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Abstract. We provide two simple ways of discretizing a large class of boundary conditions for
first order Hamilton–Jacobi equations. We show the convergence of the numerical scheme under mild
assumptions. However, many types of such boundary conditions can be written in this way. Some
provide “good” numerical results (i.e., without boundary layers), whereas others do not. To select
a good one, we first give some general results for monotone schemes which mimic the maximum
principle of the continuous case, and then we show in particular cases that no boundary layer can
exist. Some numerical applications illustrate the method. An extension to a geophysical problem is
also considered.
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1. Introduction. The problem of discretizing first order Hamilton–Jacobi equa-
tions in R

N has been considered by several authors (see, e.g., [8, 9, 3]) on various types
of meshes (see the previous references and [1]). However, in our knowledge, the dis-
cretization of boundary conditions has not yet been considered in a systematic way.
The aim of this paper is to provide a simple and systematic way of discretizing a
wide variety of boundary conditions. This is done in the framework of discontinuous
viscosity solutions [4]. More precisely, we consider the following problem:{

H(x, u,Du) = 0, x ∈ Ω,
F (x, u,Du) = 0, x ∈ ∂Ω,

(1.1)

where the Hamiltonian is continuous on Ω × R × R
N and the boundary condition F

is continuous on ∂Ω × R × R
N .

For any function z, we consider the upper semicontinuous (u.s.c) and lower semi-
continuous (l.s.c) envelopes of z with respect to all variables. These are defined by

z∗(x) = lim sup
x→y

z(y) and z∗(x) = lim inf
x→y z(y).

Following [4], we introduce the function G:

G(x, u, p) =

{
H(x, u, p), x ∈ Ω,
F (x, u, p), x ∈ ∂Ω.

A locally bounded u.s.c function u defined on Ω is a viscosity subsolution of (1.1)
if and only if, for any φ ∈ C1(Ω), if x0 ∈ Ω is a local maximum of u− φ, then

G∗(x0, u(x0), Dφ(x0)) ≤ 0.(1.2)
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Similarly, u, a locally bounded l.s.c. function defined on Ω, is a viscosity supersolution
of (1.1) if and only if, for any φ ∈ C1(Ω), if x0 ∈ Ω is a local minimum of u− φ, then

G∗(x0, u(x0), Dφ(x0)) ≥ 0.(1.3)

The computation of G∗ and G∗ is easy, and we have
G∗(x, u, p) = G∗(x, u, p) = H(x, u, p) if x ∈ Ω,

G∗(x, u, p) = min(H(x, u, p), F (x, u, p)) if x ∈ ∂Ω,

G∗(x, u, p) = max(H(x, u, p), F (x, u, p)) if x ∈ ∂Ω.

(1.4)

More specifically, we consider the cases of the Dirichlet and Neumann boundary con-
ditions, but the results of this paper may extend to more general boundary conditions,
provided they are of the form (1.1) and if some regularity on F is assumed. In the
case of Dirichlet boundary conditions, namely u = ϕ, we have

F (x, u, p) = u(x) − ϕ(x),(1.5)

and for Neumann boundary conditions we have

F (x, u, p) =
∂u

∂n
− g(x),(1.6)

where g is defined on ∂Ω and continuous.
This paper is organized as follows. We first recall a convergence result by Barles

and Souganidis [5]. Then, starting from the dynamical programming principle, we
indicate a way of discretizing general boundary conditions, and show the convergence
of this scheme. In a second part, we describe several particular cases for convex and
nonconvex Hamiltonians. A particular emphasis is set on the Dirichlet boundary
conditions because it is more difficult to provide effective boundary conditions in
that case, at least more difficult than for Neumann conditions. This problem is
explained and has many similarities with the technical difficulties encountered in the
study of these conditions in the continuous case. We provide numerical illustrations
that show the effectiveness of the schemes. It is known that first order Hamilton–
Jacobi equations have many similarities with a particular class of hyperbolic systems.
Because of that, one might think that boundary conditions built on the structure
of inflow and outflow characteristics would be efficient enough. This is true if the
structure of the solution is known a priori. This is rarely the case in practice, and we
provide an example where the structure of the solution at the boundary is not known
a priori, so more sophisticated approximations are required. Another example has its
origin in seismology problems.

Throughout the paper, we consider an open and bounded domain Ω. To simplify
the presentation, we assume Ω ⊂ R

2, but our results are also valid for R
N , N ≥ 2. The

open set Ω is discretized by a triangulation Tρ. The nodes of the mesh are denoted
by xi, i = 1, . . . , ns; the triangles are denoted by Tk, k = 1, . . . , nT . The vertices of T
are denoted by xik , k = 1, . . . , 3. The parameter ρ above is, for example, the largest
radius of the circumscribed circles of Tk, k = 1, . . . , nT .

2. A convergence result.
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2.1. Preliminaries. All our results rely on the following one by Barles and
Souganidis [5]. The symbol B(Ω) denotes the set of bounded functions over Ω.

They consider approximations schemes of the form

S(ρ, x, uρ(x), uρ) = 0 in Ω,(2.1)

where S maps R
+ × Ω × R ×B(Ω) onto R, is locally bounded, and has the following

properties:
1. monotonicity: if u ≥ v, for all ρ ≥ 0, x ∈ Ω, t ∈ R, and u, v ∈ L∞(Ω) we have

S(ρ, x, t, u) ≤ S(ρ, x, t, v);(2.2)

2. stability: for all ρ > 0 there exists a solution uρ ∈ L∞(Ω) to (2.1) with a
bound independent of ρ;

3. consistency: for all x ∈ Ω and φ ∈ C∞
b (Ω) (the set of C∞ bounded functions),

lim sup
ρ→0,y→x,ξ→0

S(ρ, y, φ(y) + ξ, φ + ξ) ≤ G∗(x, φ(x), Dφ(x))(2.3)

and

lim inf
ρ→0,y→x,ξ→0

S(ρ, y, φ(y) + ξ, φ + ξ) ≥ G∗(x, φ(x), Dφ(x));(2.4)

4. strong uniqueness principle: if u ∈ L∞(Ω) is an u.s.c subsolution of (1.1) and
v ∈ L∞(Ω) is an l.s.c supersolution of (1.1), then u ≤ v on Ω.

Theorem 2.1 (from Barles and Souganidis). Assuming the monotonicity, con-
sistency, and stability of the scheme (2.1) and the strong uniqueness property of the
problem (1.1), then the solution uρ of (2.1) converges locally uniformly to the unique
continuous viscosity solution of (1.1).

The stability, (2.2), (2.3), and (2.4) imply that the functions

ū = lim sup
ρ→0,y→x

uρ(y) and u = lim inf
ρ→0,y→x

uρ(y)

are defined on Ω; they are, respectively, u.s.c. subsolutions and l.s.c. supersolutions
of (1.1). By definition, we have u ≤ u. The opposite inequality follows from the
uniqueness property. Note that if we have only this uniqueness property on Ω, as is
the case for Dirichlet boundary conditions, the same argument shows that u = u on
Ω.

2.2. Two numerical schemes. We consider a bounded open domain Ω that is
discretized by means of a triangulation Tρ. The parameter ρ is the maximum, on the
elements T of Tρ, of the radius of the smallest disk containing T .

We consider a scheme for H(x, u,Du) = 0 that is defined for any point of the
mesh except perhaps for the boundary nodes. It is written as

SH(ρ, x, uρ(x), uρ) = 0.(2.5)

We also consider an approximation of the boundary conditions that is defined for any
node of the triangulation on the boundary of Ω,

SF (ρ, x, uρ(x), uρ) = 0.(2.6)
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Let (x, t, p) �→ Hb(x, t, p) be a Hamiltonian defined at least in a neighborhood of
∂Ω×R×R

N . It fulfills the same assumptions as H. We also have a numerical scheme
SHb

for the Hamiltonian Hb. We define the following scheme for (1.1):

0 = S(ρ, x, uρ(x), uρ) =

{
SH(ρ, x, uρ(x), uρ) if x ∈ Ω,
max(SHb

(ρ, x, uρ(x), uρ), SF (ρ, x, uρ(x), uρ)) if x ∈ ∂Ω.

(2.7)

Another a priori reasonable scheme could also be

0 = S(ρ, x, uρ(x), uρ) =

{
SH(ρ, x, uρ(x), uρ) if x ∈ Ω,
min(SHb

(ρ, x, uρ(x), uρ), SF (ρ, x, uρ(x), uρ)) if x ∈ ∂Ω.

(2.8)

The questions are the following: On which conditions can the scheme (2.7) or (2.8)
be considered as a good numerical approximation of (1.1)? Can we identify criteria
for preferring scheme (2.7) to (2.8)?

Before giving conditions that ensure the convergence of the schemes (2.7) and
(2.8), we motivate the “max” condition of (2.7) in the case of a convex Hamiltonian.
The justification comes from the dynamical programming principle and is therefore
valid for convex Hamiltonians. We could make the same type of justification for the
“min” condition of (2.8) for concave Hamiltonians.

Dynamical programming principle. We assume that the Hamiltonian is given by

H(x, u, p) = sup
v∈V

{−b(x, v) . p + λu− f(x, v)} ,

where the space of controls V is compact, and we have standard assumptions on b
and f . We also assume λ > 0. For the Dirichlet condition (1.5), the solution of (1.1)
is given by, for any T > 0,

0 = u(x) − inf
v(.)

[∫ min(T,τ)

0

f(yx(t), v(t))e−λtdt + 1{T<τ}u(yx(T ))e−λT(2.9)

+ 1{T≥τ}ϕ(yx(τ))e−λτ
]
.

As usual, the trajectory yx(.) satisfies yx(0) = x ∈ Ω and

d

dt
yx(t) = b(yx(t), v(t)) for t > 0.

The exit time τ is

τ = inf{t ≥ 0, yx(t) �∈ Ω}.
Now, the set of controls can be split into two parts: the set V1 for which T < τ , and
V2 for which T ≥ τ . Hence,

u(x) = min

(
inf
v∈V1

[· · · ] , inf
v∈V2

[· · · ]
)
.

Let &n be the interior normal to Ω at x ∈ Ω. Since T is arbitrary, it can be chosen as
small as possible. In the limit T → 0, the set V1 would be the set of controls for which
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b(x, v) . &n > 0, i.e., the control for which the trajectory goes into Ω. The dynamical
programming principle infv∈V1 [· · · ] − u(x) = 0 corresponds to the Hamiltonian

Hb(x, t, p) = sup
v∈V1

{b(x, v) . p + λt− f(x, v)}.

We also have the relation Hb ≤ H.
The “inf” on V2 can be approximated, if T is small, by ϕ(yx(τ)). Since T ≤ τ

and if we can choose controls for which T � τ , we get

ϕ(yx(τ)) � ϕ(x)

because ϕ is continuous. Thus, by setting SF = u(x)−ϕ(x), we see that (2.9) can be
approximated by

0 = max(SHb
, SF ),

which is want we wanted. We have the following result.
Theorem 2.2. Assume that
1. Hb ≤ H;
2. SH , SHb

, and SF are monotone and stable;
3. for all φ ∈ C∞

b (Ω), we have

for any x ∈ Ω,

lim
ρ→0,y→x,ξ→0

SH(ρ, y, ϕ(y) + ξ, ϕ + ξ) = H(x, ϕ(x), Dϕ(x)),

for any x in a neighborhood of ∂Ω,

lim
ρ→0,y→x,ξ→0

SHb
(ρ, y, ϕ(y) + ξ, ϕ + ξ) = Hb(x, ϕ(x), Dϕ(x)),

for any x ∈ ∂Ω,

lim
ρ→0,y→x,ξ→0

SF (ρ, y, ϕ(y) + ξ, ϕ + ξ) = F (x, ϕ(x), Dϕ(x));

4. the equation (1.1) has a uniqueness principle.
Then the family uρ defined by (2.7) converges locally uniformly to the solution of (1.1)
in Ω. We have the same result for (2.8), provided that the condition 1 is replaced by
H ≤ Hb.

Proof. We make the proof for the scheme (2.7). The proof for (2.8) is similar.
We first note that, on the boundary,

lim sup
ρ→0,y→x,ξ→0

S(ρ, y, ϕ(y) + ξ, ϕ + ξ)

= max
(
H(x, ϕ(x), Dϕ(x)),max(Hb(x, ϕ(x), Dϕ(x)), F (x, ϕ(x), Dϕ(x)))

)
,

lim inf
ρ→0,y→x,ξ→0

S(ρ, y, ϕ(y) + ξ, ϕ + ξ)

= min
(
H(x, ϕ(x), Dϕ(x)),max(Hb(x, ϕ(x), Dϕ(x)), F (x, ϕ(x), Dϕ(x)))

)
,

while in the interior points,

lim
ρ→0,y→xξ→0

S(ρ, y, ϕ(y) + ξ, ϕ + ξ) = H(x, ϕ(x), Dϕ(x)).(2.10)
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Then we proceed as in [4]. We define

u(x) = lim sup
y→x,ρ→0

uρ(y) and u(x) = lim inf
y→x,ρ→0

uρ(y).

They are defined on Ω because uρ has bounds independent of ρ. We will show now
that the functions u and u are, respectively, sub- and supersolutions of (1.1). In fact,
we show first that if x0 ∈ ∂Ω is a local minimum of u− φ, then

max
(
H(x0, u(x0), Dϕ(x0)),max(Hb(x0, u(x0), Dϕ(x0)), F (x0, u(x0), Dϕ(x0)))

) ≥ 0,

(2.11)

while if x0 ∈ ∂Ω is a local maximum of u− φ for some φ ∈ Cb∞(Ω), then

min
(
H(x0, u(x0), Dϕ(x0)),max(Hb(x0, u(x0), Dϕ(x0)), F (x0, u(x0), Dϕ(x0)))

) ≤ 0.

(2.12)

To show (2.11), we repeat Barles and Souganidis’s arguments. Equation (2.12) is
obtained in the same way. We may assume that x0 is a strict minimum, u(x0) = φ(x0),
and φ ≤ 2 infρ ||uρ||∞ outside of B(x0, r), where r is such that

u(x) − φ(x) ≥ u(x0) − φ(x0) = 0 in B(x0, r).

There exist sequences ρn and yn ∈ Ω such that n → +∞, ρn → 0, yn → x0, uρn(yn) →
u(x0), and yn is a global minimum of uρn−φ. We denote by ξn the quantity uρn(yn)−
φ(yn). We have ξn → 0 and uρn(y) ≥ φ(y) + ξn in B(x0, r). Since S is monotone, we
get

0 ≤ lim sup
n

S(ρn, yn, φ(yn) + ξn, φ + ξn) ≤ lim sup
ρ→0,y→x0,ξ→0

S(ρ, y, ϕ(y) + ξ, ϕ + ξ)

= max(H(x0, ϕ(x0), Dϕ(x0)),max(Hb(x0, ϕ(x0), Dϕ(x0)), F (x, ϕ(x0), Dϕ(x0)))).

If x0 ∈ Ω is a local maximum (resp., minimum) of u − φ (resp., u − φ), we use
(2.10) and the same arguments as above to get

H(x0, u(x0), Dφ(x0)) ≤ 0 (resp., H(x0, u(x0), Dφ(x0)) ≥ 0).(2.13)

Now we have to check that the condition (2.12) (resp., (2.11)) implies the super-
solution (resp., subsolution) condition.

• Inequality (2.12). If F (x0, u(x0), Dφ(x0)) ≤ 0, there is nothing to prove. We
assume F (x0, u(x0), Dφ(x0)) > 0. We have either

H(x0, u(x0), Dϕ(x0)) ≤ 0(2.14)

or

max(Hb(x0, u(x0), Dφ(x0)), F (x0, u(x0), Dφ(x0))) ≤ 0.

In the second case, we necessarily have (2.14), and in both cases the inequality
holds.
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• Inequality (2.11). If F (x0, u(x0), Dφ(x0)) ≥ 0, there is nothing to prove. If
we assume F (x0, u(x0), Dφ(x0)) < 0, then we must have either H(x0, u(x0),
Dφ(x0)) ≥ 0 or

max(Hb(x0, u(x0), Dφ(x0)), F (x0, u(x0), Dφ(x0))) ≥ 0.

Since F < 0, this inequality implies Hb ≥ 0, so that

H(x0, u(x0), Dφ(x0)) ≥ Hb(x0, u(x0), Dφ(x0)) ≥ 0.

Thus, in both cases, we get H(x0, u(x0), Dφ(x0)) ≥ 0, which is what we
wanted.

This shows that u is a supersolution and u is a subsolution of (1.1). The strong
uniqueness principle enables us to conclude.

In the following section, we explain the role of Hb and give some examples for
(2.7). These examples can easily be extended to (2.8). In section 4.1, we provide
some simple criteria on H for choosing between (2.7) and (2.8).

3. Some examples. In [9, 1], two classes of numerical Hamiltonian were con-
sidered, Godunov and Lax–Friedrichs Hamiltonians. Here, we recall the main results
of [1] because they can be applied to a more general setting than those of [9] from
which they are inspired. In both cases, only the case of the domain R

N has been
studied, i.e., in the present setting, the case of interior nodes.

In order to discretize the problem{
ut + H(Du) = 0,
u(x, 0) = u0(x)

for x ∈ R
N and t > 0, where u0 is Lipschitz continuous, we have considered the

scheme

u0
i = u0(xi),

un+1
i = uni − ∆tHρ(DT1un, . . . , DTki

un).
(3.1)

In (3.1), un represents the piecewise linear interpolant of (unj ), the set {T1, . . . , Tki}
is the set of triangles that contain xi, and DTu

n represents the (constant) gradient of
un in the triangle T . The parameter ρ describes the local geometry of the mesh. In
the examples to come, we specify this parameter; see Remark 1. For any R > 0, let
us introduce the set CR of continuous piecewise linear functions defined by

CR = {u continuous piecewise linear s.t. ||DTu|| ≤ R for any triangle T}.(3.2)

We have to define the numerical Hamiltonians (p1, . . . , pk) �→ Hρ(p1, . . . , pki).
They have been designed to have the following properties:

1. consistency: Hρ(p, . . . , p) = H(p),
2. monotonicity: there exists ∆tR such that for all ∆t ≤ ∆tR, if un, vn ∈ CR

and if uni ≤ vni for all i, then un+1
i ≤ vn+1

i ,
3. intrinsicness: the definition of Hρ does not depend on the geometrical de-

scription of un. For any vertex xi, for any triangle T such that xi is a vertex
of T , if T is split into two triangles T1 and T2 for which xi is still a vertex,
then the value of the numerical Hamiltonian is not modified; see Figure 1.
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T1

T2

T

xi xi

Fig. 1. Geometrical elements for the intrinsic property: the numerical Hamiltonian is not
modified if the triangle T is split into T1 and T2 and the value of u at the new vertex is evaluated
by linear interpolation.

We also assume that Hρ is uniformly continuous in the p and ρ variables. Of course,
the number of arguments changes from one mesh point to the other, but if the mesh is
regular, the number of neighbors is bounded above, and, thanks to the “intrinsicness”
property, we can think of Hρ as the same function everywhere. Assuming these
properties, it is possible to show the convergence of the scheme (3.1) and to give an
error estimate [8, 1].

Notation. In what follows, when we consider numerical schemes that can be put
in the form (3.1), sometimes the DTlu

n’s are rewritten in terms of uni and the values
of un for the neighboring nodes of xi. For the sake of convenience, we denote the set
of the neighbors of xi (excluding xi) by Ni, and we rewrite the scheme as

un+1
i = Gρ(u

n
i , {unj , j ∈ Ni}; ∆t).(3.3)

More generally, when the Hamiltonian is of the form H(x, u(x), Du(x)), the scheme
is sometimes rewritten as

un+1
i = Gρ(xi, u

n
i , {unj , j ∈ Ni}; ∆t) = uni − ∆tHρ

(
xi, u

n
i , {unj , j ∈ Ni}

)
.(3.4)

In the G-function, Gρ(x, t, {tl, l ∈ N}; ∆t), t is similar to uρ(x), and the variables t,
{tl, l ∈ N}, provide a description of uρ in a neighborhood of xi.

When we are interested in steady problems, the scheme, in the most general case
considered in the paper, is

Hρ(xi, uni , {unj , j ∈ Ni}) = 0.(3.5)

Similar definitions are also considered for implicit schemes.
In the case of schemes (3.3) and (3.4), the monotonicity condition is equivalent

to the following property of Gρ: (x, t, {tl, l ∈ Ni}) �→ Gρ(x, t, {tl, l ∈ Ni}; ∆t). For
any fixed grid point x = xi, G should be increasing in t and {tl, l ∈ Ni}. In practice,
the numerical Hamiltonian Hρ is an increasing function of {tl, l ∈ Ni} and decreasing
in t, so that the monotonicity condition for the explicit scheme is true, provided
that a CFL-type condition on the time step holds. In the case of schemes (3.5), the
monotonicity condition stated in Theorem 2.1 is less restrictive than for unsteady
problems: Hρ is decreasing with respect to t and increasing with respect to tl.
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Two types of Hamiltonians have been constructed so far, and for the sake of sim-
plicity we describe them in the simplest case. The general case can be treated by
“freezing” the x and u(x) variables. They all satisfy the following “translation invari-
ance” property, which mimics the facts that the t-arguments are used to approximate
a gradient:

∀x, t, tl, C ∈ R, Gρ(x, t + C, {tl + C, l ∈ Ni}; ∆t) = Gρ(x, t, {tl, l ∈ Ni}; ∆t).(3.6)

Godunov Hamiltonians. If H = H1 + H2, where H1 (resp., H2) is convex (resp.,
concave),1 then we set

HGρ (p1, . . . , pki) = inf
q∈R2

max
0≤l≤ki

sup
y∈−Ωl+q

[(pi | y − q) −H∗
1 (y) −H∗

2 (q)] ,(3.7)

where Ωl, l = 1, . . . , k1, are the angular sectors defined by the triangles T1, . . . , Tki
at node xi; H

∗
1 , for any l, −Ωl is the symmetric of Ωl with respect to xi; and H∗

2 are
the Legendre transforms of H1 and H2. We have denoted by (x | y) the dot product
of x and y.

If h is the smallest radius of the circles of center xi contained in ∪kii=1Ti, and if L1

and L2 are Lipschitz constants for H1 and H2, then the scheme is monotone, provided
that the time step satisfies

∆t

h
(L1 + L2) ≤ 1

2
.

The numerical Hamiltonian (3.7) is obtained by saying that H1 + H2 is bounded
below by the convex functions Hq(p) = H1(p) − (p | q) + H∗

2 (q). Another monotone
Hamiltonian can also be obtained, as in [1], by saying that H1 +H2 is bounded above
by the concave functions Hq(p) = H2(q) + (p | q) −H∗

1 (p).
Lax–Friedrichs Hamiltonians. Here we set

HLFρ (p1, . . . , pki) = H(Ū) − ε

h

∮
Ch

[u(x) − u(xi)]dl,

where Ch (resp., Dh) is a circle (resp., disk) of center xi and radius h,

Û =

∫
Dh

Du dxdy

πh2
,

and ε is larger than any Lipschitz constant of H divided by 2π.
Remark 1. For the Godunov and Lax–Friedrichs Hamiltonians, and at a mesh

node x, the ρ parameter is the set of unit vectors defining the edges of the triangles
at this node and the angles (at node x) of the triangles; see Figure 2.

3.1. Godunov boundary Hamiltonians for convex Hamiltonians. We
look for a Hamiltonian Hbρ of the form

Hbρ(p1, . . . , pk) = max
0≤l≤ki

sup
z∈−Ωl

{(pl | z) −H∗
b (z)},

where the pi’s are the local gradients of a piecewise linear continuous function defined
on Ω and the Ωl’s are the angular sectors as before. We need that

Hbρ(p, . . . , p) = Hb(p) ≤ H(p).

1In the case of a Cartesian mesh, this assumption can be relaxed as shown in [9].
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Mi

θ

"n

Fig. 2. A description of ρ.

If we assume that Hb is convex, this inequality implies H∗
b ≥ H∗ ; the most natural

choice is to take  H∗
b (q) = H∗(q) if q ∈ ∪kij=1Ωj ,

H∗
b (q) = +∞ otherwise,

(3.8)

but any convex Hamiltonian K such that K∗ ≥ H∗
b , which domain is included in

∪kij=1Ωj , would also be a solution. The monotonicity condition is automatically satis-
fied, thanks to the Hopf formula. In the case of an unsteady problem, the same CFL
condition is valid; i.e., if L is a Lipschitz constant of H, the time step satisfies

∆t

h
L ≤ 1

2
,

because the Lipschitz constant of Hb is at most that of H. If L is a Lipschitz constant
of H, H∗(p) may be finite only if p belongs to the ball B(0, L) of center 0 and radius
L. Since H∗

b is finite when H is finite, a Lipschitz constant of H is a Lipschitz constant
for Hb.

Note that the Hamiltonian (3.8) is the largest possible choice and is the one
suggested by the analysis from the dynamical programming principle. It can be
interpreted by saying that we take into account all the outgoing rays.

3.2. Godunov boundary Hamiltonians for concave Hamiltonians. The
analysis via the dynamical programming principle suggests choosing the boundary
condition (2.8). We define Hb by (3.8), where the +∞ condition is replaced by −∞.

3.3. Lax–Friedrichs boundary Hamiltonians for convex Hamiltonians.
Here, we are looking for Hamiltonians of the type

Hbρ(p1, . . . , pk) = K(Ū) − εb
h

∮
Ch

[u(x) − u(xi)]dl,

where K is unknown, as well as the numerical dissipation εb. The average state is
once more defined by

Ū =

∫
Dh∩Ω

Du dxdy

|Dh ∩ Ω| .
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Mi

Γ1

Γ2

"n

"τ

Fig. 3. Definition of Γ1 and Γ2.

The monotonicity condition is satisfied, provided that, Lb being a Lipschitz constant
of K,

εb ≥ Lb h

|Dh ∩ Ω)| .

The area ∂(Dh ∩ Ω) is θ h, where θ is the angle of Dh ∩ Ω at xi. This can be seen by
using the same arguments as in [1].

We denote by Γ1 the part of ∂(Dh∩Ω) which is inside Ω, and by Γ2 the boundary
part; see Figure 3. To determine K, we consider the consistency condition. It is easy
to see that

Hb(p) ≡ Hbρ(p, . . . , p) = K(p) − εb
h

(
p
∣∣∣{∫

Γ1

&ndl −
∫

Γ2

&τdl

})
,

where &n is the outward unit normal to Γ1 and &τ is the unit tangent vector to Γ2. The
vector

&N = − 1

h

(∫
Γ1

&ndl −
∫

Γ2

&τdl

)
enters into Ω if ∂Ω is regular enough.

The convergence property of Theorem 2.2 is satisfied if Hb ≤ H. When Hb is
assumed to be convex, this condition is equivalent to asking for K to be convex and(

K + εb

(
&N | .

))∗
(q) ≥ H∗(q) ∀q ∈ R

2.

The Legendre transform of x �→ K(x) + εb( &N |x) is

q �→ K∗(q + εb &N),

and consequently K∗ is defined by the relation

K∗(q) ≥ H∗(q − εb &N).(3.9)

Let us call Dom(H∗) (resp., Dom(Hb)) the subset of R
2 for which H∗(q) (resp., (Hb)∗)

is finite. If L is a Lipschitz constant of H, Dom(H∗) ⊂ B(L). A similar result holds
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εb "N

εb

L

Fig. 4. Geometrical representation of the conditions.

for K. These sets are convex. There is a solution to the problem (different from
K = −∞) if and only if we can find εB such that

(Dom(H) − εb &N) ∩ Dom(H) �= ∅,
(Dom(H) − εb &N) ∩B(εb) �= ∅.(3.10)

See Figure 4 for a representation of these conditions.
In some cases, there is no solution at all. The simplest counterexample is given

by

H(x) = (&a | x)

with &a �= 0. In this case, Dom(H) = {&a}. The first condition implies εb = 0 (thus
||&a|| = 0); the second one gives &a = 0.

In some cases, there are solutions. An example is given by any Hamiltonian for
which minH > −∞: since 0 ∈ Dom(H), we can set εb = 0 and K ≡ minH. Another
example is provided by H(x) = ||x||. Here, we can choose any εb ∈ [0, 1

2|| "N || ].

3.4. Other choices. In sections 3.1 and 3.3, a very obvious choice would be
Hb ≡ −∞. This choice enables us to satisfy our convergence conditions. In fact we
have

min(H,max(−∞, F )) = min(H,F ),
max(H,max(−∞, F )) = max(H,F ),

so that the viscosity inequalities are obviously satisfied. This reduces to strongly
imposing the boundary conditions. However, this is not be the best choice, since a
numerical boundary layer may be generated, especially in the case of Dirichlet bound-
ary conditions. The scheme converges, but very slowly, as can be seen by numerical
experiments; see section 5. Moreover, the results of this paper have been formally
extended to more general cases, particularly the case of discontinuous Dirichlet condi-
tions. In this particular case, the choice Hb = −∞ may prevent convergence, whereas
the Godunov or Lax Friedrichs boundary Hamiltonian seems to ensure convergence.
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It now becomes clear that some selection procedures must be established. We
will provide some, in special cases.

4. Some selection criteria. In this section, we discuss the problem of finding
suitable boundary Hamiltonians and the question of selecting between the min and
max conditions. These two questions are related, but the most difficult one is to find
a “good” boundary Hamiltonian. If no care is taken, the numerical solution may
develop a boundary layer structure, especially in the case of Dirichlet conditions; i.e.,
the gradient of the numerical solution may become unbounded when the mesh size
tends to zero. If Theorem 2.2 provides some necessary conditions for convergence,
this is not acceptable in general because practical calculations are done with finite
but nonvanishing mesh sizes.

This situation is very similar to the technical difficulties encountered in the anal-
ysis of the boundary problem in the continuous case; see [4]. To explain this point,
let us consider a simple one dimensional example.

If, for example, we think of a numerical scheme for{ |u′(x)| = 1, x ∈ ]0, 1[,
u(0) = 0, u(1) = 2,

where the boundary conditions are strongly imposed as being modeled by{ |u′(x)| − εuxx = 1, x ∈ ]0, 1[,
u(0) = 0, u(1) = 2,

(4.1)

the solution should look like

uε(x) = x +
exp

(
x−1
ε

)− exp
(− 1
ε

)
1 − exp

(− 1
ε

) ,

and hence a boundary layer exists: the derivative of u is not bounded at x = 1 when
ε → 0. Its thickness tends to 0 as ε → 0.

This simple example is quite generic from the numerical point of view. Assume
that the numerical solution uρ converges in the neighborhood of the boundary to
a regular solution u. Then, up to second order truncation errors, the numerical
Hamiltonian behaves like

H(p1, . . . , pki) � H(Du) − ε(ρ)D2u,

where D2u represents some elliptic operator and ε(ρ) → 0 as the mesh size tends
to zero. In [8], some numerical schemes are constructed by directly using this idea.
Because of that, if one sets the boundary condition strongly on ∂Ω, as in the example
(4.1), a boundary layer must exist in the vicinity of ∂Ω. Its thickness tends to 0 as
ε → 0. Its thickness also tends to 0 as ε(ρ) → 0.

4.1. Choosing between the “min” and “max” conditions for Dirichlet
boundary conditions. In some situations, the choice can be motivated by some a
priori knowledge of the behavior of the exact solution. For example, if one makes the
following assumption—there exists R ∈ ]0,+∞[ such that

lim
λ→+∞

H(x, u, p− λ&n) = +∞
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uniformly on x in a neighborhood of ∂Ω, −R ≤ u ≤ R and p bounded2—then one
can prove that if ϕ is continuous and u is the solution of

H(x, u(x), Du(x)) = 0, x ∈ Ω,
u(x) = ϕ(x), x ∈ ∂Ω,

then u(x) ≤ ϕ(x) on ∂Ω (see [4]). The boundary condition (2.7) implies that u ≤ φ at
the discrete level, while (2.8) implies the opposite inequality. Hence, when the above
assumption is true, the boundary condition (2.7) is the natural one to consider. This
situation is encountered for nonbounded convex Hamiltonians.

When we have

lim
λ→+∞

H(x, u, p− λ&n) = −∞,

the boundary condition (2.8) is the natural one to consider. This situation is encoun-
tered for nonbounded concave Hamiltonians.

4.2. The case of coercive Hamiltonians and boundary conditions (2.7).
We are not able to provide an error bound between the numerical and the exact
solutions. However, when the Hamiltonians H and Hb are coercive, we can show that
no numerical boundary layer can appear; i.e., the gradient of the numerical solution
is bounded when the mesh size tends to zero.

We say that H is coercive if

H(x, u, p) → +∞ when ||p|| → +∞
uniformly for x ∈ Ω, u ∈ [−R,R], R ∈ ]0,+∞[. We say that the boundary Hamilto-
nian is coercive if

Hb(x, u, p) → +∞ when ||p|| → +∞ and (p | &n) ≥ 0

uniformly for x ∈ ∂Ω, u ∈ [−R,R] for all R ∈ [0,+∞[. Here &n is the inward unit
vector at point x ∈ ∂Ω. We have implicitly assumed that ∂Ω is C1. In what follows,
we consider the Dirichlet problem

{ Hρ(xi, ui, DT1u, . . . ,DTiku) = 0, xi interior node and il ∈ Ni,
max(Hρ(xi, ui, DT1u, . . . ,DTiku), ui − ϕ(xi)) = 0, xi boundary node and il ∈ Ni

(4.2)

but our results clearly extend to the more general case considered in this paper.
Proposition 4.1. Let Hρ and Hbρ be monotone Hamiltonians consistent with H

and Hb. Assume that Hρ and Hbρ also satisfy (3.6), and that H and Hb are continuous,
convex, and coercive. Assume also that the mesh is regular. Then the scheme (2.7)
is convergent and the maximum over the triangles T of the norm of the numerical
solution, when h → 0 remains bounded.

The boundary of Ωh = ∪T∈Th
T is denoted by Γh.

Proof. The convergence is a consequence of Theorem 2.2. The uniform bounded-
ness of the gradients is a consequence of the following lemma.

Lemma 4.2. If H, Hρ, Hbρ, and the mesh satisfy the assumptions of Proposition
4.1, and if u is a subsolution of (4.2), then there exists C independent of h such that
for any two mesh points Mi, Mj we have

|ui − uj | ≤ CMiMj .

2�n is the inward unit normal to ∂Ω.
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Proof. For the sake of simplicity, we assume that H and Hb depend only on the
p variable.

Let K > 0 and xi be a mesh point. For now we let K be free. Since Ωh has
a finite number of points, there exists M ′, a mesh point such that ul − KMlMi is
maximum at M ′:

ul −KMlMi ≤ uM ′ −KM ′Mi.

This indicates that vl = (u(x′) −K ||x′ − xi||) + K ||xl − xi|| is greater that u, with
an equality at node x′. Hence, using the same techniques as in Appendix A, if x′ is
an interior node,

0 ≥ Hρ(u) ≥ Hρ(K ||x− xi||),(4.3)

where we have written Hρ(u) instead of Hρ(DTi1u, . . . ,DTiku), for short. Similarly,

since max(Hbρ(u), u− ϕ) ≤ 0, we have Hbρ(u), and by the monotonicity of Hbρ, we get

0 ≥ Hρ(K ||x− xi||)(4.4)

at x′ if it is on the boundary. Assume that x′ �= xi. We show that if K is large enough,
we have a contradiction. We can assume that xi = 0 so that we have to deal with the
piecewise interpolant πh||x|| of the convex function x �→ ||x||. Note that 0 = xi does
not lie in the interior of any triangle. A simple consequence of the Taylor formula [7]
shows that there exists C ′ > 0 such that if the mesh is regular,∣∣∣∣∣∣∣∣DTπh|x| − xG

||xG||
∣∣∣∣∣∣∣∣ ≤ C1h,

where xG is the gravity center of T .
Since H is regular, there exist C2 > 0 such that∣∣∣∣Hρ(πh||x||) −Hρ

(
K

xG1

||xG1 ||
, . . . ,K

xGk

||xGk
||
)∣∣∣∣ ≤ C2h.

The same inequality is also true for Hbρ. Since the scheme is consistent with uniformly
continuous numerical Hamiltonians, and because O = xi does not belong to the
interior of the molecule associated with x′, we can replace Hρ(K xG1

||xG1
|| , . . . ,K

xGk

||xGk
|| )

by H(K x′
||x′|| ) up to an O(h) term. The same is true for Hbρ. Hence we get that

H(K x′
||x′|| ) ≤ O(h), which is impossible if K is large enough. This shows that if

K = C + 1, where C is chosen so that

H(C p) < 0 with ||p|| = 1 and Hb(C p) < 0 with ||p|| = 1 and (p | &n) < 0,

we have that x′ = xi, and then

ul − ui ≤ K||xl − xi||

when h is small enough. The conclusion holds by symmetry.
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An example. We consider the example of a convex Hamiltonian. The boundary
Hamiltonian consistent with the Godunov boundary Hamiltonian is

Hb(p) = max
(y | "n)≤0

((y | p) −H∗(y)) ,

where &n is the inward unit vector. If we assume that H is smooth enough, the optimal
ray is p∗ = DH(p). A sufficient (and crude) condition to ensure that Hb is coercive
if H is coercive is to state that (p∗ | &n) ≤ 0, because in this case Hb(p) = H(p). To
obtain this sufficient condition, it is enough to say that

λ ∈ R
+ �→ H(p + λ&n)

is monotone increasing. This has to be connected to the conditions of section 4.1. An
example where (p∗ | &n) ≤ 0 is given by the eikonal Hamiltonian because p∗ = p

||p|| .

4.3. Extension to nonconvex Hamiltonians. Let us consider a problem
where H = H1 + H2, with H1 convex and H2 concave. Following (3.7), a natural
boundary Hamiltonian is also

Hbρ(p1, . . . , pki) = inf
q∈R2

max
0≤l≤ki

sup
y∈−Ωl+q

[(pi | y − q) −H∗
1 (y) −H∗

2 (q)] .

Since ∪lΩl is a strict subset of R
2, we have

Hb(p) ≡ inf
q∈R2

sup
(y | "n)≥0

[(p | y − q) −H∗
1 (y) −H∗

2 (q)] ≤ H(p),

and the conditions of Theorem 2.2 are satisfied.
If the family {H1(p) − (p | q)}q∈R2 is uniformly coercive, then the numerical so-

lution develops no numerical layer; this is a simple consequence of Proposition 4.1.

5. Applications.

5.1. Some numerical tests. We have not been able to get error estimates for
the schemes presented above. Even in the case of the crudest approximations of
the boundary condition, i.e., by taking Hb = −∞, we can show the convergence of
the numerical solution. However, we have shown in a special case that no numer-
ical boundary layer exists even for Dirichlet conditions when the Hamiltonians are
coercive.

The purpose of this paragraph is to illustrate the various phenomena that we
have encountered, for Dirichlet and Neuman conditions. In each case, the strong
boundary conditions are obtained with Hb = −∞, and the weak ones with Hb being
the Godunov Hamiltonian. In sections 5.1.1 and 5.1.2, the interior Hamiltonian is the
Lax–Friedrichs one. In section 5.2, it is the Godunov Hamiltonian. Other experiments
with the Lax–Friedrichs condition have been done, but they are not reported here.
They provide the same results. We also show the behavior of the schemes on a problem
with nonconvex Hamiltonians and Dirichlet conditions; this is the subject of section
5.1.3.

5.1.1. Dirichlet conditions. The domain Ω is limited by two “concentric” cir-
cles of radius 0.5 and 1. It is discretized by a finite element–type mesh, but this is not
essential. The problems are

||Du|| = 1 in Ω,
u = 0 for ||x|| = 0.5,
u = C for ||x|| = 1.

(5.1)
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Table 5.1
Boundary condition for the Dirichlet boundary conditions.

Case 1 2 3 4
C 0.5 10 0.25 −11

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.05
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0.35
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0.45

0.5

(a) (b)

Fig. 5. Comparison of different implementations of Dirichlet conditions for problem (5.1) and
Case 1: (a) weak conditions, (b) comparison of weak (◦) and strong (∗).

The constant C takes the values displayed in Table 5.1.
The viscosity solution is given as follows:
• Case 1 and 2: u(x) = ||x|| − 0.5;
• Case 3: u(x) = ||x|| − 1

2 if ||x|| ∈ [ 12 ,
7
8 ] and u(x) = −||x|| + 5

4 if ||x|| ∈ [ 78 , 1];
• Case 4: u(x) = −||x|| + 1

2 .
The difference between these test cases is that for Cases 1 and 3, the boundary
conditions on ||x|| = 1 are enforced strongly, whereas for 2 and 4, they are enforced
in the viscosity sense only.

We plot the cross section only in the y-direction and positive abscissa. Two
kinds of tests have been done. In the first, we have strongly imposed the boundary
conditions; i.e., we have taken Hb = −∞. In the second test, the conditions have
been imposed weakly, with the Godunov boundary Hamiltonian.

Comparison of Figures 5, 6, 7, 8 clearly shows that when the boundary condition
is strongly enforced by the viscosity solution, no special treatment is needed. On the
contrary, when it is only weakly enforced, then a special treatment is mandatory,
otherwise a boundary layer–type phenomenon is observed.

5.1.2. Neumann conditions. Here, we test the problem
||Du|| = 1 in Ω,
u = 0 for ||x|| = 1,
∂u
∂n = 0 for ||x|| = 0.5.

(5.2)

Its solution is u(x) = −||x|| + 1
2 .

The viscosity solution is given by the solution for Case 1. Once more, the nu-
merical solution is obtained by imposing the boundary conditions either strongly or
weakly.

The problem ∂u
∂n = g is approximated at node A in the following way (see Fig-

ure 9). The outward unit normal is approximated as &nA =
−→
AB⊥ +

−→
AC⊥, which is
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Fig. 6. Comparison of different implementations of Dirichlet conditions for problem (5.1) and
Case 2: (a) weak conditions, (b) comparison of weak (◦) and strong (∗).
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Fig. 7. Comparison of different implementation of Dirichlet conditions for problem (5.1) and
Case 3: (a) weak conditions, (b) comparison of weak (◦) and strong (∗).

normalized. Here, &x⊥ is the orthogonal vector to &x such that (&x, &x⊥) is positive. Then
we consider a node D which is on the side of the triangle opposite to D, which is cut
by −&nA. We then set

u(A) = ||−→AD||g(A) + u(C).(5.3)

Here, u is the piecewise linear interpolation of the data.
In the strong formulation, we use (5.3) directly. In the weak formulation, we set

max

(
un+1
A − unA

∆t
−Hbρ(un),

un+1
A − un+1

C

AC
− g(unA)

)
= 0.

From Figure 10, it is clear that the weak formulation gives much better results.
However, the difference between the two formulations is not as important as for the
Dirichlet problem, as expected.



NUMERICAL BOUNDARY CONDITIONS FOR HJ EQUATIONS 2251
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Fig. 8. Comparison of different implementation of Dirichlet conditions for problem (5.1) and
Case 4: (a) weak conditions, (b) comparison of weak (◦) and strong (∗).

A

B

C

D

Fig. 9. Schema for the approximation of the Neuman boundary conditions.

5.1.3. The case of a nonconvex Hamiltonian and Dirichlet conditions.
In general, it is difficult to compute analytically the solution of a first order Hamilton–
Jacobi equation, and the situation is even worse when the Hamiltonian is not convex
(nor concave), because the analogy with hyperbolic systems becomes looser in general.
Hence, it becomes more difficult to judge the quality of numerical results. To overcome
this difficulty in a special case, we consider H(p) = (||p|| − 1)3 and the problem

H(Du) = 0 on Ω,
u = 0 on Γ1,
u = 10 on Γ2,

(5.4)

where Ω is depicted in Figure 11. Since t �→ t3 is monotone increasing, u is a solution
of (5.4) if and only if it is a solution of

||Dv|| − 1 = 0 on Ω,
v = 0 on Γ1,
v = 10 on Γ2.

(5.5)

The solution of (5.4) and (5.5) is the distance to Γ1.
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Fig. 10. Comparison of different implementations of homogeneous Neumann conditions for
problem (5.2): (a) weak conditions, (b) comparison of weak (◦) and strong (∗).
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Fig. 11. Computational domain for problem (5.4). Γ1 is the inner circle of center (0, 0) and
radius r = 1, Γ2 is the outer circle of center (0, 0.5) and radius r = 3.

In order to discretize (5.4), we write H = H1 +H2, with H1(p) = max(|p||−1, 0)3

and H2(p) = min(||p|| − 1, 0)3. These functions are respectively convex and concave.
The numerical Hamiltonian and the boundary Hamiltonian are the same as in sections
3 and 4.3. The numerical solution is displayed in Figure 12(a). The solution of (5.5)
with the Godunov Hamiltonian is provided in Figure 12(b). A close comparison shows
that they are (almost) identical.

Another application of the boundary conditions developed in this paper is given
by the approximation of the following problem, on the same geometry:

H(Du) = 0 on Ω,
u(x, y) = 0, (x, y) ∈ Γ1,
u(x, y) = 3 cos(2πx), (x, y) ∈ Γ2.

(5.6)

Since H is nonconvex, it is difficult to know a priori what the value of the solution
on the boundary would be. The computed solution is given in Figure 13(a). It can
be seen that the solution satisfies the boundary condition strongly on Γ2 and only
weakly on Γ1 (in contrast to the previous example). Note, however, that the boundary
conditions have been numericaly weakly imposed on Γ1 and Γ2. The solution is also
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(a) (b)

Fig. 12. (a) Solution of problem (5.4), min = 0, max = 1.48. (b) Solution of problem (5.10),
min = 0, max = 1.504.

(a) (b)

Fig. 13. (a) Solution of problem (5.6), min = −3, max = −1.53. (b) Solution of problem (5.7),
min = −3, max = −1, 47.

in very good agreement with the one obtained from the discretization of

||Dv|| − 1 = 0 on Ω,
v(x, y) = 0, (x, y) ∈ Γ1,
v(x, y) = 3 cos(2πx), (x, y) ∈ Γ2,

(5.7)

which is displayed in Figure 13(b).

5.2. Application to a problem in geophysics. In [6] is developed a tech-
nique to compute the multivalued solutions τ of the Eikonal equation with an initial
condition

τ(xS) = 0

at the source term xS . This corresponds to the problem of computing the very high
frequency approximation of the wave equation in a possibly inhomogeneous media,
when the source term is located at a single point with a Dirac source term. In this
case, the solution consists of a wave front that might have a very complex structure.
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The solution of this problem is important in geophysics applications; it is the core of
an inverse method for reconstructing the index of the media knowing only the arrival
times of the wave fronts at the ground.

In Benamou’s method [6], we need to be able to solve, in several arbitrary domains
Ω containing xS , the following problem:

||Dτ || − n(x) = 0 in Ω,
τ(xS) = 0,
τ(x) = +∞ if x ∈ ∂Ω − {xS}.

(5.8)

The boundary conditions have to be understood in the viscosity sense. In particular,
the second boundary solution corresponds to the Soner boundary condition. The
solution to this problem is known,

τ(x) = inf
yx

[∫ min(T,ζ)

0

n(yx(s))

∣∣∣∣dyxds
∣∣∣∣ ds

]
,(5.9)

where the trajectory yx starts at xS for s = 0, and ζ is its first exit time, i.e.,

ζ = inf{s ≥ 0; yx(s) �∈ Ω}.
In other words, we do not take into account the rays that start at xS and come into
Ω.

The idea is to characterize the solution of (5.8) as the steady solution of
ut + ||Du|| − n(x), t > 0 and x ∈ Ω,
u(x, t = 0) = 0, x ∈ Ω,
u(xS , t) = 0 at xS
u(x, t) = +∞, x ∈ ∂Ω − {xS}.

(5.10)

It is clear that neither (5.9) nor (5.10) falls into the framework that we have
considered here. The idea is to introduce an approximation of τeρ , the solution of

||Dτ || − 1 = 0 in Ω,
τ(xS) = 0,
τ(x) = 0, x ∈ ∂Ω − {xS},

(5.11)

given by (5.9) for n ≡ 1. We then show that the scheme (5.12) can be rewritten as


un+1
i −uni

∆t + Hρ(DT1un, . . . , DT1un) − n(xi), n > 0 and xi interior point,
u0
i = 0 for all i,

unxS = 0 for n ≥ 1,
uni = min(uni − ∆tHbρ(DT1un, . . . , DT1un) − n(xi),Kτeρ ), n > 0 and xi �= xS ,

(5.12)

for K large enough, uniformly in ρ. Once this is shown, we can apply the arguments
of (2.2) to conclude. In what follows, we restrict ourselves to the case of the Godunov
Hamiltonian.

5.2.1. Finding an elementary supersolution of (5.11) when n ≡ 1. Our
aim is to find an elementary supersolution of

Hρ(u, xi) = 1 for any node different from xS ,

u(xS) = 0.
(5.13)
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Here, the numerical Hamiltonian is the Godunov Hamiltonian for H(x, p) = ||p|| − 1.
For any mesh points xi and xj , we consider a path P (xi → xj) = xi . . . Pk . . . xj

connecting xi and xj . The points Pk of P (xi → xj) are nodes of the mesh. We define
#(P (xi → xj)) as the number of nodes that define the path P (xi → xj). We consider
u defined by

ue(xi) = min
P (xi→xS))

#(P (xi→xS))∑
l=1

PlPl+1

 ,(5.14)

with the convention P1 = xi and P#(P (xi→xS)) = xS .
Lemma 5.1. Let k ≥ 0. We have, for any mesh point x-,

τeρ (xi) = min
P (xi→xS)

#(P (xi→xS))∑
l=0

PjPj+1 + τeρ (x-)

 .

Proof. Let P be an optimal path that connects x- to xS , and P ′ be a path that
connects xi to x-. The path P ∪ P ′ connects xi to xS , and we have

τeρ (xi) ≤
#(P (xi→xS))∑

j=1

PjPj+1 + τeρ (x-).

By taking the infinum, we have the first inequality. Let P now be an optimal path
for

v(xi) = min
P (xi→x
)

#(P (xi→xS))∑
l=0

PjPj+1 + τeρ (x-)

 .

If P ′ is an optimal path for u(x-), by connecting the two paths, we get the opposite
inequality.

We show that τeρ defined in (5.14) is a supersolution of the problem. First it is
clear that u(xS) = 0. For any node xi, we denote by N (xi) the neighboring nodes of
xi in the mesh. We show now that

max
x∈N (xi)

(
τeρ (xi) − τeρ (x)

||xi − x||
)

≥ 1.(5.15)

This is a direct consequence of Lemma 5.1. Since Hρ ≥ maxx∈N (xi)

( τeρ (xi)−τeρ (x)

||xi−x||
)
,3

the function τeρ is a supersolution of (5.12) when n ≡ 1.

5.2.2. Study of the scheme (5.12). For any K > maxΩ n(x), we consider the
scheme (5.12). By using the maximum principle, it is easy to get the next result.

Proposition 5.2. Under the CFL restriction ∆t
h ≤ 1/2, the numerical values

(uni )xi,n≥0 satisfy the following:
• at the source point xS, u

n
xS = 0 for any n ≥ 0.

3This is true because on each angular sector the maximum is reached by one of the terms
τe
ρ (xi)−τe

ρ (x)

||xi−x|| for x ∈ Ni or by the gradient of τeρ in this angular sector. If we take �e = x−xi
||x−xi|| , we

have
τe
ρ (xi)−τe

ρ (x)

||xi−x|| ≤ | (Du | �e) | ≤ ||Dτeρ ||, and the inequality follows.
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• 0 ≤ uni ≤ Kτeρ (xi) for any xi, tn = n∆t.
• For any i, the sequence (uni ) has a limit when n → +∞, which is the solution
of 

Hρ(DT1u, . . . ,DT1u) − n(xi) = 0 for any xi,
uxS = 0 at xS ,
max

(Hbρ(DT1u, . . . ,DT1u) − n(xi),Kτeρ (xi)
)

on the boundary.

In particular, uni is independent of K and ρ when K ≥ maxΩ n(x).
Proof.
• 0 ≤ uni . This is obvious since the scheme is monotone and u0

i = 0.
• uni ≤ Kτeρ (xi). The previous results show that Kτeρ is a supersolution of (5.12)

when K ≥ maxΩ n(x). The uniqueness principle shows that uni ≤ Kτeρ (xi).
• At the source point, unxS = 0 . This is true for n = 0. Assume that unxS = 0.

Since 0 ≤ uni , and thanks to the monotonicity property of Hρ, we have Hρ ≤ 0
at xS . Since τeρ (xS) = 0, we have

un+1
xS = min(−∆tHρ + ∆tn(xS), 0) = 0.

The last statement is obvious by continuity.
By applying the result of Theorem 2.2, we conclude the following.
Proposition 5.3. The solution of the scheme

Hρ(DT1u, . . . ,DT1u) − n(xi) = 0 for any xi,
uxS = 0 at xS ,
max

(Hbρ(DT1u, . . . ,DT1u) − n(xi),Kτeρ (xi)
)

on the boundary

converges, as ρ → 0, to the function (5.9) when Ω is smooth enough.

5.2.3. Numerical application. We have considered in numerical applications
[2] the index n given by a realistic model of the underground of the Gabon gulf, the
Marmousi model developed by the French Petroleum Institute (IFP). Since there is
no exact solution in closed form for this problem, it is probably more enlightening to
consider a more academical problem where an exact solution is known. The compu-
tational domain is represented in Figure 14, and the solution at any point M is the
distance between the point S and M . A mesh is displayed in Figure 15. The numer-
ical solution is shown in Figure 16. The boundary conditions are very well taken into
account: there is no boundary layer, and the isolines of the solution are orthogonal
to the circle, as they should be. In Figure 17, we display the isolines of the logarithm
of the error between the exact and the computed solutions.

6. Conclusion and summary. In this paper, we have described two ways of
discretizing boundary conditions for first order Hamilton–Jacobi equations for which
convergence can be proved. This is done through a boundary numerical Hamiltonian.
In the case of convex or concave Hamiltonians, we have given explicit formulas. In the
case of a coercive Hamiltonian, we have shown that the natural boundary conditions
prevent the appearance of numerical boundary layers. Then we have illustrated the
schemes by simple numerical examples. An extension to geophysics is also provided.

Appendix A. Some properties of monotone numerical schemes. The
aim of this section is to provide some properties of the maximum principle type for
monotone numerical schemes:
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Source

Fig. 14. Test case for the Soner/source boundary conditions. The Soner condition is imposed
everywhere except at the source.

Fig. 15. Zoom of the mesh around the source. Number of vertices: 5906; number of triangles:
11430.

• For steady problems,

Hρ(xi, uni , {unj , j ∈ Ni}) = 0.(A.1)

• For unsteady problems,

un+1
i = Gρ(xi, u

n
i , {unj , j ∈ Ni}; ∆t) = uni − ∆tHρ

(
xi, u

n
i , {unj , j ∈ Ni}

)
.

(A.2)

These results are useful in section 4. The notation is the same as in section 3.
As in the continuous case, we say that a piecewise linear function u is a discrete

subsolution of (A.1) if we have

for any xi, Hρ(xi, u(xi), DT1u, . . . ,DTku) ≤ 0.

It is a supersolution of (A.1) if

for any xi, Hρ(xi, u(xi), DT1u, . . . ,DTku) ≥ 0.

Similarly, let R > 0 and ∆t ≤ ∆tR to ensure the monotonicity of the operator G
in (A.2). We say that u ∈ CR is a subsolution of the explicit scheme (A.2) if for all
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Fig. 16. Numerical solution.

Fig. 17. Isolines of log10(τ
exact − τnum), max = −1.82.

n ≥ 0,

for any xi,
un+1
i − uni

∆t
+ Hρ(xi, un(xi), DT1u

n, . . . , DTku
n) ≤ 0.

v ∈ CR is a supersolution when the opposite inequality holds. The case of implicit
schemes is dealt with the same way.

A solution is obviously a sub- and supersolution, and by maximum principle we
understand the following: if u (resp., v) is a sub- (resp., super-)solution of (A.1) such
that for any xi on the boundary of Ωh we have

u(xi) ≤ v(xi),

then the same inequality is true for any node of Ωh. We say that there is a maximum
principle on (A.2) and (A.1) if when u and v are sub- and supersolutions of (A.2) and
(A.1) with uni ≤ vni on the boundary nodes of Ωh and for any node of Ωh at t = 0 or
tN , then uni ≤ vni everywhere.

We want to show that under the assumptions (H0)–(H1) or (H0)–(H2) below, we
have a maximum principle for some classes of schemes of the type

Gρ(xi, ξ; {ζl}l∈Ni) = 0.(A.3)
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(H0) The numerical Hamiltonian Hρ is monotone increasing in ζi and monotone
decreasing in ζl, l �= i, for any i. It also satisfies the following: for any i,
ξ ∈ R, and any (ζ1, . . . , ζk), Hρ is invariant by translation on the ζks.

(H1) For any R > 0, for any u, v such that −R ≤ v ≤ u ≤ R, for any p1, . . . , pk
vectors, and for any mesh point xi, we have

γR(u− v) ≤ Hρ(xi, u, p1, . . . , pk) −Hρ(xi, v, p1, . . . , pk).

Here, k is the number of triangles having xi as vertex.
(H2) The Hamiltonian Hρ is convex in the variables p1, . . . , pk, and there exists a

subsolution Φi, i = 1, . . . , ns, and α < 0 such that Hρ(xi, DT1Φ, . . . , DTkΦ) ≤
α for any i.

The assumptions (H1) and (H2) are only the discrete analogue of classical as-
sumptions on the Hamiltonian H.

Here, we provide a maximum principle for a monotone Hamiltonian and a fixed
mesh only. The arguments are too crude to pass to the limit.

A.1. Maximum principle in the steady case.
Theorem A.1. We assume that the scheme satisfies (H0) and (H1). If (ui)xi

and (vi)xi are sub- (super-)solutions of (A.3) in the interior nodes of Ωh and satisfy
ui ≤ vi on its boundary nodes, then ui ≤ vi everywhere.

Proof. Let R = maxxi,i=1,... ,ns(|ui|, |vi|) and xi0 be the mesh point where {ui −
vi}i reaches its maximum. Let us call this maximum M . If xi0 belongs to the
boundary, then M ≤ 0 and we are done. If xi0 is an interior point, then we have

φ = vi0 − ui0 + u = −M + u ≤ v

on Ωh, by assumption. Moreover, φ(xi0) = vi0 .
Since Hρ is monotone, we have

0 ≤ Gρ(xi0 , vi0 , vi1 , . . . , vik)

≤ Gρ(xi0 , vi0 , φ(xi1), . . . , φ(xik))

= Gρ(xi0 , φ(xi0), φ(xi1), . . . , φ(xik))

= Hρ(xi0 , DT1u, . . . ,DTku).

Then, since u is a subsolution, assuming M > 0, we have

γR(ui0 − vi0) ≤ Hρ(xi0 , ui0 ;DT1u, . . . ,DTku) −Hρ(xi0 , vi0 ;DT1u, . . . ,DTku) ≤ 0,

which is absurd.
Theorem A.2. Under (H0)–(H2), there is a maximum principle.
Proof. We consider u and v a sub- and supersolution of Hρ = 0 with u ≤ v on

the boundary of Ωh. We can assume that φ ≤ v on the boundary of Ωh, thanks to
(H0).

Let λ ∈ [0, 1] and uλi = λui + (1 − λ)φi. It is clear that uλ is a subsolution of
Hρ = (1−λ)α and uλ ≤ v on the boundary of Ωh. Let us assume that uλ− v reaches
its maximum Cλ at an interior point xi0 .

By assumption, we have Hρ(xi0 , vi0 , vi1 , . . . , vk) ≥ 0 and Hρ(xi0 , uλi0 , uλi1 , . . . , uλk) ≤
(1 − λ)α < 0. The same arguments as in the proof of Theorem A.1 show that

(1 − λ)α ≥ Hρ(xi0 , uλi0 , uλi1 , . . . ) ≥ Hρ(xi0 , uλi0 , vi1 + Cλ, . . . ) = Hρ(xi0 , vi0 , vi1 , . . . ),
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and we have a contradiction. Thus, uλ − v is maximum on the boundary, and then

uλ ≤ v

in Ω. By taking the limit when λ → 1, we conclude that u ≤ v in Ω.

A.2. Maximum principle in the unsteady case.
Theorem A.3. If the scheme (A.2) is monotone under ∆t ≤ ∆tR, then we

have a maximum principle. If un ∈ CR (resp., vn ∈ CR) is a subsolution (resp.,
supersolution) of (A.2) such that u0

i ≤ v0
i for all i and uni ≤ vni for each n ≥ 0 and

boundary node, then uni ≤ vni for all n ≥ 0 and i.
The same result holds for an implicit scheme.
Proof. We give the proof for the scheme (A.2). The proof for an implicit scheme is

the same. We proceed by induction on n. For n = 0, the result is true by assumption.
Since u0

i ≤ v0
i for the interior points and the boundary points, we have u1

i ≤ v1
i for

the interior nodes. By assumption, u1
i ≤ v1

i for the boundary points, and the result
follows by induction.

A.3. A uniqueness principle. We consider the scheme
Hbρ(xi, ui;ui, {ul, l ∈ Ni}) = 0 if xi interior node

max(Hρ(xi, ui;ui, {ul, l ∈ Ni}), ui − ϕ(xi)) = 0 otherwise,
(A.4)

which discretizes the Dirichlet problem

H(x, u(x), Du(x)) = 0 if x ∈ Ω,
u = φ otherwise.

We have the following result.
Theorem A.4. Under the assumptions (H0)–(H1) or (H0)–(H2) for Hρ and Hbρ,

if u (resp., v) is a subsolution (resp., supersolution) of (A.4), then ui ≤ vi for any
mesh point xi.

A direct consequence of this result is that if (A.4) has a solution, it is unique.
Proof. We consider M = maxxi(ui − vi), and we assume M > 0. Since the set xi

is finite, the maximum is reached at xi0 . If xi0 is not on the boundary, then we can
repeat the arguments for the discrete maximum principle. Thus we can assume that
xi0 is on the boundary, and we have

max(Hbρ(xi0 , ui0 ;ui0 , {ul, l ∈ Ni0}), ui0 − ϕ(xi0)) ≤ 0,
max(Hbρ(xi0 , vi0 ; vi0 , {vl, l ∈ Ni0}), ui0 − ϕ(xi0)) ≥ 0.

The conditions on u give

Hbρ(xi0 , ui0 ;ui0 , {ul, l ∈ Ni0}) ≤ 0 and ui0 ≤ ϕ(xi0).

Those on v give

Hbρ(xi0 , ui0 ;ui0 , {ul, l ∈ Ni0}) ≥ 0 or vi0 ≥ ϕ(xi0).

First case. ui0 ≤ ϕ(xi0) and vi0 ≥ ϕ(xi0). There is nothing to prove; M ≤ 0.
Second case. Hbρ(xi0 , ui0 ;ui0 , {ul, l ∈ Ni0}) ≤ 0 and Hbρ(xi0 , ui0 ;ui0 , {ul, l ∈ Ni0}) ≥

0. By using the same arguments as in the maximum principle, we get an
absurdity when M > 0.

Thus we have proved that M ≤ 0, i.e., ui ≤ vi for any xi.
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