
A residual distribution method using disontinuous elements forthe omputation of possibly non smooth �ows.Rémi AbgrallTeam Bahus, INRIA Bordeaux Sud-Ouestand Institut de Mathématiques de Bordeaux, Université Bordeaux I341 ours de la Liberation33405 Talene Cedex, FraneJune 19, 2010AbstratIn this paper, we desribe a residual distribution (RD) method where, ontrarily to �standard�this type shemes, the mesh is not neessarily onformal. It also enable to use disontinuous elements,ontrarily to the �standard� ase where ontinuous elements are requested. More over, if ontinuityis fored, the sheme beomes similar to the standard RD ase. Hene, the situation beomesomparable with the Disontinuous Galerkin (DG) method, but it is simpler to implement than DGand has guaranteed L
∞ bounds. We fous on the seond order ase, but the method an be easilygeneralized to higher degree polynomials.1 IntrodutionThis paper is devoted to the design of an approximation method for steady hyperboli problems bymeans of a sheme whih enjoys the most possible ompat stenil. There exist many similar methods,for example the Disontinuous Galerkin method, or the ontinuous Residual Distribution shemes. Inthe �rst ase, the solution is represented in eah element of the mesh by polynomial funtions where noontinuity is enfored at the element boundaries. Hene, the method is very �exible sine the mesh doesnot need to be onformal, nor the polynomial degree be the same in eah element. Other approximationtehniques than loal polynomial representations an be hosen In our opinion, one of its disadvantagesis its omplexity, espeially when one onsiders mixed hyperboli/ellipti problems suh as the NavierStokes equations. Moreover, and this is the point we are interested in here, when disontinuous solutionsare omputed, the non linear non osillatory stabilization mehanisms are not ompletely satisfatorybeause they depend on parameters or are quite omplex to design, see [1, 2, 3, 4℄ for example. Eitherthey are very omplex to set up, or they introdue too muh dissipation.In the ase of the residual distribution (RD) methods, the solution is also approximated by piee-wise polynomial funtions, but here the approximation is globally ontinuous. Hene, the algorithmiomplexity is lower (in term of memory espeially). Another property is that there exists a very generaland systemati method that enables us to guaranty auray formal O(hk+1) auray, even at loalextrema, and L∞ stability. However, the mesh must be onformal, see [5, 6, 7℄ among several others.In this note, we desribe a residual distribution method where the funtional representation doesnot need to be ontinuous aross edges. The method is general and ould be extended to any order ofauray, following the lines of [8℄, but here, we have only developed it for a loal P 1 interpolation ineah element to present the ideas. Contrary to the �lassial� RD shemes, the ontinuity aross edges isno longer enfored. This method is simpler than the one desribed in [9℄. Indeed, the sheme redues tothe one of [5, 10℄ and [6℄ if ontinuity is enfored aross edges. Compared with standard DG methods,the sheme non osillatory properties are obtained without any parameter.The paper is organized as follows. We �rst desribe the method for a salar problem. Then themethod is extended to the Euler equations for �uid dynamis. The extension to 3D is straightforwardas well as on non onformal meshes. This paper opens the road for h − p adaptation for RD shemes.1



This paper is a translation of a 2007 report written in frenh, [11℄, with some improvements. In themeantime, M. Hubbard [12℄ has published a similar tehnique. However, the similarity starts and ends inthat we both use disontinuous elements. Hubbard then develops his method using an extension of theN sheme. We have used Lax Friedrihs method, but following [13℄, any standard �nite volume shemean be rewritten as a RD sheme, and hene an be plugged into our framework. The method is alsomuh simpler than [9℄.2 The salar aseLet us onsider the following problem, de�ned in Ω ⊂ R
2 to make the presentation simplerdiv f(u) = 0 if x ∈ Ω

u = g if x ∈ Γ−,
(1)

Γ− is the in�ow boundary
Γ− = {x ∈ ∂Ω suh that ∇uf · ~n(x) < 0}and ~n(x) is the outward unit normal x ∈ ∂Ω.In a �rst step, we onsider a onformal triangulation of Ω using triangles. We explain the method,and in a seond step, we show how to generalize it to non onformal triangulations and for non triangularmeshes. The 3D ase an be dealt with in a similar way.Let us denote by K a generi element of Th. The real number h represents the maximum of thediameters of the elements of Th.In K, we say that the degrees of freedom are loated at the verties, and we represent the approxi-mated solution in K by the degree one interpolant polynomial at the verties of K. Let us denote by uhthis pieewise linear approximation, that is in priniple disontinuous at aross edges. In the following,we use the notations desribed in Figure 1.
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Figure 1: Geometrial elements for de�ning the sheme.In [9℄, the degrees of freedom are loated at the midpoint of the edges that onnet the entroid of Kand its verties. This hoie was motivated by the fat that the P 1 basis funtions assoiated to thesenodes are orthogonal in L2(K). This property enables us to reinterpret the DG shemes as RD shemes,and hene to adapt the stabilization tehniques of RD to DG. In partiular, we are able to enfore a L∞stability property. However, this method was a bit omplex, and it is not straightforward to generalizeit to more general elements than triangles.The geometrial idea behind the new version of the method is to forget the RD interpretation of theDG sheme and to let the geometrial loalization of the degrees of freedom move to the verties of theelement.With this in mind, we de�ne two types of total residuals:2



• A total residual per element K

ΦK =

∫

∂K

f(u) · ~ndlwhih is evaluated thanks to a quadrature formula,
• A total residual per edge Γ, i.e.

ΦΓ =

∫

Γ

[

f(u) · ~n
]

dlwhere [f(u) ·~n] represents the jump of the funtion f(u) ·~n aross Γ. Here, if ~n is the outward unitnormal to K (see �gure 1), this enables us to de�ne a right side and a left side. Hene we set
[f(u) · ~n] = (f(uR) − f(uL)) · ~n.We notie that ΦΓ only depends on the values of u on eah side of Γ.The idea is to split the total residuals into sub-residuals so that a monotoniity preserving shemean be de�ned. Here, we hoose the (loal) Lax�Friedrihs sheme, but other hoies ould be possible,see [13℄ for rephrasing �nite volumes into the RD framework. Thus we onsider

• For the element K whih verties are {i, j, k} and l ∈ {i, j, k},
ΦK

l =
ΦK

3
+ αK(ul − u) (2a)with

u =
ui + uj + uk

3
,and αK ≥ maxx∈K ||f ′(uh(x)|| where || . || is any norm in R

2, for example the Eulidian norm.
• and for the edge Γ,

ΦΓ
l =

ΦΓ

4
+ αΓ(ul − u) (2b)with

u =
ui + uj + uk + up

3where ui, uj , uk, up are the values on eah side of Γ and αΓ ≥ maxK=K+,K− maxx∈∂K∪Γ ||f ′(uh(x)||,see Figure 1 for a de�nition of K±.We have the following onservation relations
∑

i∈K

ΦK
i = ΦK ,

∑

i∈Γ

ΦΓ
i = ΦΓ

(3)The hoie αK ≥ maxx∈K ||f ′(uh(x)|| and αΓ ≥ maxK=K+,K− maxx∈∂K∪Γ ||f ′(uh(x)|| are justi�ed bythe following standard argument. If we set Q = K or Γ, we an rewrite the two residuals as
ΦQ

l =
∑

j∈Q

cQ
ij(ui − uj)with cQ

ij ≥ 0 under the above mentioned onditions. Indeed, if we introdue the value u that appears inthe formulas, we get (for Q = K for example)
ΦK

l =
ΦK

3
+ αK(ul − u)

=
1

3

∫

∂K

(

f(u) − f(ū)
)

· ~ndl + αK(ul − u)

=
∑

j∈K

1

3

(

∫

∂K

(∫ 1

0

f ′(su + (1 − s)ū)ds · ~ndl

)

ds − αK

)

(ui − uj)3



whih proves the result.We get a �rst order sheme by determining uh the solution of: �nd uh linear in eah triangle K suhthat for any degree of freedom i (i.e. vertex of the triangulation),
∑

K,i∈K

ΦK
i +

∑

Γ,i∈Γ

ΦΓ
i = 0. (4)We speify later the boundary onditions.Using standard arguments, as de�ning uh as the limit of the solution of

un+1

i = un
i − ωi

(

∑

K,i∈K

ΦK
i +

∑

Γ,i∈Γ

ΦΓ
i

)with
ωi

(

∑

K,i∈K

cK
ij +

∑

Γ,i∈Γ

cΓ
ij

)

≤ 1,we see that we have a maximum priniple.It is possible to onstrut a sheme that is formally seond order aurate by setting
ΦK,⋆

i = βK
i ΦK and ΦΓ,⋆

i = βΓ
i ΦK (5)with, setting

xK
i =

ΦK
i

ΦK
, xΓ

i =
ΦΓ

i

ΦΓ
,and

βK
i =

max(xK
i , 0)

∑

j∈K

max(xK
j , 0)

, βΓ
i =

max(xΓ
i , 0)

∑

j∈K

max(xΓ
j , 0)

. (6)As in the �lassial� RD framework, the oe�ients β are well de�ned thanks to the onservationrelations (3). The sheme writes as (4) where the residuals ΦK
i (resp. ΦΓ

i ) are replaed by ΦK,⋆
i (resp.

ΦΓ,⋆
i .Boundary onditions. If Γ is an in�ow boundary edge, we need to set weakly the boundary ondition

u = g. Consider a numerial �ux, say an upwind �ux, denoted by F(uh, g, ~n(x)). We onsider theboundary residual
ΦΓ =

∫

Γ

(F(uh, g, ~n(x)) − f(uh) · ~n)dlthat we split into two parts following the same proedure as above. If l and l′ are the two verties of Γ,we have de�ned ΦΓ
l and ΦΓ

l′ , and
ΦΓ

l + ΦΓ
l′ = ΦΓ.The sheme, when we take into aount the boundary onditions, is again (4) where the list of edgestakes into aount the boundary edges, if needed.Conservation and auray issues. In [9℄, we have shown that a sheme of the type (4) where theresidual satis�es the onservation onstraints (3) (inluding on the boundary) and standard stabilityassumptions (as in the Lax Wendro� theorem) is onvergent and the limit solution is a weak solution ofthe PDE (1).The auray onstraint (5) and (6) are also analyzed in the same referene [9℄. In that ase, theassumption that the problem is steady is essential in showing that the residuals (inluding the boundaryresiduals) satis�es

ΦQ(uh) = O(hd+1)where uh is the interpolant of the exat solution (assuming it is smooth) and d is the dimension of Q:
d = 2 for a triangle and d = 1 for an edge. 4



Figure 2: Example of a non onformal mesh.Extension to non onformal meshes. In what follows, we refer to �gure 2. The sheme (4) staysthe same. Only the evaluation of the the residuals need to be preised. The total residuals per elementsor edges remain idential. By edge Γ, we mean an edge seen from a given element. In the ase of �gure 2,for the element K, we get the edge [i, q], while for K ′, we take [i, j]. Notie that the degree of freedom q,again referring to 2, is ative of eah of the elements of the �gure exept K ′: this explains the de�nitionwe have taken for edges. The rest is idential.3 Appliation to the salar ase.We test the sheme on a standard benhmark: the Burgers equations whih is non linear. The Burgersproblem is
1

2

∂u2

∂x
+

∂u

∂y
= 0 (x, y) ∈]0, 1[2

u(x, y) =







1 − 2x x ∈ [0, 1], y = 0
1.5 x = 0, y ∈ [0, 1]
−0.5 x = 1, y ∈ [0, 1].

(7)One of the problem we had to deal with is the visualization of the results. We have used a softwarethat is only able to represent point value data ones, not ell entered data as here. Hene to transformour data into ell entered data, we had to ompute, for any vertex Mi,
ui =

∑

K,Mi∈K

uK
i

∑

K,Mi∈K

1where uK
i represents the value at Mi when Mi is seen as belonging to K.The �gure 3 represents the isolines obtained for r (7). The results are non osillatory and similar tothose obtained by other methods, for example in [9, 6℄.4 Extension to the Euler equationsFor a system, the sheme remains formally idential: we an rephrase word to word the de�nitions ofthe total residuals, as well as that of the Lax Friedrihs sheme. The parameter α in (2) beomes

max
||n||=1

ρ
(

Anx + Bby

)where A (resp. B) is the x- (resp. y-) Jaobian of the Euler �ux and ρ(M) is the spetral radius of thematrix M . In the system ase, the sheme is formally idential. The only di�erene is in the de�nition ofthe �limited� residuals (5) and (6), i.e. in the de�nition of the matries βK
i and βΓ

i needs to be preised.5
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Figure 3: Results obtained for (7).The methods is the one desribed by [5℄ that we reall. The Euler equations write
∂U

∂t
+

∂F (U)

∂x
+

∂G(U)

∂y
= 0where the vetor of onserved variables is

U =









ρ
ρu
ρv
E









,and the �uxes F and G are
F (U) =









ρu
ρu2 + p

ρuv
u(E + p)









, G(U) =









ρv
ρuv

ρv2 + p
v(E + p)









.Here, as usual, ρ represents the density, u and v are the two omponents of the veloity vetor, E is thetotal energy and p is the pressure. The system is losed by an equation of state, here we assume thatthe �uid is a alorialy perfet gas,
p = (γ − 1)

(

E −
1

2
ρ(u2 + v2)

)

.The ratio of spei� heats γ is set to 1.4.Let us onsider a diretion (in pratie the veloity vetor) ~n whih omponents are nx and ny.Denoting A and B the Jaobian matries of the �ux F and G with respet to U , we know that thematrix
Anx + Bny6



is diagonalizable with distint real eigenvalues: the system is stritly hyperboli. The eigenvalues are
λ1 = ~u · ~n whih is double and λ± = ~u · ~n ± c. As usual, c represents the speed of sound,

c2 = γ
p

ρ
.Let us denote by r1, r2 the eigenvetors assoiated to λ1 and r3,4 those assoiated to λ±. More preisely,if H represents the total enthalpy, un = ~u · ~n and ut = −nyu + nxv, we have

r1 =









1
u
v

u2
+v2

2









, r2 =









0
−ny

nx

ut









, r3 =









1
u − cnx

v − cny

H − unc









, r4 =









1
u + cnx

v + cny

H + unc









.By itself, the hoie of the eigenvetors is not important, what is important is that these eigenvetors areorthonormal for the quadrati form de�ned by the Hessian of the entropy. Here, the quantities involvedin the de�nition of the eigenvetors, i.e. the speed of sound, the veloity, the enthalpy, are evaluated atan average state. Many hoies have been tested, and these experienes have revealed that the hoieis not very important. We have taken a state de�ned by the primitive variables that are the arithmetiaverages of the states at the verties of K or Γ, the elements for whih we are omputing the seondorder residuals.One this is done, we proeed as follows, for the element Q = K or Γ.1. We deompose ΦQ
l , l = 1, . . . , N (N=3 for a triangle, 4 for an edge), in the eigen-basis

ΦQ
l =

∑

ℓ=1,4

(ΦQ
l )ℓrℓ,2. For eah parameter ℓ (hene for any eigenvetor rℓ), we notie that

N
∑

l=1

(ΦQ
l )ℓ = (ΦQ)ℓand we de�ne (ΦQ

l )⋆
ℓ by

(ΦQ
l )⋆

ℓ =

(

(ΦQ
l )ℓ/(ΦQ)ℓ

)+

N
∑

j=1

(

(ΦQ
j )ℓ/(ΦQ)ℓ

)+
(ΦQ)ℓ,with x+ = max(x, 0).3. Then

(ΦQ
l )⋆ =

4
∑

ℓ=1

(ΦQ
l )⋆

ℓrℓ.In any of the results that we have obtained, we have not added any �ltering term as it was neessaryin [6℄. For the moment, it is not possible to tell if suh a term is needed or not for the following reason:The graphi software we have used needs data at the verties of the mesh. Here, a vertex arries severaldegrees of freedom (one per element), and we have made an arithmeti average. This ertainly smoothesthe results.We have run a quite omplex ase, that has been already doumented in [6℄. It is a sramjet whihonditions are
• Left and right boundary: supersoni in�ow and out�ow onditions. The in�ow onditions are

ρ = 1.4, u = 3.6, v = 0, p = 1.

• The other boundaries are solid walls. 7
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3Continuous elements Disontinuous element.Figure 4: Density isolines for the �lassial� sheme (left) and the sheme desribed in this paper (right).30 isolines are represented.The boundary onditions at the solid walls are obtained by mirror onditions.The density isolines (Figure 4), pressure isolines (Figure 5) and Mah number isolines(Figure 6) aregiven. They are ompared with the results obtained by the ontinuous residual distribution method of[6℄, whih is also seond order in spae. The isolines are almost idential for the two shemes. Figure 7represents a zoom of the Mah number isolines at the exit of the sramjet. One again, the quality ofthe results is similar.
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3Continuous elements Disontinuous element.Figure 5: Pressure �eld for the �lassial� sheme (left) and the sheme desribed in this paper (right).30 isolines are represented.5 Conlusions and perspetivesWe have desribed an extension of the Residual distribution shemes using disontinuous elements.The main di�erene between these shemes and the disontinuous Galerkin ones is in the stabilizationmehanism. For salar problems we are able to prove L∞ stability. Extension to more than seond orderauray, following the lines of [14℄ should be straightforward as well as for meshes using non triangularelements. After this work (a preliminary version is in [11℄) and [9℄ was ompleted, the referene [12℄has been published. Though some similarities, we believe that our approah is more general and more8
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