–3, 7, 9, 11–14, 16–24, 26, 31–37, 39]. Understanding the dynamics
of fluids consisting of several fluid components is of great interest in a wide range of
physical flows, including studying the dynamics and stability of bubbles and interfaces,
mixing processes, bubbly flows, and liquid suspensions. Such flows give rise to challenging
problems, both theoretically and computationally. In this paper, we focus on models and
numerical methods for multimaterial flows consisting of pure fluids separated by material
interfaces.
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out in part while the author visited the University of Bordeaux.
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Assuming all fluid components can be described by a single velocity and a single pressure
function, the flow is described by the compressible Euler equations

 ρ

ρu

E


t

+

 ρu

ρu2+ p

u(E + p)


x

= 0, p(ρ, e), (1)

expressing conservation of mass, momentum, and energy of the fluid mixture, and its
thermodynamics properties given by theequation of state(EOS). Here we useρ, u, andp to
denote density, velocity, and pressure;E = ρe+ 1

2ρu2 denotes the total energy; ande is the
specific internal energy. We further usea to denote the speed of sound andH = (E + p)/ρ
to denote the specific total enthalpy. The flow description is completed by providing an
additional equation that describes the dynamics of the fluid composition, and by specifying
its effective thermodynamics, i.e., the EOS of the mixture.

For the rest of the paper, we assume that the fluid consists of two components61 and62.
The EOS depends on the fluid composition, described by the variableφ. Various choices of
φ have been suggested in the literature, depending on the model assumptions. For example,
in [30] it was suggested to takeφ to be the specific heat ratio of the fluidγ , in [1, 2, 4, 23],
the mass fraction was used, and in [12, 26], the level-set function (see Section 2) was used.
For all these models, the governing equation for the variableφ has the form

(ρφ)t + (ρuφ)x = 0. (2)

The EOS for ideal fluids is

ρe= ρ

γ − 1
, (3a)

whereγ = γ (φ) denotes the effective ratio of specific heats of the fluid mixture. A more
general EOS for stiff fluids is

ρe= p+ γ p∞
γ − 1

, (3b)

wherep∞ = p∞(φ) is a stiffness parameter, and the choicep∞ = 0 recovers the ideal gas
case. We shall focus on these two cases in the paper. They can be seen as simplifications of
more complex fluids of the Mie–Gr¨uneisen type

p = p∞(φ, ρ)+ γ (φ)(ρe− e∞(φ, ρ))

for which the numerical phenomena we describe in the paper become even more severe.
Using W = (ρ, ρu, E, ρφ)T and F(W) = (ρu, ρu2+ p, u(E + p), ρuφ)T to denote

the vector and dependent variables and flux functions, the equations take the form

Wt + F(W)x = 0. (4)

A choice needs to be made as to the general computational framework for problems
involving interface dynamics: (i) Front-tracking methods treat discontinuities as moving
internal boundaries, and the jump conditions are imposed (see for example [5] and references
therein). Such methods are attractive in that interfaces are preserved as sharp discontinuities,
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but they are difficult to implement in several space dimensions. (ii) Front-capturing methods
are derived from the integral form of the governing equations. They are straightforward to
implement in any number of space dimensions but come at a price of smearing solution
discontinuities. The methods reviewed in this paper are shock-capturing methods, with a
certain tracking “flavor” dictated by the nature of flows dominated by propagating interfaces.

The genral framework for shock-capturing algorithms considered in this paper is that
of Godunov-type discretization [15]. A numerical grid is given by the mesh spacing1x
and time step1t, xj = j1x, andtn = n1t . Intergrating (4) over the box [xj− 1

2
, xj+ 1

2
] ×

[tn, tn+1] gives

Wn+1
j = Wn

j −
1t

1x

(
F

n+ 1
2

j+ 1
2
− F

n+ 1
2

j− 1
2

)
, (5)

where

Wn
j =

1

1x

∫ x
j+ 1

2

x
j− 1

2

W(x, tn) dx, F
n+ 1

2

j± 1
2
= 1

1t

∫ tn+1

tn

F
(
xj± 1

2
, t
)

dt

are the cell-average of the solution over grid-cellj and the time-average flux functions at
cell interfaces respectively.

The paper is organized as follows. In Section 2 we describe the general structure of the
multifluid flow model (Eqs. (1)–(3)) and present several specific models. In Section 3 we
describe the numerical difficulties that arise in discretizing such models and that result in
oscillations and other computational inaccuracies near material fronts. We then describe
several approaches for overcoming those difficulties within the general framework of the
model proposed, as well as other approaches that do not fall exactly in this framework. In
particular, we point out the fact that these difficulties do not arise in computations involving
single fluids and that some recent successful multifluid algorithms capitalize precisely on
this property. In Section 4 we then propose an extremely simple algorithm with a single-
fluid flavor. It circumvents the difficulties by computingtwodifferent flux functions across
material fronts to update the different fluids on both sides. The conservation properties of the
algorithm are analyzed. In Section 5, we present a variety of numerical examples involving
shock–interface interaction for ideal and stiff fluids as well as flows with chemical reaction.
Conservation errors are studied numerically, and convergence is demonstrated. We end up
with concluding remarks in Section 6.

2. MULTIFLUID MODELS

2.1. General Structure

The extended system (1)–(3) remains time-hyperbolic. We setε = ρe and denoteκ =
γ − 1= pε . The right eigenvector matrix and associated eigenvalues for EOS (3b) are given
by

R=


1 1 0 1

u− a u 0 u+ a

H − ua u2

2 −pφ H + ua

φ φ pε φ


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and

3 = diag(u− a, u, u, u+ a),

where the speed of sound satisfies

a2 = (γ − 1)

(
H − 1

2
u2

)
= γ p+ p∞

ρ
.

The particle field becomes degenerate with a double eigenvalue corresponding to the contact
surface being not merely an entropy wave front but also a material interface.

The jump conditions [F(W)] = σ [W] and Riemann invariants can be summarized as
follows:

• Material interfaces: [u] = 0; hence [p] = 0 andσ = u. The jumps inφ andρ are
arbitrary. A material interface is the only location where the composition of the fluid can
change.
• Shock waves: [u] 6= 0; hence [p] 6= 0. Here, [φ] = 0, so that the classical shock jump

conditions apply [10].
• Across a(u∓ a) simple wave, the Riemann invariants are

φ, (p+ p∞)ρ−γ , u± 2

γ − 1
a.

2.2. Some Examples

We now describe some specific models that have been proposed and discussed extensively
in the literature.

2.2.1. γ -Model

In [31], γ is extended to be a piecewise constant functionγ (x, t). Being a state variable,
γ propagates with the fluid velocity,u, and hence satisfies

γt + uγx = 0, (6)

which for convenience can be combined with (1a) and cast in conservation form

(ργ )t + (ρuγ )x = 0.

The numerically computedγ consists of piecewise constant values connected by transition
layers, interpreted as “numerical mixing” of the species. We note the following:

• The local value ofγ , computed fromγ = (ργ )/ρ, is not guaranteed to lie in the
physically acceptable range (betweenγ1 andγ2), and overshoots may and do occur (see
analysis in Section 3.1; also see [6]).
• Any function f (γ ) is also a state variable; hence (6) can be replaced by

f (γ )t + u f (γ )x = 0. (7)
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It turns out that the particular choice off (γ ) = 1/γ − 1, with appropriate discretization,
offers clear advantages. This is further discussed in Section 3.2.2 (see also [2]).

A Roe-type linerization was proposed [31] for the extended model (discussed also in the
more accessible reference [19]). Numerical computations with this model suffer inaccu-
racies near the material fronts. The velocity profile shows a persistent nonphysical jump
across isolated material fronts [19]. (See Fig. 3a and further discussion in Section 5.)

2.2.2. Mass Fraction Model

In [1, 23, 24] the mass fractionY1 = ρ1/(ρ1+ ρ2) = ρ1/ρ (respectivelyY2) is used to de-
scribe the concentration of61 (respectively62) in the fluid mixture. The mass conservation
equation for species61 is given by

(ρY)t + (ρuY)x = 0,

whereY ≡ Y1 = 1− Y2. Using p1,2 to denote the partial pressures of species61,2, and
assuming that the species are calorically perfect gases in thermal equilibrium with specific
heat constantsCv andCp, one has

e1 = Cv1T, p1 = (γ1− 1)ρ1e1,

e2 = Cv2T, p2 = (γ2− 1)ρ2e2.

Using Dalton’s law of partial pressures,p = p1+ p2, yieldsρe= ρ1e1+ ρ2e2 = ρCvT ,
whereCv(Y) = Y1Cv1+ Y2Cv2 and

p = (γ − 1)ρe, whereγ = γ (Y) = Y1Cp1+ Y2Cp2

Y1Cv1+ Y2Cv2
. (8)

The computational difficulties in this model are similar to those observed with theγ -model:

(i) the mass fractionY, computed from(ρY)/ρ, is not guaranteed to remain in the
physically relevant range of [0, 1].

(ii) The velocity profiles show a persistent nonphysical jump across the material front
(see Fig. 3b). The first of these observations was analyzed in [23] and is attributed to the
fact thatρ andρY are not varying “in-phase” with each other across material fronts. (See
Section 3.1.)

Removing the assumption of thermal equilibrium leads to an effectiveγ for the mix-
ture [36] of

γ (Y) = γ1Y1e1+ γ2Y2e2

Y1e1+ Y2e2
,

but it requires in addition to (1)–(3) that one also solves for the internal energies of the
individual species.

2.2.3. Level-Set Model

An “immiscible” model was proposed in [26] where a level-set functionψ is used to
track the material interface. The fluid “mixture” consists of either fluid61 or fluid62 and
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thermodynamic properties change discontinuously across the material interface. A marker
variableψ is initialized so that its zero level-set defines the material interface att = 0,
and it is positive (respectively negative) in the domain occupied by fluid component61

(respectively62). Then,ψ satisfies a transport equation similar to (6), which again may be
combined with (1a) and recast in conservation form

(ρψ)t + (ρuψ)x = 0.

By definition,ψ(x, t) = 0 at the interface at all later timest > 0, and the EOS is given
by (3a) with

γ (ψ) =
{
γ1 ψ > 0,

γ2 ψ < 0.
(9)

Computations with this model, using a Roe-type upwind scheme, suffer from even more
pronounced oscillations near material fronts [20] (see Fig. 3c).

As discussed in Section 3.2, the above models produce spurious pressure oscillations
across material fronts. Analysis of the above models presented in [19] shows that the
pressure oscillations in theγ -model and mass-fraction model areO(1γ )2 and are of a
definite sign, while in the level-set model, they are of orderO([γ ]) and do not have a
definite sign. This is consistent with the form of the computational inaccuracies observed
in Fig. 3.

3. WHAT IS GOING WRONG?

3.1. Positivity of Mass Fractions

The following discussion focuses on the mass-fraction model but applies equally to the
γ -model. While physicallyY ∈ [0, 1], the numerically computed value ofY, (ρY)/ρ, is
not guaranteed to lie in this range. As discussed below, this problem has been observed
with the best available schemes and is referred to as the “positivity of the mass fraction”
problem.

We first note that the occurrence of negative mass fraction is not a result of a time-
stepping stability violation. Indeed, some schemes may develop negative mass fractions
for any time step, however small. As shown in [4], applying Roe’s scheme to the shock
tube data in Table I leads to a negativeY after one time step, forany choice of time
step1t > 0. An example with Osher’s solver is also given in [4]. Note that hereγL = γR,
establishing that the positivity problem is unrelated to the presence of multispecies as is often
believed.

TABLE I

Shock-Tube Data That Produce Negative Mass Fraction

ρ u H Y γ

Left 1 −1 1 1 1.4
Right 1 1 5 0 1.4
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To cure this problem, a scheme property that ensures positivity of the mass fractions has
been identified in [23], that the flow rate ofρY, namelyFρY, is varying “in phase” with the
flow rate of the entire fluid mixtureρ, namelyFρ . To that end, it is proposed to modify the
species mass flux as

Fmodified
ρY = Y∗Fρ,

with

Y∗ =
{

YL if Fρ > 0,

YR if Fρ < 0,
(10)

with L, R denoting the states neighboring the cell-interface whereF is being evaluated.
Any scheme that satisfies this condition, for example the Godunov scheme [15] and van

Leer flux splitting scheme [38], preserves the positivity of the mass fractions, provided the
CFL condition is satisfied.

3.2. Pressure Oscillations

A major difficulty in discretizing the multifluid Eqs. (1)–(3) is ensuring that pressure
equilibrium between fluid components is not disturbed by the numerical scheme. Indeed,
the best available schemes develop pressure oscillations near material fronts separating
fluids in pressure equilibrium. These oscillations are not the ones commonly associated
with high-order numerical methods. They are present already in first-order computations
(see Fig. 3) and are not removed by going to a higher order. We note that such oscillations
are not observed in the single-fluid model, and as we discuss below, a number of recent
schemes capitalize precisely on this property. To shed light on the multifluid case, a brief
analysis of the evolution of the pressure field is carried out, first for a single fluid, and then
for a multifluid mixture.

Usingδ( ) = ( )n+1− ( )n to denote time changes,1( ) = ( ) j+ 1
2
− ( ) j− 1

2
spatial varia-

tions, andν = 1t
1x the mesh ratio, the Godunov scheme applied to (4) gives ρ

ρu

E


n+1

j

=

 ρ

ρu

E


n

j

+

 δρ

δ(ρu)

δE

 ,
where  δρ

δ(ρu)

δE

 = −ν
 1(ρu)

1(ρu2+ p)

1(u(E + p))

 . (11)

3.2.1. Single Fluid

In the single- (ideal) fluid case,γ n
j = γ is uniform, and the new pressurepn+1

j = p+ δp is
obtained using the EOS (3a). Dropping the super- and subscripts for notational convenience
we have

p+ δp
γ − 1

= (E + δE)− 1

2
(ρ + δρ)(u+ δu)2. (12)



COMPUTATIONS OF COMPRESSIBLE MULTIFLUIDS 601

Across isolated material fronts, the exact solution has uniformu andp. Numerically, ifu and
p are uniform in the data,un

j = u j± 1
2
= u, pn

j = pj± 1
2
= p, and the solution updates (11)

reduce to

δρ = −νu1ρ, (13a)

δ(ρu) = −νu21ρ = uδρ, (13b)

δE = −νu1E = −ν 1

2
u31ρ (13c)

= 1

2
u2δρ.

From (13a,b), it readily follows that

δu = 0 (14)

and from (13c) and (12) it follows that

δp = 0, (15)

implying that the computedun+1
j and pn+1

j remain uniform, as they should.

3.2.2. Multifluids

In the multifluid case,γ = γ n
j is generally not uniform and varies across the material

front. The new pressure then becomes

(p+ δp) = (γ + δγ − 1)

(
(E + δE)− 1

2
(ρ + δρ)(u+ δu)2

)
. (16)

Fully conservative methods.By fully conservative methods, we mean methods that not
only conserve total mass, momentum, and energy of the fluid mixture but also conserve
mass of theindividual species. We therefore refer here only to the discretizations of the
mass-fraction model, the only model with this property.

In the mass-fraction model,γ = γ (Y), and

γ n+1
j = γ (Yn+1

j

) = γ + δγ.
Consider a flow consisting of a material front separating two ideal gases withγl ,r , moving

with some positive velocityu > 0, with initial data

W0
J =

{(
ρ, ρu, p

γl−1 + ρ

2u2, ρ
)

j < 1,(
ρ, ρu, p

γr−1 + ρ

2u2, 0
)

j ≥ 1.

In this case, the numerical flux reduces to the upwind flux,

Fj+1/2 = F(Wj ),

and after one time step, we have

W1
1 = W0

1 − ν
(
F
(
W0

1

)− F
(
W0

0

))
.
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Some simple algebra shows that after one time step

Y1
1 = 1− νu,

u1
1 = u,

which is the correct solution behavior. However, the pressure computation gives

p1
1

γ 1
1 − 1

= p

γl − 1
− νup

(
1

γl − 1
− 1

γr − 1

)
.

Using (8) we then get

γ 1
1 = γ

(
Y1

1

) = Cp1− νu(Cp1− Cp2)

Cv1− νu(Cv1− Cv2)
.

If 0 < νu < 1,

γl < γ 1
1 < γr ,

in which case the newly computed pressurep1
1 6= p, and a pressure oscillation is generated.

The oscillation isO(1γ )2 and has a definite sign (see [19]).
This result is quite general. It is shown in [1] thatany Godunov-type scheme which

is fully conservative will not be able to maintain pressure equilibrium and will develop a
pressure oscillation across material fronts. This suggests that one may need to move away
from the strictly conservative framework. An early paper to adopt a fully nonconservative
approach for multifluids was [19]. Subsequently, several nonstrictly conservative schemes
were proposed [2, 12, 18, 20, 34, 36, 37]. We discuss some of them in Section 3.3.

Nonconservative methods.Again, considering isolated material fronts, we denoteα =
1

γ−1. Equation (16) now becomes

(p+ δp)(α + δα) = (E + δE)− 1

2
(ρ + δρ)(u+ δu)2 (17)

with

δE = −νu1E

= −νu1

(
p

γ − 1
− 1

2
ρu2

)
(18)

= −1

2
u2δρ − νup1

(
1

γ − 1

)
.

Inserting (18) into (17) we now get

(p+ δp)(α + δα) = E + δE − 1

2
(ρ + δρ(u+ δu)2

= E − 1

2
ρu2− νup1

(
1

γ − 1

)
= pα − νup1α,

where we have used the fact that, as in the single-fluid case,δu = 0.
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It is now clear that in order forδp to vanish, we must have

α + δα = α − νu1α. (19)

This was realized in [2] and was later extended to multifluids with stiff EOS [32, 34],
to Van der Waals EOS [35], and to multiphase flows [33]. Clearly if condition (19) is not
satisfied, then even idealized situations such as isolated material fronts will produce pressure
oscillations.

Finally, we note that (19) is a discretization of the transport equation

αt + uαx = 0. (20)

Referring back to Eq. (7), we see thatanyfunction f (γ ) is a state function and is effectively
transported by the fluid. The simple analysis carried out above shows that the one choice of
f (γ ) that does not produce pressure oscillations isf (γ ) = 1

γ−1, provided it is discretized
by (19).

The above algebra is general and applies to any scheme that preserves uniformvelocity
across material fronts [2]. This condition is not trivially satisfied. We note that Godunov-type
schemes fulfill this condition, but flux-splitting schemes, such as van Leer’s [38] (see [2]
for details) do not.

Condition (19) was obtained under the ideal assumption that the flow consists of an
isolated material front. It implies that in order forδp = 0, Eq. (20) cannot be discretized
independently of the discretization of the conserved variables in (1). More generally, al-
thoughu and p are continuous across a contact surface, they are not necessarily uniform.
Requiring thatδp = 0 is no longer valid, and Eq. (19) needs to be generalized.

The generalization follows the same guiding principle: Combining the evolution equa-
tions of the total energy, the momentum, and mass, we can obtain an evolution equation for
the internal energy,

∂ρe

∂t
+ u

∂ρe

∂x
+ p

∂u

∂x
= 0,

which, for ideal gases, becomes

∂αp

∂t
+ u

∂αp

∂x
+ p

∂u

∂x
= 0

or

p

(
∂α

∂t
+ u

∂α

∂x

)
+ α

(
∂p

∂t
+ u

∂p

∂x
+ ρa2∂u

∂x

)
= 0.

In the above equation, we identify the evolution equation forα and the pressure evolution
equation. The guiding principle is to discretize (20) in such a way that the resulting changes
in p, namelyδp, are consistent with changes implied by the pressure evolution equation
(see [2] for details). Finally, this construction can be generalized to high order [2] and to
unstructured meshes [3].
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Schemes that are discretized in this fashion conserve mass, momentum, and total energy of
the fluid mixture (but not mass of the individual species), they admit a maximum principle
on α under a CFL-like condition, and they preserve the positivity of mass fractions. A
second-order extension of the above method, derived in detail in [2], was implemented in
the numerical section methods and is referred to as the “quasi conservative scheme.” It
clearly prevents oscillations in the pressure.

3.3. Other Approaches

3.3.1. Volume-of-Fluid Model

The volume-of-fluid method goes back to an early paper by Noh and Woodward [27].
It was formalized in a mathematical framework in an unpublished paper by Colella, Glaz,
and Ferguson (CGF) in [8], which also accounts for the different compressibilities of the
species. A discussion of the CGF method appeared in [25], where it is also extended to
condensed media problems. The CGF volume-of-fluid model is essentially equivalent to a
multiphase fluid model with a single pressure and a single velocity and is not of the general
form (1–3). In this formulation, the balance equations for mass and energy are written for
the individual species, while the momentum equations are written for the fluid mixture. The
usual mass and energy conservation for the fluid mixture are obtained upon summation of
the species equations.

Evolution equations are derived for the species volume fractions,fα,

∂ fα
∂t
+ ∂u fα

∂x
= fα

0̂

γα
ux, (21)

assuming that compressions are isentropic, and requiring that changes infα all correspond
to the same pressure change. The latter ensures that most volume changes are absorbed
by the most compressible fluid. These requirements lead to two effectiveγ ’s for the fluid
mixture: (i) γ̂ to be used in the computation of the internal energy and (ii)0̂ to be used in
the computation of the speed of sound,

1

γ̂ − 1
= f1

γ1− 1
+ f2

γ2− 1
,

1

0̂
= f1

γ1
+ f2

γ2
.

The algorithm evolves the fluid mixture as a single fluid. The volume fractions and
the species thermodynamics are used to compute effective thermodynamic quantities for
the fluid mixture. The changes in the mixture mass and total energy, given by the flux
difference, are then distributed among the fluid component. The species EOSs are then
used to compute the species pressure and internal energy. While the algorithm preserves
pressure equilibrium between the multifluid components, near shocks, different species
may develop different pressures and a further relaxation process is required to restore
pressure equilibrium. Assuming isentropic compression, the equilibrium pressure is given
by

p̂

γ̂
= p1 f1

γ1
+ p2 f2

γ2
.
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The resulting changes in volume fractions are computed, and the total energy of the indi-
vidual species is recomputed to account for the work done by the pressure forces due to
pressure relaxation. See [25] for more details.

3.3.2. Pressure Evolution Model

The evolution equation for the pressure is

pt + upx + ρa2ux = 0. (22)

It provides a valid flow description for smooth flows as well as near contact surfaces, where
changes in pressure or velocity have finite amplitude. In particular, if bothu and p are
uniform in the data,p remains uniform in the solution, andany consistent discretization
of (22) automatically inherits this property. Near shocks, however, (22) is not valid, and
conservation errors will occur, translating into incorrect shock strength or speed.

In [19], a nonconservative model based on the primitive variablesU = (ρ, u, p) was
presented. This model uses small viscous correction terms to remove leading-order conser-
vation errors. The correction terms are obtained by transforming the governing equations
from conservative to primitive formulation together with the small(O(h)) numerical vis-
cosity terms. Being based on the primitive variables, the model lends itself to oscillation-free
discretizations. Conservation errors, however, are eliminated only to leading order, which
limits the suitability of the method to shocks of weak to moderate strength(Ms ≈ 2.5),
where conservation errors are within less than 2%. The method was successfully applied to
study a variety of shock–interface interaction problems [19] and was successfully applied
to study the highly complex interaction of weak shock waves with bubbles [28].

This approach was modified in [20] to suit also strong shocks (up toMs ≈ 100). The idea
is to use (22) only across material fronts but otherwise to revert back to the conservative
formulation (1). For the level-set formulation, the following hybrid model is proposed [20].
Solve  ρ

ρu

ρψ


t

+

 ρu

ρu2+ p

ρuψ


x

= 0

together with one of the following:

(i) If ψ = 0 (material front) then solve

pt + upx + ρa2ux = 0 H⇒ E = p

γ (ψ)− 1
+ 1

2
u2;

(ii) otherwise (away from material front)

Et + (u(E + p))x = 0 H⇒ p = (γ (ψ)− 1)

(
E − 1

2
u2

)
.

This model leads to essentially conservative algorithms in that conservation error occurs
only near the material front. The error is only in the total energy; it is extremely small
even for very strong chocks(≈0.2%) and converges to zero with mesh refinement [20].
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This approach was applied to compute shock–interface interaction of ideal gases as well as
stiff fluids and interfacial instabilities in multifluid dynamics and to bubble dynamics with
surface tension [20–22].

3.3.3. Internal Energy Correction Algorithm

The discretization of the energy equation has the general form

En+1
j =

(
p

γ − 1

)n+1

j

+
(

1

2
ρu2

)n+1

j
(23)

=
(

p

γ − 1

)n

j

+
(

1

2
ρu2

)n

j

− 1t

1x

{
1

(
up

γ − 1

)n

j

+1
(

1

2
ρu3+ up

)n

j

}
,

where we have specialized to ideal gasesρe= p/(γ − 1).
At the heart of the algorithm proposed in [18] is a modification of the internal energies

in the above algorithm,

(
p

γ − 1

)n

j± 1
2

⇒
pn

j+ 1
2

γ n+1
j − 1

,

(
p

γ − 1

)n

j

⇒ pn
j

γ n+1
j − 1

,

(24)

whereγ n+1
j = γ (Yn+1

j

)
is given by (8). This modification effectively renders the energy

update (23) asingle-fluid algorithm, in that the only fluid “seen” by the algorithm, both in
the data(tn) and in the solution(tn+1), is a single ideal fluid withγ = γ n+1

j . Since for a
single fluid, contact surfaces are preserved (see (14)–(15)), this step effectively eliminates
the spurious pressure oscillations.

The internal energy correction step (24) affects the total energy balance, and the algorithm
does not in general conserve the total energy. Conservation errors are confined to the vicinity
of material fronts. It is also shown that the errors vanish if the fluid components are in thermal
equilibrium [18].

3.3.4. The Ghost Fluid Method

The Ghost Fluid Method [12] is a level-set-based algorithm, which treats the interface
as a moving internal boundary. Consider a material interface with fluidA, say, on the right.
While the real cells on the left side of the interface are occupied by fluidB, ghost cells are
introduced which are assumed to be occupied by fluidA. Flow variables are extended into
the ghost cells. It is recommended that the extrapolated variables bep, u, and the entropy
s (see Fig. 1):

pA
j = pB

j , pB
j+1= pA

j+1,

uA
j = uB

j , uB
j+1 = uA

j+1,

sA
j = sA

j+1, sB
j+1 = sB

j .

(25)
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FIG. 1. Schematic for the Ghost Fluid Method [12].

The two copies of the solutions are evolved to obtain (WA,B)n+1
j . The level-set functionψ

then identifies which parts of the two copies of the solution correspond to the real fluids,
and those parts are “stitched” together, for example,

ρn+1
j =

{
(ρA)n+1

j ψn+1
j < 0,

(ρB)n+1
j ψn+1

j > 0.

Resulting solutions tend to be discontinuous across the material front [12]. It is rather
tempting to attribute the elimination of pressure oscillations to the elimination of dissipation
errors across material fronts. Yet, what eliminates the oscillations is the fact that the ghost
fluid on “the other side” of the interface is thermodynamically similar, i.e., obeys the same
EOS. This step essentially renders the model asingle-fluid model. The oscillations do not
appear because, in a single fluid, contact surfaces are respected (14, 15). We note that the
near elimination of dissipation errors offers an advantage for problems where the EOS has
a limited range of validity, as is the case with Tait’s EOS [10, 12].

The extrapolation into the ghost cells (25) affects conservation of all variables, but mesh
refinement tests indicate convergence [12]. We point out that populating the ghost cells
by a thermodynamically similar “ghost fluid” can be done at a smaller cost in terms of
loss of conservation. It can be achieved by sacrificing energy conservation only, while still
conserving total mass and momentum. This point is illustrated further in the following
section.

On the technical side, note that the “ghost” copy of the solution is not needed everywhere
in the flow field, just in the vicinity of the material front. Keeping a narrow strip of three
to five ghost cells near the interface is rather simple in 1D but is more complicated in
multidimensions where the interface may become very distorted.

4. A SIMPLE SINGLE-FLUID ALGORITHM

Assume that two adjacent grid cells have two different fluids with statesWj = WL =
(ρl , ul , pl )

T with γ = γl andWj+1 = WR = (ρr , ur , pr )
T with γ = γr . The interface flux

depends on the left and right states

Fj+ 1
2
(WL ,WR; γl , γr ).
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FIG. 2. Schematic for the simple single-fluid algorithm.

We propose to computetwo intercell fluxes, one assuming that the fluids in both cellsj and
j + 1 areγl -fluids, and one assuming that both fluids areγr -fluids:

F L
j+ 1

2
= Fj+ 1

2
(WL ,WR; γl ),

F R
j+ 1

2
= Fj+ 1

2
(WL ,WR; γr ).

We then useF L
j+ 1

2
to update the fluid in cellj and F R

j+ 1
2

to update the fluid in cellj + 1

(see Fig. 2).

4.1. Level-Set Formulation

We demonstrate how this algorithm is implemented in a level-set model. It is assumed
that (ρ, u, p, ψ) are available at each grid cellj at the beginning of the calculation. We
proceed as follows:

1. Useψ to determine the location of the material interface.
2. Compute the conserved variablesW = (ρ, ρu E) in each cell, using the appropriate

EOS as determined byψ in (9).
3. Ifψ j · ψ j+1 > 0 then (no interface)γl = γr ≡ γ . Compute one intercell fluxFj+ 1

2
(Wj ,

Wj+1; γ ) using the (common) value ofγ in the data.
4. Otherwise computetwo intercell fluxes atxj+ 1

2
, F L

j+ 1
2
(Wj ,Wj+1; γl ) and F R

j+ 1
2

(Wj ,Wj+1; γr ).
5. Use F L

j+ 1
2
(Wj ,Wj+1; γl ) to updateWL = Wn

j and F R
j+ 1

2
(Wj ,Wj+1; γr ) to update

WR = Wn
j+1.

6. Compute the new primitive variablesU = (ρ, u, p)n+1
j , using frozenvalues ofγ ,

namelyγ n
l ,r .

7. Compute the level-set functionψn+1
j .

We make the following observations:

• The proposed algorithm is general and is independent of the method of discretization.
• The algorithm is obviously not conservative, since across interfaces the flux out of cell

j is different from the flux into cellj + 1. However, the two-flux update affectsonly the
total energy, while not affecting mass and momentum. (See Section 4.3 below.)
• At each given cell, the solution update from time leveln to n+ 1 “sees” onlyone

fluid, with γ = γ n
j . Contact surfaces are therefore oscillation-free, as is the case for single

fluids. In particular, as shown in (14, 15) ifu andp are uniform in the data, they will remain
uniform in the solution.
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• Numerical diffusion across captured material interfaces does not cause spurious pres-
sure oscillations to arise.

4.2. Mass-Fraction Formulation

The above algorithm may be implemented in a mass-fraction model in an almost identical
fashion, simply by replacing the condition in Step 3 above by the condition (indicating no
interface)

|Yj+1− Yj | < ε

for some small value ofε (in [20] this condition was used to identify material fronts with
ε = 0.05).

An interesting variation is to use the two-flux formulaseverywherein the domain, yielding
a scheme which appears to be nonconservative everywhere, but effectively is nonconser-
vative only whereγ j 6= γ j+1. An appealing advantage of the mass-fraction model, over a
level-set formulation, is that it is capable of handling flows where the material front is not
present initially but is “born” during the computation, for example due to chemical reaction
(see Section 5).

4.3. Conservation Error Analysis

Two of the steps in the above algorithm are nonconservative. The first one, Step 5, is
obvious since two adjacent cells are updated by different flux formulas. The second one
is less obvious and lies in the combination of Steps 7 and 2. We first note that, depending
on the EOS, a given cell pressurep corresponds to different internal energy. Once the
new conserved variables,Wn+1

j , have been computed,pn+1
j is recovered using the EOS

with frozenthermodynamics. Only then is the level-set function updated, and with it the
thermodynamics. If during the time step, the material interface has propagated through to
the next cell, converting the pressure back to energy, using the EOS of “the other” fluid,
then introduces energy conservation errors.

We show below that these two sources of conservation errors have opposing effects on
the solution.

4.3.1. Conservation Error Due to Different Flux Formulas

The following analysis is for Roe’s discretization method [29], which is used in the
numerical examples section. Usingrk, λk, andαk to denote the eigenvectors, eigenvalues,
and wave strengths of thekth characteristic field (see Section (2.1)), we write

r1 = (1, u− a, H − ua)T , λ1 = u− a, α1 = 1p− ρa1u

2a2
,

r2 =
(

1, u,
1

2
u2

)T

, λ2 = ũ, α2 = a21ρ −1p

a2
,

r3 = (1, u+ a, H + ua)T , λ1 = u+ a, α1 = 1p+ ρa1u

2a2
.
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Usingλ± to indicate positive and negative eigenvalues, we have

F L
j+ 1

2
(WL ,WR; γL) = F L

j +
∑
λL−

k

αL
k λ

L
k r L

k ,

F R
j+ 1

2
(WL ,WR; γR) = F R

j+1−
∑
λR+

k

αR
k λ

R
k r R

k ,

and the flux difference is

F R
j+ 1

2
− F L

j+ 1
2
= (F R

j+1− F L
j

)−
∑

λR+
k

αR
k λ

R
k r R

k +
∑
λL−

k

αL
k λ

L
k r L

k

 .
Clearly, if γL = γR this expression vanishes. Across a material front,1u = 1p = 0 and
the above expression reduces to

(
F R

j+ 1
2
− F L

j+ 1
2

)
= (F R

j+1− F L
j

)− u1ρ

 1
u

1
2u2



=

 ρu

ρu2+ p

u(E + p)


R

−

 ρu

ρu2+ p

u(E + p)


L

− u1ρ

 1
u

1
2u2



=


u1ρ

u21ρ

up1
(

1
γ−1

)+ 1
2u31ρ

− u1ρ

 1
u

1
2u2



=

 0
0

up1
(

1
γ−1

)
 .

In m time steps the accumulated conservation error is

m1t

 0
0

up1
(

1
γ−1

)
 . (26)

4.3.2. Conservation Errors Due to “Unfreezing” of Thermodynamics

Converting the primitive variables (ρ, u, p) back to conserved variables, after “unfreez-
ing” the thermodynamics, changes the internal energy and hence alters the total energy
balance.

The total energy change is

1x
(
E|γ=γL − E|γ=γR

) = 1x

(
p

γL − 1
− p

γR− 1

)
= −1xp1

(
1

γ − 1

)
. (27)
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The number of time steps it takes for the interface to propagate through one grid cell is such
that

m u1t/1x ≈ 1. (28)

We observe that the two sources of error (26) and (27) have opposing effects on the solution,
and from (28) they are nearly cancelling. The numerical examples in the next section display
this kind of behavior. There is a build up of the conservation error due to the different flux
formulas, which is then offset by the interface crossing to the next grid cell (see Fig. 8).

5. NUMERICAL EXAMPLES

The following examples illustrate the numerical difficulties encountered by naive dis-
cretization schemes of (1)–(3) described in Section 2 [1, 23, 26, 31] and demonstrate the
ability of the single-fluid algorithm of Section 4 and the quasi-conservative scheme of Sec-
tion 3.2.2 to handle these difficulties for problems involving ideal as well as stiff fluids.
Conservation errors are computed, and convergence tests are included. We also present two
examples where chemical reactions take place. They show that nonphysical oscillations of
the kind described in this paper may be detrimental for reactive flow problems and that the
single-fluid algorithm and the quasi-conservative method are capable of reliably solving
such problems. Unless specified otherwise, the number of grid points is 200 and the CFL
number is 0.8.

5.1. Test Case 1: Numerical Failures

We solve (1)–(3a) using a second-order Roe-type scheme with superbee flux limiter [30].
The initial conditions correspond to the shock-tube data

(ρ, u, p, γ )L = (1, 0, 1, 1.6),
(ρ, u, p, γ )R = (0.125, 0, 0.1, 1.2).

(29)

Figure 3 shows the computed velocity by the first-order Roe scheme applied to the mass-
fraction model [1], theγ -model [31], and the level-set model [26]. The exact solution is
also shown. All computations clearly suffer from large inaccuracies, with the velocity field
clearly failing to maintain a uniform value across the material front.

5.2. Test Case 2: Isolated Material Front

We next consider an isolated material front and illustrate the behavior of the conserva-
tive scheme [1] and two nonconservative schemes: the single-fluid scheme and the quasi-
conservative scheme. Initial data are given by

(ρ, u, p, γ )L = (1, 1, 1, 1.6),
(ρ, u, p, γ )R = (0.1, 1, 1, 1.4).

(30)

Second-order calculations are shown in Fig. 4, which presents density, velocity, pressure,
andγ solution profiles, together with exact solutions. As expected, the single-fluid schemes
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FIG. 3. Velocity by first-order schemes: (a) mass-fraction model, (b) level-set model, (c)γ -model.

(both mass-fraction and level-set formulations) and the quasi-conservative scheme main-
tain uniform velocity and pressure but the fully conservative scheme produces oscillatory
solution. We note that these errors decay with mesh refinement, but they do so extremely
slowly (see for example convergence tests in [2, 19]).

5.3. Test Case 3: Two-Fluid Shock-Tube Problem

In the next example, we consider the following shock-tube initial data:

(ρ, u, p, γ )L = (1, 0, 1, 1.4),
(ρ, u, p, γ )R = (0.125, 0, 0.1, 1.6).

(31)

Figure 5 shows second order-computed solutions by the two single-fluid schemes (mass-
fraction and level-set formulations) and by the quasi-conservative scheme. The results by
all schemes are in very good agreement with the exact solution; in particular they are all
oscillation-free and have the correct shock strength and speed. Results by the conservative
scheme are not included, but as in the previous example, they are oscillatory near the contact,
and while they eventually converge to zero with mesh refinement, they do so very slowly.
Note also that increasing the order of accuracy of the scheme does not improve the quality
of the results of the conservative scheme [2, 19].
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FIG. 4. Propagating material front computed by (i) the fully conservative scheme and by the single-fluid
algorithm in (ii) mass-fraction, and in (iii) level-set formulation.

5.4. Test Case 4: Two-Fluid Stiff Shock-Tube Problem

The next example represents a more stiff shock-tube calculation. Initial data are given by

(ρ, u, p, γ )L = (1, 0, 0.2, 1.4),
(ρ, u, p, γ )R = (1, 0, 500, 1.6).

(32)

Solutions are again by the single-fluid scheme and by the quasi-conservative scheme. The
results are shown in Fig. 6 for second-order calculations, with 800 grid points. The schemes
clearly demonstrate their ability to compute strong shocks without deterioration in the
quality of the results. In particular, we note that all computed solutions are oscillation-free
and that, despite the fact that the single-fluid schemes are not conservative, results for this
strong shock case are in excellent agreement with the exact solution.

We observe slight overshoots at the corner of the rarefaction fan and note that they are
due to the stiffness of the problem, not the multifluid modelling. Indeed, similar behaviour
can be observed in single fluid calculations.

5.5. Test Case 5: Gas–Liquid Shock-Tube Problem

We now consider a gas–liquid shock-tube test case using the stiffened equation of state
(3b), taken from [32]. The initial conditions correspond to a severe water–air shock tube
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FIG. 5. Solutions for the shock-tube problem (31) by the single-fluid schemes and the quasi-conservative
scheme.

given by

(ρ, u, p, γ, p∞)L = (1000, 0, 109, 4.4, 6 · 108),

(ρ, u, p, γ, p∞)R = (50, 0, 105, 1.4, 0).
(33)

Results by the second-order single-fluid level-set scheme with minmod limiter are shown
in Fig. 7. The agreement between the exact and numerical solutions is excellent, despite
the severeness of the initial conditions and the fact that the method does not strictly con-
serve the total energy. Figure 8 shows the total energy and energy conservation errors as
a function of time. The results are in agreement with the conservation error analysis of
Section 4.3. The error exhibits fluctuations: It accumulates for a few steps before dropping
as a result of the interface crossing mesh cell. More importantly, we note that even for this
severe test case, the energy conservation error isextremelysmall, of the order of 0.2%, and
appears to reach saturation once the numerical solution has settled into a quasi-steady state.
Convergence tests conducted in the next section indicate that these errors further decay to
zero with mesh refinement, establishing that the method is essentially conservative. The
same test problem was solved by the quasi-conservative scheme in [32], and the quality of
the solution is similar. Finally, we note that becausep∞ is very large, fully conservative



COMPUTATIONS OF COMPRESSIBLE MULTIFLUIDS 615

FIG. 6. Solutions for the stiff shock-tube problem (32) by the single-fluid schemes and the quasi-conservative
scheme.

schemes have a hard time computing this test case, often failing becausep+ p∞ becomes
negative.

5.6. Convergence

The test cases presented show excellent agreement between computed and exact solutions
for a variety of problems involving moderate to strong shock waves. In particular, the
shocks and material fronts appear to propagate with the correct speed and strength, and
the rarefaction fans appear to expand at the correct rate. This is a strong indication that
the overall loss of conservation does not affect the solution in a substantial way. In this
section, we conduct mesh convergence studies for the various test cases. We compute
relative conservation errors in total energy as a function of the number of grid points.
The results are summarized in Tables II, III, and IV. Due to the fluctuating nature of the
conservation error (see Fig. 8), we have measured themaximumerror over the integration
time period. The results all correspond to the same final time, so that finer grids imply that
more time steps were taken.

In all cases, we see that the errors areextremelysmall (a fraction of a percent in general)
and converge to zero (roughly likeO(1x) with mesh refinement. We further note that the
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FIG. 7. Water–air shock-tube problem (33) by the level-set single-fluid scheme.

FIG. 8. Total energy (top) and relative conservation errors (bottom) for test case (33).
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TABLE II

Relative Error (in %) in Total Energy at t = 0.01 for Contact

Discontinuity Test Case (30)

Level-set Mass-fraction

# of Points 1st Order 2nd Order 1st Order 2nd Order

100 3.60 0.69 5.6 2.1
200 1.70 0.30 3.22 1.11
400 1.18 0.29 2.26 0.63
800 0.84 0.29 1.59 0.35

1600 0.58 0.22 1.12 0.20
3200 0.41 0.19 0.79 0.11
6400 0.29 0.13 0.56 0.06

TABLE III

Relative Error (in %) in Total Energy at t = 0.19 for Stiff

Shock-Tube Test Case (32)

Level-set Mass-fraction

# of Points 1st Order 2nd Order 1st Order 2nd Order

100 2.08 0.72 1.07 0.32
200 1.43 0.36 0.84 0.18
400 1.06 0.18 0.64 0.09
800 0.80 0.09 0.47 0.04

1600 0.55 0.05 0.34 0.02
3200 0.41 0.03 0.25 0.01
6400 0.30 0.02 0.18 0.005

TABLE IV

Relative Error (in %) in Total Energy at t = 0.0002

for Stiffened Shock-Tube Test Case (33)

Level-set

# of Points 1st Order 2nd Order

100 1.89 1.18
200 0.97 0.70
400 0.48 0.42
800 0.24 0.24

1600 0.18 0.18
3200 0.11 0.06
6400 0.09 0.03
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error and the convergence rate appear not to depend on shock strength or on the stiffness of
the problem.

5.7. Test Case 6: Chemistry

A major weakness of level-set formulations is their inability to handle flows in which the
material interfaces are not present initially, but rather get generated during wave interaction.
This, for example, occurs in reactive flows. Consider the model specified by

ρt + (ρu)x = 0,

(ρu)t + (ρu2+ p)x = 0,

Et + (u(E + p))x = 0,

Yt + uYx = (1− Y) f (T),

With f given by

f (T) =
{

0 if T ≤ T0,

exp
(

H0
T

)
otherwise.

This model corresponds to the chemical reaction61→ 62. Initial data are given by

(ρ, u, p, γ )L = (1, 50, 50, 1.4),

(ρ, u, p, γ )R = (1,−50, 50, 1.4),
(34)

with physical parametersγ1 = 1.4, γ2 = 1.6,Cv1 = Cv2 = 1, H0 = 5000, andT0 = 500.
The problem is solved by the quasi-conservative scheme, which is modified as follows

to take the chemistry into account: GivenWn = (ρn, ρnun, En, αn),

1. Estimateαn+1/2 by
(a) computingTn = pn

(γ n−1)ρn (here we assumeCv1 = Cv2 = 1),
(b) computingYn, i.e., inverting

1

αn
+ 1= YnCp1+ (1− Y)Cp2

YnCv1+ (1− Y)Cv2
, (35)

(c) computing

Yn+1/2 =
{

Yn if pn

ρn ≤ 500,

1− (1− Yn) exp
(− exp

(
H0
Tn

))
else,

(d) computingαn+1/2 using (35).
2. Use the quasi conservative scheme withWn+1/2 = (ρn, ρnun, En, αn+1/2) and go to 1.

The results are shown in Fig. 9. The mesh size is1x = 0.5 · 10−2, we use 1000 time steps,
and the CFL number is 0.1. Initially, only species61 is present. The initial temperature
is uniform, atT = 125. Due to wave interaction,T increases rapidly and once it exceeds
T = 500, a chemical reaction is triggered, and species62 is produced. We have run the
problem also with the single-fluid scheme in mass-fraction formulation. The results are
virtually undistinguishable. Such a computation is not possible with level-set models, as
they require that the interface be present already in the initial data.
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FIG. 9. (a) Velocity, (b) density, (c) temperature, and (d)γ for test case (34).

5.8. Test Case 7: Chemistry

Finally, we show that computing oscillation-free material interfaces is crucial for ob-
taining reliable solutions in chemically reacting flows. Generating oscillations at a contact
discontinuity may completely destroy the accuracy of a run. In this example, initial data are
given by

(ρ, u, p, γ )L = (2.5, 1, 499, 1.4),

(ρ, u, p, γ )R = (1.5, 1, 499, 5/3),
(36)

with physical parametersγ1 = 1.4, γ2 = 5/3,Cv1 = Cv2 = 1, H0 = 7000, andT0 = 500.
The initial conditions are set so that the temperature is uniform andT < 500. Since the
velocity and the pressure are also uniform, the solution is aninertmaterial front propagating
downstream at speedu = 1, and no chemical reaction should occur.

Computations by the fully conservative scheme and the quasi-conservative scheme are
shown in Fig. 10. The CFL number is 0.1,1x = 5.10−3, and we run 800 iterations.

As can be seen in Fig. 10, oscillations produced by the fully conservative scheme trigger
a false chemical reaction, asT exceeds the threshold valueT = 500. In comparison, the
quasi-conservative scheme gives oscillation-free solutions, false chemical reaction is not
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FIG. 10. (a) Velocity, (b) density, (c) temperature, (d)γ , and (e) pressure for test case (36).

triggered, and the inert material front propagates downstream in agreement with the exact
solution.

6. CONCLUDING REMARKS

In this paper, we have surveyed a number of approaches to computing compressible
multicomponent flows. While the eventual goal is to compute complex multimaterial flows
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in several space dimension, we have focused on the main modeling issues, discretization
considerations, and guiding principles. Those are best illustrated and best understood in
simple one-dimensional flow situations.

Ensuring the positivity of the mass fractions and ensuring the occurrence of pressure
oscillations near material interfaces are typical of multimaterial flow simulations, the latter
being a major obstacle in extending state-of-the-art schemes from single fluids to multifluids.
These oscillations are entirely numerical artifacts, and we have reviewed several approaches
to eliminate them, all involving various degrees of sacrificing strict conservation. The guid-
ing principle is to ensure that if the flow has locally uniform velocity and pressure, the
numerical scheme should be able to preserve it without generating disturbances. We noted
that such oscillations are not present in single-fluid computations, and we introduced an
extremely simple algorithm with a single-fluid flavor, based ontwoflux calculations across
material fronts. The results, while not strictly conserving the total energy, exhibit conser-
vation errors that areextremelysmall. These errors converge to zero with mesh refinement,
and results are in excellent agreement with exact solutions even for severe test cases.

Finally, we note that if the flow is described by the balance equations for theindividual
species, rather than for the flow mixture, the same guiding principle can be used to develop
algorithms that respect pressure equilibrium and at the same time do conserve mass of the
individual species as well as momentum and energy of the flow mixture. This, however,
comes at a price: The overall number of equations is roughly doubled in two-phase flows,
and the system loses its underlying conservation form, as the result of momentum and energy
exchange between the phases (although both are still conserved for the total mixture). The
Volume-of Fluid algorithm [8, 27] essentially fits into this class of models. More recently,
see [33] and also [9].
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