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Abstract. This paper considers a family of nonconservative numerical discretizations for conser-
vation laws which retain the correct weak solution behavior in the limit of mesh refinement whenever
sufficient-order numerical quadrature is used. Our analysis of 2-D discretizations in nonconservative
form follows the 1-D analysis of Hou and Le Floch [Math. Comp., 62 (1994), pp. 497–530]. For a
specific family of nonconservative discretizations, it is shown under mild assumptions that the error
arising from nonconservation is strictly smaller than the discretization error in the scheme. In the
limit of mesh refinement under the same assumptions, solutions are shown to satisfy a global en-
tropy inequality. Using results from this analysis, a variant of the “N” (Narrow) residual distribution
scheme of van der Weide and Deconinck [Computational Fluid Dynamics ’96, Wiley, New York, 1996,
pp. 747–753] is developed for first-order systems of conservation laws. The modified form of the N-
scheme supplants the usual exact single-state mean-value linearization of flux divergence, typically
used for the Euler equations of gasdynamics, by an equivalent integral form on simplex interiors.
This integral form is then numerically approximated using an adaptive quadrature procedure. This
quadrature renders the scheme nonconservative in the sense described earlier so that correct weak
solutions are still obtained in the limit of mesh refinement. Consequently, we then show that the
modified form of the N-scheme can be easily applied to general (nonsimplicial) element shapes and
general systems of first-order conservation laws equipped with an entropy inequality, where exact
mean-value linearization of the flux divergence is not readily obtained, e.g., magnetohydrodynamics,
the Euler equations with certain forms of chemistry, etc. Numerical examples of subsonic, transonic,
and supersonic flows containing discontinuities together with multilevel mesh refinement are provided
to verify the analysis.
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1. Motivations. Discrete conservation has become a standard design criteria
in the development of numerical discretization techniques for conservation laws that
admit discontinuous solutions. From the Lax–Wendroff theorem [21], the ingredients
of consistency, stability, and discrete conservation yield convergent approximations
of conservation laws in divergence form for both smooth and discontinuous solutions
that are valid weak solutions in the sense of distribution theory. Even so, the devel-
opment of stabilized numerical discretizations also often utilizes the quasi-linear form
(a.k.a. nonconservative form) of the conservation law system to approximate simple
or plane wave solutions for use in upwind stabilization mechanisms. As we will il-
lustrate later, the use of quasi-linear forms is often at odds with the requirement of
discrete conservation unless specialized mean-value linearized variants of the discrete
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quasi-linear form are used. As a practical matter, obtaining simple expressions for
these mean-value linearizations in closed form is often extremely complicated or even
impossible. In addressing this difficulty, our goal is to develop a general framework
that avoids these complications while still ensuring that valid weak solutions of the
conservation law system are obtained in the limit of mesh refinement.

As a motivating example, consider the scalar Cauchy problem in one space di-
mension and time, {

u,t + (f(u)),x = 0 for (x, t) ∈ R× R
+,

u(x, 0) = u0(x),
(1.1)

with u ∈ R and f(u) : R �→ R. In this equation u0(x) is assumed to be periodic or
compactly supported data. Let ∆xj+1/2 = xj+1 − xj denote a general nonuniform
partitioning of space so that uj represents the numerical approximation u(xj , t). Next,
consider the prototype conservative semidiscrete scheme

duj
dt

+
hj+1/2 − hj−1/2

∆xj
= 0(1.2)

with hj±1/2 the numerical flux. This prototype scheme is conservative in space due
to the mutual telescoping of numerical fluxes. A first-order accurate upwind scheme
is easily obtained via the flux function

hj+1/2(uj , uj+1) =
1

2
(f(uj) + f(uj+1))− 1

2
|a|j+1/2 (uj+1 − uj)(1.3)

with aj+1/2 an approximation of the flux Jacobian df/du at xj+1/2. Observe that
whenever the exact mean-value linearizations are used, e.g.,

f(uj+1)− f(uj) = 〈a〉j+1/2 (uj+1 − uj),(1.4)

so that aj±1/2 = 〈a〉j±1/2, the first-order upwind scheme can be written equivalently as

∂uj
∂t

+ 〈a〉−j+1/2

uj+1 − uj
∆xj+1/2

+ 〈a〉+j−1/2

uj − uj−1

∆xj−1/2
= 0.(1.5)

Note that this discretization is nonconservative in space unless the exact mean-value
linearization (1.4) is used. Nonconservative schemes of this form are known to con-
verge to incorrect weak solutions. More precisely, Hou and Le Floch [14] have shown
(in 1-D) that if the nonconservative scheme (1.5) converges, it converges to a solu-
tion of

u,t + (f(u)),x = µ,

where µ is a Borel measure source term that is expected to be zero in the regions
where u is smooth and concentrated where u is not smooth. The construction of
an exact mean-value linearization is readily accomplished in 1-D by the general path
integration

f(uB)− f(uA) =

∫ uB

uA

d f =

∫ uB

uA

a(u) d u

=

∫ ξB

ξA

a(u(ξ))
du

dξ
d ξ.(1.6)
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Without loss of generality, one can restrict u(ξ) to the space of polynomials, Pk. A
particularly convenient choice consists of P1 linear polynomials since

f(uB)− f(uA) =

∫ ξB

ξA

a(u(ξ))
du

dξ
d ξ

∣∣∣∣∣
u(ξ)∈P1

=

∫ ξB

ξA

a(u(ξ))d ξ

∣∣∣∣∣
u(ξ)∈P1

(
uB − uA
ξB − ξA

)
(1.7)

so that the following mean-value speed is obtained:

〈a〉(uA, uB) = 1

ξB − ξA

∫ ξB

ξA

a(u(ξ)) d ξ

∣∣∣∣∣
u(ξ)∈P1

.(1.8)

In Harten, Lax, and van Leer [13] this expression is interpreted as an integration in
state space parameterized along the line πu(ξ) = uA + ξ (uB − uA), ξ ∈ [0, 1]:

〈a〉(uA, uB) =
∫ 1

0

a(πu(ξ))d ξ.

When the locations A and B are not coincident, one can equivalently interpret this
as an integration in physical space, assuming the P1 Lagrange interpolant

πu(x) = uA +
x− xA
xB − xA

(uB − uA), x ∈ [xA, xB ],

so that ξ = x−xA

xB−xA
and

〈a〉(uA, uB) = 1

xB − xA

∫ xB

xA

a(πu(x)) d x.(1.9)

This latter interpretation is useful since it generalizes the mean-value construction to
simplices and more arbitrary regions. Next, consider an approximation of (1.9) using
NQ-point numerical quadrature

〈a〉(uA, uB) =
NQ∑
l=1

ωl a(πu(ql)) +RNQ+1,(1.10)

where ωl are quadrature weights, ql are quadrature positions, and RNQ+1 is the
numerical remainder term. This renders the scheme (1.5) nonconservative in space.
In later sections, we derive (under suitable assumptions) the same result as Hou
and LeFloch and are able to characterize more precisely the Borel measure µ. In
particular, the dependency of µ with respect to the number of quadrature points is
given. If an adequate number of quadrature points is taken, the error terms due to
nonconservation are shown to be comparable to or smaller than the discretization
error of the scheme. In addition, a discrete entropy inequality is formally obtained
in the limit of mesh refinement. From a practical point of view, these results are
important and have the following consequences:

• Exact mean-value linearization is no longer needed. This is useful when solv-
ing systems of conservation laws for which exact mean-value linearizations
are not known in closed form, e.g., magnetohydrodynamics, Euler equations
with certain forms of chemistry, etc.
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• General finite element shapes are permitted, e.g., tetrahedra, hexahedra,
prisms, pyramids. Previous exact mean-value linearizations in closed form
have been restricted exclusively to simplex shapes.

The new nonconservative formulation suggests an adaptive strategy, whereby the num-
ber of quadrature points depends on the local smoothness of the numerical solution.
This strategy is undertaken in section 3.

2. Background. In this section, we briefly review a number of well-known con-
structions and analytical results that we utilize later in the development and analysis
of our nonconservative formulations.

2.1. Conservation laws and symmetric hyperbolic forms. Consider the
Cauchy problem for m coupled conservation laws in d space dimensions and time, w,t +

d∑
i=1

f i(w),xi
= 0 for (x, t) ∈ R

d × R
+,

w(x, 0) = w0(x),

(2.1)

where w ∈ R
m denotes the vector of conserved variables and f(w) : R

m �→ R
m×d

a flux vector. In addition, (2.1) is assumed to be equipped with a convex entropy
extension so that the additional scalar inequality holds,

H,t +

d∑
i=1

Gi
,xi
≤ 0,(2.2)

with H(w) : R
m �→ R a convex entropy function and G(w) : R

m×d �→ R
d the entropy

flux vector for the system. Solutions of (2.1) satisfying (2.2) are generally of the
following two types [22]:

• (Classical solutions) Smooth solutions satisfying the quasi-linear form of (2.1),

w,t +

d∑
i=1

Ai(w) w,xi = 0, Ai(w) ≡ f i,w.(2.3)

As part of the symmetrization theory for first-order conservation laws devel-
oped by Godunov [11], Mock [23], and others, it is known that the existence
of a convex entropy extension ensures that the quasi-linear form (2.3) is sym-
metrizable via a change of variablesw �→ v, where v = HT

,w ∈ R
m denotes the

so-called entropy variables for the system. As consequences of symmetrization
theory, performing the change of variables

Ã0v,t +

d∑
i=1

Ãiv,xi
= 0(2.4)

yields the matrix Ã0 ≡ w,v = (H,w,w)−1 symmetric positive definite and

the matrices Ãi ≡ f i,v = AiÃ0 symmetric. For brevity, the functional depen-

dency of the matrices Ai and Ãi has been omitted. Motivated by the energy
analysis given in subsequent sections, we assume the basic solution unknowns
are the entropy v-variables so that the shorthand notation Ai(w) should be
interpreted as Ai(w(v)). It is useful for later developments to define the real-
valued matrix combination A(w, ω) ≡ ωiAi(w), ω ∈ R

d, and similarly the
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symmetric matrix Ã(w, ω) ≡ ωiÃi(w). Observe that symmetry of Ã(w, ω)
implies that A(w, ω) has m real eigenvalues, λ1 ≤ λ2 ≤ · · · ≤ λm, and m real
eigenvectors rk(w, ω) ∈ R

m satisfying the standard eigenvalue problem,

A(w, ω) rk(w, ω) = λk(w, ω) rk(w, ω), k = 1, 2, . . . ,m,

since the identity

Ã
−1/2
0 A(w, ω)Ã

1/2
0 = Ã

−1/2
0 Ã(w, ω)Ã

−1/2
0

shows that A(w, ω) is similar to a real-valued symmetric matrix.

Our keen interest in the quasi-linear form (2.3) comes from its use in the
construction of upwind discretizations such as variants of Godunov’s method
[10] utilizing approximate Riemann solvers [32, 26] and the multidimensional
fluctuation splitting scheme described in the following section. Specifically,
the quasi-linear form (2.3) admits nonlinear simple wave solutions of the
following form for a given unit direction vector ω:

w(x, t) =
m∑
k=1

αkWWWk(σ0(ω · x− λk(WWWk, ω) t), ω), σ0(x̃) ≡ σ(x̃, 0),(2.5)

whereWWWk(σ, ω) ∈ R
m satisfies the differential relation

dWWWk

d σ
= rk(WWWk(σ, ω), ω)(2.6)

for the self-similar real-valued parameter σ. In (2.5), αk ∈ R are expansion
coefficients to be determined by matching initial data. When the matrix
A(ω) is assumed locally independent of w, then local plane wave solutions
are obtained. Historically, mean-value linearized variants of the quasi-linear
form (2.3) have been used in 1-D to construct approximate Riemann solutions
[26] for eventual use in upwind discretizations. In section 2.2, we consider a
multidimensional upwinding strategy which also uses plane wave information
originating from a mean-value linearized form of (2.3).

• (Discontinuous solutions) Weak solutions of the divergence form (2.1) satisfy-
ing a jump condition on space-time hypersurfaces, S, with space-time normal
vector n̂ = (nt,n

T )T ,

nt[w]+− +

d∑
i=1

ni[f
i]+− = 0,(2.7)

with [arg((x, t))]+− = limε↓0 (arg((x, t)S + ε n̂)− arg((x, t)S − ε n̂)). In sec-
tion 3, a Lax–Wendroff-like theorem is presented which addresses the conver-
gence to weak solutions of a family of nonconservative discretizations using
approximate mean-value linearization.

Note that in the remainder of the paper the notation ‖ · ‖ will denote a pointwise
norm over m variables unless otherwise indicated. When the argument is dimension-
ally comparable to the v-variables, the natural norm is not the standard Euclidean
norm ||x|| =√∑m

i=1 x
2
i but rather the dimensionally consistent matrix norm [15]

||x||2
Ã0
≡ xT Ã0x,(2.8)

where Ã0 is the inverse of the Hessian matrix of the entropy, Ã0 = (H,w,w)−1.
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Mi

Ci

Fig. 2.1. Dual cell Ci associated with triangulation vertex Mi in R
2.

2.2. The residual distribution scheme on simplices. In the remaining sec-
tions, we assume a triangulation Th in R

d of a polygonal spatial domain Ω composed
of nonoverlapping simplices Ti, Ω = ∪Ti, Ti ∩ Tj = ∅, i �= j. A simplex T in R

d is
uniquely described by d+ 1 vertices T (M1,M2, . . . ,Md+1). For purposes of analysis,
the triangulation is assumed to be shape regular with maximum simplex diameter
h. From the triangulation Th, the geometric dual tessellation Ch is constructed by
connecting gravity centers of the simplices and the midpoints of the edges as shown
in Figure 2.1. In this figure, the dual cell Ci surrounds the triangulation vertex Mi.
We also define piecewise linear and piecewise constant spaces on the tessellations Th
and Ch, respectively,

Vh = {vh;vh ∈ C0(Rd)m,vh|T ∈ (P1)
m∀ T ∈ Th},

Xh = {vh;vh|C ∈ (P0)
m∀ C ∈ Ch}.

Let Vi ∈ R
m denote the nodal degrees of freedom located at vertices Mi. This

uniquely describes vh in both spaces Vh and Xh. For example, if Ni(x) denotes the
standard piecewise linear basis function for triangulation Th such that Ni(Mj) = δij ,
then for vh ∈ Vh, we have

vh(x) =
∑

Mi∈Th

Ni(x)Vi.

Similarly, if χi(x) denotes the characteristic function for the dual cell Ci ∈ Ch,

χi(x) =

{
1, x ∈ Ci,
0, x �∈ Ci,

then for ṽh ∈ Xh, we have

ṽh(x) =
∑

Mi∈Th

χi(x)Vi.

Note that in these spaces we assume that the fundamental solution unknowns are
the entropy v-variables. For brevity of notation, we shall write wh ≡ w(vh) and
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Wi ≡ w(Vi) to denote the corresponding conserved variable forms derived from the
entropy variables.

Using these definitions, we can state the simplest prototype residual distribution
scheme (explicit in time) used in discretizing (2.1).

Residual distribution scheme. For all Mi ∈ Th and n ≥ 0, Wn+1
i = Wn

i −
∆t

|Ci|
∑

T,Mi∈T
ΦΦΦn
i,T ,

W0
i = w0(Mi),

(2.9)

where ΦΦΦT ∈ R
m represents a discretization of the negated time evolution term inte-

grated in the simplex T ,

ΦΦΦT ≡ −
∫
T

(wh),t d x,(2.10)

with ΦΦΦi,T an as yet unspecified sum decomposition of ΦΦΦT among the d+1 vertices of
the simplex T in R

d,

ΦΦΦT = ΦΦΦ1,T + · · ·+ΦΦΦd+1,T .(2.11)

In the special case of (2.1), ΦΦΦT is expressed equivalently in terms of the spatial flux
divergence,

ΦΦΦT = ΦΦΦ1,T + · · ·+ΦΦΦd+1,T =

∫
T

(
d∑

i=1

f i(wh),xi

)
d x.(2.12)

The residual distribution scheme encompasses a number of well-known weighted resid-
ual methods that have residual decompositions which reduce to the following form for
P1 linear elements:

ΦΦΦi,T =

(
1

d+ 1
+ τ i,T

)
ΦΦΦT ,(2.13)

where τ i,T ∈ R
m×m are nonsingular matrices such that

∑d+1
i=1 τ i,T = 0. Some exam-

ples of weighted residual methods for solving (2.1) include

• the streamline diffusion method of Johnson [17] and Johnson and Szepessy [18];
• the streamline upwind Petrov–Galerkin (SUPG) and Galerkin least-squares
finite element methods of Hughes et al. [15, 16];

• the cell vertex finite volume methods of Ni [25] and Morton et al. [24, 7].

The residual distribution formula also describes a family of monotone and positive
coefficient schemes for scalar conservation laws due to Roe [27, 28] and Deconinck,
Struijs, and Roe [8] and the system extension due to van der Weide and Deconinck
[31] described later in section 5. Fundamental to these residual distribution schemes
is the mean-value linearization of the flux divergence formula (2.12),

∫
T

(
d∑

i=1

f i(w),xi

)
d x =

d∑
i=1

〈A〉i
∫
T

w,xi d x.(2.14)
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To facilitate this calculation, we follow the 1-D example of section 1 by introducing
an auxiliary mapping z(v) : R

m �→ R
m and restricting z to the space of piecewise

linear Lagrange interpolants denoted by πhz,∫
T

(
d∑

i=1

f i(w(πhz)),xi

)
d x =

d∑
i=1

〈A〉i
∫
T

w(πhz),xi d x.(2.15)

For the Euler equations of gasdynamics, the choice z = (
√
ρ,
√
ρ)V ,

√
ρHt)

T , with ρ

being the fluid density, )V the fluid velocity, and Ht the fluid total enthalpy, yields
closed form expressions for the mean-value linearization of the flux divergence [30]. A
striking property of this linearization is that the linearized system

w,t +

d∑
i=1

〈A〉iw,xi = 0(2.16)

is hyperbolic. Unfortunately, no other z-variable is known to give simple and closed
form formulas leading to a hyperbolic linearized system. In addition, this approach
is limited to simplices, while in many applications hexahedral brick meshes would be
desirable for accuracy reasons.

From a theoretical and practical point of view, there is motivation to work directly
with the entropy variables since the corresponding mean-value linearized form∫

T

(
d∑

i=1

f i(w),xi

)
d x =

d∑
i=1

〈Ã〉i
∫
T

v,xi
d x(2.17)

would necessarily produce a hyperbolic linearized system due to the symmetry of
〈Ã〉i. Using symmetric forms, we also show in subsequent analysis the satisfaction
of an entropy inequality in the limit of mesh refinement. Our general strategy is to
utilize a piecewise linear representation of the entropy variables themselves so that
vh ∈ Vh and∫

T

(
d∑

i=1

f i(w(vh)),xi

)
d x =

d∑
i=1

〈Ã〉i
∫
T

(vh),xi
d x = |T |

d∑
i=1

〈Ã〉i(vh),xi
(2.18)

with

〈Ã〉i ≡ 1

|T |
∫
T

Ãi(vh) d x.(2.19)

Following the 1-D motivational example of section 1, (2.19) is approximated using an
NQ-point quadrature formula with weights ω and locations q so that componentwise,
we have

〈Ã〉i ≡
NQ∑
l=1

ωlÃi(vh(ql)) +RNQ+1.(2.20)

Since vh|T ∈ P1(T ), (2.18) uses the fact that the gradient components are constant
within a simplex. Consequently, the quadrature formula used in (2.20),∫

T

H(x) dx = |T |
NQ∑
l=1

ωlH(ql) +O(hk+1),(2.21)
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should at least be exact for H(x) ∈ Pk(T ) and k > 1. In addition, the O(hk+1) error
is assumed to have the following behavior for use in later analysis: There exists a C
independent of the simplex T such that

O(hk+1) ≤ C(Th) hk+1

(k + 1)!

∫
T

||Dk+1H(x)|| dx,(2.22)

where h is the maximum diameter of the T , C(Th) is a geometrical parameter that
depends only on Th, and

DkH(x) =

{
∂αH

∂xα
, |α| = k

}
.

Note that the use of numerical quadrature permits generalization of the techniques
to nonsimplicial elements, e.g., brick elements (Q) using the quadrature formula

ΦΦΦQ = |Q|
NQ∑
l=1

ωq

(
d∑

i=1

Ãi(vh(ql))(vh(ql)),xi

)
+RNQ+1.(2.23)

Returning to simplices, we are thus interested in residual distributive schemes that
fulfill the approximate conservation relation

ΦΦΦ1,T + · · ·+ΦΦΦd+1,T = |T |
NQ∑
l=1

ωq

(
d∑

i=1

Ãi(vh(ql))(vh(ql)),xi

)
.(2.24)

In section 5, a particular residual scheme known as the N-scheme is considered [30]
as generalized to systems of conservation laws by van der Weide and Deconinck [31].
This system N-scheme assumes an exact mean-value linearization via the parameter
vector. We then propose a variant of the system N-scheme utilizing a piecewise
linear space consisting of the entropy variables and approximating the mean-value
linearization via quadrature. Analyzing this new scheme for systems of conservation
laws, we show that in the limit of mesh refinement that numerical solutions satisfy an
entropy inequality. We then show a similar result for the system N-scheme when the
linearization is approximated via quadrature.

3. A Lax–Wendroff result for residual distribution schemes utilizing
quadrature. Consider the numerical scheme (2.9). The nodal variables Wn

i are
assumed to map uniquely via v(w) and w(v) to and from Vn

i , which are the degrees
of freedom in the spaces Vh and Xh at time tn ≡ n∆t, n ∈ [0, N ]. In addition, the
as yet unspecified residual decompositions ΦΦΦn

i,T and Vn
i are assumed to satisfy the

following conditions.
Assumption 1 (H1). Let Th be a shape regular triangulation. For C ∈ R and

any fixed n, there exists C ′(C) ∈ R, which depends on the triangulation Th such that
for all vnh ∈ Vh and ||vnh ||L∞(Rd)m ≤ C,∣∣∣∣ΦΦΦn

i,T

∣∣∣∣ ≤ C ′ hd−1
∑
Mj∈T

∣∣∣∣Vn
j −Vn

i

∣∣∣∣ ∀ T ∈ Th and ∀Mi ∈ T.(3.1)

This is a continuity assumption on the residual decomposition in a simplex T in terms
of the local nodal values of Vn

i ,Mi ∈ T . In particular, whenever vnh is constant in T ,
we then require that ΦΦΦn

i,T = 0.
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Assumption 2 (H2). For all vnh ∈ Vh and fixed n

ΦΦΦn
T =

d+1∑
i=1

ΦΦΦn
i,T = |T |

NQ∑
l=1

ωl

(
d∑

i=1

Ãi(v
n
h(ql)) (v

n
h(ql)),xi

)
, ql ∈ T,(3.2)

where Ãi = f i,v and NQ denotes the number of quadrature points. In addition, the
quadrature error in the flux divergence calculation is assumed to be of the following
form for all n and a given integer k > 1:∥∥∥∥∥ΦΦΦn

T −
∫
T

d∑
i=1

f i,xi
(vnh) dx

∥∥∥∥∥ ≤ C(Th) hk+1

(k + 1)!

∥∥∥∥∥Dk+1
x

(
d∑

i=1

Ãi(v
n
h) (v

n
h),xi

)
T

∥∥∥∥∥(3.3)

by using a sufficient number of quadrature points.
Remark 1.
(i) Observe that vh ∈ Vh is C0 continuous, consequently for neighboring simplices

sharing a common spatial edge, Γjk = {x | ∂Tj ∩ ∂Tk �= ∅},
d∑

i=1

f i(vnh(x))|Tj
· )njki =

d∑
i=1

f i(vnh(x))|Tk
· )njki , x ∈ Γjk,(3.4)

where )njk is a directed normal on Γjk.
(ii) For vn ∈ Vh and fixed n with ||vnh ||L∞(Rd) ≤ C, there exists a C ′(C) such that

for shape regular T ∈ Th,

||ΦΦΦn
T || ≤

C ′

h

∑
Mi,Mj∈T

||Vn
j −Vn

i ||.(3.5)

(iii) Last, for any sequence (vnh)h such that (vnh) is bounded in L∞(Rd × R
+)m

independently of h and N and converges in L2
loc(R

d × R
+)m to v, we have

lim
h→0

∣∣∣∣f i(vh)− f i(v)
∣∣∣∣
L1

loc
(Rd×R+)m

= 0, i = 1, 2, . . . , d.(3.6)

Our first principal result is a generalization of the Lax–Wendroff theorem to resid-
ual distribution schemes for systems of conservation laws using numerical quadrature.
Note that since the mapping H(w) is smooth and wh is bounded, assumptions on wh

are equivalent to the same assumptions on vh defined by the nodal values Vi.
Theorem 3.1. Consider initial data v0 ∈ L∞(Rd)m and final time τ > 0.

Let Wi be the nodal approximation for all Mi ∈ Th given by (2.9) from which Vi

are obtained via Vi ≡ v(Wi). Assume that the scheme satisfies assumptions (H1)
and (H2) and that there exists a constant C that depends only on v0 and functions
v ∈ L2(Rd × R

+)m and vh such that for vh ∈ Vh,
sup
h

sup
x,t
||vh(x, t)|| ≤ C, lim

h→0
||vh − v||L2

loc
(Rd×R+)m = 0.(3.7)

Let Q = ∪T be a bounded domain in R
d, and let τ > 0 be a bounded time. Assume

that there exists a locally bounded, positive measure µ such that ||Dvh|| tends to µ in
the sense of distributions as h→ 0. Then v(x, t) satisfies∣∣∣∣∣

∣∣∣∣∣
∫
Q×[0,τ ]

(
∂ϕ

∂t
w(v(x, t)) +

d∑
i=1

∂ϕ

∂xi
(x, t) · f i(w(v(x, t)))

)
dx dt

+

∫
Q
ϕ(x, 0)w(v0(x)) dx

∣∣∣∣∣∣∣∣ ≤ C(Th, f)
(k + 1)!

〈|ϕ|, µ〉,
(3.8)
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where k is an integer as described in Assumption (H2) and C(Th, f) is a constant that
depends on Th and ‖Dk+1

v f,v‖.
This results applies when the limit is piecewise smooth, as it is in practical ap-

plications. The proof was inspired first by [20] and then by [2].

4. Proof of Theorem 3.1. The proof of Theorem 3.1 appeals to a sequence
of lemmas that are somewhat classical but are tailored here specifically to residual
distribution schemes and the use of numerical quadrature for element interior inte-
grations. For simplicity, we assume an evolution to time τ , an N integer multiple of
∆t, i.e., τ = N ∆t, although the generalization to arbitrary bounded positive values
of τ is straightforward.

Lemma 4.1. Let Q = ∪T denote a bounded domain of R
d, and let τ > 0 be

a bounded time. Further, let (vh)h denote a sequence such that vh( . , n∆t) ∈ Vh
for any n ≤ N . Assume there exists a constant C, independent of h and N , and a
function v ∈ L2(Q× [0, τ ]) such that

sup
h

sup
x,t
||vh(x, t)|| ≤ C, lim

h→0
||vh − v||L2

loc
(Q×[0,τ ])m = 0.(4.1)

Under these assumptions, the following limits and bound are obtained:
1. limh→0

∑N
n=0∆t

∑
∀T∈Q |T |

∑
Mi,Mj∈T

∣∣∣∣Vn
i −Vn

j

∣∣∣∣ = 0.

2. limh→0

∑N
n=0∆t

∑
∀T∈Q |T |

∑
Mi,Mj∈T

∣∣∣∣Vn
i −Vn

j

∣∣∣∣2 = 0.

3. limh→0 h ||Dxvh||L2(Q×[0,τ ])m = 0.

4. There exists C ′ independent of h and n such that h||Dxvh||L∞(Q×[0,τ ])m ≤ C ′.
Proof. To prove this lemma, one need only consider real-valued functions. The

main idea of the proof relies on the observation that
∑

Mi,Mj∈T ||vi − vj || can be

rewritten as an average over all possible cyclic permutations σ of {1, 2, . . . , d+ 1} of∑
Mi

∣∣∣∣vi − vσ(i)
∣∣∣∣. Since there is a fixed finite number of such cyclic permutations, it

is sufficient to prove that for any σ,

lim
h→0

N∑
n=0

∆t
∑

∀T∈Q
|T |

∑
Mi∈T

∣∣∣∣∣∣vni − vnσ(i)

∣∣∣∣∣∣ = 0.

For any simplex T and open time interval In =]tn−1, tn[, two piecewise constant
functions can be constructed which are useful in analysis, namely,

vh(x, t)|T×In =
∑
Mi∈T

χCi∩T (x)V
n
i(4.2)

and the shifted variant

ṽh(x, t)|T×In =
∑
Mi∈T

χCi∩T (x)V
n
σ(i),(4.3)

where σ(i) denotes a cyclic permutation of the index i and χCi∩T is the characteristic
function of Ci ∩ T with Ci the dual cell at node Mi. This defines two functions on
Q× [0, τ ] that are bounded independently of h and N . Moreover, the following useful
identity holds for these functions in a simplex T for arbitrary p ≥ 0:

|T |
∑

Mi,Mj∈T
‖Vn

i −Vn
j ‖p = (d+ 1)

∫
T

‖vh − ṽh‖p dx,(4.4)
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where the “d+ 1” factor comes from the definition of dual cells in R
d. Integrating in

time, we have

N∑
n=0

∆t
∑

∀T∈Q
|T |

∑
Mi,Mj∈T

‖Vn
i −Vn

j ‖ =
∫ τ

0

∫
∪T⊂Q

‖vh − ṽh‖ dx dt.(4.5)

The sequence (vh)h is bounded; therefore a function v′ ∈ L∞(Q× [0, τ ])m exists such
that vh → v′ for the weak–∗ topology. From the previous assumptions, vh → v in
L2
loc which implies v = v′ since Q × [0, τ ] is bounded and C∞

0 (Q × [0, τ ]) is dense
in L1(Q × [0, τ ]). Similarly, there exists a function ṽ ∈ L∞(Q × [0, τ ])m such that
ṽh → ṽ in the weak–∗ topology. Our next task is to show that ṽ = v and thus finally
ṽ = v = v′. To do so, we let ϕ(x, t) ∈ C∞

0 (Rd×R
+), integrate ϕvh in Q× [0, τ ], and

use the definition of the shifted function ṽ,∫ τ

0

∫
Q
ϕvh dx dt =

N∑
n=0

∆t
∑

∀T∈Q

∑
Mi∈T

Vn
i

∫
T

ϕχCi∩T dx dt

=

∫ T

0

∫
Q
ϕ ṽh dx dt

+

N∑
n=0

∆t
∑
Mi∈T

Vn
i

(∫
T

ϕχCi∩T dx−
∫
T

ϕχCσ−1(i)∩T dx

)
,(4.6)

where σ−1(i) denotes the inverse cyclic index permutation such that σ(σ−1(i)) = i.
Due to the use of gravity centers and edge midpoints in the definition of the dual cells
Ci, we have∫

T

χCi∩T dx =

∫
T

χCσ−1(i)
dx = |Ci ∩ T |, i = 1, 2, . . . , d+ 1.(4.7)

Using the integral mean-value theorem, points xi and x′i ∈ T can be found such that∫
T

ϕχCi∩T dx = |Ci ∩ T |ϕ(xi),
∫
T

ϕχCσ−1(i)
dx = |Ci ∩ T |ϕ(x′i).(4.8)

Since ‖Dϕ‖ is bounded on Q× [0, T ] and Vh is bounded,∣∣∣∣∣
∣∣∣∣∣
∫ T

0

∫
Q
ϕvh dx dt−

∫ τ

0

∫
Q
ϕ ṽh dx dt

∣∣∣∣∣
∣∣∣∣∣ ≤ Ch,(4.9)

where C is independent of h and N . Hence, in the limit ṽ = v and finally ṽ = v = v′.
Let vh, ṽh, and v

′
h denote scalar components of the respective vector-valued func-

tions vh, ṽh, and v′
h. By the same technique, we see that the components (v2h) and

(ṽ2h) have the same weak–∗ limit. It will now be shown that this limit is v2. Once
again appealing to the density of C∞

0 (Q× [0, τ ]) in L1(Q× [0, τ ]) and the fact that v2h
is bounded independently of h and N , we will take test functions ϕ in C∞

0 (Q× [0, τ ]).
The function ϕ is bounded in Q× [0, τ ] and vh → v in L2

loc(Q× [0, τ ]); thus∫
Q×[0,τ ]

ϕ |v − vh|2 dx dt→ 0,(4.10)
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1
2

3

!n2

!n3

!n1

Fig. 4.1. Depiction of inward pointing normals, �ni, for a simplex in R
2.

and consequently,∫
Q×[0,τ ]

ϕv2 dx dt− 2

∫
Q×[0,τ ]

ϕv vh dx dt+

∫
Q×[0,τ ]

ϕv2h dx dt→ 0.(4.11)

By the Cauchy–Schwarz inequality and ϕv ∈ L1(Q × [0, τ ]), the second term
converges to ∫

Q×[0,τ ]

ϕv2 dx dt.(4.12)

Hence, v2h → v2 in L∞ weak–∗. We are free to choose ϕ = 1 combined with the limit
ṽ2h → v2 in L∞ weak–∗, yielding∫

Q×[0,τ ]

|ṽh − v|2 dx dt→ 0,(4.13)

and finally, ∫
Q×[0,τ ]

|ṽh − vh|2 dx dt→ 0.(4.14)

Interpreting this equation of the form (4.4) gives the asserted limit 1 of Lemma 4.1.
The limit 2 of Lemma 4.1 is then clear: Q× [0, τ ] is bounded and thus L2(Q× [0, τ ]) ⊂
L1(Q× [0, τ ]). To prove limit 3 of Lemma 4.1, we consider Figure 4.1, which shows a
simplex with inward pointing normals scaled by the edge length. In R

d, the normal )ni

is the inward pointing vector perpendicular to the (d − 1)-dimensional simplex facet
opposite vertex Mi, i = 1, 2, . . . , d + 1, scaled by the measure of this facet so that∑d+1

i=1 )n
i = 0. Using this notation, we have

Dxvh|T =
1

(d+ 1) |T |
d+1∑
j=1

)nj Vj =
1

(d+ 1) |T |
d+1∑
j=2

)nj (Vj −V1).(4.15)

Integrating in time and space, we obtain

N∑
n=0

∫
In

∫
Q
||Dxv

n
h ||2 dx dt =

N∑
n=0

∆t
∑

∀T∈Q
|T | ∣∣∣∣(Dxv

n
h)|T |

∣∣∣∣2
≤ C

1

h2

N∑
n=0

∆t
∑

∀T∈Q

∑
Mi,Mj∈T

|T | ∣∣∣∣Vn
i −Vn

j

∣∣∣∣2
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because the gradient is constant within a simplex and the triangulation is regular.
Limit 3 of Lemma 4.1 is then obtained from the application of limit 2. To obtain the
bound 4 of Lemma 4.2, we again consider (4.15) assuming bounded Vj ,

h ||Dxvh||L∞(Q×[0,τ ])m

≤ h

(d+ 1) |T | max
1≤j≤d+1

|)nj | max
1≤j≤d+1

Vj ≤ C
h

(d+ 1) |T | max
1≤j≤d+1

|)nj |,
(4.16)

which is bounded from above by a constant independent of h and N for shape regular
triangulations. This concludes the proof of Lemma 4.1.

Lemma 4.2. Let ϕ(x, t) ∈ C1
0 (R

d × R
+). With the assumptions of Theorem 3.1,

we have

N∑
n=0

∑
Mi∈Th

|Ci|ϕ(Mi, tn) (W
n+1
i −Wn

i ) +

∫
Rd×R+

∂ϕ

∂t
(x, t)wh(x, t) dx dt

+

∫
Rd

ϕ(x, 0)w0(x) dx→ 0

(4.17)

when h→ 0.
The proof is classical; see, for example, Kröner [19, p. 377].
Lemma 4.3. If vh(x, t) ∈ Vh satisfies the assumptions of Theorem 3.1, then for

any bounded Q and smooth ϕ(x, t),

lim
h→0

sup
h

hk+1

∣∣∣∣∣
N∑
n=0

∑
∀T∈Q

πhϕ(xT , tn)

∫
T

∥∥∥∥∥Dk+1
x

(
d∑

i=1

Ãi(vh) (vh),xi

)∥∥∥∥∥ dx

∣∣∣∣∣
≤ C(Th, f) 〈|ϕ|, µ〉,

(4.18)

where πhϕ(xT , tn) is the midpoint value of the linearly interpolated ϕ function in
simplex T for constant tn and C(Th, f) is a bound on ‖Dk+1

v f,v(vh)‖ for bounded vh.
Proof. Using the bound ‖Dk+1

v f,v‖ ≤ C(Th, f) together with the observation that
Dxvh is constant in a simplex T , we have

hk+1||Dk+1
x

(
d∑

i=1

Ãi(vh) (vh),xi

)
|| = hk+1||Dk+1

v

(
d∑

i=1

Ãi(vh)

)
((vh),xi)

k+2||

≤ hk+1||Dk+1
v Ã(vh)|| ||Dxvh||k+2

≤ C(Th, f,v) ||Dxvh||.(4.19)

Using again the fact that Dxvh is constant in a simplex, it follows that∣∣∣∣∣hk+1
N∑
n=0

∑
∀T∈Q

πhϕ(xT , tn)

∫
T

||Dk+1
x Ã(vh)|| ||Dxvh||k+1 dx

∣∣∣∣∣
≤ C(Th, f)

N∑
n=0

∑
∀T∈Q

|πhϕ|(xT , tn)
∫
T

||Dxvh|| dx

= C(Th, f)
N∑
n=0

∑
∀T∈Q

∫
T

|πhϕ|(xT , tn)||Dxvh|| dx.(4.20)
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The function |ϕ| is bounded and continuous on a bounded domain so in the lim suph→0

limit, the right-hand-side integral in (4.20) approaches the measure-valued function
〈|ϕ|, µ〉 which completes the proof of Lemma 4.3.

Lemma 4.4. Let ϕ(x, t) ∈ C1
0 (R

d × R
+) and assume that vh satisfies the condi-

tions of Theorem 3.1. The following measure-valued bound exists for h→ 0:

lim
h→0

sup
h

∣∣∣∣∣
∣∣∣∣∣
N∑
n=0

∆t
∑

∀T∈Q
πhϕ(xT , tn)

∑
Mi∈T

ΦΦΦn
i,T

+

∫
Rd×R+

d∑
i=1

∂ϕ

∂xi
(x, t) f i(vh(x, t)) dx dt

∣∣∣∣∣
∣∣∣∣∣ ≤ C(Th, f)

(k + 1)!
〈|ϕ|, µ〉,

(4.21)

where C(Th, f) is a constant that depends on Th and ‖Dk+1
v f,v‖.

Proof. Choose ϕ(x, t) such that supp(ϕ) ⊂ Q×[0, τ ]. Recall that ΦΦΦn
T =

∑d+1
i=1 ΦΦΦ

n
i,T

represents an approximation of the flux divergence integrated in a simplex T . By
direct calculation,

N∑
n=0

∆t
∑

∀T∈Q
πhϕ(xT , tn)

(
d+1∑
i=1

ΦΦΦn
i,T + ε

(k)
h

)
(4.22)

=
N∑
n=0

∆t
∑

∀T∈Q

∫
T

πhϕ(xT , tn)

d∑
i=1

f i,xi
(vh) dx

=
N∑
n=0

∆t
∑

∀T∈Q

∫
T

πhϕ(x, tn)

d∑
i=1

f i,xi
(vh) dx

+
N∑
n=0

∆t
∑

∀T∈Q

∫
T

(πhϕ(xT , tn)− πhϕ(x, tn))

d∑
i=1

f i,xi
(vh) dx,(4.23)

where ε
(k)
h is the quadrature error in calculating the flux divergence. From Assumption

(H2), this quadrature error is assumed to be of the form

‖ε(k)h ‖ =
∥∥∥∥∥
∫
T

d∑
i=1

f i,xi
(vnh) dx−

d+1∑
i=1

ΦΦΦn
i,T

∥∥∥∥∥
≤ C(Th) hk+1

(k + 1)!

∥∥∥∥∥Dk+1
x

(
d∑

i=1

Ãi(v
n
h) (v

n
h),xi

)∥∥∥∥∥
(4.24)

consequently for πhϕ(x, t) bounded by a constant absorbed into C(Th)∥∥∥∥∥
N∑
n=0

∆t
∑

∀T∈Q
πhϕ(xT , tn) ε

(k)
h

∥∥∥∥∥
≤ C(Th) hk+1

(k + 1)!

N∑
n=0

∆t

∥∥∥∥∥Dk+1
x

(
d∑

i=1

Ãi(v
n
h) (v

n
h),xi

)∥∥∥∥∥ .
(4.25)

Combining this result with Lemma 4.3 formally bounds the quadrature error term

lim sup
h→0

∣∣∣∣∣
N∑
n=0

∆t
∑

∀T∈Q
πhϕ(xT , tn) ε

(k)
h dx

∣∣∣∣∣ ≤ C(Th, f)
(k + 1)!

〈|ϕ|, µ〉.(4.26)



DISTRIBUTIVE SCHEMES VIA ADAPTIVE QUADRATURE 747

Next, apply Green’s formula in each simplex to the first right-hand-side sum appearing
in (4.23),

N∑
n=0

∆t
∑

∀T∈Q

∫
T

πhϕ(x, tn)

d∑
i=1

f i,xi
(vh) dx(4.27)

=
N∑
n=0

∫
In

∑
∀T∈Q

∫
T

πhϕ(x, tn)

d∑
i=1

f i,xi
(vh) dx dt

= −
N∑
n=0

∫
In

∑
∀T∈Q

∫
T

d∑
i=1

∂πhϕ

∂xi
f i(vh) dx dt

+
N∑
n=0

∫
In

∑
∀T∈Q

∫
∂T

πhϕ(x, tn)

d∑
i=1

f i(vh) · ni dx dt.(4.28)

Recall that πhϕ and f are both bounded and continuous functions. Upon utilizing
Remark 1 (i) and the compact support of ϕ, it follows that the second right-hand-side
sum of (4.28) vanishes identically. Examining the remaining right-hand-side term in
(4.28), observe that∣∣∣∣∣

∣∣∣∣∣
N∑
n=0

∫
In

∑
∀T∈Q

∫
T

(
d∑

i=1

∂πhϕ

∂xi
f i(vh)−

d∑
i=1

∂ϕ

∂xi
f i(v)

)
dx dt

∣∣∣∣∣
∣∣∣∣∣

≤ C0

N∑
n=0

∫
In

∑
∀T∈Q

∫
T

||f(vh)− f(v)|| dx dt

+ C1

N∑
n=0

∫
In

∑
∀T∈Q

∫
T

||Dxπhϕ−Dxϕ|| ||f(vh)|| dx dt.(4.29)

The first right-hand-side sum of (4.29) is equal to ||f(vh)− f(v)||L1(Q×[0,τ ]) and con-

verges to 0 as h → 0; see Remark 1 (iii). Since vh stays bounded and f continu-
ous, f(vh) stays bounded by a constant. The second right-hand-side sum of (4.29)
is bounded from above by ||Dxπhϕ−Dxϕ||L1(Q×[0,τ ]), which also converges to 0 as
h→ 0. Thus, we conclude that

lim
h→0

∥∥∥∥∥
N∑
n=0

∫
In

∑
∀T∈Q

∫
T

(
d∑

i=1

∂πhϕ

∂xi
f i(vh)−

d∑
i=1

∂ϕ

∂xi
f i(v)

)
dx dt

∥∥∥∥∥ = 0(4.30)

and, consequently,

lim
h→0

N∑
n=0

∆t
∑

∀T∈Q

∫
T

πhϕ(x, tn)

d∑
i=1

f i,xi
(vh) dx

= −
N∑
n=0

∫
In

∑
∀T∈Q

∫
T

d∑
i=1

∂ϕ

∂xi
f i(v) dx dt.

(4.31)

Considering the second right-hand-side sum term in (4.23), from Remark 1 (ii) it
follows that∥∥∥∥∥

N∑
n=0

∆t
∑

∀T∈Q

∫
T

(πhϕ(xT , tn)− πhϕ(x, tn))

d∑
i=1

f i,xi
(vnh) dx

∥∥∥∥∥ ≤ Σ,
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where

Σ ≡ C

N∑
n=0

∆t
∑

∀T∈Q

∫
T

∣∣∣∣πhϕ(xT , tn)− πhϕ(x, tn)

h

∣∣∣∣ ∑
Mi,Mj∈T

∥∥Vn
j −Vn

i

∥∥ dx.(4.32)

Since ||Dxπhϕ|| is assumed bounded by a constant,∫
T

∣∣∣∣πhϕ(xT , tn)− πhϕ(x, tn)

h

∣∣∣∣ dx =

∫
T

∣∣∣∣Dx (πhϕ) · xT − x

h

∣∣∣∣ dx ≤ C hd,

where C is independent of h. Inserting this bound yields∥∥∥∥∥
N∑
n=0

∆t
∑

∀T∈Q

∫
T

|πhϕ(xT , tn)− πhϕ(x, tn)|
d∑

i=1

f i,xi
(vnh) dx

∥∥∥∥∥
≤ Chd

N∑
n=0

∆t
∑

∀T∈Q

∑
Mi,Mj∈T

∥∥Vn
j −Vn

i

∥∥(4.33)

so that

lim
h→0

∥∥∥∥∥
N∑
n=0

∆t
∑

∀T∈Q

∫
T

(πhϕ(xT , tn)− πhϕ(x, tn))

d∑
i=1

f i,xi
(vnh) dx

∥∥∥∥∥ = 0.(4.34)

Rearrangement of the bounded terms as h → 0 together with Lemma 4.1 completes
the proof of Lemma 4.4.

Proof of Theorem 3.1. Multiply (2.9) by ϕ(Mi, tn) |Ci|, where ϕ(x, t) is a test
function in C1

0

(
R
d × [0,+∞[

)
, such that supp(ϕ) ⊂ Q × [0, τ ]. Summation on the

indices n and i over time slabs and vertices, respectively, yields

N∑
n=0

∑
Mi∈Th

|Ci|ϕ(Mi, tn)
(
Wn+1

i −Wn
i

)
+

N∑
n=0

∆t
∑

Mi∈Th

∑
T ;Mi∈T

ϕ(Mi, tn)ΦΦΦ
n
i,T = 0.

(4.35)

From Lemma 4.2,

lim
h→0

N∑
n=0

∑
Mi∈Th

|Ci|ϕ(Mi, tn)
(
Wn+1

i −Wn
i

)
= −

∫
Rd×R+

∂ϕ

∂t
w(vh(x, t)) dx−

∫
Rd

ϕ(x, 0)w(v0(x)) dx.

The space term is rewritten

N∑
n=0

∆t
∑

Mi∈Th

∑
T ;Mi∈T

ϕ(Mi, tn)ΦΦΦ
n
i,T =

N∑
n=0

∆t
∑

∀T∈Q

∑
Mi∈T

πhϕ(xT , tn)ΦΦΦ
n
i,T

+

N∑
n=0

∆t
∑

∀T∈Q

∑
Mi∈T

(ϕ(Mi, tn)− πhϕ(xT , tn))ΦΦΦ
n
i,T ,(4.36)
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where once again πhϕ(xT , tn) denotes the midpoint value of the linearly interpolated
ϕ function for constant tn. Examining the first right-hand-side sum of (4.36), recall
the result of Lemma 4.4,

lim
h→0

sup
h

{
N∑
n=0

∆t
∑

∀T∈Q

∑
Mi∈T

πhϕ(xT , tn)ΦΦΦ
n
i,T

+

∫
Rd×R+

d∑
i=1

∂ϕ

∂xi
(x, t) f i(vh(x, t)) dx dt

}
≤ C(Th, f)

(k + 1)!
〈|ϕ|, µ〉.

Next, examine the second right-hand-side sum of (4.36). From boundedness of ‖Dϕ‖
combined with Assumption (H1), we have∣∣∣∣ΦΦΦn

i,T

∣∣∣∣ ≤ C ′ hd−1
∑
Mj∈T

∣∣∣∣Vn
j −Vn

i

∣∣∣∣ ,(4.37)

yielding ∣∣∣∣∣
∣∣∣∣∣
N∑
n=0

∆t
∑

∀T∈Q

∑
Mi∈T

(ϕ(Mi, tn)− πhϕ(xT , tn))ΦΦΦ
n
i,T

∣∣∣∣∣
∣∣∣∣∣

≤ Ch
N∑
n=0

∆t
∑

∀T∈Q

∑
Mi∈T

‖ΦΦΦn
T,i‖

≤ Chd
N∑
n=0

∆t
∑

∀T∈Q

∑
Mi,Mj∈T

‖Vn
j −Vn

i ‖.(4.38)

Consequently, from Lemma 4.1, as h→ 0,∣∣∣∣∣
∣∣∣∣∣
N∑
n=0

∆t
∑

∀T∈Q

∑
Mi∈T

(ϕ(Mi, tn)− πhϕ(xT , tn))ΦΦΦ
n
i,T

∣∣∣∣∣
∣∣∣∣∣→ 0,(4.39)

which completes the proof of Theorem 3.1.

5. The “N” residual distribution scheme. An important example of a resid-
ual distribution scheme is the “N” (Narrow) scheme. It was first considered by Roe
[27, 28] and Deconinck [8] for scalar equations. Here we consider the system extension
due to van der Weide and Deconinck [31] and generalize their scheme to symmetrizable
conservation laws

w(v),t +

d∑
i=1

f i(w(v)),xi = 0.(5.1)

Repeating (2.18) of section 2.2, our general strategy is to utilize a piecewise linear
representation of the entropy variables themselves so that vh ∈ Vh. In a simplex T ,

∫
T

(
d∑

i=1

f i(w(vh)),xi

)
d x =

d∑
i=1

〈Ãi〉
∫
T

(vh),xi d x = |T |
d∑

i=1

〈Ãi〉T (vh),xi,|T ,(5.2)
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with

〈Ãi〉 =
NQ∑
l=1

ωl Ãi(vh(ql)), ql ∈ T,(5.3)

computed using NQ-point numerical quadrature. For purposes of analysis, it is con-
venient to define the symmetric matrices K̃j,T ∈ R

m×m,

K̃j,T ≡ 1

d+ 1

d∑
i=1

)nji,T 〈Ãi〉T ∀Mj ∈ T,(5.4)

where )njT ∈ R
d are the inward pointing normal vectors of the face of simplex T oppo-

site vertex Mj scaled by the integral measure of the face; see, for example Figure 4.1.

Also define K̃± = (K̃ ± |K̃|)/2, where |K̃| is calculated in the usual matrix sense via
eigensystem decomposition. Due to the scaling of vector normals,

∑
∀Mj∈T )n

j
T = 0.

Consequently, we have that
∑

∀Mj∈T K̃j,T = 0, and the identity∑
∀Mj∈T

K̃+
j,T = −

∑
∀Mj∈T

K̃−
j,T .(5.5)

For the set of matrices {Ãi} equal to the Jacobian matrices of the Euler equations

evaluated at a single state, it is shown in [1] that
(∑

∀Mj∈T K̃
+
j

)
is nonsingular

everywhere except when the state corresponds to a stagnation point. More generally,
if we define (formally) the matrix N ∈ R

m×m in a simplex T ,

NT =

 ∑
∀Mj∈T

K̃+
j

−1

,(5.6)

it is shown in [1] that the matrix product K̃jN ∀Mj ∈ T appearing in the N-scheme
is well behaved, even at stagnation points. Hence, from now on we assume that the
matrix NT always exists in the sense just described.

Using these definitions, one can easily derive the following relationship for ΦΦΦT :

ΦΦΦT =

∫
T

(
d∑

i=1

f i(w(vh)),xi

)
d x = |T |

d∑
i=1

〈Ãi〉T (vh),xi,|T =
∑

∀Mj∈T
K̃j,TVj .(5.7)

Fundamental to the N-scheme is the following decomposition formula for ΦΦΦT :

ΦΦΦj,T = K̃+
j,T (Vj −Vinflow

T ) ∀Mj ∈ T,(5.8)

which is often called “upwind” because it represents a generalization to R
d of two-point

upwind differencing for model scalar advection. Perhaps, surprisingly, the requirement
that ΦΦΦj,T represent a decomposition of ΦΦΦT , i.e.,

ΦΦΦT =
∑

∀Mj∈T
ΦΦΦj,T =

∑
∀Mj∈T

K̃j,TVj ,(5.9)
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uniquely determines Vinflow
T when NT exists:

Vinflow
T = −NT

∑
∀Mi∈T

K̃−
i,TVi.(5.10)

After some rearrangement, the N-scheme decomposition formula can be written in
the following compact form:

ΦΦΦi,T = K̃+
i,T NT

∑
∀Mj∈T

K̃−
j,T (Vj −Vi) ∀Mi ∈ T.(5.11)

The N-scheme then evolves the solution in time using the algorithm given earlier by
(2.9). We repeat this algorithm as follows while taking care to indicate the underlying
dependence on vh and the nodal degrees of freedom V that describe vh.

N-scheme in symmetrization variables. For all Mi ∈ Th, n ≥ 0, and vh ∈ Vh, Wn+1
i = Wn

i −
∆t

|Ci|
∑

T,Mi∈T
ΦΦΦi,T (v

n
h), Vn+1

i = v(Wn+1
i ),

W0
i = w(v0(Mi)).

(5.12)

The primary interest in the N-scheme for approximating conservation laws cen-
ters around a local discrete maximum principle exhibited by the N-scheme for scalar
advection equations in R

d. To see this, let vh, Vi, and Wi denote the scalar (m = 1)
forms of vh, Vi, and Wi, respectively. Consider a numerical solution at steady state
vnh = vn+1

h = v∗h. From (5.11), the nodal degree of freedom at vertex Mi satisfies

0 =
∑

∀T∈Th;Mi∈T

∑
Mj∈T ;Mj �=Mi

−K̃+
i,TNT K̃

−
j,T (V ∗

j − V ∗
i )(5.13)

=
∑

∀T∈Th;Mi∈T

∑
Mj∈T ;Mj �=Mi

αij (V ∗
i − V ∗

j ), αij ≥ 0.(5.14)

This latter equation implies a local discrete maximum principle. More precisely, let
adjα(Mi) denote the set of vertices adjacent to Mi with nonzero weights α; then for
all Mi ∈ Th,

min
Mj∈adjα(Mi)

V ∗
j ≤ V ∗

i ≤ max
Mj∈adjα(Mi)

V ∗
j .

Examining the time-dependent problem in the scalar (m = 1) case, one easily derives
a similar maximum principle result for n > 0,

min
Mj∈adjα(Mi)

(V n
j , V

n
i ) ≤ V n+1

i ≤ max
Mj∈adjα(Mi)

(V n
j , V

n
i ),

under the CFL-like condition at each tn,

∆t ≤ max
∀Mi∈Th

|C|i∑
∀T∈Th;Mi∈T

∑
Mj∈T ;Mj �=Mi

−K̃+
i,TNT K̃

−
j,T

.

6. Energy and entropy analysis of the system N-scheme. In this section,
we begin with an energy analysis of the system (m ≥ 1) N-scheme assuming a linear
(constant coefficient) form of (2.4) using techniques described earlier in Barth [5].
Using results from this analysis, we then analyze the N-scheme for nonlinear systems
of conservation laws with convex entropy extension. In this case, an entropy function
serves as a measure of energy for the nonlinear system. This latter nonlinear analysis
shows that the N-scheme using symmetrization variables and numerical quadrature
satisfies an entropy inequality in the limit of mesh refinement.
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6.1. Energy analysis of the system N-scheme: The linear case. In the
linear (constant coefficient) system case, the numerical scheme (5.12) can be viewed
abstractly as an Euler explicit integration of the semidiscrete matrix equation,

DV,t + LV = 0,(6.1)

where V ∈ R
s is a vector representing the s nodal degrees of freedom, D ∈ R

s×s a
symmetric positive definite (SPD) matrix, and L ∈ R

s×s a general real-valued matrix.
The energy evolution equation is then given by

1

2
(VT DV),t +VT L̃V = 0, L̃ = (L+ LT )/2,(6.2)

where L̃ denotes the symmetric part of L. Energy boundedness is demonstrated if it
can be shown that the symmetric part of L is positive semidefinite, i.e., for all V,

VT L̃V = VTLV ≥ 0.(6.3)

Now suppose that this abstract matrix equation originates from a discretization pro-
cedure such as the N-scheme. The total energy associated with the matrix L can be
computed and assembled on an element-by-element basis,

VT L̃V =
∑
T∈Th

VT
T L̃T VT ,(6.4)

where VT and LT denote the nodal degrees of freedom and element matrix associated
with a simplex T . To demonstrate energy boundedness of the abstract linear system
it is sufficient, but not necessary, to show

VT
T L̃T VT ≥ 0 ∀T ∈ Th.(6.5)

We turn our attention now to the N-scheme. For ease of exposition, we will show
the development in two space dimensions, but the generalization to R

d will be clear.
Next, consider the linear (constant coefficient) form of (2.4). In this linear model, the

conservation and symmetrization variables are related by the constant matrix Ã0, i.e.,

Wi = Ã0Vi ∀Mi ∈ Th.(6.6)

The SPD matrix D appearing in (6.1) would then be block diagonal withm×m blocks

corresponding to each vertex Mi of the form |C|iÃ0. In two space dimensions, the
system N-scheme decomposition (5.11) reduces to the following space discretization
for a simplex T with local numbering T (M1,M2,M3):

LTVT =

ΦΦΦ1

ΦΦΦ2

ΦΦΦ3

 =


 K̃+

1

K̃+
2

K̃+
3

+

 K̃+
1

K̃+
2

K̃+
3

 [N ]

 K̃−
1

K̃−
2

K̃−
3


T

 V1

V2

V3


(6.7)

with K̃± symmetric and [N ] a block diagonal matrix [N ] ≡ diag(N,N,N). The
symmetric part of L is given by

L̃T =

 K̃+
1

K̃+
2

K̃+
3

+
1

2

 K̃+
1

K̃+
2

K̃+
3

 [N ]

 K̃−
1

K̃−
2

K̃−
3


T

+
1

2

 K̃−
1

K̃−
2

K̃−
3

 [N ]

 K̃+
1

K̃+
2

K̃+
3


T

.

(6.8)
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Examining rows of LT or L̃T , observe that the row sum is nonzero. However, we can
add the following block diagonal matrix to the element matrix L:

−1

2

 K̃1

K̃2

K̃3

(6.9)

so that rows and columns of the LT sum to zero. These additional terms have no
impact on the constant coefficient discretization of the Cauchy problem. The added
terms all vanish identically when summed for all elements sharing a mesh vertex since
the geometry surrounding the vertex is closed. Hence, from now on we will include
these terms in our definition of LT and L̃T , yielding

L̃T =
1

2

 |K̃|1
|K̃|2

|K̃|3

+
1

2

 K̃+
1

K̃+
2

K̃+
3

 [N ]

 K̃−
1

K̃−
2

K̃−
3


T

+
1

2

 K̃−
1

K̃−
2

K̃−
3

 [N ]

 K̃+
1

K̃+
2

K̃+
3


T

.

(6.10)

Next, rewrite an off-diagonal term such as

K̃+
i NK̃−

j + K̃−
i NK̃+

j

in the following form:

K̃+
i NK̃−

j + K̃−
i NK̃+

j = K̃iNK̃j − K̃+
i NK̃+

j − K̃−
i NK̃−

j .

Consequently, L̃T can be rewritten as

L̃T =
1

2

 K̃1

K̃2

K̃3

 [N ]

 K̃1

K̃2

K̃3


T

+
1

2

 K̃+
1

K̃+
2

K̃+
3

−
 K̃+

1

K̃+
2

K̃+
3

 [N ]

 K̃+
1

K̃+
2

K̃+
3


T

+
1

2

 −K̃−
1

−K̃−
2

−K̃−
3

−
 −K̃−

1

−K̃−
2

−K̃−
3

 [N ]

 −K̃−
1

−K̃−
2

−K̃−
3


T

.(6.11)

Note that the first term appearing on the right-hand side of (6.11) gives rise to a
quadratic form with positive energy, so our only concern is the remaining terms on the
right-hand side of this equation. Before proving positive semidefiniteness of (6.11),
we first review a simple result concerning the spectra of noncommuting matrices.

Lemma 6.1. The nonzero parts of the spectrum of AB and BA are identical for
all matrices A ∈ R

m×n and B ∈ R
n×m.

Proof. For the proof, see, for example, Axelsson [3, p. 69].
Next we prove positive semidefiniteness of a specialized matrix in product form.
Lemma 6.2 (Golub [12]). The matrix

L =

 A 0 0
0 B 0
0 0 C

−
 A
B
C

N
 A
B
C

T , N = [A+B + C]−1,
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is positive semidefinite for all A,B,C ∈ R
n×n symmetric positive definite.

Proof. Let

Z =

 A 0 0
0 B 0
0 0 C

 ,
and congruence transform L,

Z−1/2LZ−1/2 =

 In
In

In

−
 A1/2

B1/2

C1/2

N
 A1/2

B1/2

C1/2

T = I3n − P.

Next use Lemma 6.1 concerning the spectra of nonsquare matrix products. In the
present case, Lemma 6.1 implies that

Eigenvalues


 A1/2

B1/2

C1/2

N
 A1/2

B1/2

C1/2

T


= Eigenvalues
(
N1/2(A+B + C)N1/2

)
+ 2n zeros

= Eigenvalues
(
N(A+B + C)

)
+ 2n zeros

= Eigenvalues(In) + 2n zeros(6.12)

and, consequently,

I3n − P

is positive semidefinite. From this result, it follows immediately that

L = Z1/2(I3n − P )Z1/2

is also positive semidefinite.
The extension to A,B,C ≥ 0 and (A + B + C) > 0 follows by considering the

perturbed matrices Aε = A+ εI, Bε = B + εI, and Cε = C + εI, and by letting ε ↓ 0.
Returning to the system N-scheme, we now can prove the main result of this

section.
Theorem 6.3. The system N-scheme discretization of the constant coefficient

form of (2.4) is energy bounded with the element energy matrix (6.11) positive semi-

definite, i.e., VT L̃V ≥ 0.
Proof. Since N = [K̃+

1 + K̃+
2 + K̃+

3 ]−1 = [−K̃−
1 − K̃−

2 − K̃−
3 ]−1, the result

follows immediately after application of the Golub lemma to (6.11) together with
(6.4).

6.2. Energy and entropy analysis of the system N-scheme: The non-
linear case. In this section, an energy analysis of the N-scheme is presented for
nonlinear systems of conservation laws. This energy also represents an approximation
to the entropy inequality equation (2.2); see Hughes, Franca, and Mallet [15] or Barth
[6, 4] for related entropy analysis of finite element discretizations. Specifically, we
show convergence to an entropy inequality for the N-scheme with exact integration.
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We then show that with sufficient-order numerical quadrature the entropy inequality
is retained in the limit of mesh refinement.

Lemma 6.4. Under the assumptions of Theorem 3.1, the limit v of vh defined by
the conservative system N-scheme satisfies the following integral form of (2.2):

d

dt

∫
Ω

H(v) +

∫
∂Ω

d∑
i=1

Gi(v))ni dS ≤ 0.(6.13)

Proof. Consider the system N-scheme decomposition (6.7). Unlike the constant
coefficient linear case, the diagonal term (6.9),

−1

2

 K̃1

K̃2

K̃3

 ,
cannot be added to the element matrix LT in the nonlinear case without changing the
discretization. Consequently, the energy associated with the simplex T (M1, . . . ,Md+1)
must include this term, i.e.,

VT
T L̃TVT =

1

2

d+1∑
i=1

VT
i K̃iVi +Q(V1, . . . ,Vd+1),(6.14)

where the quadratic form Q is positive by Theorem 6.3. The task is to show that, in
the limit h→ 0, the first right-hand-side term appearing in (6.14) converges to

∫
∂Ω

d∑
i=1

Gi(v))ni dS,(6.15)

the integral of the entropy flux. Recall that V describes the nodal degrees of freedom
in the piecewise linear space vh ∈ Vh. By exploiting the identity

∑d+1
j=1 K̃j = 0 in a

simplex T , we have the following relationship for an arbitrary k ∈ {1, . . . , d+ 1}:
d+1∑
j=1

VT
j KjVj =

d+1∑
j=1,j �=k

(
VT

j K̃jVj −VT
k K̃jVk

)
(6.16)

=

d+1∑
j=1,j �=k

(Vj +Vk)
T K̃j(Vj −Vk)(6.17)

=

d+1∑
j=1,j �=k

(Vj +Vk)
T K̃j ()l

jk ·Dvh),(6.18)

where )ljk denotes the vector from vertex Mk to vertex Mj . Thus we can define (by
identification) a vector P ∈ Rm×d for each simplex T such that for an arbitrary
k ∈ {1, . . . , d+ 1},

d+1∑
j=1

VT
j KjVj =

d∑
l=1

Pl
∂vh
∂xl

, P =

d+1∑
j=1,j �=k

(Vj +Vk)
T K̃j

)ljk.
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1

2

3

D12 D23

D13

Fig. 6.1. Geometrical elements for the definition of w.

Using this result, we obtain

1

2

d∑
j=1

VT
j K̃jVj =

∫
T

vh ·
(

d∑
l=1

Ãl(vh)
∂vh
∂xl

)
dx+ εT =

∫
T

d∑
i=1

Gi
,xi

dx+ εT ,(6.19)

where G is the entropy flux associated with v and

εT =

∫
T

([
d∑

l=1

Pl

|T | ·
∂vh
∂xl

]
− vTh

[
d∑

l=1

Ãl(vh)
∂vh
∂xl

])
dx.(6.20)

Hence, εT can be estimated,

|εT | ≤

∫
T

(
d∑

l=1

[
Pl

|T | − vTh Ãl(vh)

])2

dx


1/2 {∫

T

||Dvh||2dx
}1/2

≤

∫
T

(
d∑

l=1

[
Pl

|T | − vTh Ãl(vh)

])2

dx


1/2 ∫

T

||Dvh|| dx

because Dvh is constant in each simplex T . Proceeding as in Lemma 4.1, we see that
the function w defined by (see Figure 6.1 for a 2-D illustration)

w|T =
∑

[i,j] edge of T

(Vi +Vj)χDij ,

where χD is the characteristic function of the set D converges in L2
locto 2v when

h→ 0. Using the definition of K̃j , we have for an arbitrary k ∈ {1, . . . , d+ 1}
d+1∑

j=1,j �=k
K̃j(Vj −Vk) = |T |

d∑
l=1

Ãl
∂vh
∂xl

.

Thus we see that

d∑
l=1

 d+1∑
j=1,j �=k

K̃l
)ljkl

 ∂vh
∂xl

= |T |
d∑

l=1

Ãl
∂vh
∂xl

.(6.21)
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Due to the boundedness of vh, we can apply the dominated convergence theorem and
(6.21), thus yielding

∫
Q×[0,τ ]

(
d∑

l=1

[
Pl

|T | − vTh Ãl(vh)

])2

dx


1/2

→ 0

for any bounded domain Q ⊂ R
d.

Theorem 6.5. Under the assumptions of Theorem 3.1, the limit v of vh defined
by the system N-scheme satisfies the entropy inequality∫

Ω

∂ϕ

∂t
H(v) dx+

∫
Rd×R+

d∑
i=1

∂ϕ

∂xi
Gi(v) dx+

∫
Rd

ϕ(x, 0)v(x, 0) dx ≤ 0(6.22)

for any smooth ϕ ≥ 0.
Proof. The first observation is

ϕ
dH(v)

dt
= ϕv · dw

dt
.(6.23)

The second observation is that in a simplex T (M1, . . . ,Md+1),

d+1∑
i=1

ϕiV
T
i ΦΦΦi = ϕG

d+1∑
i=1

VT
i ΦΦΦi +

d+1∑
i=1

(ϕi − ϕG)V
T
i ΦΦΦi,(6.24)

where ϕG = ϕ1+ϕ2+ϕ3

3 . Then consequently,

d+1∑
j=1

VT
j ΦΦΦj =

1

2

d+1∑
j=1

VT
j K̃jVj +Q(V1, . . . ,Vd+1),(6.25)

where Q is positive by Theorem 6.3. Thus we observe that, because ϕj , ϕG ≥ 0,

d+1∑
i=1

ϕiV
T
i ΦΦΦi ≥ ϕG

1

2

d+1∑
j=1

VT
j K̃jVj +

d+1∑
i=1

(ϕi − ϕG)V
T
i ΦΦΦi.(6.26)

The last observation is that, in a simplex T ,∣∣∣∣∣
∣∣∣∣∣
d+1∑
i=1

(ϕi − ϕG)V
T
i ΦΦΦi

∣∣∣∣∣
∣∣∣∣∣ ≤ C h ||Dϕ||∞

d+1∑
i,j=1

||Vi|| ||Cij || ||Vi −Vj || ,(6.27)

where C is a constant depending on the mesh only and Cij = K̃+
i NK̃−

j . From this
we conclude that∣∣∣∣∣

∣∣∣∣∣
d+1∑
i=1

(ϕi − ϕG)V
T
i ΦΦΦi

∣∣∣∣∣
∣∣∣∣∣ ≤ C ′h2 ||Dϕ||∞ ||Vi −Vj || ,(6.28)

where C ′ depends on maxi ||vh|| which is uniformly bounded by assumption. Since
the mesh is regular, h2 ≤ C ′′|T | for a well-chosen constant independent of the mesh.
Lemma 4.1 shows that the right-hand side vanishes when h → 0. Using the same
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arguments as in Theorem 3.1 and Lemma 6.4, we conclude that the semidiscrete
scheme satisfies an entropy inequality.

Combining the previous results of this section, we finally conclude with the fol-
lowing corollary.

Corollary 6.6. Under the assumptions of Theorem 3.1 and Theorem 6.5, the
system N-scheme associated with the quadrature formula (2.20) satisfies in the limit
h→ 0 an entropy inequality for any smooth ϕ ≥ 0,

∫
Ω

∂ϕ

∂t
H(v)dx+

∫
Rd×R+

d∑
i=1

∂ϕ

∂xi
Gi(v) dx+

∫
Rd

ϕ(x, 0)v(x, 0) dx ≤ C
1

(k + 1)!
〈|ϕ|, µ〉.

(6.29)

Remark 2. The results of Theorem 6.5 and Corollary 6.6 state that there is
an entropy inequality in the limit of a mesh refinement and sufficiently high order
quadrature. In contrast, Theorem 6.3 states that the N-scheme for constant coefficient
systems with suitable time integration is energy stable on all meshes. In general, it
would be desirable to obtain a similar result for nonlinear systems on all meshes.

7. Numerical results. In this section, numerical validation of Theorem 3.1 is
provided via N-scheme calculation of smooth and discontinuous solutions of a scalar
conservation law and system Euler equations for subsonic, transonic, and supersonic
flows. Recall that Theorem 3.1 states, under classical assumptions, that numerical
solutions of the N-scheme with adaptive quadrature converge to a function for which
the residual∫

Q×[0,τ ]

(
φ,tw(x, t) +

d∑
i=1

φ,ifi(w(x, t))

)
dxdt+

∫
Q
φ(x, 0)w0(x)dx

may not vanish as in the classical Lax–Wendroff theorem. Instead, the residual is
bounded by a measure-valued function that can be made arbitrarily small by mak-
ing the number of quadrature points sufficiently large. As a practical matter, as will
be shown in section 7.1, the convergence is very rapid when derivatives of the flux
components, f i, are well behaved. In addition, an adaptive quadrature scheme is
proposed and tested, which greatly reduces the computational cost of the N-scheme
with quadrature. The adaptive quadrature strategy uses a simple estimate of solu-
tion smoothness to select the number of quadrature points, thus producing an over-
all economical discretization method since most elements need only use one interior
quadrature point (even for second-order accurate extensions [1]).

7.1. 1-D conservation law. Consider the scalar Cauchy problem (1.1){
u,t + (f(u),x = 0 for (x, t) ∈ R× R

+,

u(x, 0) = u0(x).

First, observe that the upwind scheme (1.5) of section 1 on a uniform mesh can be
rewritten as

∆xj
duj
dt

+
(
Φ+
j−1/2 +Φ−

j+1/2

)
= 0,(7.1)

with

Φ−
j+1/2 = 〈a〉−j+1/2(uj+1 − uj), Φ+

j+1/2 = 〈a〉+j+1/2(uj+1 − uj),(7.2)
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and from section 1,

〈a〉j+1/2 ≡ f(uj+1)− f(uj)

uj+1 − uj
=

∫ 1

0

a(πu(ξ)) dξ, πu(ξ) = uj + ξ (uj+1 − uj).(7.3)

Note that, on a nonuniform mesh, ∆xj is replaced by the lumped average
∆xj = (∆xj−1/2 + ∆xj+1/2)/2 although other definitions are possible, e.g., ∆xj =

(p+j−1/2∆xj−1/2 + p−j+1/2∆xj+1/2), p±j∓1/2 ≡ (1± sgn(〈a〉j∓1/2))/2. Consistent with

the previous analysis, our first numerical experiment implements a variant of this
residual distribution upwind scheme of the form

∆xj
duj
dt

+
(
Ψ+
j−1/2 +Ψ−

j+1/2

)
= 0,(7.4)

with residual distribution calculated via numerical quadrature,

Ψ−
j+1/2 =

NQ∑
l=1

ωl a(πu(ql))
−(uj+1 − uj), Ψ+

j+1/2 =

NQ∑
l=1

ωl a(πu(ql))
+(uj+1 − uj).

(7.5)

The scheme (7.4) would be conservative if

Ψ−
j+1/2 +Ψ+

j+1/2 = f(uj+1)− f(uj),

but due to the use of numerical quadrature,

Ψ−
j+1/2 +Ψ+

j+1/2 =

NQ∑
l=1

ωl a(πu(ql)) (uj+1 − uj)

�=
∫ 1

0

a(πu(ξ)) dξ (uj+1 − uj) = f(uj+1)− f(uj).

Even so, from Theorem 3.1 we still expect convergence to weak solutions, provided
sufficient order numerical quadrature is employed.

7.1.1. 1-D numerical experiment: Fixed Gauss quadrature on nonuni-
form mesh. We first test the scheme (7.4) with Euler explicit time advancement for
the smooth flux formula and initial data,

f(u) = eu, u0(x) = sin(2πx),

on successively refined meshes (∆x = 10−2, (1/2) 10−2, (1/2)2 10−2, (1/2)3 10−2,
and (1/2)4 10−2). To eliminate superconvergent behavior of measured error norms
due to mesh uniformity, we make the spacing between successive mesh points alter-
nate between the values ∆x and ∆x/2. In evaluating the distribution formulas (7.5),
NQ-point Gauss quadrature formulas are used with 1 ≤ NQ ≤ 3 to validate Theorem
3.1. Selected results are given in Table 7.1, which tabulates L1, L2, and L∞ norms
of the difference between the numerical solution unc given by standard conservative
scheme (7.1) and the nonconservative unnc provided by the scheme (7.4) on meshes
with decreasing ∆x at time n∆t = 0.5 (after the shockwave has appeared). Figures
7.1(a)–(d) graph the solutions before and after the occurrence of the shockwave for
the conservative and nonconservative schemes using 1, 2, 3, 4, and 5 point Gauss
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Table 7.1
Numerical results for the 1-D Cauchy problem. Numerical error between the conservative cal-

culation uc and the nonconservative calculation unc using NQ-point Gauss quadrature.

Mesh size, ∆x L1(unc − uc) L2(unc − uc) L∞(unc − uc) #quad pts, NQ

0.100 10−1 0.6353110−2 0.25617 10−1 0.15162 1
0.500 10−2 0.67850 10−2 0.38770 10−1 0.35783 1
0.250 10−2 0.70532 10−2 0.55376 10−1 0.67416 1
0.125 10−2 0.72127 10−2 0.73250 10−1 0.10491 101 1

0.100 10−1 0.12402 10−4 0.50233 10−4 0.30796 10−3 2
0.500 10−2 0.14468 10−4 0.83082 10−4 0.74799 10−3 2
0.250 10−2 0.15648 10−4 0.12657 10−3 0.14325 10−2 2
0.125 10−2 0.16296 10−4 0.18732 10−3 0.33085 10−2 2

0.100 10−1 0.28748 10−7 0.42536 10−7 0.23256 10−6 3
0.500 10−2 0.27937 10−7 0.44600 10−7 0.35562 10−6 3
0.250 10−2 0.27315 10−7 0.48398 10−7 0.49170 10−6 3
0.125 10−2 0.27017 10−7 0.57222 10−7 0.93983 10−6 3
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(a) Solution before the shockwave. (b) Solution after the shockwave.
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(c) Solution before the shockwave, zoom. (d) Solution after the shockwave, zoom.

Fig. 7.1. Numerical N-scheme solutions for (1.1) and u0i = sin(2πih). Solutions before the
formation of a shockwave ((a) and (c)) and solutions after the formation of a shockwave ((b) and
(d)).

quadrature on a mesh containing 100 unknowns. All the solutions are virtually in-
distinguishable before the occurrence of the shockwave. It is only after the solution
becomes discontinuous that the importance of sufficient-order Gauss quadrature is
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Table 7.2
Error between the conservative and adaptive quadrature schemes at t = 0.5 using 1, 2, or 3

point Gauss quadrature.

Mesh size, ∆x L1(unc − uc) L2(unc − uc) L∞(unc − uc) NQmin NQmax

0.100 10−1 0.39005 10−4 0.11351 10−3 0.69521 10−3 1 2
0.500 10−2 0.27998 10−4 0.13526 10−3 0.12200 10−2 1 2
0.250 10−2 0.21424 10−4 0.16100 10−3 0.18236 10−2 1 2
0.125 10−2 0.18526 10−4 0.20768 10−3 0.36673 10−2 1 2

0.100 10−1 0.27007 10−4 0.64119 10−4 0.38681 10−3 1 3
0.500 10−2 0.13642 10−4 0.52260 10−4 0.47082 10−3 1 3
0.250 10−2 0.57902 10−5 0.34398 10−4 0.38955 10−3 1 3
0.125 10−2 0.22238 10−5 0.20259 10−4 0.35797 10−3 1 3

visually apparent and multiple quadrature points needed. The tabulated results re-
veal two effects addressed by the theory: (1) the L1 error eventually stagnates when
h→ 0 for fixed-order quadrature, and (2) the L1 error decreases very rapidly with in-
creasing NQ. In fact, upon closer inspection, this error decreases much more quickly
than (p+ 1)!; see Figure 7.2.

7.1.2. 1-D numerical experiment: Adaptive Gauss quadrature on non-
uniform mesh. The results of the previous 1-D numerical experiment of section 7.1.1
show very negligible sensitivity to the number of quadrature points whenever the so-
lution is smooth. This observation suggests the following simple adaptive quadrature
scheme, which uses a nondimensional measure of solution gradient to estimate solution
smoothness:

• If ui+1−ui

max(|ui|,|ui+1|) ≤
√
∆x/L, then the solution is smooth. Compute ψ+

j+1/2

and ψ−
j+1/2 with NQmin point quadrature.

• Else, compute ψ+
j+1/2 and ψ−

j+1/2 with NQmax point quadrature.

Repeating the calculations of section 7.1.1, Table 7.2 tabulates the corresponding
numerical results using the adaptive parameters NQmin = 1 and NQmax = 2, 3
at the time T = 0.5 (after the formation of the shockwave). Note that, in these
calculations, nearly all cells required only NQmin = 1 quadrature points with only 3–5
cells requiring NQmax number of quadrature points. This results in a notable savings
in computational resources. These numerical results indicate that the quality of the
solutions is comparable to the quality of those of Table 7.1 with some reduced accuracy
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that would be improved by a more stringent criterion for quadrature adaptation. We
have not run this case with a second-order upwind scheme, but we believe that the
same strategy could be used since quadrature with NQmin = 1 points is second-order
accurate. In fact, it can be shown formally that, to recover second-order accuracy,
the “exact” total residual Φ−

j+1/2+Φ+
j+1/2 need only be recovered up to second-order

accuracy to have a second-order accurate scheme; see [1]. Finally, we note that other
tests have been carried out, for example, with the flux f(u) = exp(u2), with similar
results.

7.2. 2-D conservation laws. Next, we present 2-D solutions of the Euler equa-
tions of gasdynamics, assuming a perfect gas relationship. The significant computa-
tional savings obtained by adaptive numerical quadrature in 1-D suggest using a
similar strategy in higher space dimensions, where the savings is even more dramatic.
Throughout the remaining 2-D numerical experiments, standard quadrature formulas
with positive weights for simplices [29] are utilized: 1 point O(h2) quadrature, 3 point
O(h3) quadrature, 6 point O(h4) quadrature, 7 point O(h5) quadrature, and 16 point
O(h7) quadrature. For any simplex T , a criterion must be developed which deter-
mines if the numerical solution is locally smooth. For efficiency, this decision should
ideally be made from the information available in T only. Let sj denote the (physi-
cal) entropy at node Mj and hT denote the maximum length of the edges of T . We
have implemented the following heuristic criterion for use in the adaptive quadrature
strategy:

• If maxMi,Mj∈T
∣∣∣ sisj − 1

∣∣∣ ≤√
hT /L, then the solution is smooth. Compute the

N-scheme decomposition using NQmin point quadrature.
• Else, compute the N-scheme decomposition using NQmax point quadrature.

7.2.1. 2-D numerical experiments: Euler equations on mesh triangula-
tions. We first study the effect of the loss of conservation and the influence of the
number of quadrature points for the N-scheme with quadrature. To do this, we select
three test cases that are simple yet representative of different flow regimes: a subsonic
flow test case, a transonic flow case with mild shockwaves, and a supersonic flow case
over a blunt body, which produces a strong bow shockwave. The solutions are com-
pared to those obtained by the reference conservative N-scheme using Z-variables.
Our intent is not to assess the accuracy of the solution with respect to a mesh-
converged solution, but rather to see how the loss of conservation affects the structure
of the solution compared with the reference solution on the same mesh. In particu-
lar, we qualitatively and quantitatively compare the overall structure of conservative
and nonconservative N-scheme solutions by examining representative cross-sectional
and/or boundary data plots. Additionally, we examine the behavior of numerical so-
lutions with adaptive mesh refinement for the cases containing discontinuities, where
exact discrete conservation is normally very important, as it ensures proper solution
jump approximation. Ideally, it would be illuminating to perform uniform mesh re-
finement in evaluating the adaptive quadrature N-scheme as h→ 0. This was done in
the 1-D calculations. Unfortunately, this is prohibitively expensive in 2-D so we rely
on multiple levels of adaptive mesh refinement to approximate the h→ 0 process.

7.2.2. Subsonic flow case. This case is taken from Dervieux et al. [9]. It is a
flow over a cylinder with a Mach number at infinity of M∞ = 0.38 computed on a rel-
atively coarse mesh containing 3010 simplicial elements. Under these flow conditions,
the flow remains subsonic and is devoid of solution discontinuities. Figures 7.3(a)–
(d) show Mach number isolines for N-scheme calculations using 1, 3, and 7 point
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(a) 1 point quadrature (b) 3 point quadrature

(c) 7 point quadrature (d) conservative Z-variables

Fig. 7.3. (a)–(d) Mach number isolines for N-scheme calculations using fixed 1, 3, and 7 point
quadrature and the conservative Z-variables for the subsonic cylinder problem, M∞ = 0.38, on a
simplicial mesh containing 3010 elements.

quadrature as well as the N-scheme using the conservative Z-variables. Figure 7.4(a)
shows Mach number isolines for the N-scheme using the adaptive quadrature proce-
dure described earlier with parameter values NQmin = 1 and NQmax = 3. Figure
7.4(b) provides a quantitative comparison of pressures on the surface of the cylin-
der using all the fixed and adaptive quadrature formulas as well as the conservative
Z-variable N-scheme. As expected, all calculations show no discernible differences.
These results confirm our analysis if we assume that the support of the measure µ is
concentrated near discontinuities in the solution. Since there are no discontinuities in
this flow, and our quadrature formulas are at least second-order accurate using single
point quadrature, a Lax–Wendroff theorem is satisfied up to O(h2).

7.2.3. Transonic flow case. The second 2-D test case consists of transonic flow,
M∞ = 0.85, over the NACA0012 geometry with a flow incidence of 1 degree computed
on a baseline simplicial mesh containing 5050 elements. The flow solution consists of
both upper and lower surface shockwaves. Due to the 1 degree flow incidence, the
upper surface shockwave is notably stronger than the lower surface shockwave. N-
scheme calculations were performed using fixed 1, 3, and 7 quadrature point formulas
as well as the conservative Z-variables on the baseline simplicial mesh. In addition,
three levels of adaptive mesh refinement were performed and solutions computed us-
ing the adaptive quadrature N-scheme with NQmin = 1 and NQmax = 3. Surface
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Fig. 7.4. (a) Mach number isolines for N-scheme calculations using 1–3 point adaptive quadra-
ture and (b) the resulting pressure along top-bottom line of symmetry for the subsonic cylinder
problem, M∞ = 0.38, on a simplicial mesh containing 3010 elements.
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Fig. 7.5. Surface pressure coefficient distribution on the NACA0012 airfoil using the N-scheme
with (a) 1, 3, and 7 point quadrature and the conservative Z-variable, and (b) three levels of adaptive
mesh refinement together with 1–3 point adaptive quadrature.

pressure coefficient values are graphed in Figure 7.5(a) and Mach number isocontours
shown in Figures 7.6(a)–(d) for N-scheme calculations using 1, 3, and 7 point quadra-
ture and the conservative Z-variables. Similarly, surface pressure coefficient values are
graphed in Figure 7.5(b) and Mach number isocontours in Figures 7.7(a)–(d) using
three levels of shockwave-adapted mesh refinement together with the 1–3 point adap-
tive quadrature form of the N-scheme. Although the Mach number isocontour plots
appear very similar, the Figure 7.5(a) graph of the pressure coefficient on the body
of the NACA0012 airfoil is more revealing. This graph shows that the location of the
shockwaves depends on the number of quadrature points. Specifically, the use of single
point quadrature leads to a significant change in shockwave location when compared
to 3 and 7 point quadrature as well as to the conservative Z-variable scheme. For
this particular flow, the effect of the measure µ is not sufficiently reduced using one
quadrature point, but using three or more quadrature points seems sufficient to reduce
conservation error less than truncation errors present in the conservative N-scheme.
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(a) 1 point quadrature (b) 3 point quadrature

(c) 7 point quadrature (d) Conservative Z-variables

Fig. 7.6. (a)–(d) Mach number isolines for N-scheme calculation using fixed 1, 3, and 7 point
quadrature and the conservative Z-variables for the transonic NACA0012 problem, M∞ = 0.85 and
1 degree flow incidence, on a simplicial mesh containing 5050 elements.

The comparability of the 3 and 7 point quadrature with the conservative Z-variable
scheme once again suggests an adaptive quadrature implementation. The calcula-
tions presented in Figure 7.5(b) are intended to check whether the errors generated
by the loss of conservation on refined meshes dominate the truncation error, even in
an adaptive quadrature setting. With adaptive mesh refinement, all the computations
in Figure 7.5(b) are very comparable, which further validates Theorem 3.1 and our
adaptive quadrature strategy.

7.2.4. Supersonic blunt body flow. The last 2-D test case consists of su-
personic flow, M∞ = 3.5, over a circular cylinder geometry computed on a baseline
simplicial mesh containing 4075 elements. The flow solution consists of strong bow
shock forward of the cylinder geometry. Figures 7.8 (a)–(d) show Mach number iso-
contours for numerical solutions computed using 1, 3, and 7 point quadrature and
conservative Z-variable forms of the N-scheme. In addition, Mach number isocon-
tours for 1–3 and 1–7 point adaptive quadrature N-scheme calculations are shown
in Figures 7.9 (a)–(b). Both fixed and adaptive quadrature calculations are com-
pared in Figure 7.9 for pressure data along the top-bottom line of symmetry. This
latter figure shows a large difference between the one quadrature calculation and the
other calculations. This difference is also clearly seen in the Mach number isocontour
plot, Figure 7.8(a). Perhaps, more importantly, Figure 7.9 shows that the 3 point
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(a) 1 level adaptive mesh refinement, (b) 2 levels adaptive mesh refinement,
1–3 point adaptive quadrature 1–3 point adaptive quadrature

(a) 3 levels of adaptive mesh refinement, (b) 3 levels of adaptive mesh refinement,
1–3 point adaptive quadrature conservative Z-variables

Fig. 7.7. (a)–(d) Mach number isolines for N-scheme calculations using 1, 2, and 3 levels
of adaptive mesh refinement and 1–3 point adaptive quadrature and the reference conservative Z-
variables on the 3 level refined mesh for the transonic NACA0012 problem M∞ = 0.85 and 1 degree
flow incidence.

quadrature (and 1–3 point adaptive quadrature) also produced incorrect shockwave
locations on the baseline mesh, although the error is much smaller than that ob-
tained using 1 point quadrature. Recall that for the transonic flow problem, 3 point
quadrature was of sufficient order on the baseline and adaptively refined meshes for
computing correct shock locations. Using 7 point fixed quadrature and 1–7 point
adaptive quadrature yields solution shockwave positions in agreement with the con-
servative scheme. These results are also in agreement with inequality (3.8) of Theorem
3.1, since the strength of the measure depends not only on the number of quadrature
points but also on the supremum of a norm of higher derivatives of the flux, Dk+1

v f,v.
Estimation of this norm is difficult, but it is reasonable that this number tends to
infinity as the maximum Mach number also tends to ∞. However, since the flux f
is analytical in v and the Mach number is finite, the right-hand side of (3.8) still
converges to zero, albeit more slowly.

Next, we examine the effect of adaptive mesh refinement. Figures 7.10(a)–(c)
show Mach number isocontours for the N-scheme calculations using 16 point quadra-
ture, 1–16 point adaptive quadrature, and conservative Z-variables. Figure 7.10(d)
shows a graph of Mach number along the top-bottom line of symmetry for these same
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(a) 1 point (b) 3 point (c) 7 point (d) conservative
quadrature quadrature quadrature Z-variables

Fig. 7.8. Mach number isolines for N-scheme calculations using fixed 1, 3, and 7 point quadra-
ture and the conservative Z-variables for the supersonic cylinder problem, M∞ = 3.5 on the baseline
simplicial mesh containing 4075 elements.
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Fig. 7.9. (a)–(b) Mach number isolines for N-scheme calculations using 1–3 and 1–7 point
adaptive quadrature, and (c) comparison of all fixed and adaptive quadrature N-scheme calculations
along the top-bottom line of symmetry for the supersonic cylinder problem, M∞ = 3.5 on the baseline
simplicial mesh containing 4075 elements.

schemes as well as 1–7 point adaptive quadrature. Surprisingly, this figure shows small
differences in shock profile using 1–7 point adaptive quadrature for this problem with
three levels of adaptive mesh refinement. It is only with 16 point fixed or adaptive
quadrature that the adaptive N-scheme solutions match the conservative Z-variable
N-scheme. This demonstrates some slight dependency on the mesh parameter h not
captured by the present analysis.

8. Concluding remarks. A number of upwind schemes are derived in quasi-
linear form and discrete conservation obtained by devising specialized mean-value
linearized coefficients. This approach is problematic for systems such as magneto-
hydrodynamics, Euler equations with certain forms of chemistry, etc., where these



768 RÉMI ABGRALL AND TIMOTHY BARTH

−2 −1.5 −1 −0.5
x location

−0.25

0.75

1.75

2.75

M
ac

h 
nu

m
be

r

1−7 adaptive quadrature points
1−16 adaptive quadrature points
16 quadrature points
conservative Z variables

(a) 16 point (b) 1–16 point (c) conservative (d) symmetry line Mach number plot
quadrature quadrature Z-variables

Fig. 7.10. (a)–(b) Mach number isolines for N-scheme calculations using 16 point fixed and 1–
16 point adaptive quadrature, and (c) conservative Z-variables for the supersonic cylinder problem.
(d) Comparison of Mach number on top-bottom symmetry line, M∞ = 3.5, on the baseline simplicial
mesh with 3 levels of adaptive mesh refinement.

specialized mean-value linearizations may not exist in closed form. In the present
analysis, we consider a more general construction of these upwind schemes that avoids
explicitly constructing these exact mean-value linearizations. Our construction is well
tailored to systems of conservation laws with convex entropy extension. Using the
tools of weak convergence, a Lax–Wendroff theorem has been derived for this class
of nonconservative schemes utilizing numerical quadrature. By using sufficient-order
numerical quadrature, we show that correct weak solutions of conservation laws are
obtained. Numerical results confirm the basic analysis but do show some weak inter-
dependence of the mesh space parameter h and the required order of accuracy of the
numerical quadrature. This indicates that further investigation and quantification of
this effect are needed.
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Notes in Comput. Sci. Engrg. 5, D. Kröner, M. Ohlberger, and C. Rohde, eds., Springer-
Verlag, Heidelberg, 1998, pp. 195–285.



DISTRIBUTIVE SCHEMES VIA ADAPTIVE QUADRATURE 769

[7] P. I. Crumpton, J. A. MacKenzie, and K. W. Morton, Cell vertex algorithms for the
compressible Navier-Stokes equations, J. Comput. Phys., 109 (1993), pp. 1–15.

[8] H. Deconinck, R. Struijs, and P. L. Roe, Compact Advection Schemes on Unstructured
Grids, von Karman Institute Lecture Series Monograph 1993-04, von Karman Institute for
Fluid Dynamics, Belgium, 1993.

[9] A. Dervieux, B. van Leer, J. Périaux, and A. Rizzi, eds., Numerical Simulation of Com-
pressible Euler Flows, Notes on Numerical Fluid Mechanics 26, Friedr. Vieweg & Sohn,
Braunschweig, 1989.

[10] S. K. Godunov, A finite difference method for the numerical computation of discontinuous
solutions of the equations of fluid dynamics, Mat. Sb., 47 (1959), pp. 271–306.

[11] S. K. Godunov, An interesting class of quasilinear systems, Dokl. Akad. Nauk. SSSR, 139
(1961), pp. 521–523.

[12] G. Golub, Private communication, Stanford University, Stanford, CA, March 11, 1996.
[13] A. Harten, P. D. Lax, and B. van Leer, On upstream differencing and Godunov-type schemes

for hyperbolic conservation laws, SIAM Rev., 25 (1983), pp. 35–61.
[14] T. Y. Hou and P. G. Le Floch, Why nonconservative schemes converge to wrong solutions:

Error analysis, Math. Comp., 62 (1994), pp. 497–530.
[15] T. J. R. Hughes, L. P. Franca, and M. Mallet, A new finite element formulation for CFD:

I. Symmetric forms of the compressible Euler and Navier-Stokes equations and the second
law of thermodynamics, Comput. Methods Appl. Mech. Engrg., 54 (1986), pp. 223–234.

[16] T. J. R. Hughes and M. Mallet, A new finite element formulation for CFD: III. The general-
ized streamline operator for multidimensional advective-diffusive systems, Comput. Meth-
ods Appl. Mech. Engrg., 58 (1986), pp. 305–328.

[17] C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element
Method, Cambridge University Press, Cambridge, UK, 1987.

[18] C. Johnson and A. Szepessy, Convergence of the shock-capturing streamline diffusion finite
element methods for hyperbolic conservation laws, Math. Comp., 54 (1990), pp. 107–129.
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