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Recent years have seen a growing interest in developing numerical algorithms
for compressible multifluids. Computations ran into unexpected difficulties due to
oscillations generated at material interfaces, and understanding of the underlying
mechanisms was needed before these oscillations could be circumvented. This paper
reviews some of the recent models and numerical algorithms that have been proposed
and points to key ideas that they have in common. Noting the known fact that such
oscillations do not arise in single-fluid computations, an extremely simple algorithm
is proposed which circumvents the oscillations and amounts to computing two dif-
ferent flux functions across material fronts, to update the different fluids on both
sides. (© 2001 Academic Press

1. INTRODUCTION

Recent years have witnessed a growing interest in developing numerical methods suit
for computing multimaterial flows and in their efficientimplementation to studying comple
flow phenomena [1-3, 7, 9, 11-14, 16-24, 26, 31-37, 39]. Understanding the dynan
of fluids consisting of several fluid components is of great interest in a wide range
physical flows, including studying the dynamics and stability of bubbles and interface
mixing processes, bubbly flows, and liquid suspensions. Such flows give rise to challenc
problems, both theoretically and computationally. In this paper, we focus on models ¢
numerical methods for multimaterial flows consisting of pure fluids separated by matel
interfaces.

1 Work supported in part by ONR Award N000149910449 and NSF award DMS 9973291. This work was carr
out in part while the author visited the University of Bordeaux.

594

0021-9991/01 $35.00
Copyright(© 2001 by Academic Press
All rights of reproduction in any form reserved.



COMPUTATIONS OF COMPRESSIBLE MULTIFLUIDS 595

Assuming all fluid components can be described by a single velocity and a single pres:
function, the flow is described by the compressible Euler equations

o pu
(pu) +| pu®+p | =0, plp.o), (1)
E/¢ \uE+p

expressing conservation of mass, momentum, and energy of the fluid mixture, anc
thermodynamics properties given by #guation of stat€EOS). Here we usge, u, andp to
denote density, velocity, and pressute= pe + %,ou2 denotes the total energy; aad the
specific internal energy. We further uséo denote the speed of sound afd= (E + p)/p
to denote the specific total enthalpy. The flow description is completed by providing
additional equation that describes the dynamics of the fluid composition, and by specify
its effective thermodynamics, i.e., the EOS of the mixture.

For the rest of the paper, we assume that the fluid consists of two compaheand ;.
The EOS depends on the fluid composition, described by the vagiabtious choices of
¢ have been suggested in the literature, depending on the model assumptions. For exa
in [30] it was suggested to takieto be the specific heat ratio of the fluid in [1, 2, 4, 23],
the mass fraction was used, and in [12, 26], the level-set function (see Section 2) was L
For all these models, the governing equation for the varigtiias the form

(pP)t + (pup)yx = 0. 2

The EOS for ideal fluids is

pe=—t—, (32)
y—1
wherey = y(¢) denotes the effective ratio of specific heats of the fluid mixture. A mor
general EOS for stiff fluids is

_ PP

S (3b)

pe
wherep,, = P (@) is a stiffness parameter, and the chopgg = 0 recovers the ideal gas
case. We shall focus on these two cases in the paper. They can be seen as simplificatic
more complex fluids of the Mie—@rieisen type

P = Poo(®, p) + v (d)(0€ — €x(9, p))

for which the numerical phenomena we describe in the paper become even more seve
Using W = (p, pu, E, p¢)T and F(W) = (pu, pu? + p, u(E + p), pup)" to denote
the vector and dependent variables and flux functions, the equations take the form

W + F(W), = 0. 4)

A choice needs to be made as to the general computational framework for proble
involving interface dynamics: (i) Front-tracking methods treat discontinuities as movil
internal boundaries, and the jump conditions are imposed (see for example [5] and refere
therein). Such methods are attractive in that interfaces are preserved as sharp discontint
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but they are difficult to implement in several space dimensions. (ii) Front-capturing methc
are derived from the integral form of the governing equations. They are straightforwarc
implement in any number of space dimensions but come at a price of smearing solu
discontinuities. The methods reviewed in this paper are shock-capturing methods, wil
certain tracking “flavor” dictated by the nature of flows dominated by propagating interfac
The genral framework for shock-capturing algorithms considered in this paper is tl
of Godunov-type discretization [15]. A numerical grid is given by the mesh spaging
and time stepAt, X; = j Ax, andt, = nAt. Intergrating (4) over the boxx[_%, XJ+%] X
[tn, th11] gives

At 1 1
wpt = we - S (R F ), (5)

where

1 th+1

1
7/’ W todx, FITE =

1 At ), F (X4, 1) dt

N\

are the cell-average of the solution over grid-de#ind the time-average flux functions at
cell interfaces respectively.

The paper is organized as follows. In Section 2 we describe the general structure of
multifluid flow model (Egs. (1)—(3)) and present several specific models. In Section 3
describe the numerical difficulties that arise in discretizing such models and that resul
oscillations and other computational inaccuracies near material fronts. We then desc
several approaches for overcoming those difficulties within the general framework of 1
model proposed, as well as other approaches that do not fall exactly in this framework
particular, we point out the fact that these difficulties do not arise in computations involvi
single fluids and that some recent successful multifluid algorithms capitalize precisely
this property. In Section 4 we then propose an extremely simple algorithm with a sing
fluid flavor. It circumvents the difficulties by computimgo different flux functions across
material fronts to update the different fluids on both sides. The conservation properties of
algorithm are analyzed. In Section 5, we present a variety of numerical examples involv
shock—interface interaction for ideal and stiff fluids as well as flows with chemical reactic
Conservation errors are studied numerically, and convergence is demonstrated. We er
with concluding remarks in Section 6.

2. MULTIFLUID MODELS

2.1. General Structure

The extended system (1)—(3) remains time-hyperbolic. We sepe and denotec =
y — 1 = p.. Theright eigenvector matrix and associated eigenvalues for EOS (3b) are giy

by

1 1 0 1
u—-a u O u+a
R= W2
H-ua 5 —p, H+ua
¢ ¢ Pe ¢
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and
A =diagu —a, u,u,u+a),

where the speed of sound satisfies

azz(y—l)(H —1u2> =y7p+ poo.
2 o

The particle field becomes degenerate with a double eigenvalue corresponding to the co
surface being not merely an entropy wave front but also a material interface.

The jump conditions F(W)] = ¢[W] and Riemann invariants can be summarized a
follows:

e Material interfaces: ] = O0; hence p] = 0 ando = u. The jumps ing andp are
arbitrary. A material interface is the only location where the composition of the fluid c:
change.

e Shock waves:U] # 0; hence p] # 0. Here, pp] = 0, so that the classical shock jump
conditions apply [10].

e Across a(u F a) simple wave, the Riemann invariants are

¢, (P+P)p ¥, UuUx a.

y—1

2.2. Some Examples

We now describe some specific models that have been proposed and discussed exten
in the literature.
2.2.1. y-Model
In [31], y is extended to be a piecewise constant functiox, t). Being a state variable,
y propagates with the fluid velocity, and hence satisfies
yt + qu = O? (6)

which for convenience can be combined with (1a) and cast in conservation form

(o)t + (puy)x = 0.

The numerically computed consists of piecewise constant values connected by transiti
layers, interpreted as “numerical mixing” of the species. We note the following:

e The local value ofy, computed fromy = (poy)/p, is not guaranteed to lie in the
physically acceptable range (betwegnandy,), and overshoots may and do occur (see
analysis in Section 3.1; also see [6]).

e Any function f (y) is also a state variable; hence (6) can be replaced by

f(y) +uf(y)y=0. (7)
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Itturns out that the particular choice 6fy) = 1/y — 1, with appropriate discretization,
offers clear advantages. This is further discussed in Section 3.2.2 (see also [2]).

A Roe-type linerization was proposed [31] for the extended model (discussed also in
more accessible reference [19]). Numerical computations with this model suffer inac
racies near the material fronts. The velocity profile shows a persistent nonphysical ju
across isolated material fronts [19]. (See Fig. 3a and further discussion in Section 5.)

2.2.2. Mass Fraction Model

In[1, 23, 24] the mass fractioty, = p1/(p1 + p2) = p1/p (respectivelyy,) is used to de-
scribe the concentration &f; (respectivelyx,) in the fluid mixture. The mass conservation
equation for specieg; is given by

(pY)t + (puY)x =0,

whereY = Y; = 1 — Y,. Using p; 2 to denote the partial pressures of spedis, and
assuming that the species are calorically perfect gases in thermal equilibrium with spe
heat constant§, andC,, one has

e1=CuT, p1=(1—Dpse,
& =CpT, p2=(2—Dpe.

Using Dalton’s law of partial pressureg,= p1 + p2, yieldspe = pie1 + p.6, = pC, T,
whereC,(Y) = Y1C,1 + Y>C,» and

ch pl + YZC p2

= (y —1pe, wherey =y(Y)= .
p=(( —Dp y =y() YiCor 1+ YCo

(8)

The computational difficulties in this model are similar to those observed with-thedel:

(i) the mass fractiorY, computed from(pY)/p, is not guaranteed to remain in the
physically relevant range of [0, 1].

(ii) The velocity profiles show a persistent nonphysical jump across the material frc
(see Fig. 3b). The first of these observations was analyzed in [23] and is attributed to
fact thatp andpY are not varying “in-phase” with each other across material fronts. (Se
Section 3.1.)

Removing the assumption of thermal equilibrium leads to an effegtifer the mix-
ture [36] of

y1Y1€1 + y2 Y&
yY)="—7—-_—""—
Yie1 + Y&,

but it requires in addition to (1)—(3) that one also solves for the internal energies of t

individual species.

2.2.3. Level-Set Model

An “immiscible” model was proposed in [26] where a level-set functjoiis used to
track the material interface. The fluid “mixture” consists of either fltidor fluid X, and



COMPUTATIONS OF COMPRESSIBLE MULTIFLUIDS 599

thermodynamic properties change discontinuously across the material interface. A ma
variable is initialized so that its zero level-set defines the material interfade=a0,
and it is positive (respectively negative) in the domain occupied by fluid compdaent
(respectivelyX,). Then,yr satisfies a transport equation similar to (6), which again may b
combined with (1a) and recast in conservation form

(oY)t + (puy)x = 0.

By definition, ¢ (x, t) = 0 at the interface at all later timés> 0, and the EOS is given
by (3a) with

_fn v >0
van={" %" ©

Computations with this model, using a Roe-type upwind scheme, suffer from even m
pronounced oscillations near material fronts [20] (see Fig. 3c).

As discussed in Section 3.2, the above models produce spurious pressure oscilla
across material fronts. Analysis of the above models presented in [19] shows that
pressure oscillations in the-model and mass-fraction model afgAy)? and are of a
definite sign, while in the level-set model, they are of or@&fy]) and do not have a
definite sign. This is consistent with the form of the computational inaccuracies obser
in Fig. 3.

3. WHAT IS GOING WRONG?

3.1. Positivity of Mass Fractions

The following discussion focuses on the mass-fraction model but applies equally to
y-model. While physicallyy € [0, 1], the numerically computed value &% (oY)/p, is
not guaranteed to lie in this range. As discussed below, this problem has been obse
with the best available schemes and is referred to as the “positivity of the mass fracti
problem.

We first note that the occurrence of negative mass fraction is not a result of a tin
stepping stability violation. Indeed, some schemes may develop negative mass fract
for anytime step, however small. As shown in [4], applying Roe’s scheme to the sho
tube data in Table | leads to a negatiVeafter one time step, forany choice of time
stepAt > 0. An example with Osher’s solver is also given in [4]. Note that here= yg,
establishing that the positivity problemis unrelated to the presence of multispecies asis
believed.

TABLE |
Shock-Tube Data That Produce Negative Mass Fraction

P u H Y y

Left 1 -1 1 1 1.4
Right 1 1 5 0 1.4
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To cure this problem, a scheme property that ensures positivity of the mass fractions
been identified in [23], that the flow rate pY, namelyF,y, is varying “in phase” with the
flow rate of the entire fluid mixture, namelyF,. To that end, it is proposed to modify the
species mass flux as

modified __ \/x
Foy =Y"F,,

with

Y. ifF, >0,
Y* = _ (10)
Yr ifF, <0,

with L, R denoting the states neighboring the cell-interface wireigbeing evaluated.

Any scheme that satisfies this condition, for example the Godunov scheme [15] and
Leer flux splitting scheme [38], preserves the positivity of the mass fractions, provided
CFL condition is satisfied.

3.2. Pressure Oscillations

A major difficulty in discretizing the multifluid Eqgs. (1)—(3) is ensuring that pressur:
equilibrium between fluid components is not disturbed by the nhumerical scheme. Inde
the best available schemes develop pressure oscillations near material fronts separ
fluids in pressure equilibrium. These oscillations are not the ones commonly associc
with high-order numerical methods. They are present already in first-order computati
(see Fig. 3) and are not removed by going to a higher order. We note that such oscillati
are not observed in the single-fluid model, and as we discuss below, a number of re
schemes capitalize precisely on this property. To shed light on the multifluid case, a b
analysis of the evolution of the pressure field is carried out, first for a single fluid, and th
for a multifluid mixture.

Usings() = ()"! — ()" to denote time changea,() = ()i+% - ()j_% spatial varia-
tions, andv = % the mesh ratio, the Godunov scheme applied to (4) gives

n+1 n
p P p
pu =|[pu] + |0 |,
E /. E /. SE
] J
where
8p A(pu)
s(pu) | =—v | A(pu2+p) |. (11)
SE AU(E + p))

3.2.1. Single Fluid

Inthe single- (ideal) fluid casg{’ = y is uniform, and the new pressqn?rl = p+épis
obtained using the EOS (3a). Dropping the super- and subscripts for notational convenie
we have

b 1
P+ 1p = (E+SE) - E(p +8p) (U + su)?. (12)
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Across isolated material fronts, the exact solution has unifoamd p. Numerically, ifu and
p are uniform in the datay} = Ujs1 = U, pj = pj=1 = P, and the solution updates (11)
reduce to

3p = —vUAp, (13a)
8(pu) = —vU?Ap = udp, (13b)
1
8E = —wUAE = —vEUSAp (13c)
1,
= Zusp.
1P

From (13a,b), it readily follows that

su=0 (14)
and from (13c) and (12) it follows that
sp=0, (15)
n+1

implying that the computed'j1+1 and p''™* remain uniform, as they should.

J

3.2.2. Multifluids

In the multifluid casey = y|' is generally not uniform and varies across the materiz
front. The new pressure then becomes

1
(P+0p) =(y +0y — 1)((E +6E) — 2(,0+8,0)(u+8u)2>. (16)

Fully conservative methodsBy fully conservative methods, we mean methods that nc
only conserve total mass, momentum, and energy of the fluid mixture but also conse
mass of thandividual species. We therefore refer here only to the discretizations of tt
mass-fraction model, the only model with this property.

In the mass-fraction mode}, = y(Y), and

yjn+l — V(an+l) =y + 5y

Consider a flow consisting of a material front separating two ideal gasegiwitimoving
with some positive velocity > 0, with initial data

Wo_ (p,pu, B3 +5U% p) j <1,
T (oo pu 2 +412.0) j=1

In this case, the numerical flux reduces to the upwind flux,
Fit12 = F(W)),
and after one time step, we have

Wi =W —v(F (W) = F (Wg)).
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Some simple algebra shows that after one time step

Yl =1-u,

ui =u,
which is the correct solution behavior. However, the pressure computation gives

1 1 1
Bt 1)
vi—-1 n-1 n-1 n»n-1

Using (8) we then get

Cp]_ — UU(Cpl — sz)

1_ 1\ _
Y1 = )/(Yl) - Cvl — ])U(CU]_ — Cv2) .

IfO <vu <1,

n<v<wn,

in which case the newly computed presspte# p, and a pressure oscillation is generated.
The oscillation isO(Ay)? and has a definite sign (see [19]).

This result is quite general. It is shown in [1] thety Godunov-type scheme which
is fully conservative will not be able to maintain pressure equilibrium and will develop
pressure oscillation across material fronts. This suggests that one may need to move «
from the strictly conservative framework. An early paper to adopt a fully nonconservati
approach for multifluids was [19]. Subsequently, several nonstrictly conservative scher
were proposed [2, 12, 18, 20, 34, 36, 37]. We discuss some of them in Section 3.3.

Nonconservative methodsAgain, considering isolated material fronts, we denote
y%l. Equation (16) now becomes

1
(p+8p) (e + 8a) = (E+ SE) — é(,o + 8p)(u + Su)? (17)
with
§E = —vuAE
__ P12
= vuA(y_l 2pu> (18)

1u28 upA !
=—= —v — ).
pud0 —wupa( =y

Inserting (18) into (17) we now get
1
(p+8p)(a +8a) = E+ 6E — é(p + 8p(u + 8u)?

1 1
=E— Zpu?—vupA| —
2u vup. < l>

= pa — VUpPA«,

where we have used the fact that, as in the single-fluid éase, 0.
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It is now clear that in order fosp to vanish, we must have
o+ 8 = o — vUA«. (29)

This was realized in [2] and was later extended to multifluids with stiff EOS [32, 34
to Van der Waals EOS [35], and to multiphase flows [33]. Clearly if condition (19) is n
satisfied, then evenidealized situations such as isolated material fronts will produce pres
oscillations.

Finally, we note that (19) is a discretization of the transport equation

at + Uay = 0. (20)

Referring back to Eq. (7), we see tlaatyfunction f (y) is a state function and is effectively
transported by the fluid. The simple analysis carried out above shows that the one choic
f (y) that does not produce pressure oscillationg(ig) = y%l provided it is discretized
by (19).

The above algebra is general and applies to any scheme that preserves uplfarity
across material fronts [2]. This condition is not trivially satisfied. We note that Godunov-ty
schemes fulfill this condition, but flux-splitting schemes, such as van Leer’s [38] (see
for details) do not.

Condition (19) was obtained under the ideal assumption that the flow consists of
isolated material front. It implies that in order fép = 0, Eq. (20) cannot be discretized
independently of the discretization of the conserved variables in (1). More generally,
thoughu and p are continuous across a contact surface, they are not necessarily unifo
Requiring thattp = 0 is no longer valid, and Eq. (19) needs to be generalized.

The generalization follows the same guiding principle: Combining the evolution equ
tions of the total energy, the momentum, and mass, we can obtain an evolution equatiol
the internal energy,

ape ape au _

— +u— — =0,

at T T Pax
which, for ideal gases, becomes

d ad au

oap  ,o%P 0

ot TYax TP T

or

o do ap ap 20U
9Ly PPy ™) o
p(at+uax>+“(at+uax+p ax)

In the above equation, we identify the evolution equationif@nd the pressure evolution
equation. The guiding principle is to discretize (20) in such a way that the resulting chan
in p, namelysp, are consistent with changes implied by the pressure evolution equati
(see [2] for details). Finally, this construction can be generalized to high order [2] and
unstructured meshes [3].
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Schemesthat are discretized in this fashion conserve mass, momentum, and total enel
the fluid mixture (but not mass of the individual species), they admit a maximum princig
on « under a CFL-like condition, and they preserve the positivity of mass fractions.
second-order extension of the above method, derived in detail in [2], was implemente
the numerical section methods and is referred to as the “quasi conservative scheme
clearly prevents oscillations in the pressure.

3.3. Other Approaches
3.3.1. Volume-of-Fluid Model

The volume-of-fluid method goes back to an early paper by Noh and Woodward [2
It was formalized in a mathematical framework in an unpublished paper by Colella, Gl:
and Ferguson (CGF) in [8], which also accounts for the different compressibilities of t
species. A discussion of the CGF method appeared in [25], where it is also extende
condensed media problems. The CGF volume-of-fluid model is essentially equivalent
multiphase fluid model with a single pressure and a single velocity and is not of the gene
form (1-3). In this formulation, the balance equations for mass and energy are written
the individual species, while the momentum equations are written for the fluid mixture. T
usual mass and energy conservation for the fluid mixture are obtained upon summatio
the species equations.

Evolution equations are derived for the species volume fractifns,

af, ouf, I
R = fafu s 21
T Yo (21)

assuming that compressions are isentropic, and requiring that chanfyesllicorrespond

to the same pressure change. The latter ensures that most volume changes are ab:s
by the most compressible fluid. These requirements lead to two effectivfer the fluid
mixture: (i) ¥ to be used in the computation of the internal energy and"(t}) be used in
the computation of the speed of sound,

1 f]_ f2 1 f]_ 1:2

~ s A - -

= +
y=1 w»n-1 »-1 T yi

The algorithm evolves the fluid mixture as a single fluid. The volume fractions ar
the species thermodynamics are used to compute effective thermodynamic quantitie:
the fluid mixture. The changes in the mixture mass and total energy, given by the f
difference, are then distributed among the fluid component. The species EOSs are
used to compute the species pressure and internal energy. While the algorithm prese
pressure equilibrium between the multifluid components, near shocks, different spe
may develop different pressures and a further relaxation process is required to res
pressure equilibrium. Assuming isentropic compression, the equilibrium pressure is gi

by

_ p1f1 n pzle
V1 V2

<X |
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The resulting changes in volume fractions are computed, and the total energy of the i
vidual species is recomputed to account for the work done by the pressure forces du
pressure relaxation. See [25] for more details.

3.3.2. Pressure Evolution Model

The evolution equation for the pressure is
Pt 4 upx + paux = 0. (22)

It provides a valid flow description for smooth flows as well as near contact surfaces, wh
changes in pressure or velocity have finite amplitude. In particular, if bathd p are
uniform in the datap remains uniform in the solution, arahy consistent discretization
of (22) automatically inherits this property. Near shocks, however, (22) is not valid, a
conservation errors will occur, translating into incorrect shock strength or speed.

In [19], a nonconservative model based on the primitive variables (p, u, p) was
presented. This model uses small viscous correction terms to remove leading-order col
vation errors. The correction terms are obtained by transforming the governing equat
from conservative to primitive formulation together with the sni@kh)) numerical vis-
cosity terms. Being based on the primitive variables, the model lends itself to oscillation-f
discretizations. Conservation errors, however, are eliminated only to leading order, wt
limits the suitability of the method to shocks of weak to moderate strefigth~ 2.5),
where conservation errors are within less than 2%. The method was successfully applie
study a variety of shock—interface interaction problems [19] and was successfully app
to study the highly complex interaction of weak shock waves with bubbles [28].

This approach was modified in [20] to suit also strong shocks (ister 100). The idea
is to use (22) only across material fronts but otherwise to revert back to the conserva
formulation (1). For the level-set formulation, the following hybrid model is proposed [20
Solve

p pu
pu [+l pu>+p| =0
Py ¢ ouyr

X
together with one of the following:
() If ¢ = 0 (material front) then solve

p

2
Y -1+

1
P+ upc+ pa’uy =0 = E = U

(i) otherwise (away from material front)
1 2
Ec+(WE+P)x=0= p=@x®) -1 E—Eu .

This model leads to essentially conservative algorithms in that conservation error oce
only near the material front. The error is only in the total energy; it is extremely sm:
even for very strong chocks=0.2%) and converges to zero with mesh refinement [20]
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This approach was applied to compute shock—interface interaction of ideal gases as we
stiff fluids and interfacial instabilities in multifluid dynamics and to bubble dynamics witl
surface tension [20-22].

3.3.3. Internal Energy Correction Algorithm

The discretization of the energy equation has the general form

n+1 n+1
1
o (P ~pu?
i <y -1/, + 2" i
(23)

(PN (L) At up \" 1 "
—<V_1>j+<2pu>j AX A y 1 j+A 2pu +upj )

where we have specialized to ideal gases= p/(y — 1).
At the heart of the algorithm proposed in [18] is a modification of the internal energit

in the above algorithm,
n
( p )n = P
)/_1 J:I:% yjn+l_1

(L)n L
]/_l i yl_l’H-l_l

wherey""* = y (Y]""!) is given by (8). This modification effectively renders the energy
update (23) singlefluid algorithm, in that the only fluid “seen” by the algorithm, both in
the data(t,) and in the solutiont,1), is a single ideal fluid withy = y]-n+l. Since for a
single fluid, contact surfaces are preserved (see (14)—(15)), this step effectively elimin
the spurious pressure oscillations.

The internal energy correction step (24) affects the total energy balance, and the algori
does notin general conserve the total energy. Conservation errors are confined to the vic
of material fronts. Itis also shown that the errors vanish if the fluid components are in therr

equilibrium [18].

(24)

3.3.4. The Ghost Fluid Method

The Ghost Fluid Method [12] is a level-set-based algorithm, which treats the interfa
as a moving internal boundary. Consider a material interface with Aughy, on the right.
While the real cells on the left side of the interface are occupied by Buighost cells are
introduced which are assumed to be occupied by fhiieflow variables are extended into
the ghost cells. It is recommended that the extrapolated variablps beand the entropy
s (see Fig. 1):

A_ B B _ HA

Pi =P,  Pir1=Pjtos

A_ B B _ A

u] —u] ) uj+l_uj+l’ (25)

A _GA B _gB
S =S S =S
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Fluid B

Interface

FIG. 1. Schematic for the Ghost Fluid Method [12].

The two copies of the solutions are evolved to obtaitf\(®)*. The level-set functiony
then identifies which parts of the two copies of the solution correspond to the real flui
and those parts are “stitched” together, for example,

n+1 _

(M Yt <,
Py =

(pB)T+l ,(pJ['H-l > 0.
Resulting solutions tend to be discontinuous across the material front [12]. It is ratl
tempting to attribute the elimination of pressure oscillations to the elimination of dissipati
errors across material fronts. Yet, what eliminates the oscillations is the fact that the gt
fluid on “the other side” of the interface is thermodynamically similar, i.e., obeys the sar
EOS. This step essentially renders the modghglefluid model. The oscillations do not
appear because, in a single fluid, contact surfaces are respected (14, 15). We note th
near elimination of dissipation errors offers an advantage for problems where the EOS
a limited range of validity, as is the case with Tait's EOS [10, 12].

The extrapolation into the ghost cells (25) affects conservation of all variables, but m
refinement tests indicate convergence [12]. We point out that populating the ghost ¢
by a thermodynamically similar “ghost fluid” can be done at a smaller cost in terms
loss of conservation. It can be achieved by sacrificing energy conservation only, while
conserving total mass and momentum. This point is illustrated further in the followil
section.

On the technical side, note that the “ghost” copy of the solution is not needed everywh
in the flow field, just in the vicinity of the material front. Keeping a narrow strip of thre
to five ghost cells near the interface is rather simple in 1D but is more complicated
multidimensions where the interface may become very distorted.

4. A SIMPLE SINGLE-FLUID ALGORITHM

Assume that two adjacent grid cells have two different fluids with stéfes- W =
(o, u, p)T with y =y andW 1 = Wr = (por, U, pr)" with y = ;. The interface flux
depends on the left and right states

Fj+%(WL9 WR9 )47 J/r)
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J-1 J I+l 72

FIG. 2. Schematic for the simple single-fluid algorithm.

We propose to computeointercell fluxes, one assuming that the fluids in both celied
j + 1 arep-fluids, and one assuming that both fluids aréluids:

Fiis = Fig WL Wai ),

Fiis = iy WL Wai 7).

We then useFJ.'-Jrl to update the fluid in cel] and FjFi; to update the fluid in cel| + 1
2 2
(see Fig. 2).

4.1. Level-Set Formulation

We demonstrate how this algorithm is implemented in a level-set model. It is assun
that (o, u, p, ¥) are available at each grid cegllat the beginning of the calculation. We
proceed as follows:

1. Usey to determine the location of the material interface.

2. Compute the conserved variabl&s= (p, pu E) in each cell, using the appropriate
EOS as determined by in (9).

3. Ity - ¥j41 > Othen (nointerface) =y = y. Compute one interceIIquRH%(Wj,
W;+1; v) using the (common) value ¢f in the data.

4. Otherwise computéwo intercell fluxes atx;, 1, F].'-+%(W,-,W,-+1; ») and FjFi%
(Wi, Wii1; vr).

5. Use FJ.L%(WJ-,WJ-H; 1) to updatew = W' and F].Fi%(W,-,W,-H; %) to update
Wr = W[, ;.

6. Compute the new primitive variablés = (p, u, p)?+1
namelyy",.

7. Compute the level-set functiqh}‘*l.

, usingfrozenvalues ofy,

We make the following observations:

e The proposed algorithm is general and is independent of the method of discretizat

e The algorithm is obviously not conservative, since across interfaces the flux out of ¢
j is different from the flux into cellj + 1. However, the two-flux update affeatsly the
total energy, while not affecting mass and momentum. (See Section 4.3 below.)

e At each given cell, the solution update from time leweio n + 1 “sees” onlyone
fluid, with y = y[. Contact surfaces are therefore oscillation-free, as is the case for sin
fluids. In particular, as shown in (14, 15)ifand p are uniform in the data, they will remain
uniform in the solution.



COMPUTATIONS OF COMPRESSIBLE MULTIFLUIDS 609

e Numerical diffusion across captured material interfaces does not cause spurious f
sure oscillations to arise.

4.2. Mass-Fraction Formulation

The above algorithm may be implemented in a mass-fraction model in an almost ident
fashion, simply by replacing the condition in Step 3 above by the condition (indicating |
interface)

Yjs1 = Yjl < e

for some small value of (in [20] this condition was used to identify material fronts with
€ = 0.05).
Aninteresting variation is to use the two-flux formuéa&rywherén the domain, yielding

a scheme which appears to be nonconservative everywhere, but effectively is noncot
vative only wherey; # y;+1. An appealing advantage of the mass-fraction model, over
level-set formulation, is that it is capable of handling flows where the material front is n
presentinitially but is “born” during the computation, for example due to chemical reacti
(see Section 5).

4.3. Conservation Error Analysis

Two of the steps in the above algorithm are nonconservative. The first one, Step -
obvious since two adjacent cells are updated by different flux formulas. The second
is less obvious and lies in the combination of Steps 7 and 2. We first note that, depen
on the EOS, a given cell pressupecorresponds to different internal energy. Once the
new conserved variablewj”“, have been computeqh;]—1+1 is recovered using the EOS
with frozenthermodynamics. Only then is the level-set function updated, and with it tf
thermodynamics. If during the time step, the material interface has propagated throug
the next cell, converting the pressure back to energy, using the EOS of “the other” flt
then introduces energy conservation errors.

We show below that these two sources of conservation errors have opposing effect
the solution.

4.3.1. Conservation Error Due to Different Flux Formulas

The following analysis is for Roe’s discretization method [29], which is used in th
numerical examples section. Using Ak, anday to denote the eigenvectors, eigenvalues
and wave strengths of thkeh characteristic field (see Section (2.1)), we write

Ap — paAu
r=@Qu—aH-ua", r=u—a, =" """
1=( ) 1 o1 o,

1.,\" a%Ap — A
rp=(1u,-u?) , Ao =1, 062=p7p,
2 a2
Ap + paAu

rs=(u+a H+ua)', ry=u+a, =
3=@du+ +ua) 1=u+a, o a2
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UsingA* to indicate positive and negative eigenvalues, we have

L . L LaL,L
Fros (W, Wey) = F 4D ajcdierys
e
R . R Ry R, R
FRa WL Weiyr) = Ffly =D ofdr,

R+
M

and the flux difference is

= (Fli—-F) - ZO‘E}»&FJFZ“UUKL

R+ L—
)“k )‘k

R L
FRy—Fhs

Clearly, if y. = yr this expression vanishes. Across a material frant,= Ap = 0 and
the above expression reduces to

1
R L R L
(FH% - FH%) — (FRy—F") —uap | u
1,2
2
R L
pu pu 1
=| pu2+p | —| pu?+p | —urp| U
U(E + p) u(E + p) Zu?
UAp 1
= U’Ap —uAp | U
1,,2
UpA (531) + 3uAp U
0
- 0
1
upA (51)

In m time steps the accumulated conservation error is

mAt 0 . (26)
upA (ﬁ)

4.3.2. Conservation Errors Due to “Unfreezing” of Thermodynamics

Converting the primitive variable®(u, p) back to conserved variables, after “unfreez-
ing” the thermodynamics, changes the internal energy and hence alters the total en
balance.

The total energy change is

p p 1
AX(E|,—y, — E|,o)) = A - = —AXpA [ —— ). 27
*(Ely=n — Ely=n) X(VL—]. )/R—1> XP <)/—1> 27)
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The number of time steps it takes for the interface to propagate through one grid cell is
that

m UAt/AX ~ 1. (28)

We observe that the two sources of error (26) and (27) have opposing effects on the solu
and from (28) they are nearly cancelling. The numerical examples in the next section disj
this kind of behavior. There is a build up of the conservation error due to the different fl
formulas, which is then offset by the interface crossing to the next grid cell (see Fig. 8).

5. NUMERICAL EXAMPLES

The following examples illustrate the numerical difficulties encountered by naive di
cretization schemes of (1)—(3) described in Section 2 [1, 23, 26, 31] and demonstrate
ability of the single-fluid algorithm of Section 4 and the quasi-conservative scheme of S
tion 3.2.2 to handle these difficulties for problems involving ideal as well as stiff fluid:
Conservation errors are computed, and convergence tests are included. We also prese
examples where chemical reactions take place. They show that nonphysical oscillatior
the kind described in this paper may be detrimental for reactive flow problems and that
single-fluid algorithm and the quasi-conservative method are capable of reliably solv
such problems. Unless specified otherwise, the number of grid points is 200 and the (
number is 0.8.

5.1. Test Case 1: Numerical Failures

We solve (1)—(3a) using a second-order Roe-type scheme with superbee flux limiter [
The initial conditions correspond to the shock-tube data

(p,u, P,y =(1,0,1,1.6), (29)
(p,u, p,y)r = (0.1250,0.1, 1.2).
Figure 3 shows the computed velocity by the first-order Roe scheme applied to the m
fraction model [1], they-model [31], and the level-set model [26]. The exact solution i
also shown. All computations clearly suffer from large inaccuracies, with the velocity fie
clearly failing to maintain a uniform value across the material front.

5.2. Test Case 2: Isolated Material Front

We next consider an isolated material front and illustrate the behavior of the consel
tive scheme [1] and two nonconservative schemes: the single-fluid scheme and the q
conservative scheme. Initial data are given by

(p,u, p,y)L=(11116),

(30)
(p.u,p,y)r= (01,11 14).

Second-order calculations are shown in Fig. 4, which presents density, velocity, press
andy solution profiles, together with exact solutions. As expected, the single-fluid scher
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FIG. 3. \elocity by first-order schemes: (a) mass-fraction model, (b) level-set modei;rtwdel.

(bO)S

(both mass-fraction and level-set formulations) and the quasi-conservative scheme m
tain uniform velocity and pressure but the fully conservative scheme produces oscillat
solution. We note that these errors decay with mesh refinement, but they do so extrer
slowly (see for example convergence tests in [2, 19]).

5.3. Test Case 3: Two-Fluid Shock-Tube Problem

In the next example, we consider the following shock-tube initial data:

(p,u, p,y)L =(1,0,1,1.4), (31)
(p,u, p,y)r = (0.125 0, 0.1, 1.6).

Figure 5 shows second order-computed solutions by the two single-fluid schemes (m
fraction and level-set formulations) and by the quasi-conservative scheme. The result
all schemes are in very good agreement with the exact solution; in particular they are
oscillation-free and have the correct shock strength and speed. Results by the consery
scheme are notincluded, but as in the previous example, they are oscillatory near the cor
and while they eventually converge to zero with mesh refinement, they do so very slov
Note also that increasing the order of accuracy of the scheme does not improve the qu
of the results of the conservative scheme [2, 19].
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FIG. 4. Propagating material front computed by (i) the fully conservative scheme and by the single-fit
algorithm in (ii) mass-fraction, and in (iii) level-set formulation.

5.4. Test Case 4: Two-Fluid Stiff Shock-Tube Problem

The next example represents a more stiff shock-tube calculation. Initial data are giver

(109 us pv J/)L = (17 Os 027 14)7

(32)
(p,u, p,y)r = (1,0,500Q 1.6).

Solutions are again by the single-fluid scheme and by the quasi-conservative scheme
results are shown in Fig. 6 for second-order calculations, with 800 grid points. The schel
clearly demonstrate their ability to compute strong shocks without deterioration in t
quality of the results. In particular, we note that all computed solutions are oscillation-ft
and that, despite the fact that the single-fluid schemes are not conservative, results fol
strong shock case are in excellent agreement with the exact solution.

We observe slight overshoots at the corner of the rarefaction fan and note that they
due to the stiffness of the problem, not the multifluid modelling. Indeed, similar behavic
can be observed in single fluid calculations.

5.5. Test Case 5: Gas-Liquid Shock-Tube Problem

We now consider a gas—liquid shock-tube test case using the stiffened equation of
(3b), taken from [32]. The initial conditions correspond to a severe water—air shock tt
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FIG. 5. Solutions for the shock-tube problem (31) by the single-fluid schemes and the quasi-conserva
scheme.

given by

(107 u7 p’ V, pOO)L = (1000 0’ 1095 447 6 : 1@)7
(33)
(P, U, P, 7. Poo)r = (50,0, 10°, 1.4, 0).

Results by the second-order single-fluid level-set scheme with minmod limiter are shc
in Fig. 7. The agreement between the exact and numerical solutions is excellent, des
the severeness of the initial conditions and the fact that the method does not strictly c
serve the total energy. Figure 8 shows the total energy and energy conservation erro
a function of time. The results are in agreement with the conservation error analysis
Section 4.3. The error exhibits fluctuations: It accumulates for a few steps before dropy
as a result of the interface crossing mesh cell. More importantly, we note that even for
severe test case, the energy conservation erextismelysmall, of the order of 0.2%, and
appears to reach saturation once the numerical solution has settled into a quasi-steady
Convergence tests conducted in the next section indicate that these errors further dec
zero with mesh refinement, establishing that the method is essentially conservative.
same test problem was solved by the quasi-conservative scheme in [32], and the quali
the solution is similar. Finally, we note that becaysg is very large, fully conservative
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FIG.6. Solutions for the stiff shock-tube problem (32) by the single-fluid schemes and the quasi-conserva
scheme.

schemes have a hard time computing this test case, often failing bgeaupe, becomes
negative.

5.6. Convergence

The test cases presented show excellent agreement between computed and exact so
for a variety of problems involving moderate to strong shock waves. In particular, t
shocks and material fronts appear to propagate with the correct speed and strength
the rarefaction fans appear to expand at the correct rate. This is a strong indication
the overall loss of conservation does not affect the solution in a substantial way. In t
section, we conduct mesh convergence studies for the various test cases. We con
relative conservation errors in total energy as a function of the number of grid poin
The results are summarized in Tables Il, lll, and IV. Due to the fluctuating nature of t
conservation error (see Fig. 8), we have measuredidsa@mumerror over the integration
time period. The results all correspond to the same final time, so that finer grids imply t
more time steps were taken.

In all cases, we see that the errorsexeemelysmall (a fraction of a percent in general)
and converge to zero (roughly likB(Ax) with mesh refinement. We further note that the
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FIG. 7. Water-air shock-tube problem (33) by the level-set single-fluid scheme.
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TABLE Il
Relative Error (in %) in Total Energy at t = 0.01 for Contact
Discontinuity Test Case (30)

Level-set Mass-fraction

# of Points 1st Order 2nd Order 1st Order 2nd Order

100 3.60 0.69 5.6 2.1
200 1.70 0.30 3.22 111
400 1.18 0.29 2.26 0.63
800 0.84 0.29 1.59 0.35
1600 0.58 0.22 1.12 0.20
3200 0.41 0.19 0.79 0.11
6400 0.29 0.13 0.56 0.06
TABLE Il

Relative Error (in %) in Total Energy at t = 0.19 for Stiff
Shock-Tube Test Case (32)

Level-set Mass-fraction

# of Points 1st Order 2nd Order 1st Order 2nd Order

100 2.08 0.72 1.07 0.32
200 1.43 0.36 0.84 0.18
400 1.06 0.18 0.64 0.09
800 0.80 0.09 0.47 0.04
1600 0.55 0.05 0.34 0.02
3200 0.41 0.03 0.25 0.01
6400 0.30 0.02 0.18 0.005
TABLE IV

Relative Error (in %) in Total Energy at t = 0.0002
for Stiffened Shock-Tube Test Case (33)

Level-set
# of Points 1st Order 2nd Order
100 1.89 1.18
200 0.97 0.70
400 0.48 0.42
800 0.24 0.24
1600 0.18 0.18
3200 0.11 0.06

6400 0.09 0.03
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error and the convergence rate appear not to depend on shock strength or on the stiffne
the problem.

5.7. Test Case 6: Chemistry

A major weakness of level-set formulations is their inability to handle flows in which th
material interfaces are not present initially, but rather get generated during wave interact
This, for example, occurs in reactive flows. Consider the model specified by

ot + (pWx =0,

(P + (pu® + p)x = 0,

Et + (U(E+ p)x =0,
Y +uYy = (1-=Y)f(T),

With f given by
0 if T <To,
f(T) = y _
exp(52) otherwise
This model corresponds to the chemical reacian— X,. Initial data are given by
U, p, = (1,50, 50, 1.4),
(o, u, P,y =( ) (34)
(107 u9 pa V)R == (1, _50, 50, 14),

with physical parameteng = 1.4, y, = 1.6, C,; = C,» = 1, Hy = 5000, andly = 500.
The problem is solved by the quasi-conservative scheme, which is modified as follc
to take the chemistry into account; Givev' = (p", p"u", E", a"),

1. Estimatex"t/2 by

(&) computingT" = ﬁ (here we assum@,; = C,» = 1),

(b) computingY™, i.e., inverting
1 Y"Cp1+ (1—-Y)Cp
T a1 = P Loy 35
an + Y"Cy1 + (1 —-Y)C,2 (35)

(c) computing

yn if 2 <500
Yn+1/2 — 4
1—(1—Y"exp(—exp()) else
(d) computingx"*+%2 using (35).
2. Use the quasi conservative scheme With /2 = (p", p"u", E", «"*¥2) and goto 1.

The results are shown in Fig. 9. The mesh sizeis= 0.5 - 102, we use 1000 time steps,
and the CFL number is 0.1. Initially, only speciEs is present. The initial temperature
is uniform, atT = 125. Due to wave interactiof, increases rapidly and once it exceeds
T =500, a chemical reaction is triggered, and spe&lgss produced. We have run the
problem also with the single-fluid scheme in mass-fraction formulation. The results :
virtually undistinguishable. Such a computation is not possible with level-set models,
they require that the interface be present already in the initial data.
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FIG. 9. (a) Velocity, (b) density, (c) temperature, and {djor test case (34).

5.8. Test Case 7: Chemistry

Finally, we show that computing oscillation-free material interfaces is crucial for ol
taining reliable solutions in chemically reacting flows. Generating oscillations at a cont
discontinuity may completely destroy the accuracy of a run. In this example, initial data
given by

(p,u, p,y)L = (25,1,499 1.4),

(p,u, p.y)r = (1.5,1,499 5/3), (30)

with physical parameterg, = 1.4, y, = 5/3,C,; = C,» = 1, Hy = 7000, andTy = 500.
The initial conditions are set so that the temperature is uniformTard500. Since the
velocity and the pressure are also uniform, the solution isemimaterial front propagating
downstream at spead= 1, and no chemical reaction should occur.

Computations by the fully conservative scheme and the quasi-conservative scheme
shown in Fig. 10. The CFL number isI) Ax = 5.10°3, and we run 800 iterations.

As can be seen in Fig. 10, oscillations produced by the fully conservative scheme trig
a false chemical reaction, 8sexceeds the threshold valde= 500. In comparison, the
guasi-conservative scheme gives oscillation-free solutions, false chemical reaction is
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FIG. 10. (a) Velocity, (b) density, (c) temperature, (d)and (e) pressure for test case (36).

triggered, and the inert material front propagates downstream in agreement with the e
solution.

6. CONCLUDING REMARKS

In this paper, we have surveyed a number of approaches to computing compress
multicomponent flows. While the eventual goal is to compute complex multimaterial flov



COMPUTATIONS OF COMPRESSIBLE MULTIFLUIDS 621

in several space dimension, we have focused on the main modeling issues, discretiz
considerations, and guiding principles. Those are best illustrated and best understoc
simple one-dimensional flow situations.

Ensuring the positivity of the mass fractions and ensuring the occurrence of press
oscillations near material interfaces are typical of multimaterial flow simulations, the lat
being a major obstacle in extending state-of-the-art schemes from single fluids to multifiu
These oscillations are entirely numerical artifacts, and we have reviewed several approa
to eliminate them, all involving various degrees of sacrificing strict conservation. The gu
ing principle is to ensure that if the flow has locally uniform velocity and pressure, t
numerical scheme should be able to preserve it without generating disturbances. We
that such oscillations are not present in single-fluid computations, and we introducec
extremely simple algorithm with a single-fluid flavor, basedwaflux calculations across
material fronts. The results, while not strictly conserving the total energy, exhibit cons
vation errors that arextremelysmall. These errors converge to zero with mesh refinemer
and results are in excellent agreement with exact solutions even for severe test cases.

Finally, we note that if the flow is described by the balance equations fondadual
species, rather than for the flow mixture, the same guiding principle can be used to dev
algorithms that respect pressure equilibrium and at the same time do conserve mass
individual species as well as momentum and energy of the flow mixture. This, howe\
comes at a price: The overall number of equations is roughly doubled in two-phase flo
and the system loses its underlying conservation form, as the result of momentum and er
exchange between the phases (although both are still conserved for the total mixture).
Volume-of Fluid algorithm [8, 27] essentially fits into this class of models. More recentl
see [33] and also [9].
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