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Abstract. We present a new Lagrangian cell-centered scheme for two-dimensional compressible
flows. The primary variables in this new scheme are cell-centered, i.e., density, momentum, and
total energy are defined by their mean values in the cells. The vertex velocities and the numerical
fluxes through the cell interfaces are not computed independently, contrary to standard approaches,
but are evaluated in a consistent manner due to an original solver located at the nodes. The main
new feature of the algorithm is the introduction of four pressures on each edge, two for each node
on each side of the edge. This extra degree of freedom allows us to construct a nodal solver which
fulfills two properties. First, the conservation of momentum and total energy is ensured. Second, a
semidiscrete entropy inequality is provided. In the case of a one-dimensional flow, the solver reduces
to the classical Godunov acoustic solver: it can be considered as its two-dimensional generalization.
Many numerical tests are presented. They are representative test cases for compressible flows and
demonstrate the robustness and the accuracy of this new solver.
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1. Introduction. The physical model that is considered throughout this paper
is based on the equations of fluid dynamics written in Lagrangian form. This form
is well adapted to the simulation of multimaterial compressible fluid flows, such as
those encountered in the domain of inertial confinement fusion (ICF); see [19] and [25].
Our aim is to propose a new Lagrangian cell-centered scheme for two-dimensional gas
dynamics equations. Before describing our method, let us briefly give a historical
overview of the Lagrangian schemes.

Lagrangian schemes are characterized by a mesh that follows the fluid flow. In this
way, these methods treat interfaces in a natural manner. The main numerical diffi-
culty lies in the node motion discretization, especially for multidimensional situations.
The most natural way to overcome this difficulty is to use a staggered discretization,
where the momentum is defined at the nodes and the other variables (density, pres-
sure, and specific internal energy) are cell-centered. This type of scheme was first
introduced by von Neumann and Richtmyer in [27] for one-dimensional flows. The
bidimensional extension was proposed by Wilkins in [29]. It is based on an internal
energy formulation. The entropy production inherent to shock waves is ensured by an
artificial viscosity. In its initial version, this scheme was not conservative, and it ad-
mitted numerical spurious modes. However, in spite of these drawbacks, this scheme
has been widely used in the domain of multimaterial flow simulations during the last
forty years. Moreover, in the past decade, many improvements have been made in or-
der to solve the previous problems. In their paper [7], Caramana and Shashkov show
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I, 33405 Talence Cedex, France (abgrall@math.u.-bordeaux1.fr).
§CEA CESTA BP2, 33114 Le Barp, France (jean.ovadia@cea.fr).

1781



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1782 P.-H. MAIRE, R. ABGRALL, J. BREIL, AND J. OVADIA

that with an appropriate discretization of the subzonal forces resulting from subzonal
pressures, hourglass motion and spurious vorticity can be eliminated. By using the
method of support operators proposed in [6], they constructed a staggered scheme
which ensures the conservation of total energy. Moreover, the discretization of artifi-
cial viscosity has been considerably improved: first, by introducing formulations for
multidimensional shock wave computations in [5] and then by using a discretization
based on a mimetic finite difference scheme in [4]. With all these improvements, the
staggered Lagrangian scheme is an accurate and robust method, which can produce
impressive results, even on unstructured polygonal grids; see, for instance, [21].

An alternative to the staggered discretization is to use a conservative cell-centered
discretization. This method for Lagrangian gas dynamics in one dimension was intro-
duced by Godunov; see [12] and [24]. The multidimensional extension of this method
was performed during the 1980s [2], [11]. This multidimensional scheme is a cell-
centered finite volume scheme on moving structured or unstructured meshes. It is
constructed by integrating directly the system of conservation laws on each moving
cell. The primary variables—density, momentum, and total energy—are defined in
the cells. The flux across the boundary of the cell is computed by solving exactly
or approximately a one-dimensional Riemann problem in the direction normal to the
boundary. The main problem with this type of method lies in the fact that the node
velocity needed to move the mesh cannot be directly calculated. In [2], the node ve-
locity is computed via a special least squares procedure. It consists in minimizing the
error between the normal velocity coming from the Riemann solver and the normal
projection of the vertex velocity. It turns out that it leads to an artificial grid motion,
which requires a very expensive treatment [10]. Moreover, with this approach the flux
calculation is not consistent with the node motion.

Recently, new cell-centered methods have been proposed in [15] and [1]. These
new approaches use a fully Lagrangian form of the gas dynamics equations; that is,
the gradient and divergence operators are expressed in the Lagrangian coordinates.
This type of discretization needs to compute the Jacobian matrix associated to the
map between Lagrangian and Eulerian spaces. However, these methods are purely
Lagrangian and cannot be interpreted as moving mesh methods. This drawback has
motivated another approach proposed by Després and Mazeran. In [9], they made
a theoretical analysis of the Lagrangian gas dynamics equations written in a fully
Lagrangian form and they derived a new conservative and entropy consistent two-
dimensional Lagrangian scheme of the finite volume type. It is a moving grid scheme
based on a nodal solver. The node velocity is computed in a coherent manner with the
face fluxes. The numerical results shown in [9] are quite impressive, in particular, those
related to the difficult Saltzmann’s test case. However, it appears that in the case of
one-dimensional flows, this scheme leads to a nodal velocity, which depends on the cell
aspect ratio. This drawback has motivated our study to develop a new cell-centered
scheme that retains the good feature of the Després–Mazeran scheme but resolves
the aspect ratio problem. Here, we propose a new Lagrangian cell-centered scheme in
which the vertex velocities and the numerical fluxes through the cell interfaces are not
computed independently as usual but in a consistent manner with an original solver
located at the nodes. The main new feature of the algorithm is the introduction of
four pressures on each edge, two for each node on each side of the edge. This is the
main difference from [9]. We show, in the limit of a one-dimensional flow computed
by our two-dimensional solver, or for flows in a cylindrical geometry, that the scheme
recovers the classical Godunov approximate Riemann solver. Moreover, our scheme
locally conserves momentum and total energy and satisfies a local entropy inequality.
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The boundary conditions are taken into account in a natural way. This scheme is first
order in time and space.

The paper is organized as follows. First we recall the gas dynamics equations
written in the Lagrangian form. In section 2 we derive space approximations based
on face and node fluxes. Then we build a nodal solver using conservation arguments
and a discrete entropy inequality. In section 4 we give the time discretization. Finally,
we validate our new scheme with several test cases. They are representative test cases
for compressible fluid flows and demonstrate the robustness and the accuracy of this
new solver.

2. Derivation of the Euler equations in the Lagrangian formalism. The
aim of this section is to recall briefly how the gas dynamics equations are obtained in
the Lagrangian formalism. For such a derivation, we follow the approach developed
in [8].

Let D be a region of the two-dimensional space R2, filled with an inviscid fluid and
equipped with an orthonormal frame (O,X, Y ). The Lagrangian formalism consists
in following the time evolution of fluid particles along their trajectories. Consider a
fluid particle which is moving through the point M at time t > 0 and whose initial
position is point m. The coordinates of point M are denoted by (X,Y ) and are
named Eulerian coordinates. The coordinates of point m are denoted by (x, y) and
are named Lagrangian coordinates. The Eulerian coordinates are obtained from the
trajectory equations

dX

dt
= u(X,Y, t), X(x, y, 0) = x,

dY

dt
= v(X,Y, t), Y (x, y, 0) = y,

(2.1)

where (u, v) are the coordinates of the fluid velocity V . If the velocity field is smooth
enough, the system (2.1) admits a unique solution (X(x, y, t), Y (x, y, t)). This enables
us to define the map

Mt : (x, y) �→ (X,Y ),(2.2)

where (X,Y ) is the unique solution of (2.1). With fixed t, this map advances each
fluid particle from its position at time t = 0 to its position at time t. If ω denotes a
region in D, then Mt(ω) = Ω is the volume ω moving with the fluid. We assume that
for each t > 0, Mt is invertible. Let us introduce the Jacobian of this map:

J(x, y, t) =

∣∣∣∣∣∣∣∣∣
∂X

∂x

∂X

∂y

∂Y

∂x

∂Y

∂y

∣∣∣∣∣∣∣∣∣ .(2.3)

We notice that J(x, y, 0) = 1 and since Mt is invertible we have for each t > 0,
J(x, y, t) > 0. Time differentiation of (2.3) gives the classical result

dJ

dt
− J∇ · V = 0,(2.4)

where ∇· denotes the divergence operator, namely, ∇ · V = ∂u
∂X + ∂v

∂Y .
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Let us consider a flow variable ϕ depending on Eulerian coordinates: ϕ ≡ ϕ(X,Y, t).
Time differentiation of ϕ gives

dϕ

dt
=

∂ϕ

∂t
+

dX

dt

∂ϕ

∂X
+

dY

dt

∂ϕ

∂Y
,

and using (2.1) one obtains

dϕ

dt
=

∂ϕ

∂t
+ ∇ϕ · V ,(2.5)

where ∇ is the gradient operator, namely ∇ϕ = ( ∂ϕ
∂X , ∂ϕ

∂Y )t. The time derivative of
ϕ depending on Eulerian coordinates is named the material derivative; it represents
the variation of ϕ along a fluid trajectory. Finally, combining (2.4) and (2.5) it is
straightforward to write

d

dt
(ϕJ) = J

[
∂ϕ

∂t
+ ∇ · (ϕV )

]
.(2.6)

With this last equation we are able to transform gas dynamics equations written in
Eulerian formalism. These equations for an inviscid compressible fluid (see [18]) are

∂ρ

∂t
+ ∇ · (ρV ) = 0,

∂

∂t
(ρV ) + ∇ · (ρV ⊗ V ) + ∇P = 0,

∂

∂t
(ρE) + ∇ · (ρEV ) + ∇ · (PV ) = 0.

(2.7)

In (2.7), ρ denotes the density, P is the pressure, and E is the specific total energy.
We denote by ε = E− 1

2‖V ‖2 the specific internal energy. The thermodynamic closure
of (2.7) is given by the equation of state, P ≡ P (ρ, ε).

Now, using (2.6) for the conservative variables ϕ = 1, ρ, ρV , ρE and after
substitution in (2.7), one obtains the gas dynamics system in Lagrangian formalism:

dJ

dt
− J∇ · V = 0,

d

dt
(ρJ) = 0,

d

dt
(ρJV ) + J∇P = 0,

d

dt
(ρJE) + J∇ · (PV ) = 0.

(2.8)

We notice that these equations are only in a semi-Lagrangian formalism since the
gradient and divergence operate on variables which depend on Eulerian coordinates.
In order to write these equations in a full Lagrangian way, one has to express the
gradient and divergence operators with Lagrangian coordinates using the map Mt.
For such an approach, the reader should refer to [15], [20], and [9].
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In order to perform the space discretization in the next section, we give the
integral form of system (2.8). This form is obtained by integration of (2.8) on the
Lagrangian domain ω. Knowing that Mt(ω) = Ω and Jdω = dΩ, using Green’s
formula one gets

d

dt

∫
Ω

dΩ −
∫
∂Ω

V ·N dl = 0,(2.9 i)

d

dt

∫
Ω

ρdΩ = 0,(2.9 ii)

d

dt

∫
Ω

ρV dΩ +

∫
∂Ω

PN dl = 0,(2.9 iii)

d

dt

∫
Ω

ρE dΩ +

∫
∂Ω

PV ·N dl = 0,(2.9 iv)

where ∂Ω is the boundary of Ω, N is the unit outward normal to ∂Ω, and dl is the
length element on ∂Ω. The equations (2.9 i)–(2.9 iv) are well known and have been
used in this form in many papers; see, for example, [14]. Let mΩ denote the mass of
fluid enclosed in Ω. Then (2.9 ii) simply states mass conservation; hence for each time
one gets mΩ = mω. Let us introduce the area of domain Ω:

AΩ =

∫
Ω

dΩ.

We define the density ρΩ = mω

AΩ
and the specific volume τΩ = 1

ρΩ
. We also define the

mass averaged velocity and total energy

VΩ =
1

mω

∫
Ω

ρV dΩ,

EΩ =
1

mω

∫
Ω

ρEdΩ.

With this notation and mass conservation, one gets the final integral form which will
be useful for space discretization:

mω
d

dt
τΩ −
∫
∂Ω

V ·N dl = 0,(2.10 i)

mω
d

dt
VΩ +

∫
∂Ω

PN dl = 0,(2.10 ii)

mω
d

dt
EΩ +

∫
∂Ω

PV ·N dl = 0,(2.10 iii)

where mω is the mass of fluid enclosed initially in ω.

3. Spatial approximation. Using classical finite volume approach, we derive
in this section the spatial approximation of the gas dynamics equations written in
Lagrangian formalism. Let us introduce some notation.
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Mr+1

Nr−1,r

Mr−1

Y

eX

Nr,r+1

+

O

Lr−1,rTr−1,r

MrLr,r+1Tr,r+1

eY

X

Ωi

Fig. 3.1. Notation.

3.1. Notation, assumptions, and problem statement. Let {ωi, i = 1 . . . I}
be a collection of nonoverlapping polygons whose reunion covers ω, the subdomain
of R2 that is initially filled by the fluid. We set Ωi = Mt(ωi), where Mt is the
map defined by (2.2). Ωi is also a polygonal cell1 whose vertices are denoted by
Mr, r = 1, . . . , R(i). We denote by R(i) the number of vertices (or faces) of the cell
Ωi. The vertices are indexed counterclockwise; see Figure 3.1. The numbering is also
periodic; i.e., MR(i)+1 = M1 and M0 = MR(i). The frame (O,X, Y ) is equipped with
an orthonormal basis (eX , eY ) which is completed by the vector eZ = eX × eY . We
denote the Eulerian coordinates of the vertex Mr by (Xr, Yr). Note that Mr and
its coordinates are time dependent. Considering any edge [Mr,Mr+1] of Ωi, Lr,r+1

denotes its length, Tr,r+1 represents its unit tangent vector in a counterclockwise
orientation, and Nr,r+1 is its unit outward normal vector. Following these definitions
and conventions, we have

Lr,r+1Tr,r+1 = MrMr+1,

Lr,r+1Nr,r+1 = Lr,r+1Tr,r+1 × eZ .
(3.1)

The fluid in cell Ωi is described by the discrete variables (τi,Vi, Ei), respectively,
the averaged specific volume, velocity, and specific total energy. A set of discrete
equations is written for these discrete unknowns, using the integral formulation (2.10 i)
applied for cell Ωi:

mi
d

dt
τi −
∫
∂Ωi

V ·N dl = 0,

mi
d

dt
Vi +

∫
∂Ωi

PN dl = 0,

mi
d

dt
Ei +

∫
∂Ωi

PV ·N dl = 0,

1Here, we assume that Ωi is still a polygon. This means that we implicitly assume that the
velocity field variation is linear in space. This is not restrictive here, because the aim of the paper is
to develop a scheme that is first order in space.
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where mi denotes the mass of the cell Ωi. We also introduce the density ρi = 1
τi

, the

specific internal energy εi = Ei − 1
2‖Vi‖2, and the pressure given by the equation of

state Pi = P (ρi, εi). Since all fluid variables are assumed to be constant in cell Ωi,
we obtain a spatial approximation which is first order accurate.

Finally, we introduce some notation to express the discrete face fluxes. Let us
denote by V �

r,r+1 ·Nr,r+1, P �
r,r+1Nr,r+1, and (PV )

�
r,r+1 ·Nr,r+1 the volume, mo-

mentum, and total energy fluxes on the face [Mr,Mr+1]. They are defined by the
following equations:

Lr,r+1V
�

r,r+1 ·Nr,r+1 =

∫ Mr+1

Mr

V ·N dl,

Lr,r+1P
�
r,r+1Nr,r+1 =

∫ Mr+1

Mr

PN dl,

Lr,r+1 (PV )
�
r,r+1 ·Nr,r+1 =

∫ Mr+1

Mr

PV ·N dl.

(3.2)

With this notation the previous system is now written in the following manner:

mi
d

dt
τi −

R(i)∑
r=1

Lr,r+1V
�

r,r+1 ·Nr,r+1 = 0,(3.3 i)

mi
d

dt
Vi +

R(i)∑
r=1

Lr,r+1P
�
r,r+1Nr,r+1 = 0,(3.3 ii)

mi
d

dt
Ei +

R(i)∑
r=1

Lr,r+1 (PV )
�
r,r+1 ·Nr,r+1 = 0.(3.3 iii)

We notice that with this Lagrangian discretization we have to take into account the
cell motion. For this purpose we write the node motion equation using the trajectory
equation

d

dt
Xr = u�

r , Xr(0) = xr,

d

dt
Yr = v�r , Yr(0) = yr,

(3.4)

where (u�
r , v

�
r ) are the components of the velocity V �

r of the vertex Mr.
In order to complete the space approximation, the following important problems

arise:
1. How do we compute the face fluxes defined by (3.2)?
2. How do we compute the node velocities V �

r ?
3. These velocities being known, how can we ensure the compatibility between

the mesh motion and the volume variation of the cells?
Thus, our task consists in building a numerical solver that can compute the fluxes
V �

r,r+1, P �
r,r+1, and (PV )

�
r,r+1 but also the node velocities V �

r . Moreover, this must
be done coherently. We resolve these questions in the next sections.
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3.2. Approximation of the volume equation. Using a geometrical interpre-
tation of (3.3 ii), we can link the volume flux V �

r,r+1 · Nr,r+1 to the node velocity
V �

r .
First, we notice that miτi = Ai, where Ai is the area of the cell Ωi. Thus, (3.3 ii)

provides the time variation of Ai,

d

dt
Ai =

R(i)∑
r=1

Lr,r+1V
�

r,r+1 ·Nr,r+1.(3.5)

The area of the cell Ωi can also be evaluated from the location of the vertices Mr

using the relation (see [28])

Ai =
1

2

R(i)∑
r=1

OMr ×OMr+1 · eZ .

This amounts to summing the area of the triangles (O,Mr,Mr+1) (see Figure 3.1)
over all the vertices of the cell. Using the coordinates of the vertices and after time
differentiation, we get

d

dt
Ai =

1

2

R(i)∑
r=1

(
Yr+1

d

dt
Xr −Xr+1

d

dt
Yr + Xr

d

dt
Yr+1 − Yr

d

dt
Xr+1

)
.

We rearrange the last two terms of the sum using the transformation r → r − 1 and
the periodicity of the indices and get

d

dt
Ai =

1

2

R(i)∑
r=1

[
(Yr+1 − Yr + Yr − Yr−1)

d

dt
Xr − (Xr+1 −Xr + Xr −Xr−1)

d

dt
Yr

]
.

This formula can be rewritten as

d

dt
Ai =

1

2

R(i)∑
r=1

V �
r · (Lr−1,rNr−1,r + Lr,r+1Nr,r+1) ,(3.6)

and using the change of indices r − 1 → r for the first term of the sum, we have the
equivalent formulation

d

dt
Ai =

R(i)∑
r=1

1

2
Lr,r+1

(
V �

r + V �
r+1

)
·Nr,r+1.(3.7)

The comparison between (3.5) and (3.7) enables us to give the face velocities in term
of the vertex velocities, namely,

V �
r,r+1 =

1

2

(
V �

r + V �
r+1

)
.(3.8)

This fundamental relation enables us to write two equivalent discretizations of the
specific volume variation. It can be given in terms of the flux through the faces, or
equivalently, in term of vertex fluxes. Moreover, the two discretizations are compatible
with the node motion. We get one of the results of [9], but with a much simpler
geometrical argument. We note that (3.8) is consistent with the assumption that the
velocity field is linear along face [Mr,Mr+1].

Hence, one can consider two methods for computing the face velocities:
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• The first one relies on the evaluation of the normal velocity V �
r,r+1 ·Nr,r+1

using a one-dimensional Riemann solver at faces. The vertex velocities V �
r

have to be computed by solving a linear system built from (3.8) written for
all the faces. This system is in general singular, which is why we give up this
approach and shall adopt a more robust method.

• In the second method, the velocities V �
r are first evaluated using some still-to-

be-defined solver. The face velocities are then computed from (3.8). This is
the technique we will use in what follows because this method will guarantee
the compatibility between vertex motion and cell area variation.

3.3. Approximation of momentum flux. Following the same methodology,
we approximate the momentum flux defined at the vertices in such a way that it is
compatible with the approximation at faces. Thus, similarly to (3.8) we set

P �,i
r,r+1 =

1

2

(
P �,i

r,r+ 1
2

+ P �,i

r+ 1
2 ,r+1

)
,(3.9)

where P �,i

r,r+ 1
2

(resp., P �,i

r+ 1
2 ,r+1

) represents the pressure on the half-face [Mr,Mr+ 1
2
]

(resp., [Mr+ 1
2
,Mr+1]) seen from the cell Ωi; see Figure 3.2. We have added the super-

script i to remove any possible ambiguity. Hence, 1
2Lr,r+1P

�,i

r,r+ 1
2

Nr,r+1 represents

the momentum flux for half-face [Mr,Mr+ 1
2
] seen from the cell Ωi. We observe that

at node Mr, seen from the cell Ωi, there exist two pressures: P �,i

r,r+ 1
2

and P �,i

r− 1
2 ,r

.

Because of this, our approach is different from that of [9], where only one pressure is
defined at the vertex Mr.

Mr+1+1

Mr

Mr−1

Ωi

Lr↪r↪r+1+1Nr↪r↪r+1+1

Lr−1↪r↪rNr−1↪r↪r

P�↪�↪i

r+1
2 ↪r↪r

P �↪�↪i

r+1+1↪r↪r+1
2

Mr+ 1
2

Mr− 1
2

P�↪�↪i

r↪r↪r−1
2

V �
r−1

V �
r+1+1

V �
r

Fig. 3.2. Pressures at faces.

Using this definition, the equation for momentum (3.3 iii) is written as

mi
d

dt
Vi +

R(i)∑
r=1

1

2
Lr,r+1

(
P �,i

r,r+ 1
2

+ P �,i

r+ 1
2 ,r+1

)
Nr,r+1 = 0.(3.10)

If we shift the index r (i.e., r → r − 1) in the second term of the summation, we get

mi
d

dt
Vi +

R(i)∑
r=1

1

2

(
Lr−1,rP

�,i

r− 1
2 ,r

Nr−1,r + Lr,r+1P
�,i

r,r+ 1
2

Nr,r+1

)
= 0.(3.11)
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It amounts to summing the fluxes over all nodes of the cell. Equations (3.10) and
(3.11) are equivalent discretizations. They use either face fluxes or vertex fluxes. The
evaluation of these fluxes uses two pressures at a face or at a node for cell Ωi.

Remark 1. We notice that in the case of a one-dimensional Riemann solver at
faces, as classically done, only one single pressure is computed for [Mr,Mr+1]. The
conservation of the momentum is a simple consequence of this approximation. Here,
this is no longer the case. In fact, if the cell Ωj shares face [Mr,Mr+1] with Ωi,
the pressures on this face seen from Ωi may be in general different from those seen
from Ωj . That is why we have put the superscript denoting the cell in the definition
of edge pressures. This is an important fact, which is one of the key points of our
construction: in adding degrees of freedom as here, we will see later in the text that
this enables us to build a node solver which simultaneously provides us with the node
velocity and the local conservation of momentum and energy.

3.4. Approximation of the energy flux. In order to get an equivalent dis-
cretization in terms of face and nodal fluxes for the total energy equation, we set

(PV )
�,i
r,r+1 =

1

2

(
P �,i

r,r+ 1
2

V �
r + P �,i

r+ 1
2 ,r+1

V �
r+1

)
.(3.12)

Using (3.12), the total energy equation in its face flux formulation is written as

mi
d

dt
Ei +

R(i)∑
r=1

1

2
Lr,r+1

(
P �,i

r,r+ 1
2

V �
r + P �,i

r+ 1
2 ,r+1

V �
r+1

)
·Nr,r+1 = 0.(3.13)

Shifting once more the index r in the second term of the sum, we get the node flux
formulation

mi
d

dt
Ei +

R(i)∑
r=1

1

2

(
Lr−1,rP

�,i

r− 1
2 ,r

Nr−1,r + Lr,r+1P
�,i

r,r+ 1
2

Nr,r+1

)
· V �

r = 0.(3.14)

3.5. Summary. We obtain an approximation of the Euler equations written in
Lagrangian coordinates which relies on approximated vertex fluxes:

mi
d

dt
τi −

R(i)∑
r=1

1

2
(Lr−1,rNr−1,r + Lr,r+1Nr,r+1) · V �

r = 0,

mi
d

dt
Vi +

R(i)∑
r=1

1

2

(
Lr−1,rP

�,i

r− 1
2 ,r

Nr−1,r + Lr,r+1P
�,i

r,r+ 1
2

Nr,r+1

)
= 0,

mi
d

dt
Ei +

R(i)∑
r=1

1

2

(
Lr−1,rP

�,i

r− 1
2 ,r

Nr−1,r + Lr,r+1P
�,i

r,r+ 1
2

Nr,r+1

)
· V �

r = 0.

(3.15)

The system (3.15) is equivalent to (3.3) provided that the face fluxes are defined by

V �
r,r+1 = 1

2

(
V �

r + V �
r+1

)
,

P �,i
r,r+1 = 1

2

(
P �,i

r,r+ 1
2

+ P �,i

r+ 1
2 ,r+1

)
,

(PV )
�,i
r,r+1 = 1

2

(
P �,i

r,r+ 1
2

V �
r + P �,i

r+ 1
2 ,r+1

V �
r+1

)
.

(3.16)
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Moreover, this definition is coherent with the vertex motion.
Now, we are going to show how to compute, for each vertex Mr , the velocity V �

r

and the pressures P �,i

r− 1
2 ,r

and P �,i

r,r+ 1
2

.

4. Construction of a solver at the vertices. The evaluation of V �
r , P �,i

r− 1
2 ,r

,

and P �,i

r,r+ 1
2

relies on the following arguments:

• the global conservation of momentum,
• a local entropy inequality.

The first argument is a consequence of Remark 1: the pressure on the face [Mr,Mr+1]
is not unique, contrary to the standard finite volume approach. Thus, we lose the
automatic conservation of momentum and total energy. Of course, we must guaran-
tee the conservation of momentum and total energy, so we have to add additional
constraints on V �

r , P �,i

r− 1
2 ,r

, and P �,i

r,r+ 1
2

.

The second argument is about the thermodynamical consistency of the scheme,
which is necessary for a correct computation of the discontinuities. We will build a
sufficient condition which will supply a local dissipation of entropy.

The two sets of constraints (conservation and dissipation of entropy) will lead, as
we shall see in this section, to a linear system whose unique solution will give us V �

r ,

P �,i

r− 1
2 ,r

, and P �,i

r,r+ 1
2

.

4.1. Notation around a vertex. In order to exhibit conservation equations
for momentum and total energy around a node, let us introduce some new notation.
We denote by Mq a generic internal vertex of the mesh, for q = 1, . . . , Q, where Q is
the total number of internal nodes. The case of the nodes located on the boundary
∂Ω will be treated in section 4.7. There are K(q) cells around Mq which are denoted
by Ωk; see Figure 4.1. For the cell Ωk we denote by [Mq,Mk] and [Mq,Mk+1] the
edges coming from node Mq. The outward normal to these edges are Nk

k , Nk
k+1 and

their lengths Lk, Lk+1. Let V �
q be the velocity of node Mq and P �,k

q,k (resp., P �,k
q,k+1),

the half-pressures on edge [Mq,Mk] (resp., [Mq,Mk+1]) seen from cell Ωk.

4.2. Conservation relations. Omitting the boundary conditions and summing
(3.11) on each cell of the domain, we make a global balance of momentum

d

dt

(
I∑

i=1

miVi

)
= −

I∑
i=1

r(i)∑
r=1

1

2

(
Li
r−1,rP

�,i

r− 1
2 ,r

N i
r−1,r + Li

r,r+1P
�,i

r,r+ 1
2

N i
r,r+1

)
.

Mk+1

P�,k
q,k+1

Lk+1N
k
k+1

Mq

Mk

P�,k
q,k

LkN
k
k

Ωk

V �
q

Fig. 4.1. Notation around the vertex Mq.
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We have added the superscript i for the lengths and normals in order to remove
any possible ambiguity. If we replace the global summation over cells by a global
summation over nodes, using the notation previously defined, we can rewrite the
right-hand side in the following way:

d

dt

(
I∑

i=1

miVi

)
= −

Q∑
q=1

K(q)∑
k=1

1

2

(
LkP

�,k
q,k N

k
k + Lk+1P

�,k
q,k+1N

k
k+1

)
.

The (global) conservation of momentum is satisfied provided that the right-hand side
vanishes. A sufficient condition is

K(q)∑
k=1

1

2

(
LkP

�,k
q,k N

k
k + Lk+1P

�,k
q,k+1N

k
k+1

)
= 0.(4.1)

This summation is done over all the cells k surrounding vertex Mq; see Figure 4.1.
The relation (4.1) can be interpreted as the local equilibrium of vertex Mq under
pressure forces. This is also a local conservation relation.

It can be checked that condition (4.1) also implies the global conservation of total
energy. To do so, we sum (3.14) on each cell, switch the summation for the cells’ and
the vertices’ indices, and get

d

dt

(
I∑

i=1

miEi

)
= −

Q∑
q=1

K(q)∑
k=1

1

2

(
LkP

�,k
q,k N

k
k + Lk+1P

�,k
q,k+1N

k
k+1

)
· V �

q = 0,

using (4.1) and because the velocity V �
q is single valued at Mq.

The conservation of volume is easily checked. To do so, we sum the first equation
of (3.15) for each cell:

d

dt

(
I∑

i=1

miτi

)
=

Q∑
q=1

K(q)∑
k=1

1

2

(
LkN

k
k + Lk+1N

k
k+1

)
· V �

q .

We know that

K(q)∑
k=1

1

2

(
LkN

k
k + Lk+1N

k
k+1

)
= 0,(4.2)

since the polygon whose vertices are Mk, k = 1, . . . ,K(q), is closed (dotted line in
Figure 4.1).

4.3. Entropy inequality. We first compute the time variation of entropy in cell
Ωi. Let us denote it by σi. If Ti is the cell average temperature, we have

miTi
d

dt
σi = mi

(
d

dt
εi + Pi

d

dt
τi

)
.(4.3)

This quantity is evaluated in two steps. First, we compute the variation of internal
energy d

dtεi = d
dtEi − Vi · d

dtVi, and then we evaluate the pressure work Pi
d
dtτi.

• Internal energy: we dot-multiply (3.11) by Vi to get the kinetic energy vari-
ation:

miVi ·
d

dt
Vi = −

R(i)∑
r=1

1

2

(
Lr−1,rP

�,i

r− 1
2 ,r

Nr−1,r + Lr,r+1P
�,i

r,r+ 1
2

Nr,r+1

)
· Vi.

(4.4)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A CELL-CENTERED LAGRANGIAN SCHEME 1793

Then (4.4) is subtracted from the total energy variation equation and we have

mi
d

dt
εi = −

R(i)∑
r=1

1

2

(
Lr−1,rP

�,i

r− 1
2 ,r

Nr−1,r + Lr,r+1P
�,i

r,r+ 1
2

Nr,r+1

)
·
(
V �

r − Vi

)
.

(4.5)

• Pressure work: we multiply the first relation of (3.15) by Pi:

miPi
d

dt
τi =

R(i)∑
r=1

1

2
(Lr−1,rPiNr−1,r + Lr,r+1PiNr,r+1) · V �

r .

An equivalent formulation is

miPi
d

dt
τi =

R(i)∑
r=1

1

2
(Lr−1,rPiNr−1,r + Lr,r+1PiNr,r+1) ·

(
V �

r − Vi

)
.(4.6)

Knowing that,

R(i)∑
r=1

1

2
(Lr−1,rNr−1,r + Lr,r+1Nr,r+1) = 0,

because the boundary of Ωi is a closed polygon.
Last, the summation of (4.5) and (4.6) gives

miTi
d

dt
σi =

R(i)∑
r=1

1

2

[
Lr−1,r

(
Pi − P �,i

r− 1
2 ,r

)
Nr−1,r + Lr,r+1

(
Pi − P �,i

r,r+ 1
2

)
Nr,r+1

]
·
(
V �

r − Vi

)
.

A sufficient condition for the right-hand side of this relation to be positive is⎧⎪⎨⎪⎩
Pi − P �,i

r− 1
2 ,r

= αi

(
V �

r − Vi

)
·Nr−1,r, r = 1, . . . , R(i),

Pi − P �,i

r,r+ 1
2

= αi

(
V �

r − Vi

)
·Nr,r+1, r = 1, . . . , R(i),

(4.7)

where αi is a positive coefficient that has the dimension of a mass flux. These two
relations can be interpreted as (discretized) Riemann invariants along the directions
Nr−1,r and Nr,r+1. Our main motivation is to recover the approximate acoustic
solver [24] for one-dimensional flows, which is why the parameter αi is set to the
value

αi = ρici,(4.8)

where ci =
√

(∂P∂ρ )
σ

represents the isentropic sound speed. Under condition (4.7), the

variation of entropy is

miTi
d

dt
σi=

R(i)∑
r=1

1

2
ρici

{
Lr−1,r

[(
V �

r − Vi

)
·Nr−1,r

]2
+Lr,r+1

[(
V �

r − Vi

)
·Nr,r+1

]2}
.

(4.9)
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Ωk+1

Mk

Mk+1

Mq

Ωk−1

P�,k
q,k

P �,k+1
q,k+1

Lk

Nk−1
k

Nk
k

Nk
k+1

Lk+1

V �
q

αk

Pk

Vk

Ωk

P �,k
q,k+1

P�,k−1
q,k

Fig. 4.2. States around internal node Mq.

Remark 2. The relation (4.9) is very similar to the entropy production term
resulting from a two-dimensional linear artificial viscosity term; see [5]. We notice
that (4.9) implies a positive production of entropy, even in the case of isentropic flows.
For such flows our scheme does not conserve entropy. This is typical for Godunov-type
schemes. If we rewrite the sufficient condition (4.7) using notation around a generic
vertex Mq, we obtain⎧⎪⎪⎨⎪⎪⎩

Pk − P �,k
q,k = αk

(
V �

q − Vk

)
·Nk

k , k = 1, . . . ,K(q),

Pk − P �,k
q,k+1 = αk

(
V �

q − Vk

)
·Nk

k+1, k = 1, . . . ,K(q),

(4.10)

where αk, Pk, and Vk stand for acoustic impedance, pressure, and velocity in cell
Ωk. We point out that for a vertex Mq (not on the boundary of the computational
domain), we have to compute 2K(q) pressures, that is, together with the velocity V �

q ,
to evaluate 2K(q) + 2 scalar unknowns. Equation (4.1) provides 2 scalar relations,
and (4.10) gives 2K(q) more. Hence, we can compute the pressures and the velocity
at the vertex Mq. This is the topic of the next section.

4.4. Evaluation of the velocity and pressures at the vertices. Using suf-
ficient conditions (4.1) and (4.10), we write the linear system satisfied by the compo-
nents of the velocity V �

q of an internal vertex Mq. This generic vertex is not on the
boundary of the domain, so that it is surrounded by the cells Ωk, k = 1, . . . ,K(q);
see Figure 4.2. With this new notation, if we shift index (k → k − 1) in the second
term of (4.1), we get

K(q)∑
k=1

Lk

(
P �,k
q,k − P �,k−1

q,k

)
Nk−1

k = 0,(4.11)

where we have used Nk
k = −Nk−1

k . We proceed in the same way for (4.10):⎧⎪⎪⎨⎪⎪⎩
P �,k
q,k = Pk + αk

(
V �

q − Vk

)
·Nk−1

k ,

P �,k−1
q,k = Pk−1 − αk−1

(
V �

q − Vk−1

)
·Nk−1

k .

(4.12)
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After substitution of (4.12) into (4.11), we obtain the following equation satisfied
by V �

q :

(4.13)

K(q)∑
k=1

Lk (αk−1 + αk)

×
[
V �

q ·Nk−1
k − Pk−1 − Pk + αk−1Vk−1 ·Nk−1

k + αkVk ·Nk−1
k

αk−1 + αk

]
Nk−1

k = 0.

If we set

V�
k =

Pk−1 − Pk + αk−1Vk−1 ·Nk−1
k + αkVk ·Nk−1

k

αk−1 + αk
,

V�
k is the normal velocity given by the classical one-dimensional acoustic Riemann

solver for face [Mq,Mk]. With this notation, we can rewrite (4.13) and give an inter-
esting interpretation of it:

K(q)∑
k=1

Lk (αk−1 + αk)
[
V �

q ·Nk−1
k − V�

k

]
Nk−1

k = 0.

A straightforward calculation shows that the left-hand side of this last equation is the
gradient of the following quadratic functional:

F (u�
q , v

�
q ) =

K(q)∑
k=1

Lk (αk−1 + αk)
[
V �

q ·Nk−1
k − V�

k

]2
,(4.14)

where (u�
q , v

�
q ) denotes the components of V �

q . Consequently, the solution of (4.13)
reaches the minimum of the functional F (u�

q , v
�
q ). Hence, it appears that the nodal

velocity V �
q is obtained from a weighted least squares procedure. This least squares

procedure corresponds to the overdetermined system equating the projection of the
nodal velocity onto the edge normal Nk−1

k with the normal velocity V�
k obtained from

the acoustic approximate Riemann solver. For each edge impinging on node Mq, the
weight is Lk(αk−1 + αk).

Finally, we write the 2 × 2 linear system satisfied by (u�
q , v

�
q ):{

Au�
q + Cv�q = SMX ,

Cu�
q + Bv�q = SMY ,

(4.15)

where A, B, and C are defined by

A =

K(q)∑
k=1

Lk (αk−1 + αk)
(
Nk−1

k,X

)2
,

B =

K(q)∑
k=1

Lk (αk−1 + αk)
(
Nk−1

k,Y

)2
,

C =

K(q)∑
k=1

Lk (αk−1 + αk)N
k−1
k,X Nk−1

k,Y .
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Here, (Nk−1
k,X , Nk−1

k,Y ) are the coordinates of Nk
k. The right-hand side (SMX , SMY ) of

(4.15) are the components of the vector SM defined by

SM =

K(q)∑
k=1

Lk (αk−1 + αk)V�
kN

k−1
k .

The determinant Δ of (4.15) is Δ = AB−C2. We show that it is always positive. In

order to simplify notation, let us introduce βk =
√
Lk (αk−1 + αk) and Nk = Nk−1

k

for k = 1, . . . ,K(q). We define

UX = (β1N1,X , . . . , βKNK,X)
t
,

UY = (β1N1,Y , . . . , βKNK,Y )
t
.

We have immediately A = ‖UX‖2, B = ‖UY ‖2, and C = 〈UX ,UY 〉, where 〈, 〉 is the
inner scalar product of RK and ‖ ‖ its associated norm. From the Cauchy–Schwarz
inequality, we know that Δ ≥ 0. In fact, Δ = 0 if and only if one of the two vectors
is null or UX and UY are colinear. This situation is generally impossible unless the
edges around the node merge into a single line.

We have shown that the system (4.15) always has a unique solution which de-

termines the velocity V �
q . From (4.12), we can get the pressures P �,k

q,k and P �,k−1
q,k .

Moreover, this nodal solver is invariant under translation, homothety, and rotation of
center Mq.

Remark 3. If the flow is uniform (i.e., with a uniform velocity V 0 and pressure
P 0), we can easily check that the solution of (4.15) reduces to V �

q = V 0.

4.5. Summary of the discrete evolution equations. We give in this sec-
tion the summary of the discrete evolution equations that constitute a closed set of
equations for the unknowns {τi,Vi, Ei}:

mi
d

dt
τi −

R(i)∑
r=1

1

2
(Lr−1,rNr−1,r + Lr,r+1Nr,r+1) · V �

r = 0,

mi
d

dt
Vi +

R(i)∑
r=1

1

2

(
Lr−1,rP

�,i

r− 1
2 ,r

Nr−1,r + Lr,r+1P
�,i

r,r+ 1
2

Nr,r+1

)
= 0,

mi
d

dt
Ei +

R(i)∑
r=1

1

2

(
Lr−1,rP

�,i

r− 1
2 ,r

Nr−1,r + Lr,r+1P
�,i

r,r+ 1
2

Nr,r+1

)
· V �

r = 0.

(4.16)

We note that these equations have been written using a vertex flux formulation (see
section 3). Those fluxes are obtained via a nodal solver which is derived in section 4.
The edge pressures P �,i

r− 1
2 ,r

, P �,i

r,r+ 1
2

are computed as follows:⎧⎪⎨⎪⎩
Pi − P �,i

r− 1
2 ,r

= ρici
(
V �

r − Vi

)
·Nr−1,r, r = 1, . . . , R(i),

Pi − P �,i

r,r+ 1
2

= ρici
(
V �

r − Vi

)
·Nr,r+1, r = 1, . . . , R(i).

(4.17)

If q denotes the global index corresponding to the local index r, the nodal velocity
V �

r ≡ V �
q = (u�

q , v
�
q ) is given by the solution of the 2 × 2 linear system{

Au�
q + Cv�q = SMX ,

Cu�
q + Bv�q = SMY ,

(4.18)
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where A, B, and C are defined by

A =

K(q)∑
k=1

Lk (ρk−1ck−1 + ρkck)
(
Nk−1

k,X

)2
,

B =

K(q)∑
k=1

Lk (ρk−1ck−1 + ρkck)
(
Nk−1

k,Y

)2
,

C =

K(q)∑
k=1

Lk (ρk−1ck−1 + ρkck)N
k−1
k,X Nk−1

k,Y ,

where the index k denotes the label of the cells (edges) that surround the node Mq;
see Figure 4.2. The right-hand side of (4.18), SM = (SMX , SMY )t, is given by

SM =

K(q)∑
k=1

Lk (ρk−1ck−1 + ρkck)V�
kN

k−1
k ,

where V�
k corresponds to the normal velocity given by the classical one-dimensional

acoustic Riemann solver

V�
k =

Pk−1 − Pk + ρk−1ck−1Vk−1 ·Nk−1
k + ρkckVk ·Nk−1

k

ρk−1ck−1 + ρkck
.

Before we detail our implementation of the boundary conditions, we provide in the
next section an interpretation of our results in the case of a one-dimensional flow with
a planar symmetry and in the case of a flow with a cylindrical symmetry.

4.6. Interpretation of the solver in two simple cases.

4.6.1. One-dimensional flow with planar symmetry. Let us consider Mq

surrounded by four quadrangular cells. They are numbered from 1 to 4 in the counter-
clockwise direction; see Figure 4.3. We consider the frame (Mq, eX , eY ). The vector

Nk−1
k is the normal to the edge shared by cells k − 1 and k. The length of this edge

is Lk. The indexing system is periodic with period 4, and the flow is one-dimensional
in the eX direction so that the velocity field in the cell k reduces to V k = ukeX .
Moreover, any scalar quantity ϕ satisfies ϕ1 ≡ ϕ4 and ϕ2 ≡ ϕ3. The cells 1 and 4
contain the state defined by P1, c1, V1 = u1eX . The cells 2 and 3 contain the state
defined by P2, c2, V2 = u2eX . Using this notation, the evaluation of the matrix

L3 X

Y

N 1
2

N 2
3

N 4
1

N 3
4

eX

L4

eY

L1

L2

Mq M3

M4

M1

M2

Ω1

Ω4

Ω2

Ω3

Fig. 4.3. One-dimensional planar flow.
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coefficients A,B,C is straightforward:

A = (L2 + L4)(ρ1c1 + ρ2c2),

B = 2(L1ρ1c1 + L3ρ2c2),

C = 0.

The calculation of SM gives

SMX = (L2 + L4)(P1 − P2 + ρ1c1u1 + ρ2c2u2),

SMY = 0.

Therefore v�q = 0 and

u�
q =

P1 − P2 + ρ1c1u1 + ρ2c2u2

ρ1c1 + ρ2c2
.

We recover exactly the acoustic Riemann solver!

4.6.2. One-dimensional flow with cylindrical symmetry. We consider an
equiangular cylindrical mesh centered at O. We denote by θ the angle of any sector.
The mesh may be nonregular in the radial direction. Any vertex Mq is surrounded by
four trapezoidal cells. In order to simplify the algebra, we choose to work in the local
orthonormal frame (Mq, eX , eY ), where eX is the unit vector colinear to OMq; see
Figure 4.4. We use the same conventions as in the previous section. The cells 1 and 4
contain the states defined by P1, ρ1, c1. The cells 2 and 3 contain the states defined
by P2, ρ2, c2. Due to cylindrical symmetry, the velocities are defined by V1 = V1N

1
2 ,

V2 = V2N
1
2 , V3 = −V2N

3
4 , and V4 = −V1N

3
4 . In the frame (Mq, eX , eY ), the

normals are written as

N1
2 =

(
cos (θ/2)

− sin(θ/2)

)
, N3

2 =

(
0

1

)
, N3

4 =

(
− cos(θ/2)

− sin(θ/2)

)
, and N4

1 =

(
0

−1

)
.

X

Y

eYN 3
4

Mq

θ

O

eX

L3

N 2
3

L2

L1

L4

N 4
1

M2

M1

M4

M3

Ω4

Ω1

Ω3

Ω2

N 1
2

Fig. 4.4. One-dimensional cylindrical flow.
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After calculations we get

A = (L2 + L4) cos2
(
θ

2

)
(ρ1c1 + ρ2c2),

B = 2L1ρ1c1 + (L2 + L4) sin2

(
θ

2

)
(ρ1c1 + ρ2c2) + 2L3ρ2c2,

C = (L4 − L2) sin

(
θ

2

)
cos

(
θ

2

)
(ρ1c1 + ρ2c2).

We also obtain

SM = (P1 − P2 + ρ1c1V1 + ρ2c2V2)

(
(L2 + L4) cos(θ/2)

(L4 − L2) sin(θ/2)

)
.

Using the symmetry we have L2 = L4; thus C = 0 and SMY = 0. Therefore v�q = 0,
and the velocity is of the form V �

q = u�
qeX . The evaluation of u�

q is straightforward:

u�
q =

P1 − P2 + ρ1c1V1 + ρ2c2V2

ρ1c1 + ρ2c2

1

cos( θ2 )
.

This is once more the acoustic solver modified by a geometrical factor that is a con-
sequence of the projection of Vk on the axis [O,Mq]. This term has no consequence
since cos( θ2 ) → 1 when θ → 0. We also notice that the velocity is radial because
the angle between two sectors is uniform. If the mesh does not satisfy this property,
therefore L2 �= L4 and C �= 0, and consequently, v�q �= 0.

4.7. Boundary conditions. In this section, we explain our implementation of
boundary conditions which is consistent with our internal solver. In the Lagrangian
formalism, we have to consider two types of boundary conditions on the boundary ∂Ω:
either we impose the pressure or we impose the normal component of the velocity.
We use the same type of notation as in section 4.1. Let Mq ∈ ∂Ω. It is surrounded
by K(q) = K cells contained in the domain Ω. There are K + 1 edges impinging
on Mq. They are numbered counterclockwise; see Figure 4.5. The first and last cells
Ω1 and ΩK have an edge on the boundary ∂Ω. The outward normals to the two
boundary edges coming out of Mq are denoted by −N0

1 and NK
K+1 coherently with

our notation.

Ωk

ΩKM1

Mk

Mk+1

MK

MK+1

Π�
1

∂Ω

Ωk−1

P�,k
q,k

Π�
K+1

V�
K+1

V �
q

P�,k
q,k+1P�,k−1

q,k

Nk−1
k

M2

V�
1

−N 0
1

Ωk+1

P�,1
q,1

Ω1

Mq

NK
K+1

Fig. 4.5. Notation for the boundary conditions.

4.7.1. Case of a prescribed pressure. We denote by Π�
1 and Π�

K+1 the pres-
sures that are imposed on the boundary edges; see Figure 4.5. We have to compute
the 2K pressures P �,k−1

q,k , k = 2, . . . ,K + 1, and P �,k
q,k , k = 1, . . . ,K; adding the

velocity V �
q of the vertex Mq, we have a total number of 2K + 2 scalar unknowns.

These unknowns satisfy the previous relations (conservation of momentum, entropy



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1800 P.-H. MAIRE, R. ABGRALL, J. BREIL, AND J. OVADIA

inequality). For the conservation relation, we make a balance around the vertex Mq

by counting the pressure forces due to the boundary conditions. We get

−L1P
�,1
q,1 N

0
1 +

K∑
k=2

Lk

(
P �,k−1
q,k − P �,k

q,k

)
Nk−1

k + LK+1P
�,K
q,K+1N

K
K+1

= −L1Π
�
1N

0
1 + LK+1Π

�
K+1N

K
K+1.

(4.19)

The entropy inequality provides

P �,k
q,k = Pk + αk

(
V �

q − Vk

)
·Nk−1

k , k = 1, . . . ,K,

P �,k−1
q,k = Pk−1 − αk−1

(
V �

q − Vk−1

)
·Nk−1

k , k = 2, . . . ,K + 1.

(4.20)

The use of (4.20) in (4.19) leads to{
Ãu�

q + C̃v�q = S̃MX ,

C̃u�
q + B̃v�q = S̃MY ,

(4.21)

where the coefficients are

Ã =

K∑
k=2

Lk (αk−1 + αk)
(
Nk−1

k,X

)2
+ L1α1

(
N0

1,X

)2
+ LK+1αK+1

(
NK

K+1,X

)2
,

B̃ =

K∑
k=2

Lk (αk−1 + αk)
(
Nk−1

k,Y

)2
+ L1α1

(
N0

1,Y

)2
+ LK+1αK+1

(
NK

K+1,Y

)2
,

C̃ =

K∑
k=2

Lk (αk−1 + αk)N
k−1
k,X Nk−1

k,Y + L1α1N
0
1,XN0

1,Y + LK+1αK+1N
K
K+1,XNK

K+1,Y .

We see that we recover the coefficients A, B and C, where the contribution of the
boundary faces are now taken into account. The right-hand side of (4.21) is written
as

S̃M =

K∑
k=2

Lk

[
Pk−1 − Pk + (αk−1Vk−1 + αkVk) ·Nk

k−1

]
Nk

k−1

−L1

[
P1 − Π�

1 − α1V1 ·N0
1

]
N0

1

+LK+1

[
PK − Π�

K+1 + αKVK ·NK+1
K

]
NK+1

K .

From the Cauchy–Schwartz inequality, we know that C̃2 < ÃB̃. Hence, the lin-
ear system (4.21) always has a unique solution (u�

q , v
�
q ). The pressures P �,k−1

q,k , k =

2, . . . ,K + 1, and P �,k
q,k , k = 1, . . . ,K, are obtained from (4.20).

4.7.2. Case of a prescribed normal velocity. Let V�
1 and V�

K+1 be the values
of the prescribed normal velocities on the boundary edges coming out of Mq. We
distinguish the following two cases:

• −N0
1 and NK+1

K are not colinear: in this case the value of V �
q is given by

the boundary conditions, and the components of the vertex velocity are the
solution of the linear system{

−N0
1,Xu�

q −N0
1,Y v

�
q = V�

1 ,

NK+1
K,X u�

q + NK+1
K,Y v�q = V�

K+1.
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Since the normals are not colinear, this linear system always has a unique
solution. The pressures are computed from (4.20).

• −N0
1 and NK+1

K are colinear: in this case, V �
q is not given directly, and we

need to know the balance of momentum around the vertex Mq which takes
the boundary conditions into account:

−L1P
�,1
q,1 N

0
1 +

K∑
k=2

Lk

(
P �,k−1
q,k − P �,k

q,k

)
Nk−1

k + LK+1P
�,K
q,K+1N

K
K+1

=
(
−L1N

0
1 + LK+1N

K+1
K

)
Π�,

(4.22)

where Π� is an average pressure applied on the external side of the edges
coming out of Mq. The pressure Π� is a new unknown, but we have an
additional equation corresponding to the boundary condition(

−L1N
0
1 + LK+1N

K+1
K

)
· V �

q = L1V�
1 + LK+1V�

K+1.(4.23)

Using (4.20) in (4.22) combined with (4.23), we get⎧⎪⎪⎨⎪⎪⎩
Ãu�

q + C̃v�q + DΠ� = ŜMX ,

C̃u�
q + B̃v�q + EΠ� = ŜMY ,

Du�
q + Ev�q = L1V�

1 + LK+1V�
K+1.

(4.24)

The coefficients Ã, B̃, and C̃ have already been defined in the previous section
and we have set D = −L1N

0
1,X + LK+1N

K+1
K,X , E = −L1N

0
1,Y + LK+1N

K+1
K,Y .

The right-hand side of (4.24) is

ŜM =

K∑
k=2

Lk

[
Pk−1 − Pk + (αk−1Vk−1 + αkVk) ·Nk

k−1

]
Nk

k−1

−L1

[
P1 − α1V1 ·N0

1

]
N0

1 + LK+1

[
PK + αKVK ·NK+1

K

]
NK+1

K .

The determinant of (4.24) is Δ = −ÃE + 2C̃DE− B̃D2. Using the fact that

|C̃| <
√
ÃB̃, one can show that Δ < 0 provided the mesh is not degenerated:

(4.24) always admits a unique solution (u�
q , v

�
q ), and then we can always define

a unique set of pressures due to (4.20).
Remark 4. We have implemented a numerical test in order to determine the

colinearity of the unit normal −N0
1 and NK+1

K with a fixed threshold ε > 0. For

numerical applications we have set ε = 10−10. Namely, for |det(N0
1 ,N

K+1
K ) |≤ ε,

−N0
1 and NK+1

K are almost colinear, and we use the second alternative in order to
avoid an ill-conditioned system.

4.8. Some remarks. From conservation arguments and one entropy inequality,
we have been able to construct a nodal solver. This scheme shares some characteristics
with the method developed in [9] and can be interpreted as a two-dimensional exten-
sion of the acoustic solver. It is interesting to realize that we need only the knowledge
of the isentropic speed of sound: it is very easy to extend it to more general equation
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M1 M2

M3M4

N NE

W

S

E

SE

NW

SW

Ωi

M9
2

P�,i

3,72

P�,i

2,52

M7
2

M5
2

M3
2

P�,i

4,9
2

P�,i
9
2,1

P�,i
5
2,3

P�,i
3
2,2

P�,i
7
2 ,4

P�,i

1,32

Fig. 4.6. Stencil for a quadrangular mesh.

of state. The precise form of the equation of state, analytical or tabulated, does not
matter.

We have rigorously shown that the linear system which provides the components
of the vertex velocity admits a unique solution, provided that the mesh is not degener-
ated; see the end of section 4.4. This is also true for vertices located on the boundary,
whereas with the method developed in [9] some difficulties have been encountered for
vertices located at the corner on the boundary of a rectangular domain.

We have also checked that our solver recovers the one-dimensional acoustic solver
in the case of one-dimensional planar and cylindrical flows, contrarily to [9]. More
precisely, the calculation of the node velocity with the solver described in [9] gives,
for a one-dimensional flow with planar symmetry,

u�
q =

P1 − P2 + ρ1c1u1 + ρ2c2u2

ρ1c1 + ρ2c2

√
ΔX2 + ΔY 2

ΔY
,

where L1 = L3 = ΔX and L2 = L4 = ΔY are mesh spacing along directions eX and
eY . With this nodal solver, one recovers the one-dimensional acoustic solver velocity
multiplied by a factor which depends on the aspect ratio of the cells.

Last, our method fully answers the questions raised at the beginning of this
paper since it uniquely provides the vertex velocity and the face fluxes. The main
new features of our scheme is the introduction of four pressures on each edge, two
for each node on each side of the edge, that is, eight pressures at each node for a
quadrangular mesh.

We can compute, in a coherent way, the vertex motion as well as the face fluxes.
This solver has been constructed delocalizing the fluxes from the faces to the vertices.
Consequently, the conservation of momentum and energy is obtained around the node.
This implies a fundamental difference with a standard finite volume scheme.

This difference can be illustrated by the consideration of a mesh made of quad-
rangular cells. We denote by 1, 2, 3, and 4 the vertices of the cell Ωi and by S, SE,
E, NE, N , NW , O, and SW the neighboring cells; see Figure 4.6. In a standard
finite volume scheme with an approximate Riemann solver, the cell Ωi exchanges in-
formation only with the neighboring cells having a common face, i.e., the cells S, E,
N , and O. This is a 5 point scheme.

With our scheme, the cell Ωi exchanges momentum and energy with the neigh-
boring cells having a common vertex, i.e., the cells S, SE, E, NE, N , NW , W ,
and SW . This is a 9 point scheme. The four additional cells reinforce the genuinely
multidimensional nature of our scheme.
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5. Time discretization. In this section, we time discretize the system that
describes the evolution of the physical variables (τi,Vi, Ei) in the cell Ωi:

mi
d

dt
τi −

R(i)∑
r=1

Lr,r+1V
�

r,r+1 ·Nr,r+1 = 0,(5.1i)

mi
d

dt
Vi +

R(i)∑
r=1

Lr,r+1P
�
r,r+1Nr,r+1 = 0,(5.1ii)

mi
d

dt
Ei +

R(i)∑
r=1

Lr,r+1 (PV )
�
r,r+1 ·Nr,r+1 = 0,(5.1iii)

where the face fluxes V �
r,r+1, P �

r,r+1 are evaluated by our solver. For the time dis-
cretization of (5.1) we use a classical forward Euler scheme. A more sophisticated
time discretization is not required here, since the scheme is only first order accurate
in space. However, time discretization of (5.1) should be done carefully so that all the
properties of the semidiscrete system are kept. They are as follows:

• the variation of volume is coherent with the vertex motion;
• momentum and total energy are conserved;
• the scheme satisfies an entropy inequality.

The first two properties would impose an explicit time discretization; the third would
impose an implicit discretization. We choose an explicit time discretization, knowing
that the entropy inequality will be a priori satisfied under a CFL-type condition.

We assume to know the physical properties in the cell Ωi and the geometrical
characteristics of the cell at the beginning of the time step tn, i.e., τni , V n

i , En
i , Pn

i ,
Xn

r , and Y n
r . We are going to compute their values at tn+1 and we set Δt = tn+1−tn.

5.1. Mesh motion and variation of volume. The nodal solver provides the
vertex velocities V �

r and the face pressures at P �,i

r,r+ 1
2

, P �,i

r+ 1
2 ,r+1

from the physical vari-

ables and geometry characteristics evaluated at time tn. The explicit time integration
of the trajectory equation provides the location of vertices for any time t ∈ [tn, tn+1]:

Xr(t) = Xn
r + (t− tn)u�

r ,

Yr(t) = Y n
r + (t− tn)v�r .

(5.2)

In this way, one gets the location of the vertices at time tn+1:

Xn+1
r = Xn

r + u�
rΔt,

Y n+1
r = Y n

r + v�rΔt.
(5.3)

From this we deduce that (Lr,r+1Nr,r+1) (t) = [Yr+1(t) − Yr(t),− (Xr+1(t) −Xr(t))]
t

is linear in time, so that

∫ tn+1

tn
(Lr,r+1Nr,r+1) (t)dt =

Δt

2

[
(Lr,r+1Nr,r+1)

n
+ (Lr,r+1Nr,r+1)

n+1
]
.(5.4)
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This last result enables us to write an approximation of the volume equation which
is coherent with the mesh motion, namely,

mi

(
τn+1
i − τni

)
− Δt

4

R(i)∑
r=1

[
(Lr,r+1Nr,r+1)

n
+ (Lr,r+1Nr,r+1)

n+1
]
·
(
V �

r + V �
r+1

)
= 0.

(5.5)

Remark 5. We recall that (5.1i) is completely equivalent to the evolution equation
of Ai (area of cell Ωi), since miτi = Ai and mi is constant over time; see section 3.2.
Knowing that the nodal velocity is computed at time tn, the right-hand side of (5.1i)
is a linear function of time over [tn, tn+1] thanks to (5.2). Hence, the time integration

formula given by (5.4) is exact. Consequently, we can write τn+1
i =

An+1
i

mi
. In a

nutshell, the second order time integration of the volume flux provides a rigorous
compatibility between the specific volume equation and the mesh motion.

5.2. Momentum and total energy. The approximation of the momentum and
the total energy equation is fully explicit in order to conserve exactly the momentum
and the total energy. The lengths (of edges) and the normals have the same definition
as previously. We get

mi

(
V n+1

i − V n
i

)
+

Δt

2

R(i)∑
r=1

Ln
r,r+1

(
P �,i

r,r+ 1
2

+ P �,i

r+ 1
2 ,r+1

)
Nn

r,r+1 = 0,(5.6)

and for the total energy

mi

(
En+1

i − En
i

)
+

Δt

2

R(i)∑
r=1

Ln
r,r+1

(
P �,i

r,r+ 1
2

V �
r + P �,i

r+ 1
2 ,r+1

V �
r+1

)
·Nn

r,r+1 = 0.(5.7)

5.3. Time step limitation. The time step is evaluated following two criteria.
The first is a standard CFL criterion which guarantees heuristically the monotone
behavior of the entropy. The second is more intuitive, but appears very useful in
practice: we limit the variation of the volume of cells over one time step.

5.3.1. CFL criterion. We propose a CFL-like criterion in order to ensure a
positive entropy production in cell Ωi during the time step. At time tn, for each cell
Ωi we denote by λn

i the minimal value of the distance between two nodes of the cell.
We define

ΔtE = CE min
i=1,... ,I

λn
i

cni
,

where CE is a strictly positive coefficient and ci is the sound speed in the cell. The
coefficient CE is computed heuristically, and we provide no rigorous analysis which
allows such formula. However, extensive numerical experiments show that CE = 0.3
is a value which provides good numerical results. We have also checked that this
value is compatible with a monotone behavior of entropy. The rigorous derivation of
this criterion could be obtained by computing the time step which ensures a positive
entropy production in cell Ωi from time tn to tn+1.
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5.3.2. Criterion on the variation of volume. Using (5.2), we can compute
the area of the cell i at any time t ∈ [tn, tn+1]. Indeed, we have

Ai(t) =
1

2

R(i)∑
r=1

[Xn
r + (t− tn)u�

r ]
[
Y n
r+1 + (t− tn)v�r+1

]
(5.8)

− [Y n
r + (t− tn)v�r ]

[
Xn

r+1 + (t− tn)u�
r+1

]
.

Simple algebra gives

d

dt
Ai(t

n) =
1

2

R(i)∑
r=1

(
u�
rY

n
r+1 + v�r+1X

n
r − u�

r+1Y
n
r − v�rX

n
r+1

)
.

After a Taylor expansion we estimate the area at t = tn+1 by

An+1
i = An

i +
d

dt
Ai(t

n)Δt.

Let CV be a strictly positive coefficient, CV ∈ ]0, 1[. We look for Δt such that

|An+1
i −An

i |
An

i

≤ CV .

To do so, we define

ΔtV = CV min
i=1,... ,I

⎧⎪⎪⎨⎪⎪⎩
An

i∣∣∣∣ ddtAi(tn)

∣∣∣∣
⎫⎪⎪⎬⎪⎪⎭ .

For numerical applications, we choose CV = 0.1.
Finally, the estimation of the next time step Δtn+1 is given by

Δtn+1 = min (ΔtE ,ΔtV , CMΔtn) ,(5.9)

where Δtn is the current time step and CM is a multiplicative coefficient, which allows
the time step to increase. We generally set CM = 1.01.

5.4. Description of the algorithm.
1. Initialization

At time t = tn we know in each cell Ωi, i = 1, . . . , I, the fluid variables
τni , V n

i , En
i , ρni , cni , Pn

i and the geometrical characteristics Xn
r ,Y n

r , Ln
r,r+1,

Nn
r,r+1 for r = 1, . . . , R(i).

2. Nodal solver
• For each internal vertex Mq, q = 1, . . . , Q, we first compute the velocity
V �

q by solving the linear system (4.15). Then we evaluate the edge

pressures P �,k
q,k and P �,k−1

q,k with (4.12) for each edge impinging on Mq.
• For each boundary vertex, we first compute the velocity V �

q by solving

(4.21) or (4.24). Then we calculate the edge pressures P �,k
q,k and P �,k−1

q,k

using (4.20).
3. Time step limitations

We compute ΔtV and ΔtE ; then we predict Δtn+1 from Δtn+1 = min(ΔtE ,
ΔtV , CMΔtn).
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4. Update of the geometrical quantities
We compute Xn+1

r and Y n+1
r from (5.3); then we deduce Ln+1

r,r+1 and Nn+1
r,r+1.

5. Update of the physical variables
We compute the face fluxes from the vertex velocity and the edge pressures;
then we get τn+1

i , V n+1
i , and En+1

i from (5.5), (5.6), and (5.7).
6. Equation of state

The internal energy is given by εn+1
i = En+1

i − 1
2‖V

n+1
i ‖2; then we get the

pressure Pn+1
i and the isentropic sound speed ci from the equation of state.

6. Numerical results. In this section, we present several test cases in order
to validate our numerical scheme. For each case we use a perfect gas equation of
state, namely P = (γ − 1)ρε, where γ is the adiabatic index. We begin by several
classical one-dimensional test cases characterized by the presence of shock waves, of
various strengths, rarefaction waves, and contact discontinuities. We also provide an
isentropic compression. For all these test cases an analytical solution is available so
that we can make accurate comparisons. Then, we give an original test representative
of the domain of hydrodynamic instabilities. The aim of this test is to show the ability
of our scheme to reproduce the growth of such instabilities in the linear regime. Last,
we propose a two-dimensional test case which consists in imploding a double layer
cylindrical shell under an anisotropic pressure load.

6.1. Multimaterial Sod’s shock tube problem. We are concerned with a
multimaterial variant of Sod’s shock tube problem defined in [26]. We consider a
shock tube of unity length (see Figure 6.1). At the initial time, the states on the left-
and right-hand sides of x = 0.5 are constant. The left-hand state is a high pressure
fluid characterized by (ρl, Pl, ul) = (1, 1, 0), and the right-hand state is a low pressure
fluid defined by (ρr, Pr, ur) = (0.125, 0.1, 0). The equation of state is defined on the
left by γl = 7

5 and by γr = 5
3 on the right. The computational domain is defined

by (x, y) ∈ [0, 1] × [0, 0.1]. The initial mesh is a Cartesian grid, and we denote by
nx and ny the number of cells in the x and y directions. The boundary conditions
are wall boundary conditions: the normal velocity is set to zero. Three simulations
are done with ny = 10 and nx = 100, nx = 200, and finally nx = 400 in order
to check the mesh convergence of the scheme. The time step is evaluated following
(5.9). In Figure 6.2, we compare the profiles of the physical quantities at t = 0.2 with
the analytical quantities for three different meshes. The profiles are similar to what
could be obtained with a one-dimensional first order Lagrangian scheme based on the
acoustic solver; see the interpretation of our scheme in section 4.6.1. The shock is
smeared on several cells, and the fan is correctly described for a first order scheme.
The contact discontinuity is resolved in several cells; this is a consequence of the
entropic nature of the solver. We notice an undershoot for the density profile and an
overshoot for the internal energy profile which are classical for Lagrangian methods.
As expected, the finer the mesh is, the better the results are.

Fig. 6.1. Initial data for Sod’s shock tube test case.
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density pressure

velocity internal energy

Fig. 6.2. Cross-section at t = 0.2, comparison with the analytical solution.

6.2. Noh’s test case. Noh’s test case is the implosion of a cylinder of unit
radius. The cylinder is filled with a monoatomic perfect gas (γ = 5/3). The initial
state is (ρ0, P 0,V 0) = (1, 0,−eR), where eR represents the radial unit vector. This
case, defined by Noh in [23], admits a self-similar solution: a shock wave moves
inwards at the constant speed D = 1/3. The symmetry of the problem enables us
to limit the computational domain to an angular sector of angle Θ; see Figure 6.3.
The mesh consists of regular angular sectors, and the domain is meshed with triangles
near the center and with quadrangles elsewhere. This enables us to respect the radial
symmetry of the solution. We denote by nx (resp., ny) the number of layers (resp.,
angular sectors). In what follows, θ = Θ

ny
. The test case is initialized with P 0 = 10−6.

The boundary conditions are wall conditions on the two external edges (hence zero
normal velocity), and we impose a constant pressure P � = P 0 on the external radius
R = 1. The time step is computed following the condition (5.9). In Figure 6.4 we
have represented the results at time t = 0.6 for three meshes defined with Θ = 12◦

and (nx, θ) = (100, 4◦), (200, 2◦), and (400, 1◦). The convergence behavior of the
scheme is very satisfactory. The timing, the density levels, and the pressure levels
after the shock wave are correct. As for Sod’s problem, we notice an overshoot for
the internal energy and an undershoot for the density that are characteristic of the
wall heating phenomena; see [23]. Figure 6.5 displays the mesh at t = 0.6 for Θ = 90◦

and (nx, θ) = (100, 2◦), and one can see that the cylindrical symmetry is perfectly
respected.

6.3. Kidder’s isentropic compression. In [17], Kidder has analytically com-
puted the solution of the isentropic compression of a cylindrical shell filled with perfect
gas. We briefly recall the main features of this solution in order to define the test case.
Initially, the shell has the internal (resp., external) radius r1 (resp., r2). Let P1, P2,
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Fig. 6.3. Noh’s case: initial conditions.

density pressure

velocity internal energy

Fig. 6.4. Cross-section for Noh’s case at t = 0.6, comparison with the analytical solution.

ρ1, and ρ2 be the pressures and densities located at r1 and r2. Since the compression

is isentropic, we define s = P2

ργ
2

and we have ρ1 = ρ2(
P1

P2
)

1
γ . The initial density and

pressure profiles are given by (for r ∈ [r1, r2])

ρ0(r) =

(
r2
2 − r2

r2
2 − r2

1

ργ−1
1 +

r2 − r2
1

r2
2 − r2

1

ργ−1
2

) 1
γ−1

,

P 0(r) = s
(
ρ0(r)
)γ

.

The initial velocity is set to zero: u0(r) = 0. The value of γ is set to γ = 1 + 2
ν with

ν = 1, 2, 3 whether we have a planar, cylindrical, or spherical symmetry. These values
are used in order to obtain a fully analytical solution. In our case we have ν = 2, and
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Mesh Zoom near the origin

Fig. 6.5. Noh’s case: mesh at t = 0.6.

therefore γ = 2. The focusing time τ of the shell is defined (for these parameters) by

τ =

√
γ − 1

2

r2
2 − r2

1

c22 − c21
,

where ci =
√
sγργ−1

i for i = 1, 2 is the isentropic sound speed at r = ri. The isentropic

compression is obtained by imposing the following pressure laws at the internal and
external faces of the shell:

P (R(r1, t), t) = P1h(t)−
2γ

γ−1 ,

P (R(r2, t), t) = P2h(t)−
2γ

γ−1 .

Let R(r, t) be the Eulerian radius (i.e., R =
√
X2 + Y 2) at t > 0 of a fluid

particle initially located on the circle of radius r. Looking for a solution of the form
R(r, t) = h(t)r, we get

h(t) =

√
1 −
(
t

τ

)2

.

The analytical forms of the physical variables at t ∈ [0, τ [ are

ρ(R(r, t), t) = h(t)−
2

γ−1 ρ0

[
R(r, t)

h(t)

]
,

u(R(r, t), t) =
d

dt
h(t)

R(r, t)

h(t)
,

P (R(r, t), t) = h(t)−
2γ

γ−1P 0

[
R(r, t)

h(t)

]
.

In this test case, we have used the parameters r1 = 0.9, r2 = 1, P1 = 0.1, P2 = 10,
and ρ2 = 10−2. From this, we get ρ1 = 10−3, s = 105, and τ = 7.265 10−3. The
computational domain consists of the quarter of an annulus; see Figure 6.6. Once
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Fig. 6.6. Initial conditions for Kidder’s isentropic compression.

Time evolution of the external radius Time evolution of the average density

Density at t = 0.99 τ Entropy parameter at t = 0.99 τ

Fig. 6.7. Kidder’s isentropic compression, comparison with the analytical solution.

more, we impose wall boundary conditions on the axes X = 0, Y = 0 and the previous
pressure laws on the internal and external faces of the domain. The simulations are
run on regular polar meshes defined by (nx, ny) = (25, 44), (50, 88), (100, 176). The
computations are run up to a final time which is very close to the focusing time, i.e.,
t = 0.99 τ . In all that follows, the time is adimensionalized by the focusing time τ .

Figure 6.7, where the variation of the external radius of the shell is plotted,
shows the excellent agreement with the analytical solution. The agreement is good
for the average density2 ρ̄(t) near the focusing point; however, the numerical values

2ρ̄(t) is evaluated from the analytical formula ρ̄(t) = 0.5(ρ1 + ρ2)h(t)−2.
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are smaller than the exact ones. There exists a gap between numerical and analyt-
ical density profiles at the final time. This gap gets smaller and smaller with mesh
refinement; thus we believe it is a consequence of the numerical diffusion. This obser-
vation is confirmed by the profile of the entropy parameter αe = P

sργ . It indicates the
entropy production of the scheme, and we have αe = 1 in the analytical case. The
gap between the exact solution and the numerical one is large on the internal face of
the shell when the mesh is coarse, and it also gets smaller with mesh refinement. The
large entropy production of the scheme degrades the simulated compression, which
explains the shape of the density profile on the internal face of the shell.

6.4. Saltzman’s shock tube. We consider now the movement of a planar shock
wave on a Cartesian grid that has been stretched [10]. This is a well-known difficult
test case that enables us to validate the robustness of our scheme when the mesh is
not aligned with the fluid flow. The computational domain is the rectangle (x, y) ∈
[0, 1]× [0, 0.1]. The initial mesh is obtained by transforming a uniform grid of 100×10
cells with the mapping

xstr = x + (0.1 − y) sin(xπ),
ystr = y.

For the material we use the equation of state of a monoatomic gas (γ = 5/3). The
initial state is (ρ0, P 0,V 0) = (1, 0, 0). The boundary condition at x = 0 is a normal
velocity V � = −1 (inflow velocity). On all the other boundaries, we set up wall
conditions.

The exact solution is a planar shock wave that moves at speed D = 4/3 from left
to right. The propagation of the shock wave at t = 0.6 is displayed in Figure 6.8.
The important result is that our scheme preserves the one-dimensional solution very
well (except for the first and last layers in the vertical direction, this is an effect of
up and down wall boundary conditions). Figure 6.9 shows the mesh at t = 0.75 when
the shock wave hits the right boundary (x = 1). Behind the shock wave, the initial
mesh is distorted, and all the horizontal lines stay almost parallel with respect to the
others. The density profile at t = 0.6 is displayed in Figure 6.10. The shock level is
not uniform, but it oscillates around the exact value ρ = 4.

The robustness of our scheme is clearly demonstrated by this test case: we are
able to reach time t = 0.93 which corresponds to two successive rebounds of the shock
wave on the vertical boundaries of the domain; see Figure 6.11. After this time, the
computation stops because the time step becomes too small (less than 10−15). This
too small time step occurs when nodes are too close to each other (see Figure 6.11,
top left corner). In order to go beyond this time we have to improve the quality of
the mesh by using a rezoning procedure and a remapping phase. This is the arbitrary
Lagrangian–Eulerian (ALE) extension of our scheme which is under development; it
will be the subject of a forthcoming paper.

6.5. Sedov’s test case. We consider the propagation of a high intensity cylin-
drical shock wave generated by a strong explosion; see, for instance, [30]. All the
boundary conditions are wall conditions. The gas of interest is monoatomic (γ = 5

3 ).
It is initially at rest ((ρ0, P 0,V 0) = (1, 0, 0)) and we set up an energy spike at the cen-
ter. The simulation is done first on a Cartesian grid and then on a polar grid. In order
to compare the results, the same amount of energy is added for each computation.

On the Cartesian grids, the computational domain is (x, y) ∈ [0, 1] × [0, 1]. In
the case of the coarsest mesh (i.e., (nx, ny) = (50, 50)), the internal specific energy of
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Fig. 6.8. Saltzman’s test: mesh at t = 0.6.

Fig. 6.9. Saltzman’s test: mesh at t = 0.75.

Fig. 6.10. Saltzman’s test: density profile at t = 0.6.

the first cell is set to ε0 = 5000. This corresponds to subdomain (x, y) ∈ [0, 1/50] ×
[0, 1/50]. The finer meshes are (nx, ny) = (100, 100) and (nx, ny) = (200, 200). In
order to have the same amount of energy, we also initialize with the specific internal
energy ε0 = 5000 in [0, 1/50] × [0, 1/50].

In the case of the polar grids, the domain is defined by (r, θ) ∈ [0, 1]×[0, 90◦]. The
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Fig. 6.11. Saltzman’s test: mesh at t = 0.93.

mesh is made of quadrangles with triangles at the center. The parameters (nx, ny)
correspond to the number of layers in the radial direction and of angular sectors. The
coarsest mesh is defined by (nx, ny) = (50, 25). We initialize the specific internal
energy on triangles and define the subdomain (r, θ) ∈ [0, 1/50] × [0, 90◦]. As the area
to initialize is different in this case, we need to modify the internal energy so that
the energy amount is the same as in the case of the Cartesian grid. Thus we choose
ε0 = 5000 4

π . As for the Cartesian mesh, the finest polar grids are (nx, ny) = (100, 50)
and (nx, ny) = (200, 100), and in both cases, the cells to initialize are those in the
subdomain (r, θ) ∈ [0, 1/50] × [0, 90◦].

Figure 6.12 represents the final mesh at t = 0.1 obtained for the two types of
meshes. Clearly, our initialization leads to the same results. However, we notice that
on the Cartesian grid nonconvex cells appear, but this does not pose any problem to
the nodal solver.

The comparison of the density profiles for the two types of grids is done in Fig-
ures 6.13, 6.15, and 6.16. We notice that for the polar grid, the cylindrical symmetry
of the flow is perfectly preserved; see Figures 6.12 and 6.13. The symmetry is also well
preserved on Cartesian grids, as shown in Figure 6.14 on the left, where the density
profiles on the diagonal are slightly different from those on the x- and y- axes (which
are identical). In Figure 6.14 on the right are represented the density in all cells as
function of the centroid radius of each cell. We also observe that the symmetry is
well preserved. Consequently, these results on Cartesian grids show the ability of our
new scheme to provide good results even when the mesh is not aligned with the flow.
Moreover, Figures 6.15 and 6.16 demonstrate that a mesh convergence study for both
grids leads to similar results.

6.6. Perturbation of the isentropic Kidder’s compression. In this section,
we give an original test case representative of the field of hydrodynamic instabilities.
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Polar grid Cartesian grid

Fig. 6.12. Sedov’s test case: mesh at t = 0.1 for the polar and Cartesian meshes.

Polar grid Cartesian grid

Fig. 6.13. Sedov’s test case: density level at t = 0.1.

Density profiles along different axes Density in all the cells

Fig. 6.14. Sedov’s test case on Cartesian grid at t = 0.1.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A CELL-CENTERED LAGRANGIAN SCHEME 1815

Fig. 6.15. Sedov’s test case: Cartesian grid convergence for density profiles at t = 0.1

Fig. 6.16. Sedov’s test case: polar grid convergence for density profiles at t = 0.1.

The aim of this test is to show the ability of our new scheme to reproduce the growth
of such instabilities. In order to define the test, we consider the isentropic implosion of
a cylindrical shell as in section 6.3. We initially perturb the internal and external faces
of the shell; see Figure 6.6. Then, we study the time evolution of the perturbations.
An approximate analytical solution is available for the perturbation amplification in
the linear regime. This solution is obtained with the technique developed in [13]. We
briefly recall the main results about the analytical solution in order to set up the test
case. More details can be found in [22] and [3].

First we define the mesh perturbation. We are given a Cartesian frame (0, x, y)
and polar coordinates (r, θ). The polar coordinates of the vertices are given by

rp = r + a0ξr(r, θ),

θp = θ + a0ξθ(r, θ),

where a0 is the amplitude of the initial perturbation. The vector ξ =
(
ξr
ξθ

)
is defined

by

ξr(r, θ) = n
(
A1r

−n−1 + A2r
n−1
)
cos(nθ),

ξθ(r, θ) = −n
(
A1r

−n−1 + A2r
n−1
)
sin(nθ).

(6.1)
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Fig. 6.17. Perturbed mesh.

The integer n is the perturbation mode, and A1, A2 are constants which are deter-
mined by the perturbations ξ1 and ξ2 given at the internal and external interfaces,
i.e., ξ1 = ξr(r1, 0) and ξ2 = ξr(r2, 0). We have⎧⎪⎪⎪⎨⎪⎪⎪⎩

A1 = − 1

n

ξ1r
n−1
2 − ξ2r

n−1
1

r−n−1
1 rn−1

2 − rn−1
1 r−n−1

2

,

A2 = − 1

n

ξ1r
−n−1
2 − ξ2r

−n−1
1

r−n−1
1 rn−1

2 − rn−1
1 r−n−1

2

.

The analytical form (6.1) is justified by the fact that ξ derives from a potential. We
check that ∇ · ξ = 0, that is, that the perturbation is incompressible. We have a
divergence-free perturbation.

Using the previous results, we get the Cartesian coordinates of the perturbed
mesh

xp =
(
1 +

a0

r
ξr

)
[x cos(a0ξθ) − y sin(a0ξθ)] ,

yp =
(
1 +

a0

r
ξr

)
[x sin(a0ξθ) + y cos(a0ξθ)] .

(6.2)

This is illustrated by Figure 6.17, which represents the perturbed mesh for the half-
annulus of radii r1 = 0.9, r2 = 1, with the following data: perturbation mode n = 8,
internal and external levels ξ1 = 0, ξ2 = 1, amplitude a0 = 0.02. In [22], we show that
the amplification factor a(θ, t) of the perturbation at the external interface is given
by

a(θ, t) = n
[
A1r

−n−1G1(t) + A2r
n−1G2(t)

]
cos(nθ),

where t ∈ [0, 1[ is the time.3 The functions G1 and G2 are

G1(t) =
√

1 − t2 cos
[√

n
2 log
(

1−t
1+t

)]
,

G2(t) = 1
2

√
1 − t2
[(

1−t
1+t

)√n/2

+
(

1+t
1−t

)√n/2
]
.

3The time is adimensionalized by the focusing time τ .
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Next, we present the results for the following cases: modes 4 and 8 with a perturbation
of the external interface and mode 8 with a perturbation of the internal and external
interfaces. For a given mode, we first define a mesh compatible with this mode, i.e.,
with enough angular sectors per wave length. Then, we compute the nonperturbed
implosion and store the location of the vertex of the external face that corresponds to
θ = 0, namely R(r2, t). Then we perturb the mesh according to (6.2). An implosion
simulation is done on this perturbed mesh. Then we store Rp(r2, t), the location of
the same vertex. The amplification factor is defined by the ratio

anum(t) =
Rp(r2, t) −R(r2, t)

a0
.

In each of the perturbed simulations, the initial amplitude is set to a0 = 10−6 in order
to stay in the linear phase. The final time of each simulation is t = 0.99. The time
step follows (5.9).

6.6.1. Mode n = 4, ξ1 = 0, ξ2 = 1, a0 = 10−6. The computational domain
is defined using the symmetries of mode 4, i.e., (r, θ) ∈ [r1, r2] × [0, π

2 ] (see Figure
6.18). We use equiangular meshes defined by (nx, ny) = (25, 44), (nx, ny) = (50, 88),
and (nx, ny) = (100, 176).

� � ��

�

� � �

�

� � ��

�
�

�
� �� � ���� �������

� � �

�

� � �

�

� � 	

Fig. 6.18. Mode n = 4, location of the vertices of interest.

Points of maximal amplitude Points of vanishing amplitude

Fig. 6.19. Mode n = 4, time evolution of the external perturbation for several vertices of interest.

In Figure 6.19, we show the results for the coarsest mesh. The time evolution of
the amplitude for the vertices defined by θ = 0, π/8, π/4, 3π/8, π/2 (see Figure 6.18)
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Fig. 6.20. Mode n = 4, time evolution of the amplitude of the external perturbation.

is stored. We see that the expected symmetries for the vertices θ = 0, π/4, π/2 are
perfectly respected. Moreover, the amplification factor for the vertices defined by
θ = π/8, 3π/8 is almost null, but we notice a very small amplification, on the order of
1%, when we are near the focusing. In Figure 6.20, we plot the time evolution of the
perturbation obtained numerically for the three meshes and the analytical solution.
The comparison is satisfactory since the numerical amplification is coherent with the
analytical one. This comparison is even more satisfactory as the scheme is only first
order in time and space.

Mesh at t/τ = 0.98 Zoom

Fig. 6.21. Mode n = 4, nonlinear phase a0 = 10−3.

We present in Figure 6.21 the mesh that corresponds to a perturbed simulation
near the focusing time. The initial mesh is defined by (nx, ny) = (25, 176). The initial
amplitude is set to a0 = 10−3 so that, at the final time, we are in the nonlinear regime.

6.6.2. Mode n = 8, ξ1 = 0, ξ2 = 1, a0 = 10−6. The computational domain
is defined using the symmetries of the mode 8, i.e., (r, θ) ∈ [r1, r2]×[0, π

2 ]. We use equi-
angular meshes with (nx, ny) = (25, 44), (nx, ny) = (50, 88), and (nx, ny) = (100, 176).
Figure 6.22 shows a good agreement with the analytical solution for the time evolution



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A CELL-CENTERED LAGRANGIAN SCHEME 1819

Fig. 6.22. Mode n = 8, time evolution of the amplitude of the external perturbation.

of the amplitude of the external perturbation. As for the n = 4 mode case, the scheme
converges by lower values.

Mesh at t/τ = 0.98 Zoom

Fig. 6.23. Mode n = 8, nonlinear phase for a0 = 10−3.

In Figure 6.23 we display the mesh obtained during the nonlinear phase for
the flow perturbed on the full geometry. The initial mesh is defined by (nx, ny) =
(25, 176). The initial amplitude of the perturbation is a0 = 10−3.

6.6.3. Mode n = 8, ξ1 = 2.565293, ξ2 = 1, a0 = 10−6. In this case, we
have introduced a nonzero initial perturbation on the internal interface. The level
of ξ1 is defined so that at the final time t = 0.99, the amplitude of the perturbation
on the external face comes back to its initial value. This permits the coupling of the
perturbations between the two interfaces. This coupling enables us to get a periodic
growth of the perturbation on the internal face. In this case, we use the same meshes
and the same domain as in the previous case.

The results are very satisfactory; see Figure 6.24. They show the ability of our
scheme to reproduce the coupling of perturbations between the internal and external
faces.

6.7. ICF-like test case. In this section, we present a simplified test case of
a cylindrical ICF target. The target is made of two materials which have the same
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Fig. 6.24. Coupled mode n = 8, growth of the perturbation on the internal interface.

Fig. 6.25. ICF-like target: initial conditions.

perfect gas equation of state (γ = 5/3). The data are chosen to be representative of
ICF situations. The interface between the gas and the shell is located at r1 = 0.1,
and the external radius of the target is r2 = 0.11; see Figure 6.25. The initial state
of the gas is given by (ρ1, P1,V1) = (0.01, 2.5 109, 0), and the state inside the shell is
(ρ2, P2,V2) = (1, 2.5 1011, 0). On the external surface of the shell, we apply a pressure
law P � = 1014(1 + a0 sin(2θ)). We study this target in two configurations: the first is
monodimensional with a0 = 0, and the second is bidimensional with a0 = 0.2. This
second configuration may crudely represent the hydrodynamic part of an ICF flow
which results from an inhomogeneous irradiation of the target.

For the monodimensional problem the mesh is made of 25 identical angular sec-
tors on [0, 90◦] and 200 layers (100 uniform layers in the gas and 100 layers with a
geometrical progression in the shell). A geometrical progression is applied so that we
have a good representation of the contact discontinuity between the two materials
(we have the same mass in the two cells around the interface). The time evolution of
internal interface is displayed in Figure 6.26. This shows the two acceleration periods
at t = 1 10−9 and t = 3 10−9 of the interface and at the end the deceleration of the
interface until the stagnation time at t = 5 10−9. In order to validate our results for
the monodimensional configuration, we compare them to the results obtained with a
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monodimensional code named CHIVAS. This code uses a von Neumann–Richtmyer-
type scheme; see [16]. In Figure 6.26, we compare the trajectory of the internal inter-
face with our scheme and with CHIVAS. The two curves can be almost superimposed,
which demonstrates the quality of our scheme.

For the bidimensional case we use two types of meshes. One is a polar mesh (see
Figure 6.27) with 40 angular sectors on [0, 90◦] and 100 layers (50 uniform layers in the
gas and 50 layers with a geometrical progression in the shell). The other is a multiblock
mesh in which we have a square in the central part of the target and nearly the same
mesh as the polar grid for the rest of the domain (see Figure 6.27). Figure 6.28
represents the mesh at t = 4.4 10−9 for both configurations. The nonuniformity of
the pressure on the shell boundary leads to a bidimensional deformation of the internal
interface.

Figure 6.29 illustrates one of the advantages of using a multiblock mesh. We
can see that the time step in the case of the polar mesh reduces to a very small
value (≈ 1 10−14), whereas for the multiblock mesh we keep a reasonable time step
(≈ 1 10−13). The very small value of the time step for the polar mesh is due to the very
small size of the triangular cells located at the center. Moreover, the multiblock mesh
makes the computation more robust and enables us to deal with higher nonuniformity
values for a0.

Fig. 6.26. Monodimensional ICF-like test case: time evolution of the internal interface radius.

Polar mesh Multiblock mesh

Fig. 6.27. Initial mesh for bidimensional ICF-like test case.
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Fig. 6.28. Result for two types of meshes at time t = 4.4 10−9.

Fig. 6.29. Time step during the simulations.

7. Conclusion and perspectives. We have developed a new Lagrangian cell-
centered conservative scheme. This scheme relies on a genuinely two-dimensional
nodal solver. It can be interpreted as the two-dimensional generalization of the Go-
dunov acoustic solver. The main new feature of the algorithm is the introduction of
four pressures on each edge, two for each node on each side of the edge. This extra
degree of freedom allows us to construct a nodal solver that fulfills two properties.
First, the conservation of momentum and total energy is ensured. Second, a semidis-
crete entropy inequality is provided. The face fluxes and the nodal velocities are all
evaluated in a coherent manner. We have checked that, in the case of one-dimensional
problems (with planar or cylindrical symmetry), our solver is exactly equivalent to
the one-dimensional Godunov acoustic solver.

The scheme is only first order accurate; however it appears to be quite robust
and versatile according to the numerical results obtained for the various test cases
presented in this paper.

The next step is to develop the axisymmetric extension of our scheme. Then, in
order to improve the accuracy of the scheme we will study its second order extension,
probably with a MUSCL-type method. This new Lagrangian method looks promising
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both as a stand-alone entity but also as a foundation for a more general method
which may include ALE and/or adaptive mesh refinement techniques. The uniform
cell centering of the solution variables provides a consistent basis for employing a wide
range of well-proven remapping and adaptation schemes.
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