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Abstract

In this paper, we discuss a new class of schemes, the residual distribution schemes, adapted to compressible flow problems. They can
be seen as a link between pure finite element methods such as the streamline diffusion method and the high order upwind method finite
volume schemes. In fact they borrow ideas from both classes and this results in very accurate compact schemes. Up to now, they are
mainly adapted to triangular type meshes, but can handle steady and unsteady problems. Since the philosophy is quite different form
standard schemes, we will provide a full description of the schemes and many numerical illustrations. Some still unsolved issues will also
be discussed.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

We are interested in the numerical approximation of the
Euler equations of fluid mechanics in a domain X with
boundary conditions,

oW
ot
þ divFðW Þ ¼ 0; t > 0 and x 2 X

W ðx; 0Þ ¼ W 0ðxÞ; x 2 X

Boundary conditions on oX

ð1Þ

In this paper, we focus on the two-dimensional case only.
The three-dimensional case has, of course, already been
considered elsewhere. Since the problems and the methods
are the same than in the 2D case, and for the sake of sim-
plicity, we have preferred to focus on the lower dimension
case.

The flux F ¼ ðF ;GÞ and the conserved variables are
given by

W ¼ ðq; qu; qv;EÞT;

F ðW Þ ¼ ðqu; qu2 þ p; quv; uðE þ pÞÞT and

GðW Þ ¼ ðqv; quv; qv2 þ p; vðE þ pÞÞT

where q is the density, u and v are the components of the
velocity, � the internal energy and E ¼ q�þ 1

2
qðu2 þ v2Þ is

the total energy. The system is closed by the equation of
state relating the pressure p to the conserved variables,

p ¼ ðc� 1Þ E � 1

2
qðu2 þ v2Þ

� �
¼ ðc� 1Þq�.

In the following the matrix A = A(W) (respectively B =
B(W)) is the Jacobian matrix $WF (respectively $WG)
evaluated at the state W. Last, the ratio of specific heats
c is kept constant, c = 1.4 in the applications.

The system (1) has to be supplemented by the entropy
inequality which translates the second law of thermo-
dynamics,

oS
ot
þ oðuSÞ

ox
þ oðvSÞ

oy
6 0 on X. ð2Þ
Here, the mathematical entropy is given by S = �qh(s) [1],
where s is the physical entropy

s ¼ cv log
p
qc

� �
þ s0 ð3Þ

and h is any real valued function such that

h0 > 0 and
h00

h0
< c�1.

In the practical examples, we take h(x) = x. If the flow is
smooth, (3) is equivalent to

os
ot
þ u

os
ox
þ v

os
oy
¼ 0 ðP 0Þ ð4Þ

and E. Tadmor has shown [2] that the solution (if it is
bounded) enjoys the following minimum principle

sðx; tÞP min
ky�xk6tk~uk1

sðy; 0Þ; ð5Þ

where kxk is the Euclidean norm of x and k~uk1 is the L1

norm of the velocity field.
For introducing and analysing in some details the resid-

ual distributive schemes (RD for short), we often rely on a
scalar version of (1), the transport equation

ou
ot
þ a � ru ¼ 0. ð6Þ

This equation is supplemented by Dirichlet boundary con-
ditions on the inflow part C� of the computational domain
X that, denoting by n(x) the unit normal vector to oX at
x 2 oX, is defined by

C� ¼ fx 2 oX; nðxÞ � a 6 0g
and also by initial conditions. The steady version of (6) is

a � ru ¼ 0 x 2 X;

u ¼ g x 2 C�.
ð7Þ

In some applications, we need the nonlinear version of (6)
and (7), namely

ou
ot
þ div fðuÞ ¼ 0; ð8Þ
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supplemented by initial and boundary conditions, and its
steady version

div fðuÞ ¼ 0 x 2 X;

u ¼ g x 2 C�.
ð9Þ

In (8) and (9), the flux f = (f,g) is continuously differentia-
ble with respect to u.

Computing the solutions of (1) has become a routine
task in many modern CFD codes. Many current schemes
use the ideas developed in the 70–80’s for high resolution
schemes by van Leer, Roe, Osher, Harten, Yee, Sweby,
and many others. The list is enormous, and some of the
most significant contributions has been collected in [3].
However, the quality of the solution is still questionable:
some apparently simple problems such as computing the
lift and drag of an airfoil is still a difficult task. One of
the reasons is that the so-called high resolution schemes
suffer a much too important entropy production. In fact,
they have been devised on scalar 1D problems, then
extended to multiD systems but their construction relies
on ‘‘1D ideas’’. Another difficult problem is the sensitivity
to the mesh: It is still difficult to construct 3D mesh with a
very good quality and consequently, the quality of the solu-
tion itself may be questionable in many cases. Hence, it is
natural to try to develop methods that are as little as
possible sensitive to the regularity of the mesh.

For these reasons, since several years, some researchers
have tried to incorporate some ideas contained in the 1D
high resolution schemes (upwinding and monotonicity
preservation) in a finite element like framework. Some of
the major contributions has been done by Roe, Deconinck,
Sidilkover and their coauthors. These residual distribution
(or fluctuation splitting) schemes have first been developed
for a scalar transport equation, then formally extended to
the system (see [4,5] for example) by incorporating as much
physics as possible. These schemes share common features
with the SUPG scheme of Hughes or the streamline diffu-
sion methods of Johnson, except for upwinding. These
schemes are not constructed by using any particular direc-
tion of the mesh. One of their advantage is that, at least for
scalar equations, one can construct a fully second order
accurate scheme on triangular meshes with a very compact
stencil: the scheme uses only the neighboring nodes. In the
finite difference context, it is interesting to note the paper
by Ni [6] which is the first, up to our knowledge, where
the idea of splitting an elementwise quantity was splitted
in part to update the solution, and also the work by Lerat
and coworker that share many similarities with the SUPG-
like scheme, [7–9].

The upwind residual distribution schemes have first been
imagined by Roe in [10] and then in collaboration with
Deconinck and collaborators. The status of this work have
been reported in a series of von Karmàn Institute Lecture
Series in the 90’s, one example is [4], or a series or PhD the-
sis such as Paillère’s [11] or van der Weide’s [12]. Later con-
tributions are [13] or [14–18]. The 2002 state-of-the-art is
reported in a special issue of Computer and Fluids [19]
and in the 33rd Lecture series of the von Karmàn Institute
[20–22].

This paper is organised as follows. We first give some
generalities on residual distribution schemes. In particular,
we connect them to finite volume schemes and show why
they offer more flexibility. We recall Roe–Struijs–Decon-
inck linearisation [23] give a simple condition that guaran-
tees a Lax Wendroff like theorem and describe the design
principle of our scheme. Then, we recall two important
examples of the system N (narrow) and the LDA (low dif-
fusion advection) system schemes introduced by van der
Weide and Deconinck [24] after their scalar version. We
show that they are well defined for a symmetrizable system.
Barth [25,15] has shown that for a linear symmetrizable
system the N scheme is globally and locally dissipative.
In a next section, we give a different interpretation of the
PSI scheme, and we show how to extend it to (1). The
extension to viscous problems is discussed. Numerical
examples are given to illustrate the scheme. All this mate-
rial is provided in Section 2. Then, following the same lines,
we consider unsteady problems in the scalar and system
case in Section 3. In Section 4 we discuss what we consider
to be the most important problems to solve for RD scheme,
namely the problem of erratic convergence in some situa-
tions and the high order extension of the RD scheme (i.e.
higher than second order accuracy), and then conclude.

2. Residual distribution for steady problems

In this section, we are interested in the steady problem
(1). We consider a conformal mesh which elements are tri-
angles in 2D and tetrahedrons in 3D. In all what follows, in
order to make the notations simpler we assume to work in
two dimensions, but everything can be easily extended to
3D. The triangles are denoted by fT lgl¼1;...;nt

, nt is the num-
ber of elements. The vertices are denoted by fMigi¼1;...;ns

, ns

the number of vertices. We denote by Mj1
, Mj2

and Mj3
the

three vertices of T. In most cases, there is no ambiguity, so
these vertices are simply denoted by M1, M2 and M3, or 1,
2, 3. In all what follows, we assume that the mesh is regu-
lar. We also denote by h the maximum of the diameters of
the triangles.

2.1. Generalities

In the RD schemes, the data are stored at vertices.
Hence, Wi is an approximation of W(Mi). Eq. (1) is then
approximated byX
T ;Mi2T

UT
i ¼ 0. ð10Þ

The quantities UT
i are called residual. In general, they

depend on Wj where j 2VðiÞ a finite set of indices. They
have to fulfill the conservation relationX
Mi2T

UT
i ¼

Z
T

div ðF ðW ÞÞh dx :¼ UT; ð11Þ
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where (F(W))h is an approximation of the continuous
flux F. The system (10) is never solved as it appears, but
via an iterative procedure. One simple example is given
by

W nþ1
i ¼ W n

i �
Dt
jCij

X
T ;Mi2T

UT
i ; ð12Þ

where we seek for the limit, when n! +1, of W n
i . The

parameter Dt can be interpreted as a pseudo-time step,
while jCij is the area of the dual control volume. In other
words, we seek for an approximation of the unsteady Euler
equation when the time goes to infinity. Obviously, local
time stepping can be used, in which case the iterative meth-
od is interpreted as a relaxation method of the Jacobi type.
Last, the boundary conditions are enforced weakly, see [14]
for an example of technique.

2.2. Accuracy, monotonicity and conservation issues

In this section, we provide some design features of the
schemes. Ideally, they should be monotone, stable, accu-
rate, convergent, etc. Here we provide simple conditions
to ensure the monotonicity, accuracy, and simple criteria
that garanties they converge to a solution of the problem,
provided the numerical sequence does converge.

2.2.1. Monotonicity preserving schemes, scalar case

In practice, all the known RD schemes can be written as

UT
i ¼

X
Mj2T ;Mi 6¼Mi

cT
ijðui � ujÞ. ð13Þ

For this scheme to be L1 stable, it is enough that

cT
ij P 0 for all i; j. ð14Þ

The method is monotone, and the iterative method (12)

unþ1
i ¼ un

i �
Dti

jCij
X

T ;Mi2T

UT
i

is monotone under the CFL-like condition

Dti max
T ;i2T

P
j2T cT

ij

jT j

 !
6 1.

The condition (14) is the so-called monotonicity preserving
condition.

2.2.2. Accuracy: the linear preserving (LP) condition

We briefly recall the analysis of [14]. It is shown that a
converged RD scheme (10) produces a formally second
order accurate solution of the steady problem (1) under
the following three requirements:

1. The mesh is regular,
2. The approximation Fh is second order accurate on

smooth solutions,
3. For any smooth solution of (1), UT

i ðW Þ ¼ Oðh3Þ for any
vertex Mi and any triangle T such that Mi 2 T.
For this reason, it is essential that Eq. (10) is exact or
approximately exact with an error at most Oðh3Þ otherwise
accuracy is lost.

In most cases, the third condition is met by imposing
that there exists a family of uniformly bounded coefficients
(or matrices for system problems) bT

i such that

UT
i ¼ bT

i UT.

Indeed, it is easy to show thatZ
oT

F hðW hÞdl ¼ Oðh3Þ;

when Fh(Wh) is a second order approximation correspond-
ing to a smooth solution. This is the linearity preservation
(LP) condition introduced in [4] which is satisfied by the
SUPG scheme and the PSI scheme of Struijs [23] that we
recall later.

It is known that it is not possible to have a linear scheme
that is both monotonicity preserving and linearity preserv-
ing: this is Godunov theorem [26]. The schemes that satisfy
both requirements must be nonlinear. The construction of
such schemes is the topic of the next section.

2.2.3. Conservation

The conservation relation (11) garanties under rather
mild assumptions, that the scheme, if it converges, con-
verges to a weak solution of the problem. More precisely,
we temporarily denote by ðW h

i Þi¼1;...;ns
the solution of (10)

to indicate the mesh dependency. In [27], it is shown that
under the following conditions:

1. the mesh is regular,
2. the approximation (F(W))h is continuous across the

edges of the triangles T,
3. when the mesh size converges to 0, (F(W))h! F(W) in a

suitable norm (L1
loc or L2

loc),
4. the functions UT

i ¼ UT
i ðW j; j 2VðiÞÞ is continuous,

5. the conservation condition (11) is satisfied,
6. the solution ðW h

i Þi¼1;...;ns
is bounded in the maximum

norm when the mesh size h! 0 and there exists a locally
square integrable function W such that a subsequence of
ðW h

i Þi¼1;...;ns
converges to W in L2(X),

then W is a weak solution of (1).
Hence, the conservation relation (11) is essential for the

quality of the solution. What about nonlinear problems
like (1) or (9)? Most of the schemes are first constructed
for a linear problem and not for nonlinear ones. So, one
has to find a linearised problem such that its residual on
any triangle is equal to the residual (11). This is, in general,
a nontrivial question, except when the flux depends
quadratically of the conserved variable.

Consider for example the case of the Burger equation

ou
oy
þ 1

2

ou2

ox
¼ 0. ð15Þ
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The only thing we know how to do is to construct RD
scheme for a linear advection problem,

ax
ou
ox
þ ay

ou
oy
¼ 0; ð16Þ

that is to construct residuals Ui such that

U1 þ U2 þ U3 ¼ U ¼
Z

T
ax

ouh

ox
þ ay

ouh

oy

� �
dxdy;

where we have assumed a piecewise linear interpolation.
How can we construct (ax,ay) such that conservation holds
for (15), i.e.Z

T
ax

ouh

ox
þ ay

ouh

oy

� �
dxdy ¼

Z
T

ouh

oy
þ 1

2

oðuhÞ2

ox

 !
dxdy.

The answer is obtained via a Roe type linearisation since
the fluxes are quadratic,

ax ¼ 1 and ay ¼
u1 þ u2 þ u3

3
.

In the system case, the answer is the similar, see [26]. In
particular, in the case of the Euler equation with a constant

polytropic coefficient c, it is known that the Roe parameter
vector

Z ¼ ffiffiffi
q
p ð1; u; v;HÞT

permits to write the fluxes F := F(Z) and G := G(Z)
quadraticaly in Z, as well as the conserved variable
W := W(Z). Then, it is possible to construct averaged
Jacobians A and B such thatZ

T
divF hðW hÞdx ¼ A

Z
T

oW h

ox
dxþ B

Z
T

oW h

oy
dx;

where it is understood that Fh(Wh) := F(Zh), Wh := W(Zh)
and Zh is the linear interpolant of Z in T. The interesting
point is that the system

oV
ot
þ A

oV
ox
þ B

oV
oy
¼ 0 ð17Þ

is also hyperbolic for a constant c, see for example [14] for
details. This is some sort of a coincidence, because the
hyperbolicity of (17) has nothing to do with the way it
was constructed.

There are several important differences with the one-
dimensional situation. In one dimension, there are several
ways of deriving the Roe linearisation. One is the use of
the Roe parameter vector, another one is to write explicitly
the relation

ADW ¼ DF ð18Þ
with Df := fL � fR with the choice A ¼ oF

oW ðW Þ at some aver-
age state to be determined and to realise that one has to
solve a quadratic equation in �u and a linear one in H to
get the result. The quadratic relation has two solutions

�u1 ¼
ffiffiffiffiffi
qL
p

uL þ
ffiffiffiffiffi
qR
p

uRffiffiffiffiffi
qL
p þ ffiffiffiffiffi

qR
p ; �u2 ¼

ffiffiffiffiffi
qL
p

uL �
ffiffiffiffiffi
qR
p

uRffiffiffiffiffi
qL
p � ffiffiffiffiffi

qR
p ð19Þ
and only one stays bounded whatever the density values:
the Roe average of the velocity.

Another method is that the difference operator
Df := fL � fR that defines the difference of a function f

between two states fL and fR has the same properties as a
derivation. It is known that if f and g are two real valued
functions, then the derivative (fg) 0 is

ðfgÞ0 ¼ f 0g þ fg0.

Similarly, for any k 2 [0, 1] one has

DðfgÞ ¼ �gDf þ f Dg; ð20Þ

where �f ¼ kfL þ ð1� kÞfR and g = (1 � k)gL + kgR.
Thanks to this relation and the choice

k ¼
ffiffiffiffiffi
qL
pffiffiffiffiffi

qR
p þ ffiffiffiffiffi

qL
p ;

one gets the Roe average.
In two dimensions, the situation is very different. The

method starting form (18) can be generalised. Instead of
two generic solutions (19), one has in general four solu-
tions, among which only one remains bounded what ever
the density values. Unfortunately, it is very difficult to com-
pute in general and, last but not least, the linearised system
(17) may not be hyperbolic. Thus this of no use, see [28,29]
for details. The second method cannot be extended to the
RD case since the algebraic relation (20) cannot be gener-
alised in several dimensions, so that no ‘‘formal’’ derivation
relation seems to exist. The only solution is the use of the
Roe parameter vector, but it works only for ideal gases
. . .Some solutions to overcome the problem have been
proposed, see [15,30], the most promission is [30].

This situation is in contrast with what can be done
for finite volume schemes. Here, it is sufficient to define a
continuous numerical flux F that satisfies

FðW i;W j;~nijÞ ¼ �FðW j;W i;~njiÞ
to ensure conservation in the general case, see [31,32]. In
the RD scheme, one has to establish a global conservation
relation at the level of the triangle T, which is much more
difficult. We show in Section 4.2 that in fact, when going to
high order schemes, the situation becomes surprisingly
much easier, so that conservation is not any more a
problem.

2.3. First examples

Many very classical schemes can be formulated within
the framework of RD schemes. An example is given by
the finite volume schemes, see [14]. In that case, and what-
ever the order of accuracy of the scheme, the approxima-
tion (F(W))h is defined in each triangle T as the Lagrange
interpolation of the flux F. If Ni is the piecewise linear
shape function associated to the vertex Mi, the restriction
of (F(W))h in T is

ðF ðW ÞÞh ¼
X
i2T

F ðW iÞNi.



Fig. 1. Definition of is the inward normal vector opposite to the vertex
Mi.

1 Since for any i, Ui! 0 uniformly if a! 0, there is no definition
problem in the case a = 0.
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In that case, we have

UT ¼ 1

2

X
j2T

F ðW jÞ �~ni;

where~ni is the inward normal vector opposite to the vertex
Mi, see Fig. 1 for the notations.

However, the schemes defined by (10) and (11), where
(F(W))h satisfy the above conditions, represent a much
wider class than the finite volume ones. In particular, the
finite volume are constructed using directions that are only
related to the mesh definition, not the structure of the solu-
tion. Other schemes, that also satisfy (10) and (11), can be
defined without any reference to the geometry of a control
volume and by using more deaply the physical structure of
the local flow.

Among the schemes that cast into the formalism (10)
and (11) are the streamline diffusion method of Johnson
et al. [33] and the SUPG scheme of Hughes et al. [34].
We denote by Wh the continuous piecewise linear inter-
polant of ðW h

i Þi¼1;...;ns
and let Vh any continuous piecewise

linear test function. These schemes writes for (1)

for all V h;

Z
X

V h � divF ðW hÞdx

þ
X
T�X

hT

Z
T
ðrW F ðW hÞ � rV hÞðrW F ðW hÞ � rW hÞdx ¼ 0.

In that case, the residual writes

UT
i ¼

Z
T
Ni � div F ðW hÞdxþ hT

Z
T
ðrW F ðW hÞ � rNiÞ

� ðrW F ðW hÞ � rW hÞdx.

The last example of this type we provide in this section is
an extension of the Lax Friedrichs scheme. The residual is

UT
i ¼

1

3
UT � aT

X
j2T ;j 6¼i

ðW i � W jÞ
 !

. ð21Þ

Clearly, UT
1 þ UT

2 þ UT
3 ¼ UT. The parameter a is chosen

larger than the spectral radius of A and B. If the approxi-
mation (F(W))h in (11) is the linear interpolation of the
flux, this is the RD formulation of the finite volume Lax
Friedrichs scheme. If another approximation is chosen, as
the one using the Roe parameter vector [26], this leads to
non finite volume scheme, i.e., no numerical flux associated
with precise directions in the mesh seems to be related to
that scheme.

2.4. Upwind residual distribution schemes

We first recall the construction of these schemes for the
linear scalar problem

We consider the problem

a � ru ¼ 0 x 2 X;

u ¼ g on C�
ð22Þ

where C� is the inflow boundary of C = oX. If the un-
known u is piecewise linearly interpolated, the total resid-
ual UT is given by

UT ¼
X3

j¼1

kjuj;

where

kj ¼
1

2
a � ~nj ¼

Z
T

a � rNi dx.

We notice that
P3

j¼1kj ¼ 0. Here, we drop the superscript T
in UT

i � Ui because there is no ambiguity.
We briefly describe the N (narrow) scheme [26]. It writes

Ui ¼ kþi ðui � ~uÞ; ð23Þ
where ~u is obtained by recovering the conservation, i.e.

~u ¼
X

j

k�j

 !�1 X
j

k�j uj

 !
. ð24Þ

In (23), we have set as usually kþi ¼ maxðki; 0Þ and
k�i ¼ minðki; 0Þ so that ki ¼ kþi þ k�i .

The scalar n :¼
P

jk
�
j

� ��1

is always defined unless

a = 0.1 This scheme can be considered as a conservative
method of characteristics.

There are two possible types of triangles, the one target
triangles and the two targets triangles, see Fig. 2. In fact,
since

P3
j¼1kj ¼ 0, either one of the kjs is positive and the

others are all negative: this is the one target case, or two
kjs are positive and the last is negative: this is the two target
case.

• One target case. We assume k1 > 0 and k2,k3 6 0. Then,
U1 = U, and U2 = U3 = 0.

• Two targets case. We assume k1 P 0 and k2 P 0, so
k3 6 0. Thus, U3 = 0, and simple calculations lead to

U1 ¼ k1ðu1 � u3Þ;
U2 ¼ k2ðu2 � u3Þ.



Fig. 2. One target and two target cases for the N and LDA schemes.
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The relations (23) and (24) ensure a continuous switch
between the one target case and the two target case. Note
that any interior node is always one target with respect
to exactly one of the triangles that surround it. This feature
seems to have an important role in the good behavior of
the N scheme and of its high order counterparts.

Eq. (23) can be rewritten as

Ui ¼
X

j2T ;j 6¼i

cT
ijðui � ujÞ

with cT
ij ¼ kþi nk�j P 0. Because of that, the method is

monotone, and the iterative method (12)

unþ1
i ¼ un

i �
Dti

jCij
X

T ;Mi2T

UT
i

is monotone under the CFL-like condition

Dti max
T ;i2T

kþi
jT j

� �
6 1.

Another upwind scheme is the LDA scheme (for low
diffusion advection), see [4]. It is defined as

Ui ¼ �nkþi U.

This is an upwind scheme, it is not monotone. Note that
the LDA scheme is identical to the N scheme for one target
triangles. The main difference between the two schemes, be-
sides the monotony problem, is accuracy for steady prob-
lems. The N scheme is only first order, since in general
the ratio Ui

U are not uniformly bounded. The LDA scheme
is linear preserving since these ratio are equal to �nkþi
and lies in [0, 1]. If the N scheme provides nonoscillatory
solutions, the LDA will be oscillatory, but only near
discontinuities.

2.5. Construction of LP, monotony preserving

second order schemes

The problem is the following. Considering a triangle T,
we are given residuals that define a first order monotone
scheme, (U1,U2,U3). More precisely, we demand that it sat-
isfies the local monotonicity conditions (14). We want to
construct a second order scheme defined by its residuals
ðU�1;U�2;U�3Þ such that the resulting scheme is still locally
monotonicity preserving under a CFL type conditions, is
also linear preserving and satisfiesX3

i¼1

Ui ¼
X3

i¼1

U�i ¼ U.

The first remark is that if one defines xi ¼ Ui
U , we notice

thatX3

i¼1

xi ¼ 1.

Then we define bi ¼
U�i
U , the problem can be reformulated as

finding a mapping (x1,x2,x3) # (b1,b2,b3) such that

1. Conservation
P3

i¼1bi ¼ 1.
2. Monotonicity: for all i = 1,2,3, xibi P 0. Using (13) and

(14), this condition comes from the fact that

U�i ¼
U�i
U

U
Ui

Ui ¼
bi

xi

X
j 6¼i

cijðui � ujÞ ¼
X

j 6¼i
c�ijðui � ujÞ

with c�ij ¼
bi
xi

cij. Since cij P 0, the positivity of c�ij is equiv-
alent to xibi P 0.

3. Linear preserving condition: we want bi bounded for
any i.

In [35], we provide a geometrical interpretations of these
conditions, and several solutions to this problem. We
repeat the argument. The key remark is that since

P
jxj ¼P

jbj ¼ 1, we can interpret the coordinates (x1,x2,x3) and
(b1,b2,b3) as the barycentric coordinates of points L and
H with respect to a reference triangle (A1,A2,A3) that we
choose to be equilateral for symmetry. The points L and
H are defined by

L ¼ x1A1 þ x2A2 þ x3A3 or equivalently

~A1L ¼ x2
~A1A2 þ x3

~A1A3;

H ¼ b1A1 þ b2A2 þ b3A3 or equivalently

~A1H ¼ b2
~A1A2 þ b3

~A1A3.

In Fig. 3(a), we have defined seven sub-domains: the trian-
gle (A1,A2,A3) and the six domains Di. The problem is to
find a mapping that project the point L onto the triangle
(A1,A2,A3) so that L and H belongs to the same sub-
domain. A geometrical representation of a possible projec-
tion is given in Fig. 3(b). Note that here, the projection
leaves invariant the triangle T. What is important is that
the coefficients bj be bounded, so any bounded region
can play the role of invariant region onto which the projec-
tion is carried out, for example the disk D of Fig. 3(b).

One of these possible projections is the PSI ‘‘limiter’’

bi ¼
xþiP

j
xþj
; ð25Þ

so that

U�i ¼ biU. ð26Þ



Fig. 3. Geometrical representation of the mapping (x1,x2,x3) # (b1,b2,b3).

Fig. 5. Results for the problem (15)–(27).
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We note that there is no difficulty in the definition of bi

(except the fact that U may vanish, in which case we set
U�i ¼ 0) becauseX

j

xþj ¼
X

j

xj �
X

j

x�j P
X

j

xj ¼ 1.

This construction can be applied to any monotone
scheme, for example the N scheme, or any finite volume
scheme. When applied to the N scheme, this results into
the PSI scheme of Struijs which was the first monotone,
LP scheme in the literature.

We provide some examples on the Burger equation (15)
in X = [0, 1] · [0,1] with the boundary conditions

uðx; yÞ ¼
1:5 if x ¼ 0;

1:5� 2x if y ¼ 0;

�0:5 if x ¼ 1

8><>: ð27Þ

by the N scheme, the PSI scheme, the upwind finite volume
scheme and its PSI version, the Lax Friedrichs scheme and
its PSI modification in Fig. 5, the mesh is displayed in
Fig. 4. As a reference, we provide the results of a second
order ENO scheme on the same problem, in Fig. 6. The
first remark is that the general quality of the RD solutions
is better than that of the ENO scheme. This is particularly
true in the resolution of the discontinuity. The second re-
mark is that there is a very clear improvement of the solu-
tion between the first order ones and the second order
modification of each RD scheme. This is particularly true
for the Lax Friedrichs scheme. The third remark is that
Fig. 4. Mesh for the scalar problem (15)–(27).

Fig. 6. Solution for the second order ENO scheme of [28]. This scheme
has been measured to be second order accurate for smooth solutions.
However, the ENO schemes are not particularly tuned for steady
problems.
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there is a ranking in the solutions. The best first order
scheme is the N one, followed by the upwind finite volume
scheme and then the Lax Friedrichs one. The same ranking
applies for the second order scheme, the PSI scheme being
the best, and the PSI upwind finite volume giving almost
identical results. The interesting thing is the occurrence of
wiggles in the smooth part of the solution provided by
the PSI Lax Friedrichs solution. It is interesting to notice
that in general, difficulties for the RD schemes occur not
in the discontinuities of the solutions (as usually), but in
their smooth parts. Coming back to the PSI Lax Fried-
richs, these wiggles are not an indication of any instability:
the scheme is perfectly stable, the results are converged,
and any cut through the fan show that the solution pre-
serves indeed the monotony! The reason of that phenom-
ena is not clear at all. We believe that it is an indication
of the overcompressive nature of the limiter, the way to
avoid this is not yet understood and is a topic of current
research. More generally speaking, the monotonicity con-
dition (14) only ensures that on has, for any vertex i,

min
j2VðiÞ

uj 6 ui 6 max
j2VðiÞ

uj. ð28Þ

It does not tell anything on the behavior of the solution,
and indeed, an oscillatory behavior is not in compatible
with the inequalities (28). In [36], Breuss shows that even
in one dimension, the Lax Friedrichs scheme may produce
oscillatory solutions: the solution is oscillatory, but its total
variation is not increased.

2.6. Extension to systems

We sketch the work that has been done in [17]. Related
work, in a different spirit, has also be done in [12] and is
also available in [37] and described in more details in
[20]. Another method is described in [14].

2.6.1. The system N scheme
In [17], we have considered only the case of the system N

scheme, and provided a method similar to what is done in
the scalar case to rise the order of accuracy from first to
second order, for steady problems. The system N scheme
has been derived in [12,24] and analysed in part in [15]
and then in [17].

Similarly to the scalar case, it writes for a linear hyper-
bolic system with constant matrices A and B as

Ui ¼ Kþi ðW i � eW Þ;
where, if ni

x (respectively ni
y) are the x- (respectively y-)

components of ~ni, we set Ki ¼ ni
xAþ ni

yB. The matrix Kþi
has the same eigenvectors than Ki, its eigenvalues being
the positive parts of those of Ki. Similarly, we define K�i
so that Ki ¼ Kþi þ K�i and jKij ¼ Kþi � K�i . Last, the stateeW is defined using the conservation principle,

eW ¼ X
j

K�j

 !�1 X
j

K�j W j

 !
.

In the case of the Euler system (1) where a linearisation is
performed, some care has to be done since the linearisation
relation do not provideX

j

KjW j ¼
Z

T
divFðW ðZhÞÞdx.

Let Z = (z1,z2,z3,z4) be the Roe’s parameter vector and let
us write

W ¼ 1

2
DðZÞZ; FðW Þ ¼ 1

2
RðZÞZ;

where D(Z) is linear in Z, as well as R(Z) = (Rx(Z),Ry(Z)).
There are many possible choice, we choose the one that
ensures D(Z)Z 0 = D(Z 0)Z and R(Z)Z 0 = (Z 0)Z. For
example,

DðZÞ ¼

z1 0 0 0

z2 z1 0 0

z3 0 z1 0
z4

2c
ðc�1Þ

2c z2
ðc�1Þ

2c z3
z1

2c

0BBBB@
1CCCCA.

Then, the total residual is

U ¼
Z

T
divFðW ðZhÞÞdx ¼

Z
T

RðZhÞrZh dx

¼ 1

2
RðZ1Þ �~n1Z1 þ

1

2
RðZ2Þ �~n1Z2 þ

1

2
RðZ3Þ �~n1Z3

¼ K1D�1ðZÞZ1 þ K2D�1ðZÞZ2 þ K3D�1ðZÞZ3

¼ K1
bW 1 þ K2

bW 2 þ K3
bW 3.

In the above equation, we have made the convention that

RðZÞ �~n ¼ RxðZÞnx þ RyðZÞny .

The parameter vector Z is the arithmetic average of the Zjs
and bW ¼ D�1ðZÞZj. This shows that the correct evaluation
of the residual is

U ¼ K1
bW 1 þ K2

bW 2 þ K3
bW 3;

so that the system N scheme, in the case of the linearised
Euler equation, writes

Ui ¼ Kþi ð bW i � eW Þ
with

eW ¼ X
j

K�j

 !�1 X
j

K�j bW j

 !
.

The evaluation of eW needs to solve a linear system. One
can show that this linear system is always solvable in the
case of a symmetrizable system, as is the Euler system,
see [14] for details. In [15], it is shown that the system N
scheme, applied to a constant symmetrisable system is
energy stable. In the same reference, it is also shown that
under the assumptions of the Lax Wendroff theorem, the
system N scheme, for the nonlinear Euler equation, is
entropy stable in the limit of a mesh refinement.
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2.6.2. Construction of a LP and stable scheme for

symmetrisable systems

The idea in [17] is the following. We consider a symmetr-
izable system, for example the Euler equations. Consider
any triangle T, and Let {rn}n be the set of eigenvectors of
the matrix coshT A + sinhTB, for a fixed arbitrary angle
hT. In the case of the Euler equations, one of the eigenvec-
tors do not depend on hT: the eigenvector associated to the
transport of entropy. It is the only common eigenvector of
the matrices A and B. we denote by {‘n}n the set of left
eigenvectors of coshTA + sinhTB, namely

‘0 ¼

1

u

v
u2þv2

2

0BBB@
1CCCA; ‘1 ¼

1

u� c cos hT

v� c sin hT

H � ðcos hT uþ sin hT vÞc

0BBB@
1CCCA;

‘2 ¼

1

uþ c cos hT

vþ c sin hT

H þ ðcos hT uþ sin hT vÞc

0BBB@
1CCCA;

‘3 ¼

0

� sin hT

cos hT

�u cos hT þ v sin hT

0BBB@
1CCCA.

The next step is to project the residuals of the N scheme
against the left eigenvectors of coshTA + sinhTB. We set

un
i ¼ ‘

T
n Ui

and notice thatX
j

un
j ¼ ‘

T
n U :¼ un.

Then, for any n = 0, . . ., 3, we limit the set fun
i gi¼1;3 with

any limiter introduced in Section 2.5, for example (25). The
limited projected residuals are denoted by fun;�

i gi¼1;3

according to (26). Then we reconstruct residuals for the
system case according to

U�i ¼
X

n

un;�
i rn.

The stability of such a procedure is analysed in [17]. In
practice, the angle hT is that of the flow velocity because
it seems more natural, but the stability does not depend
on the specific choice of this direction, see [17] for more
details.

2.7. Other methods

There exists another technique for achieving second
order accuracy, namely the blending technique. Several
variants have been illustrated in [14,24,38]. The general
idea is to consider the system N scheme and the system
LDA scheme and to construct the residual defined by

Ui ¼ ‘UN
i þ ðId� ‘ÞULDA

i .
The last step is to construct the family of matrices ‘ such
that the scheme is second order accurate at steady state
and nonoscillatory. Second order accuracy is achieved if
‘ ¼ OðhÞ at steady state, following the analysis of Section
2.5.

In [14], the matrix ‘ is constructed so that the entropy
production of the scheme within one triangle leads to a
(formal) entropy inequality. In [24,38], the blending matrix
is constructed componentwise by extending the scalar
formula

‘ ¼ jUj
jUN

1 j þ jUN
2 j þ jUN

3 j
. ð29Þ

It is clear that 0 6 ‘ 6 1, and that in principle ‘ ¼ OðhÞ for a
smooth solution (thus ensuring accuracy), while ‘ ¼ Oð1Þ
near a discontinuity, thus ensuring a nonoscillatory behav-
ior. In [14], we show that there exists a family of parameters
that ensures the nonoscillatory behavior of the scheme, but
the choice (29) does not belong to this family. There exists
also a particular choice that enables to recover the scalar
PSI scheme of Struijs.

These schemes work very well, and are simple to imple-
ment. However, in our opinion, but it is a very subjective
opinion, they suffer several drawbacks:

1. They need to compute two residuals for constructing the
limited one, instead of only one in the previous
construction.

2. The nonoscillatory behavior is only a fact of experience,
no proof have yet been given. It is even possible (and dif-
ficult) to produce counter examples. In our experiments,
difficulties may be encountered for very high Mach num-
ber flows.

3. The version of [24,38] is not rotational invariant.
4. We have experimented difficulties in extending this

approach (i.e. [14]’s) to nonsteady problems. Deconinck
et al. report a better success with their blending
approach however, as examples will be given later in
the paper.

5. If one imagines to extend this technique to other choices
of base schemes, for example the upwind finite volume
scheme of Roe instead of the N scheme and the Lax
Wendroff scheme instead of the LDA scheme, it is easy
to see that in general ‘ ¼ Oð1Þ, so that the resulting
scheme is only first order accurate, see [17] for details.
Such a class of scheme would be interesting since we
could construct schemes from classical ones, and reach
second order accuracy with the most possible compact
stencil, see [39] for details.

The idea of approximating (1) using a balance between
element-residual as here, has been used by several authors,
such as Hughes et al. [34], Johnson et al. [33] in the finite
element context. In the finite difference context, up to our
knowledge, the first paper of this type is Ni’s paper [6]. A
very interesting contribution in the finite difference frame-
work, both for steady and unsteady problems, is Lerat
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et al. contribution [7–9]. It shares many similarities with the
SUPG approach, especially concerning the type of artificial
dissipation they use. However, there are some differences,
such as the tuning parameters that are directly related to
the wave structure of (1), so that no shock capturing term,
at least for transonic problems, seem to be needed.

2.8. Numerical applications

We illustrate the schemes of Section 2.6 on the example
of a scramjet-like configuration. The inflow conditions are
M = 3.6. In this example, we have several strong disconti-
nuities and also interactions between these discontinuities
resulting in a quite complex flow. Fig. 7 present the Mach
number isolines for the Roe scheme with van Leer–van
Albada limiter applied on the physical variables on the
right. The results of the PSI scheme for the Mach number
are given in Fig. 8. What is noticeable is a sharper resolu-
tion of the discontinuities. This can be observed in Fig. 9
Fig. 7. Isolines of the Mach number, scramjet problem, MUSCL scheme.
Min = 1.868, Mach = 3.61.

Fig. 8. Isolines of the Mach number, scramjet problem, PSI scheme,
Min = 1.847, Mach = 3.6.
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Fig. 9. Cross-section of the mach number (a) and zoom (b) along a
parallel in the bottom channel.
where a cross-section on the lower part of the computa-
tional domain, parallel to the lower boundary, is given.
The important difference between the results obtained by
the two schemes can be observed on the zooms of Figs. 7
and 8. Besides the sharpness of the discontinuities, we
observe some ‘‘oscillations’’ in the smooth part of the
PSI results. Once more this is not a signal of instability,
but rather an trace of the overcompressive nature of the
limiter. The iterative convergence history of the two
schemes are also different. The MUSCL results are con-
verged, while we are not able to drive the iterative residual
to machine lower than 10�2–10�3. This seems related to
the behavior of the Lax Friedrichs PSI scheme of Section
2.5.

The RD schemes seems much less dependant on the
quality of the mesh. This point is illustrated in Fig. 11. This
is the NACA012 case, the Mach number is M = 0.85 and
the angle of attack is a = 1�. The mesh is displayed in
Fig. 10, and is of poor quality, in purpose. The MUSCL
results exhibit a very strong numerical boundary layer that
does not appear in the RD results. The boundary condi-
tions are identical, so this is an indication of the numerical
dissipation of the scheme. Indeed, the boundary conditions
at the nose of the airfoil generates entropy. The MUSCL
scheme convect and increases this, while the RD scheme
has a much lower influence.
Fig. 11. Solutions for the NACA012 test case.

Fig. 10. Mesh for the NACA012 test case.
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2.9. Formulation, FE view point, formulation for viscous

problems

In this section, we provide some bridges between stabi-
lised finite elements methods such as the SUPG method
of Hughes, and the high order residual schemes above.
Indeed we provide several interpretations in the scalar case
that can be easily extended to the system case, and show
that some of these formulations can simplify, and clarify,
the extension to these schemes to convection diffusion
problems.
2 However, in all the numerical tests of the paper, the Dirichlet
boundary conditions have been enforced strongly.
2.9.1. Finite element formulations

It is interesting to look at (10) from a more abstract
point of view in order to connect the RD schemes to more
known schemes. In the previous sections, the idea was to
increase the formal order of accuracy starting from a first
order scheme in such a way that oscillations are controlled.
This was done by borrowing ideas from the high order
nonoscillatory schemes such as the TVD scheme because
the main trick is to compare the total residual to the first
order residuals.

In what follows, we connect them to the SUPG schemes
and more generally to finite element type schemes. To
make things simple, we consider the advection problem
a Æ $u = 0 on X with Dirichlet boundary conditions on
the inflow part of oX. We start from (10). If u is any com-
pactly supported continuously differentiable function, we
have equivalently

X
Mi

ui

X
T3Mi

UT
i

 !
¼ 0;

that isX
T�X

X
Mj2T

ujU
T
j ¼ 0.

Then we introduce �uT ¼
ui1
þui2

þui3
3

the value of the
continuous piecewise linear interpolant uh of the nodal
values fujgj¼1;...;ns

. Using the conservation relation (11),
we get

X
T�X

�uT

Z
T

a � ruh dxþ
X
T�X

X
Mj2T

ðuj � �uT ÞUT
j

 !
¼ 0.

Now, because a Æ $uh is constant over any triangle T, and
because of the exactness of the quadrature formula for
linear functions,Z

T
uh dx ¼ jT j�u;

this equation can be rewritten asZ
X

uha � ruh dxþ
X
T�X

X
j2T

ðuj � �uT ÞUT
i

 !
¼ 0.
The last step is to consider now a LP scheme for which
UT

i ¼ bT
i UT, we see thatX

j2T

ðuj � �uT ÞUT
i ¼

X
j2T
ðuj � �uT ÞbT

j

Z
T

a � ruh dx

¼ h
Z

T
ð~nT � ruhÞða � ruhÞdx;

where

h~nT � ruh ¼
X
j2T

ðuj � �uT ÞbT
j ¼

X
j2T

bT
j
~MjG

 !
� ruh; ð30Þ

i.e. h~nT :¼
P

j2T bT
j
~MjG. Thus, the scheme results intoZ

X
uha � ruh dxþ h

Z
X
ð~n � ruhÞða � ruhÞdx ¼ 0 ð31Þ

with ~njT ¼~nT . We notice that ~n is uniformly bounded.
The relation (31) suggests a way to implement the

Dirichlet boundary conditions u = g on C�,2 namelyZ
X

vha � ruh dxþ
X
T�X

h
Z

T
ð~n � rvhÞða � ruhÞdx

�
Z

C�
gvh dl ¼ 0 ð32Þ

and vh, uh belongs to the set of continuous piecewise linear
functions Vh.

The relation (32) can be abstractly reformulated as: find
uh 2 Vh such that for all vh 2 Vh,

aðuh; vhÞ ¼ lðvhÞ;
with

lðvhÞ ¼
Z

C�
gvh dl

and

aðu; vÞ ¼
Z

X
va � rudxþ h

Z
X
ð~n � rvÞða � ruÞdx

�
Z

X
xha � rudx;

where xh is discontinuous across edges.
It is interesting to notice that this formulation is not

unique. In fact, we have followed the inverse path as usu-
ally done. In general, given a PDE, a finite element space
is considered on which a consistent formulation, compati-
ble with the definition of the finite element space and the
PDE, is given. Here we have stated from an algebraic rela-
tion, namely (10) and we have reinterpretated it in a finite
element flavour, with some a priori choices. Here this leads
to (30) and (31) which looks as the SUPG formulation.

Other numerically equivalent formulations can be
obtained. For any triangle T, the problem is to find a set
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of three linearly independent functions WT
i for which we

have

bT
i

Z
T

a � ruh dx ¼
Z

T
WT

i a � ruh dx.

Once more we use the fact that uh being linear, a Æ $uh is
constant, so the constraint is

bT
i jT j ¼

Z
T

WT
i dx.

A solution to this problem is WT
i ¼ ðNiÞT þ cT

i bT where bT

is any continuous function such that �TbT dx > 0 and bT

vanishes on the boundary of T. An example is given and
described in Fig. 12. The coefficient ci is then defined by

cT
i ¼

bT
i � 1

3R
T bT dx

.

We note that the example of Fig. 12 satisfies �T$bT dx = 0.
Once cT

i is defined, we define the test function Wi by
ðWiÞjT ¼ WT

i and the set of test functions Wh as the span
of fWigi¼1;...;ns

. If once more Vh is the set of continuous
piecewise linear functions, and avoiding the important
problem of the boundary conditions, we have a Petrov–
Galerkin variational formulation of the scheme: find
uh 2 Vh such that for all wh 2Wh,Z

X
wha � ruh dx ¼ lðwhÞ. ð33Þ

The main difference between this formulation and the
SUPG like is that the test functions are now continuous

across the edges of the triangulation. The two construc-
tions, SUPG like or with bubble like test functions, can
be generalised to the system problem without major
difficulty.

2.9.2. Application to viscous problems

Once more we focus on the scalar problem

a � ru�r � ðKruÞ ¼ 0 x 2 X;

u ¼ g x 2 oX;
ð34Þ

where K is a symmetric positive definite constant matrix for
simplicity. We use a variational formulation with the same
Fig. 12. An example of a bubble function. bT vanishes on the boundary of
T and is linear in each of the sub-triangles (ABG), (BCG), (CGA).
test functions as in the previous paragraph. Formally, we
would have to find uh in Vh (space of continuous piece-
wise linear test functions) such that for any test function
in Wh,Z

X
wha � ruh dx�

Z
X

whr � ðKruÞdx ¼ 0.

Of course the term �wh$ Æ (K$u)dx has no meaning, so we
integrate by part thanks to the divergence theorem,Z

X
whr�ðKruÞdx�

X
T

Z
T

whr�ðKruÞdx

¼
X

T

Z
oT

whðKruÞ �~ndr�
Z

T
rwh � ðKruhÞdx

� �
.

If wh is continuous, then the first term of the last line of
(2.9.2) vanishes because this sum can be rewritten as a
sum on edges, where each term appears twice, once with
a þ~n, once with a �~n. This property is not true when wh

is not continuous. For this reason, we prefers the formula-
tion (33) where the test functions are continuous by con-
struction. A closer look at �T$wh Æ (K$uh)dx reveals some
additional simplifications.Z

T
rWT

i � ðKruhÞdx ¼
Z

T
rNi � ðKruhÞdx

þ cT
i

Z
T
rbT � ðKruhÞdx.

Then, K$uh is a constant, and since �T$bT = 0, the second
term vanishes.

In summary, the formulation is to find uh such that for
any vertices,X
T3Mi

UT
i þ

X
T

Z
T
rNi � ðKruhÞdx ¼ 0.

In other words, the convective terms are discretised with
the LP residual distribution scheme and the dissipative
terms are discretised with a classical Galerkin
approximation.

This fact has been used in many papers, but the method
was presented uncorrectly from a mathematical point of
view. The SUPG-like Petrov Galerkin approximation was
used and the viscous terms were approximated by a Galer-
kin formulation, so neglecting all the annoying terms. The
numerical results were good, and even surprisingly good in
term of accuracy: the scheme should have been first order
only, and it was not. Our analysis shows that the
‘‘neglected’’ terms does not appear indeed, and more over,
the scheme satisfies the variational formulation (2.9.2)
where the test functions have a square integrable gradient.
Then it becomes standard to show that the expected order
of accuracy is indeed met, provided the stability of the
scheme is shown. We do not know how to show the stabil-
ity of the scheme (except in the maximum norm which is
not suitable for this analysis), so the analysis is not com-
plete, but it is a strong indication of the correctness of
our approach.
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3. RD for unsteady problems

This part summarise [18]. An other possible construc-
tion is described in [40].

3.1. Construction

For simplicity, we consider the problem (1) with a con-
stant advection speed. Let T be any triangle, we denote by
K the time–space prism K = T · [tn, tn+1], see Fig. 13. The
numerical solution of (1) is interpolated in K linearly in
time and space, namely

uhðx; tÞ ¼ unþ1ðxÞ ðt � tnÞ
Dt

þ unðxÞ ðtnþ1 � tÞ
Dt

; ð35Þ

where un (respectively un+1) is the linear interpolation of
fun

j1
; un

j2
; un

j3
g (respectively funþ1

j1
; unþ1

j2
; unþ1

j3
g). Then, we

consider the total residual in K,

UK :¼
Z tnþ1

tn

Z
T

ou
ot
þ a � ru

� �
dxdt.

If ~ni is the inward scaled normal opposite to Mi in T,
setting ki ¼ 1

2
a �~ni, we have

UK ¼ jT j
3

X3

j¼1

ðunþ1
j � un

j Þ þ
Dt
2

X3

j¼1

kiðunþ1
j þ un

j Þ.

The idea is to split UK into sub-residual that the prims K

‘‘sends’’ to its six vertices, and then for any vertex to gather
the sub-residuals in order to update the solution. Then, the
definition of the sub-residuals UK

i uses the causality princi-
ple: the past does not depend on the future. This means
that the sub-residuals sent by K to the vertices (Mj, tn)j=1,3

are set to zero, i.e., only the residual sent to (Mj, tn+1)j=1,3

may be nonzero. They are denoted by UK
j . This enables

to decouple the time slabs. Then, conservation is garantied
provided the following relation holdsX
Mj2T

UT
j ¼ UK . ð36Þ

Last, the scheme is defined byX
T3Mi

UK
i ¼ 0. ð37Þ

This represents a system of equations of the form
F(Un+1,Un) = 0 where Un (respectively Un+1) represents
Fig. 13. A representation of K = T · [tn, tn+1].
the vector of unknown variables at time tn (respectively
tn+1). Since Un is known, this equation is solved in Un+1,
and then we can repeat the procedure to iterate in real time.

The last thing to do is to precisely define the sub-resid-
uals. One guiding principle is that some stability property
holds, for example stability in L1, the other one is
accuracy.

3.1.1. Stability requirements

An example of such a scheme is provided by the N
scheme:

UK
i ¼
jT j
3
ðunþ1

i � un
i Þ þ

Dt
2
ðkþi ðunþ1

i � ~unþ1Þ þ kþi ðun
i � ~unÞÞ;

~unþ1;n ¼ n
X3

j¼1

k�j unþ1;n
j

 !
; n ¼

X3

j¼1

k�j

 !�1

.

ð38Þ
The N scheme in (37) leads to an equation of the form
Aun+1 = Bun where A and B are constant matrices. A closer
analysis reveals that A is a monotone matrix, whatever Dt,
and that B has positive coefficients provided the CFL-like

condition holds DtmaxT

P
j2T

kþj
jT j 6 1. This shows that the

N scheme is L1 stable under a CFL-like condition. In fact,
the analysis is not sharp enough, and numerical experi-
ments demonstrate that this condition may be violated by
a large factor. A deaper analysis also shows that the N
scheme is unconditionally L2 stable, see [18] for details.

Following Ricchiutto [22], a variant of the N scheme is

UT
i ¼
jT j
3
ðunþ1

i � un
i Þ þ Dtkþi ðunþ1

i � ~unþ1Þ ð39Þ

together with (37). This leads to a linear system of the form
Aun+1 = un where A is a monotone matrix whatever Dt, so
that the scheme is unconditionally L1 stable. This is de-
tailed in Appendix A as well as the unconditional L2 stabil-
ity of the scheme. This scheme is useful in the sequel, even
though it does not satisfy the conservation property (36).

3.1.2. Accuracy requirement
The technique is identical to the one described in Section

2.2, since we see the unsteady problem (6) as the steady
version of

ou
os
þ ou

ot
þ a � ru

� �
¼ 0;

hence we can use the same tools.
In [14] for steady problems and in [18] for second order

schemes, it is shown that, provided the exact solution of (1)
is smooth, the scheme is formally second order in time and
space provided that for all triangle T and any vertex, we
have

UK
i ¼ Oðh3;Dt2Þ;

where h is the maximum radius of the triangles T. The der-
ivation of this condition also need that the mesh be regular
in the usual finite element meaning. There are several ways
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of fulfilling this condition [4,13,18], the easiest one being
the Linear Preserving as in Section 2.5. In the next para-
graph, we sketch how to construct schemes that are both
LP and L1 stable following the same logic as in (2.5).
We only point out the differences.

3.1.3. Accuracy and stability

In order to fulfill this goal, we consider a first order
monotone scheme which residuals are fUL

i g, and we want
to construct a second order scheme fUH

i g such that
UH

i ¼ biU
K with bi uniformly bounded so that accuracy is

guaranteed, and such that this scheme, coupled with (37),
still satisfies a maximum principle.

To this end, we use any of the space–time variants of the
N scheme (38) or (39) as a low order scheme UL

i . We note
that the residual sent at the vertices of T but for the time tn

are identically 0 by construction, so it will be the same for
the limited second order scheme. Thus we only have three b
coefficient, they correspond to the amount of the total
residual

UK ¼ jT j
3

X3

j¼1

ðunþ1
j � un

j Þ þ
Dt
2

X3

j¼1

kiðunþ1
j þ un

j Þ;

sent to the vertices of T at time tn+1. A possible formula is
given by (25) where once more

xi ¼
UL

i

UK
.

The rest is similar.

Remark 3.1 (Stability). The scheme we have sketched
here is monotone under a CFL condition, as its scalar
version was. This is a bit disappointing since it is a fully
implicit scheme. In [17], we show that the N scheme above
is unconditionally energy stable, but no such result seems
available in the maximum norm, even though in practice
the CFL constraint can be violated. Csik has imagined in
his PhD thesis a N scheme that is unconditionally stable in
the maximum norm, [41]. This version is more complicated
than the one presented here because instead of the
tetrahedral space–time element for the total residual he
uses prismatic space–time elements resulting in a quite
complex space–time mesh. This idea has been adapted by
Mezine in his thesis [42] to the prismatic space–time
element. The method is successful, results can be seen in
[17]. Very large CFL number can be used. This method has
been further simplified by Ricchiuto, see [21,22].
Fig. 14. Solutions for the rotating cosine hill after one revolution.
3.2. Numerical examples

3.2.1. Scalar problems

3.2.1.1. The rotating cosine hill. The rotating cosine hill is a
classical test-case for numerical schemes of the two-dimen-
sional linear unsteady advection equation. The test consists
in the transport of a cosine shape by a circular solid body
advection field centered at the origin
ou
ot
þ a � ru ¼ 0 in ½�1; 1� � ½�1; 1�; ð40Þ

where a = (y,�x)T. The initial solution is

u0ðx; yÞ ¼
1þ cosð4p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ 0:5Þ2 þ y2

q
Þ=2

� �
if r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ 0:5Þ2 þ y2

q
6

1
8
;

0 else.

8>>>><>>>>:
The solution is set to zero at the inflow boundaries, at each
time step.

The computation was made on a unstructured grid of
8079 nodes and 15836 elements. The time step was taken
to satisfy the condition:

Dt ¼ 2

3
CFL min

i

jT j
kþi

ð41Þ

with CFL = 0.9. The results, using the schemes described
in the previous section and the MUSCL scheme (with min-
mod limiter and Runge–Kutta integration in time) after one
revolution are compared in Fig. 14. We provide the cross-
section at y = 0 in Fig. 15. The N-scheme is clearly the
most diffusive (see also Table 1), streamwise and crosswise
diffusion are considerable. The LDA scheme keeps the
height of the peak much better but the monotonicity is
not preserved. This results are much better than those
obtained by the MUSCL scheme.

3.2.1.2. The rotating cylinder. This test case differs from the
previous only for the initial profile

u0ðx; yÞ ¼
1 for r < 0:25;

0 else,

�
ð42Þ
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Fig. 15. Sections at y = 0 of the solutions for the rotating cosine.

Table 1
Min and Max solution values for the rotating cosine hill test case

Scheme Min Max

N 0 0.217
MUSCL 0 0.313
LDA �0.03 0.983
PSI 0 0.802

Fig. 16. Solutions for the rotating cylinder after one revolution.
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Fig. 17. Sections at y = 0 of the solutions for the rotating cylinder.
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where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ 0:5Þ2 þ y2

q
, which is not continuous, con-

trary to the previous case. The computation was made on
the same grid with a CFL of 0.9, the results after one rev-
olution are displayed in Fig. 16. The solutions exhibit the
same properties as the rotating cosine hill. Cross-sections
of the solutions after one revolution are provided in
Fig. 17. This results are better than MUSCL scheme. The
LDA scheme exhibits spurious oscillations, as expected.

3.2.2. Flow problems

Before giving some numerical examples, let us explain
how we use the results of Section 3.1. In fact, we proceed
exactly as in Section 2.6. For each element T, we first chose
a direction (in practice the flow direction, but any other
would do). Call hT the angle so defined, and consider the
eigenvectors of coshTA + sinhTB where A and B are the
Jacobian matrices in the x- and y-directions evaluated at
the average Roe state. As before we denote these right
eigenvectors by {rn}n and by {‘n}n the set of left eigenvec-
tors. Then, given the space–time residuals Ui, i = 1, . . ., 3
and the total residual U = U1 + U2 + U3, we project these
quantities onto the right eigenvectors and define directional
space–time residuals,

un
i ¼ ‘

T
n Ui
and notice thatX
j

un
i ¼ ‘

T
n U :¼ un.

The rest follows exactly as in Section 2.6. In the rest of
this section we present results on some classical test
cases.
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3.2.2.1. A two-dimensional Riemann problem. The initial
data are chosen in order to represent a ‘‘2D Sod tube’’ in
the domain [�1,1] · [�1,1]:

q ¼ 0:1 if x� y < 0; 1 otherwise

p ¼ 0:1 if x� y < 0; 1 otherwise

�
ð43Þ

and the velocity (u,v) was set to zero. The solution is com-
puted at time t = 0.2 on a structured triangulation where
Dx = Dy = 0.01 and the CFL condition has been set to 0.9.

The isolines of the density and pressure are shown in
Figs. 18 and 19 for the N-scheme and the N-modified
scheme.

3.2.2.2. A Mach 3 wind tunnel with a forward facing step.

This test case has been extensively studied by Woodward
and Collela [43], and is widely present in the literature.
The setup of the problem is the following: a right-going
Mach 3 uniform flow enters a wind tunnel of 1 unit width
and 3 units long. The step is 0.2 units high and is located
0.6 units from the left-hand end of the tunnel. The problem
is initialized by a uniform, right going Mach 3 flow. Reflec-
tive boundary conditions are applied along the walls of the
tunnel, and inflow and outflow boundary conditions are
applied at the entrance and the exit of the tunnel. The
results at time t = 4 with the N-scheme and the N-modified
scheme are shown. The simulation was done at CFL = 0.9.
Fig. 18. 2D Riemann problem computed by the N-scheme at time t = 0.2,
density (left) and pressure (right).

Fig. 19. 2D Riemann problem computed by the N-modified
The corner of the step is a singularity. It is well known
that if no special treatment is done, an entropy production
is observed in the vicinity of the step corner, and it alters
the quality of the second reflected shock. This is not phys-
ical because we have a strong expansion wave, so no
entropy should be created. However, unlike in [43], we
do not modify our scheme near the corner, because we
are only interested in its stability properties.

An unstructured mesh have been considered, it contains
10868 nodes and 21281 triangles, it is refined near the
corner. Portion of the mesh is shown in Fig. 20.

The quality of the slip line coming out of the triple point
is noticeable, as well as the resolution of the shocks, in par-
ticular at the exit section of the tunnel. The maximum
shock width is no larger than two cells. Between the first
order and the second order results, the quality of the fan
(at the corner) has dramatically been improved: the
reflected shock is now correctly set, the weak compression
shock after the fan appears, and interact with the first
reflected shock, see the slip line coming out of the interac-
tion between the reflected shock and the weak compression
shock (see Figs. 21–24).
scheme at time t = 0.2, density (left) and pressure (right).

Fig. 20. Part of the unstructured grid for the Mach 3 problem.



Fig. 22. Forward-facing step problem. Mach number isolines: 25 equally spaced contour lines from 0.02 to 3.82. Top: N scheme. Bottom: N-modified
scheme.

Fig. 21. Forward-facing step problem. Density isolines: 30 equally spaced contour lines from 0.09 to 6.23. Top: N scheme. Bottom: N-modified scheme.
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3.2.2.3. Reflection of a shock on a wedge. This problem was
studied by Quirk [44]. A planar shock initially enters from
the left in a quiescent fluid and is reflected from a 45� ramp.
Its Mach number is Ms = 5.5 and is defined toward the
flow values in the quiescent fluid where the density is set
to 1.4 and the pressure to 1. Reflective boundary conditions
are applied along the ramp and the bottom and the upper
of the problem domain. For such an incident shock wave
Mach number and such a reflecting wedge angle, a double
Mach reflection is expected. The interest of this test case is
that, according to [45], the angle h = 45� and Ms = 5.5 is
nearly at the transition between a double Mach reflection



Fig. 23. Forward-facing step problem. Entropy production near the step corner: 17 equally spaced contour lines from 0.63 to 1.5. Top: N scheme. Bottom:
N-modified scheme.

Fig. 25. Reflection of a planar shock from a ramp. Density 20 contour
lines from 1.18 to 20.12.

Fig. 24. Part of the unstructured grid.
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and a regular reflection. If the scheme were too diffusive,
we would get a regular reflection instead of a double Mach
reflection. Hence this is a good test of accuracy.

The density is displayed in Fig. 25. The resolution of the
different structure is quite clean, despites the poor resolu-
tion of the mesh.

3.2.2.4. Shock–vortex interaction problem. This test case
describes the interaction between a stationary shock and
a vortex. It was first presented by Pao and Salas [46], and
was studied by Meadows et al. [47] with a TVD scheme
and by Jiang and Shu [48]. The computational domain
is taken to be [0,2] · [0, 1]. A stationary Mach 1.1 shock
is set at x = 0.5 and normal to the x-axis. Its left state is
ðq; u; v; pÞ ¼ ð1; ffiffiffi
c
p
; 0; 1Þ. A small vortex is superposed to

the flow left to the shock and centers at (xc,yc) = (0.5,0.25).
The vortex is described as a perturbation to the velocity
(u,v), temperature T ¼ p

q and entropy S ¼ ln p
qc of the mean

flow and denote it by tilde values.

~u ¼ �seað1�s2Þ sin h; ð44Þ
~v ¼ ��seað1�s2Þ cos h; ð45Þ

eT ¼ �ðc� 1Þ�2e2að1�s2Þ

4ac
; ð46Þ

eS ¼ 0; ð47Þ
where s ¼ r

rc
and r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xcÞ2 þ ðy � ycÞ

2
q

. Here � indi-

cates the strength of the vortex, a controls the decay rate
of the vortex, and rc is the critical radius for which the



Fig. 26. Zoom of the mesh for the vortex simulation.

Fig. 27. Shock vortex interaction. Pressure. N-modified scheme. 30 contours

Fig. 28. Isolines of normalized temperature. Figures f
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vortex has the maximum strength. We choose the same va-
lue as in [48], i.e. � = 0.3, rc = 0.05 and a = 0.204. The
above defined vortex is a steady solution to the 2D Euler
equation. The upper and lower boundary are set to be
reflective. We use a uniform grid of 251 · 100, a zoom is
shown in Fig. 26. The pressure isolines at three different
times are displayed in Fig. 27.

3.2.2.5. Viscous flows. We extend the scheme to viscous
flows according to the principles described in Section 2.9.
It amounts to ‘‘split’’ the viscous terms and the hyperbolic
terms thanks to the correct choice of test functions in the
finite element interpretation of the RD schemes. Then a lin-
ear interpolation is done in time resulting into a Crank–
Nicholson type of approximation. More details can be
found in [49]. Taken from this reference, we show and
lines from 0.84 to 1.4. Top left: t = 0; Top right: t = 0.2, Bottom: t = 0.4.

or t = 40, 80, 120, 160, from [49] with permission.
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Fig. 29. Convergence history for the PSI scheme of Section 2.5 and the
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Fig. 30. Density field and isolines of the density residual for the NACA
012 case, and the PSI scheme.
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example of a transonic vortex pairing in a mixing layer.
This is a well documented test case, see for example [50].
The computation is done in a rectangular box Lx · Ly with
Lx = 30 and Ly = 100. The Reynolds number is Re = 1000
(corresponding to a kinematic viscosity m1 = 10�3). The
Mach number is M = 0.8 to which is superimposed a per-
turbation periodic in the x-direction, and with an exponen-
tial decay in the y-direction. The inviscid terms are
approximated with the B scheme that corresponds to a
blending between the N scheme and the LDA scheme.
The blending vector is computed from the residuals.
Roughly speaking, the N scheme does no play any role in
the smooth part of the flow, where the LDA scheme is
dominant tanks to the blending, while the situation is the
opposite in discontinuous parts of the flows, see [49,40]
for more details. Note that in the scalar case, a special
choice of the blending parameter leads to the scalar PSI
scheme, see [14] for details.

The solutions at times t = 40, 80, 120, 160 are shown in
Fig. 28, where 30 levels of isolines of the temperature are
plotted. Comparing with the fourth order results of [50],
the method shows all features of flow-field which is very
satisfactory for a method that is only second order accu-
rate, at most.

4. Problems and perspectives

4.1. Problems for second order schemes

As pointed out several time in the text, the RD methods
end up by solving a nonlinear equation of the type

WðU ;U boundaryÞ ¼ 0

in the steady case and

WðUnþ1;Un;U boundaryÞ ¼ 0

in the unsteady one. The operator W (i.e. the scheme itself)
is written in such a way that no explicit solution is possible
in the second order limited case. A closer examination of
the equation reveals that for the first order case, the prob-
lem amounts to solve a large linear system, and the same is
true for second order LP scheme that are nonlimited as for
the LDA scheme. It is of fundamental importance that
these equations are solved correctly and efficiently. By cor-
rectly, we mean that the left-hand side, 0 here, may be re-
placed by a small term of the order of the truncation
error, otherwise accuracy is lost.

In practice, these equations are solved by an iterative
method, using a preconditioning technique. For steady
problems, first, we precondition the second order scheme
(limited or unlimited) by a first order scheme. Very often
in the limited case, the convergence behavior of the itera-
tive method, after a very nice startup, becomes chaotic. A
typical example is given in Fig. 29. It represents the conver-
gence history for the PSI scheme of Section 2.5 for the
NACA 012 test case, M1 = 0.85 one degree of incidence
and CFL = 50. The implicit phase is solved with GMRES
with ILU preconditioning. In Fig. 30, we provide the iso-
lines of the density, as well as those of the density compo-
nent of Res ¼

P
T3Mi

UT
i . There is no apparent correlation

between the high values of Resq and the structure of the
density field. In particular, one would expect that the high
values correspond to the shocked regions of the flow-field,
this is not the case.

This chaotic behavior does not exist for the LDA
scheme, see Fig. 29, or the blended scheme in its versions
of [24] or [14] as sketched in Section 2.7, once (29) has been
suitably implemented.

Concerning unsteady problems, we observe similar cha-
otic convergence behavior in the solution of the pseudo-
time marching part of the algorithm.

Fortunately, this behavior does not seem to affect the
quality of the solutions, as demonstrated in the previous
section, but this is not satisfactory. We note that for
unsteady simulations, 4–5 implicit iterations are enough
to reach a low enough residual as experiments indicate.
The fundamental reasons of such a behavior are not well
understood for now, see however [39] for some remedies.

4.2. High order schemes

Until now, we have only considered the case of first and
second order accurate schemes. It is possible to construct
schemes that are higher than second order accurate for
steady and unsteady problems. The case of scalar steady
problems is considered in [35,20], that of scalar unsteady
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problems in [51]. The case of system problems has not yet
been considered.

Let us provide some information about the scalar steady
problem, say

a � ru ¼ 0; x 2 X;

u ¼ g; x 2 C�
ð48Þ

and consider the case of third order accuracy to fix the
ideas. The computational domain is triangulated by a fam-
ily of triangles. Third order accuracy can be reached in
principle for quadratic interpolation. A quadratic polyno-
mial is fully described on each triangle T with six degrees
of freedom. Here, we define the degrees of freedom as the
values at the vertices of T and the values at the mid-points
of the edges of T, see Fig. 31. We denote by r any of
the degrees of freedom in the mesh. In [35], it is shown
that if, for any triangle T, one can define residuals
fUT

rgr¼1;...;6 such that the following local conservation
relation holdsX
r2T

UT
r ¼

Z
T

a � ruh dx :¼ UT; ð49Þ

where uh is the quadratic interpolant of the data, then, as in
Section 2.1, the limit solution, if it exists and if it satisfies
bounds as in the standard Lax Wendroff theorem, is a weak
solution of (48). This result can be extended to the non-
linear case, of course.

In [35], it is also shown that the scheme is third order
accurate if the residuals satisfy

UT
r ¼ Oðh2þ1Þ. ð50Þ
In the d-dimensional case, for a r + 1th accurate scheme,

the condition (50) is replaced by

UT
r ¼ OðhdþrÞ. ð51Þ

The easiest way of fulfilling conditions (50) (or (51) for
r + 1th order of accuracy) is that UT

r ¼ bT
rUT where the

bs are uniformly bounded.
To construct a high order scheme, the first idea is to

construct a first order scheme UL
r and, as in the previous

sections, to upgrade the order of accuracy by defining bT
r

by
2

3

4

56

1

Fig. 31. The six degrees of freedom for quadratic interpolation.
bT
r ¼

UL
i

UT

� �þ
P6

j¼1

UL
j

UT

� �þ . ð52Þ

The results (not presented here) are very disappointing, in
fact wiggles similar but more pronounced than what is
visible in Fig. 5 for the Lax Friedrichs–PSI scheme.

A possible explanation may be the following. In order to
define a quadratic polynomials, we need six coefficients.
The information contained in (49) is on a Æ $u, so we loose
two degrees of freedom (one for the derivative, one for the
dot product), so we have only four degrees of freedom left.
The relation (52) define residuals that are all proportional
to UT, so we do not have enough constraints, and spurious
modes may exist.

In [35], we overcome this by the following strategy.
From Fig. 31, we can define four sub-triangles defined by
Tn = (1,4,6), (4,2,5), (5,3,6), (6,5,4). In these four sub-
triangles, we can consider the residuals

UT n ¼
Z

T n

a � ruh dx.

Then, in Tn, we consider the N scheme UN ;n
r , and define bn

r

by

bn
r ¼

UN ;n
r

UT n

� �þ
P

r02T n

UN ;n
r0

UTn

� �þ ð53Þ

then

UT n
r ¼ bn

rU
T n ð54Þ

and last, the residual sent by T to r is defined by

Ur ¼
X
T n3r

UT n
r . ð55Þ

Doing so, the total residual in T is splitted in four sub-
residuals, and we have enough constraints. This technique
can be extended to the nonlinear case, and to fourth order
accuracy as well following the same technique, see [35]. We
take some results from the same reference.

The main problem of these schemes is thatP
r02T n

UN ;n
r0

UT n

� �þ
in (53) may be zero because

X
r2T n

UN ;n 6¼ UT n ;

in general, contrarily to the second order case. This has
been noticed by Ricchiuto (VKI). In practice, we replace
formula (53) by

bn
r ¼

UN ;n
r

UT n

� �þ
þ eP

r02T n

UN ;n
r0

UTn

� �þ
þ 3e

; ð56Þ
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where e is a very small number. When
P

r2T n
UN ;n 6¼

UT n ¼ 0, bn
r ¼ 1

3
, so that the scheme is centered, hence

unstable on such sub-triangles. We have never experience
unstability problems, but we are aware of this unsolved
problem.

4.2.1. Linear advection

We consider the problem

� y
ou
ox
þ x

ou
oy
¼ 0; ðx; yÞ 2 ½�1; 1� � ½0; 1�;

uðx; 0Þ ¼
0 if x 62 ½0:1; 0:7�;
sin p x�0:1

0:6

� 	
x 2 ½0:1; 0:7�.

( ð57Þ

The exact solution is, with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, uðx; yÞ ¼

sinðp r�0:1
0:6
Þ if r 2 [0.1,0.7] and 0 elsewhere. The numerical

solution is computed with a pseudo-time marching algo-
rithm where the initial solution is u0 = 2.

On each sub-triangle T 0T , we employ the scalar N
scheme. The average velocity is defined by

ð��y;�xÞ ¼
Z

T
ð�y; xÞdxdy.
Fig. 32. Mesh for the linear circular advection problem.

Fig. 33. Isolines of the exact and co
Three schemes are compared: the standard second order
PSI scheme, a third order scheme and a fourth order one.
The high order schemes are constructed using P3 and P4

interpolation with the scheme (53)–(55). The mesh
has 628 vertices and 1162 elements and is displayed in
Fig. 32.

The isolines of the solutions are displayed in Fig. 33. The
circular shape of the solution is perfectly well respected in
each case. What is more interesting is a plot in the exit sec-
tion, i.e. for x = 0 and y 6 �1. This is given in Fig. 34 with a
comparison with the exact one. We also provide a zoom of
the solution around (x,y) = (0,�0.5) where the solution is
maximum. This figure shows clearly that an increase of
the formal accuracy of the scheme does improve its effective
accuracy. The fourth order scheme is almost perfect.

Last we provide errors for the advection problem
a = (0, 1)T and the boundary condition uðx; yÞ ¼ cos px on
[�1,1] · [0,1]. On Fig. 35, we provide the L2 errors for
the second order PSI scheme (Fig. 35a), the third order
one (Fig. 35b) and the fourth order one (Fig. 35c). We
see that the error slope of the r + 1 th order scheme is
between r + 1/2 and r + 1. This is not in contradiction with
the expected theoretical r + 1/2 order of accuracy. In
Fig. 36, we display the L1 errors: the second order PSI
scheme (Fig. 36a), the third order one (Fig. 36b) and the
fourth order one (Fig. 36c). We see that the L1 errors
are closer from the slope r + 1/2, which seems to indicate
that there is no clipping phenomena as in ‘‘standard’’
schemes. However, the fourth order schemes does not
provide the expected accuracy, see Fig. 36c. This may be
a implementation error, or some roundoff problem (the
computations have been performed on a 1 GHz Pentium
IV processor with the Intel Fortran 90 compiler, and we
have already experienced similar problems on this
processor).
mputed solutions, rotation test.
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4.2.2. Burger equation

We consider the Burger equation

1

2

ou2

ox
þ ou

oy
¼ 0; x 2 ½0; 1� � ½0; 1�;

uðx; yÞ ¼ 1:5� 2x on the inflow boundary.

The exact solution is
uðx;yÞ¼

�0:5 if y6 0:5 and �2 x� 3
4

� 	
þ y� 1

2
6 0;

1:5 if y6 0:5 and �2 x� 3
4

� 	
þ y� 1

2
P 0;

max �0:5;min 1:5;
x�3

4

y�1
2

� �� �
else.

8>>><>>>:
Once more, the solution is computed with a pseudo-time
marching algorithm, the initial condition is set to
u = �0.5. We represent the solutions computed for the
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Fig. 36. L1 error of the (a) second order, (b) third order and (c) fourth order PSI schemes.

Fig. 37. Mesh for the Burger’s equation.

Fig. 38. Isolines of the exact and computed solutions, Burger’s problem.
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mesh represented in Fig. 37 with 1041 vertices and 1960
triangles.

The isolines of the solutions are displayed in Fig. 38. We
also display cross-sections for y = 0.75 across the disconti-
nuity (Fig. 39) and y = 0.25 across the fan (Fig. 40).

Last, we give a zoom of the cross-section y = 0.25
around the corner of the fan in Fig. 41. We see a very clear
improvement of the quality of the solution with the
increase of the accuracy order.
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5. Conclusion

In this paper, we have tried to provide an exhaustive
description of the state-of-the art of residual distribution
schemes for the Euler equations of a calorically perfect
gaz. Several issues have not been covered, for example
the case of more general systems, such as the MHD system
(see [30] for details), the problem of linearisation for non-
polytropic gases (see [30]). Very few details on viscous
problems have been given.

The main issues now, besides a better theoretical
understanding of these schemes, including the problems
and partial solution described in Section 4, to construct
efficient schemes for unsteady problems with higher than
second order accuracy. A first version has been described
in [22], a better one in [51], but the situation is far from
being satisfactory. Another issue is to understand how this
type of methodology can be extended to nonconformal
meshes.
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Appendix A. Stability of Ricchiuto’s variant of the N scheme

In this analysis, we assume a compactly supported
solution. Starting from the N scheme (37), (39), we rewrite
it as

jCijunþ1
i þ

X
j 6¼i

cijðunþ1
i � unþ1

j Þ ¼ jCijun
i

with

cij ¼
X
T3i

cT
ij

and

cT
ij ¼ Dtkþi nk�j .

Here jCij ¼
P

T3i
jT j
3

is the area of the dual cell.

A.1. L1 stability

The scheme writes Aun+1 = un with

aii ¼ 1þ
X

j

cij

jCij
> 0 if j ¼ i;

aij ¼ �
cij

jCij
< 0 if i 6¼ j;

so that A�1 is a matrix with positive entries. This guaran-
ties the maximum principle.

A.2. Energy analysis

After multiplication by unþ1
i and summation, we get

Enþ1 þ
X

i

X
j

cijðunþ1
i � unþ1

j Þunþ1
i ¼

X
i

jCijun
i unþ1

iþ1 ;

where

Enþ1 ¼
X

u

jCijðunþ1
i Þ

2.

Then we rearrange the second term,X
i

X
j

cijðunþ1
i � unþ1

j Þunþ1
i ¼

X
T

X
i;j2T

cT
ijðunþ1

i � unþ1
j Þunþ1

i .

The second summationX
i;j2T

cijðunþ1
i � unþ1

j Þunþ1
i

can be rewritten as

1=2
X

j

kjðunþ1
j Þ

2 þ 1=2
X
i;j2T

cT
ijðunþ1

i � unþ1
j Þ

2

because we have the relations
P

j 6¼iðcT
ij � cT

jiÞ ¼ ki. Coming
back to the problem, we have

2Enþ1 þ
X

T

X
j

kT
j ðunþ1

j Þ
2 þ

X
i;j

cijðunþ1
i � unþ1

j Þ
2

¼ 2
X

i

jCijunþ1
i un

i .
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Assuming now a constant velocity field, the second sum
vanishes and we get

Enþ1
6

X
i

jCijunþ1
i un

i 6 1=2ðEnþ1 þ EnÞ

so that

Enþ1
6 En

unconditionally on Dt.
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