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1. Introduction

We are interested in the approximation of the following model
problem

~k � ru ¼ f x 2 X

u ¼ 0 x 2 C�
ð1Þ

where X � Rd is a polygonal set, C� is the inflow boundary

C� ¼ fx 2 oX;~k �~nx < 0g

and ~nx is the local normal at the point x 2 oX.
We consider a conformal triangulation Th which elements K

are triangles, quads in 2D or tetrahedrons/hex in 3D. More general
elements could, in principle, be considered. The parameter h de-
notes the maximum value of all the diameters hK of the circum-
scribed circle/sphere to the elements K of Th. We also assume
that the meshes are regular. The mesh Th are assumed to be
adapted to (1), i.e. C� is a collection of edges/faces of Th. The space
Vp

h is the set of continuous functions that, on each element K, are
polynomials of degree p that vanishes on C�.

The Eq. (1) is discretized by a variational formulation of the type
: Let us give p; q 2 NI, find uh 2 Vp

h such that for all vh 2 Vq
h,

aðuh; vhÞ ¼ ‘ðvhÞ: ð2Þ

The examples we are interested in are the SUPG schemes [5,6] and
the stabilized residual distribution schemes [1] which are in general
non-linear schemes, even for linear problems.

In the SUPG schemes, we take p ¼ q 2 NI and the relation (2)
writes
Elsevier Ltd.
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(R. Abgrall).
X
vhð~k � ruh � f ðxÞÞdxþ h

X
ðk � rvhÞð~k � ruh � f ðxÞÞdx ¼ 0 ð3Þ

i.e.

aðvh;uhÞ ¼
Z

X
vhð~k � ruhÞdxþ h

Z
X
ðk � rvhÞð~k � ruhÞdx

‘ðvhÞ ¼
Z

X
vhf ðxÞdxþ h

Z
X
ðk � rvhÞf ðxÞdx

ð4Þ
In the second example, the Residual Distribution schemes
(RD schemes for short), we also take q ¼ p 2 NI but the formu-
lation is completely different in order to account, for example,
of a maximum principle. These schemes are described in Sec-
tion 2.

The solutions of (2) are obtained by an iterative scheme. The
convergence of the iterative procedure is important for two
reasons

1. The uniqueness of the solutions of (2) is essential to have a well
posed problem, and one wishes to obtain a good approximation
of the solution of (2).

2. One can show, and we recall this later in the text, that if the
problem (2) is not solved with enough precision, the formal
accuracy of the scheme (2) is lost.

In this respect, the SUPG scheme is dissipative, and coercive in a
proper norm, so that existence and uniqueness is guarantied. How-
ever, in the case of the RD schemes, this may be no longer true, at
least for their unstabilized version. Indeed, a RD scheme can be
constructed so that it is positivity preserving but in general, the
solution of (2) may not be unique, see [1].

Coming back to the SUPG scheme, we see that the forms a and b
are the sum of two terms, the forms
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Table 1
Examples of quadrature points and weights for triangles

Error OðhkÞ Weights K1 K2 K3

3 1/3 1/2 1/2 0
1/3 0 1/2 1/2
1/3 1/2 0 1/2

3 0.109951743655322 0.816847572980459 0.091576213509771 0.091576213509771
0.109951743655322 0.091576213509771 0.091576213509771 0.816847572980459
0.109951743655322 0.091576213509771 0.816847572980459 0.091576213509771
0.223381589678011 0.108103018168070 0.445948490915965 0.445948490915965
0.223381589678011 0.445948490915965 0.108103018168070 0.445948490915965
0.223381589678011 0.445948490915965 0.108103018168070 0.445948490915965

5 0.225 1/3 1/3 1/3
0.125939180544827 0.797426985353087 0.101286507323456 0.101286507323456
0.125939180544827 0.101286507323456 0.101286507323456 0.797426985353087
0.125939180544827 0.101286507323456 0.797426985353087 0.101286507323456
0.13239415278850 0.470142064105115 0.470142064105115 0.059715871789770
0.13239415278850 0.470142064105115 0.059715871789770 0.470142064105115
0.13239415278850 0.470142064105115 0.059715871789770 0.470142064105115
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a0ðuh; vhÞ ¼
Z

X
vhð~k � ruhÞdx

and

‘0ðvhÞ ¼
Z

X
vhf dx

ð5Þ

that define the Galerkin formulation of (1). The problem (2) with a0
and ‘0 is known to be very unstable. It is stabilized by adding a dis-
sipative term q and a linear form b to keep the consistency of the
scheme,

qðuh; vhÞ ¼ h
X

K

DKðvh;uhÞ; DKðvh;uhÞ ¼
Z

K
ð~k � rvhÞð~k � ruhÞdx

bðvhÞ ¼ h
Z

X
ð~k � rvhÞf ðxÞdx

ð6Þ

The exact evaluation of DK may be quite costly in practice. If in
the case of p ¼ 1, the terms ð~k � ruhÞð~k � rvhÞ can be evaluated with
second order accuracy with only one point (the centroid). For
p ¼ 2, the components ofrvh are of degree one, and an exact quad-
rature formula (for a constant velocity)~k is obtained with 3 quad-
rature points (the mid-points of the edges of the triangle) of a 5
point formula as indicated in Table 1. When
p ¼ 3; ð~k � ruhÞð~k � rvhÞ is of degree 4 and 7 quadrature points are
needed. This can be seen from Table 1 where weights and quadra-
ture points are displayed for triangular elements. For Qk elements,
the situation is worse.

The question we are interested in this paper is the following. Gi-
ven a scheme of the type (2),

aðuh; vhÞ ¼ ‘ðvhÞ

what are the requirements about the forms q and b such that the
scheme

aðuh; vhÞ þ qðuh; vhÞ ¼ ‘ðvhÞ þ bðvhÞ ð7Þ

is well posed, has provable error estimates in a well behaved norm?
How can q and b be chosen such that the evaluation of these terms
is as simple as possible with the minimal number of operations?

The schemes we are interested in, like (3) or the RD scheme,
share several formal properties in common. Namely,

1. If u is a smooth solution of (1), then for any vh 2 Vq
h, we have

aðu; vhÞ ¼ ‘ðvhÞ ð8aÞ

Moreover, if uh denotes the solution of scheme, we have

aðu� uh; vhÞ ¼ 0: ð8bÞ
Note that this property, which is well known for the SUPG scheme,
is also true for the RDS scheme, even if the RDS scheme is non-
linear.
2. From this, if uh denotes now the interpolant of the exact solu-

tion u of (1), then the equivalent equation of the scheme is

aðuh; vhÞ � ‘ðvhÞ ¼ OðhpþdÞ ð9Þ

from which we deduce the formal order of accuracy. Of course, in
the case of the SUPG scheme, things can be made more rigorous.

These properties must remain intact.
In the first section, we explain in detail what is a RD scheme.

The SUPG schemes are particular cases. The second section is de-
voted to the describe and discuss natural necessary conditions.
The third section is devoted to examples and numerical results.

2. Examples of ‘‘unstabilised schemes

The example of the Galerkin formulation of (1) is well known so
we skip it. We give some details on the RD schemes that are less
known.

We consider a conformal mesh, the generic element is denoted
by K. The degrees of freedom are denoted by xr. In the case of a P1

interpolant, they are just the vertices of the mesh. For a P2 interpo-
lant, we have to add the mid-edge points, etc. Obvious generaliza-
tion can be described for other continuous elements such as the Pk

or Q k elements.
In order to construct a RD scheme for (1), on has first to con-

struct ‘‘residuals” UK
r such that the two conditions are met :

1. Compact stencil condition: UK
rðuhÞ :¼ UK

r only depends on the
values of u at the degrees of freedom in K,

2. Conservation condition : UK
r are such thatX

r2K

UK
r ¼

Z
oK

~k �~nuhdx�
Z

K
f ðxÞdx :¼ UK

This is a conservation constraint.

The function uh has to be solution of

for any r;
X

K;r2K

UK
r ¼ 0: ð10Þ

As said previously, the SUPG schemes are examples of RD
schemes, since they are exactly (10) with

UK
r ¼

Z
K
urð~k � ruh � f Þdxþ h

Z
K
ð~k � rurÞð~k � ruh � f Þdx:
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Of course these conditions (conservation and a compact stencil)
are not enough to provide a working scheme in term of stability
and accuracy. Here we focus on the L1 stability and the residual
property 8a, 8b which ensure formal accuracy. These two addi-
tional constraints are achieved by the following procedures1.

One starts from a monotone scheme, say the Lax–Friedrichs
one,

UK;LxF
r ¼ 1

NK
UK þ aK

X
r02K

ður � ur0 Þ
 !

which is only first order, NK represents the number of degree of
freedom in K. Then we define

xr :¼ UK
r

UK ;

they sum up to unity thanks to the conservation relation and

bK
r :¼ xþrP

r02K
xþr0

: ð11Þ

There is no problem in the definition of bK
r sinceX

r02K

xþr0 P
X
r02K

xr0 ¼ 1:

The RD scheme is then defined by (10) with

UK
r ¼ bK

rU
K : ð12Þ

The solution of (18)–(12) is sought for by an iterative method.
The simplest one is

unþ1
r ¼ un

r �xr
X

K;r2K

UK
r for all r ð13Þ

with u0
r ¼ 0 for example, and one hopes that ur ¼ limn!þ1un

r.
Thanks to the definition of bK

r, one can see that the sequence
fun

rgn;r satisfy a maximum principle provided a CFL-like condition

0 6 xr max
K;r2K
ðjKjmax

r02K
max

x2K
krur0 ðxÞkÞ 6 1:

Note that sharper estimates can be given, but this is not the point
here.

The variational formulation of (10)–(12) is easily obtained. If
one multiply (10) by vðxrÞ and sum over all the degrees of freedom,
one obtains

0 ¼
X

K

WK

with

WK ¼
X
r2K

vrbT
r

Z
K
ð~k � ruh � f Þdx

¼
Z

K
vhð~k � ruh � f Þdxþ

X
r2K

vr

Z
K
ðbK

r �urÞð~k � ruh � f Þdx

Since by definitionX
r2T

bT
r ¼ 1 ¼

X
r2T

ur;

we haveX
r2K

vr

Z
K
ðbK

r �urÞð~k � ruh � f Þdx

¼ 1
ðNK � 1Þ!

X
r;r0
ðvr � vr0 Þ

Z
K
ðcr;r0 � wr;r0 Þð~k � ruh � f Þdx

¼ h
ðNK � 1Þ!

X
r;r0

hrr0
vr � vr0

k ~xrxr0 k

Z
K
ðcr;r0 � wr;r0 Þð~k � ruh � f Þdx
1 Note that other RD scheme exist, they do not satisfy a L1 stability property. An
example is the SUPG scheme, another one is the LDA scheme, see [4,10].
with hrr0 ¼ k ~xrxr0 k=h which is bounded since the mesh is regular,
cr;r0 ¼ bT

r � bT
r0 and wr;r0 ¼ ur �ur0 .

The form a is

aðuh; vhÞ ¼
Z

K
vhð~k � ruhÞdxþ h

ðNK � 1Þ!
X
r;r0

hrr0
vr � vr0

k ~xrxr0 k

�
Z

K
ðcr;r0 � wr;r0 Þð~k � ruhÞdx ð14Þ

and ‘ is

‘ð; vhÞ ¼
Z

K
vhf dxþ h

ðNK � 1Þ!
X
r;r0

hrr0
vr � vr0

k ~xrxr0 k

Z
K
ðcr;r0 � wr;r0 Þf dx

ð15Þ

which have the same structure as (4).
The problem of this scheme is that even though the iteration

(13) is L1 stable, it does not converge in general. The same conclu-
sion holds for more involved iterative scheme and the reason is
that (10)–(12) is not well posed except for very special situations.

An example is given for a second order (hence P1 interpolation)
using the local Lax–Friedrichs scheme (12) on

� y
ou
ox
þ x

ou
oy
¼ 0 ðx; yÞ 2 ½0;1�2

uðx;0Þ ¼ � sin p x�0:7
0:6

� �
if x 2 ½0:1; 0:7�

0 else

( ð16Þ

The convergence history and a solution is given on Fig. 1 The solu-
tion of Fig. 1 is obviously not a second order accurate approximation
of (16). The next section is devoted to describe a simple modifica-
tion of the scheme. This problem has already been solved in [1]
for second order schemes, we show how to extend the method in
a simple and efficient way.

3. Construction and discussion

Let us consider the problem

aðuh; vhÞ ¼ ‘ðvhÞ ð17aÞ

with a and ‘ given by

aðuh; vhÞ ¼
X

K2Th

aKðuh; vhÞ

aKðuh; vhÞ ¼
Z

K
vhð~k � ruhÞdxþ hbKðuh; vhÞ

‘ðvhÞ ¼
X

K2Th

‘KðvhÞ

‘KðvhÞ ¼
Z

K
vhf dxþ hlKðvhÞ

ð17bÞ

We assume that a; ‘; aK and ‘K satisfy the following assumptions :

Assumption 3.1.

1. aK and lK are linear in vh.
2. if u is the solution of (1),

aðu; vhÞ ¼ ‘ðvhÞ

for any vh 2 Vh and

aðu� uh; vhÞ ¼ 0

for any vh 2 Vh. More precisely, because of the structure of the
forms a and b, we assume that for any K, and any vh 2 Vp

h,

aKðu; vhÞ ¼ lKðvhÞ

and

haKðu� uh; vhÞ ¼ OðhpþdÞ:
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Fig. 1. Solution of (1) with the scheme (12) with b defined by (11).
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These assumptions are true for the SUPG and RD schemes.
Moreover, for these two schemes, we have the conservation
constraint

aKðuh;1Þ ¼ lKð1Þ ¼ 0

for any K.

Remark 3.1 (About the linearity assumption). The problem (1) is
linear. All what is said here can be extended to the non-linear case,
and the linearity assumption still holds.

The scheme writes in the RD form (14). To see this, we consider
the list of degrees of freedom fxrg. For piecewise linear interpolant
and triangular elements or Q 1 interpolant, they are just the vertices
of the mesh. For quadratic interpolant and triangular meshes, they
are the vertices of the mesh and the mid-edges points, etc. The La-
grange interpolant of degree p associated to a given degree of free-
dom xr is denoted as up

r. We have

1. up
rðxr0 Þ ¼ dr0

r ,
2. up

r is continuous,
3. for any element T, the restriction of ur to T is a polynomial of

degree d.

By definition, any uh 2 Vp
h can be written as

uh ¼
X
r

uhðxrÞup
r;

and vh 2 Vq
h can be written as

vh ¼
X
r

vhðxrÞuq
r;

so that the scheme can be reformulated as finding uh 2 Vp
h such that

for any r, we have

X
T2Th

Z
K
up

rð~k � ruhÞdxþ hK aKður;u
hÞ

�

þ
X

T�Th

Z
T

f ðxÞuq
rðxÞdxþ hK lKðuqÞ

)
¼ 0 ð18Þ

Such a scheme is rewritten as a RD scheme with the residual

UT
r ¼

Z
K
up

rð~k � ruh � f Þdxþ hKðaKður; u
hÞ � hK lKðurÞÞ ð19Þ

the conservation constraint is automatically satisfied becauseP
r2Tu

p
r ¼ 1 and using the linearity with respect to vh,
X
r2K

UK
r ¼

Z
K
ð~k � ruh � f Þdxþ hK aKðuh;

X
r2K

urÞ � lK

X
r2K

ur

 ! !

¼
Z

K
ð~k � ruh � f Þdx ¼ UK

Formally, the scheme is accurate because if that if wh 2 Vp
h is the

interpolant of the exact solution of (1) assumed to be smooth, then
UT

rðwhÞ ¼ OðhpþdÞ. In fact, for RD scheme, this property is true be-
cause UTðwhÞ ¼ OðhpþdÞ since

UTðwhÞ ¼
Z

oT

~k �~nwhdx�
Z

K
f dx ¼

Z
oT

~k �~nðwhðxÞ � uðxÞÞdx

¼ Oðhd�1Þ � Oðhpþ1Þ ¼ OðhpþdÞ:

Using this remark, the relation (9) follows for regular meshes.
A first scheme of the type (7) can be obtained by perturbing the

residual (19) as

ðUT
rÞ

I ¼ UT
r þ wT

r ð20Þ

with the constraint
P

r2Tw
T
r ¼ 0 to ensure conservation. The formal

accuracy property is also conserved if

wT
rðwhÞ � f ¼ OðhpþdÞ ð21Þ

whenever ~k � rwh ¼ OðhpÞ.
A first example is obviously given by

wT
r ¼ hh

Z
K
ð~k � ruq

rÞð~k � ruh � f Þdx ð22Þ

where h is chosen such thatZ
X
ð~n � ruÞð~k � ruÞdxþ h

Z
X
ð~k � ruÞ2dx P 0: ð23Þ

Under this condition, the iterative scheme (13) is convergent when
n! þ1.

In (22), wT
r is evaluated by a quadrature formula of exact order,Z

K
ð~k � ruq

rÞð~k � ruhÞdx ¼
X
xquad

xquadð~k � ruq
rðxquadÞÞ

� ð~k � ruhðxquadÞ � f ðxquadÞÞÞ ð24Þ

The question is now : given a formula of the type

wT
r ¼ hT hK jTj

X
xquad

xquadð~k � ruq
rðxquadÞÞð~k � ruhðxquad � f ðxquadÞÞÞ

0
@

1
A;
ð25Þ



Table 4
Accuracy results for (29)

h ¼ 1=N L2 Rate L1 Rate

25 2.17274 � 10�2 – 0.10644 –
50 1.13486 � 10�2 0.8989 7.94628 � 10�2 0.9370

100 5.83347 � 10�3 0.9595 4.16117 � 10�2 0.9601

The ‘‘fourth” order accurate scheme uses the vertices in (25). In each case, h ¼ 1.

Table 3
Accuracy results for (29)

h ¼ 1=N L2 Rate L1 Rate

25 0.25122 � 10�1 – 0.42887 –
50 0.12935 � 10�1 0.9577 0.39237 0.1283

100 0.83978 � 10�2 0.6232 0.43656 �0.1540

The ‘‘third” order accurate scheme uses the gravity center in (25). In each case,
h ¼ 1.

Table 2
Accuracy results for (29)

h ¼ 1=N L2 Rate L1 Rate

Second order accurate results
25 0.50493 � 10�2 – 0.30340 � 10�1 –
50 0.14684 � 10�2 1.78 0.12726 � 10�1 1.25
75 0.74684 � 10�3 1.66 0.82311 � 10�2 1.07

100 0.41019 � 10�3 2.08 0.52882 � 10�2 1.54

Third order accurate results
25 0.32612 � 10�4 – 0.15748 � 10�3 –
50 0.48741 � 10�5 2.742 0.31276 � 10�4 2.33
75 0.13334 � 10�5 3.19 0.11363 � 10�4 2.49

100 0.66019 � 10�6 2.44 0.46897 � 10�5 3.07

Fourth order accurate results
25 0.20860 � 10�5 – 0.12811 � 10�4 –
50 0.17001 � 10�6 3.61 0.17880 � 10�5 2.84
75 0.27027 � 10�7 4.53 0.26772 � 10�6 4.68

100 0.91462 � 10�8 3.76 0.95526 � 10�7 3.58

The third order accurate scheme uses the vertices in (25). The fourth order scheme
uses the vertices and the mid-points (25). In each case, h ¼ 1.
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what are the requirements on the points xquad and the weights
xquad, so that we still have the inequality (23) and the accuracy con-
dition (21)?

Accuracy constraint. Assuming that the solution of (1) is
smooth enough, we have on T

wh � u ¼ Oðhpþ1Þ and rðwh � uÞ ¼ OðhpÞ;

and for a regular mesh

rur ¼ Oðh�1Þ

so that for any xquad,

ð~k � ruq
rðxquadÞÞð~k � rwhðxquad � f ðxquadÞÞ ¼ Oðhp�1Þ

so that

wT
r ¼ h� OðhdÞ � Oðhp�1Þ ¼ OðhpþdÞ:

The formal accuracy is automatically guarantied.
Constraints on the weights and the points xquad. In order to

have the inequality (23), a necessary condition is that the quadratic
form

qKðvhÞ :¼
X
xquad

xquadð~k � rvhðxquadÞÞ2

must be positive definite whenever the polynomial ~k � rvh–0.
A sufficient condition is

for all xquad;xquad > 0
~k � rvhðxquadÞ ¼ 0 for each xquad; then ~k � rvh ¼ 0:

ð26Þ

Under these conditions, there exist constants C1;q and C2;q such
that

C1;qqKðvhÞ 6 hK

Z
K
ð~k � rvhÞ2dx 6 C2;qqKðvhÞ ð27Þ

because Pq is a finite dimensional space, hence

QðvhÞ ¼
X

K

qKðvhÞ

defines a norm on Vh which is equivalent to the norm
vh#

R
Kð~k � rvhÞ2dx.

We have shown the following result

Proposition 3.2. If a and ‘ are defined by (17b), under the
Assumption 3.1 and provided that the conditions (26) hold, for each
element K, there exists hK;0 > 0 such that the scheme (17a) for
hK > hK;0 is well posed.

Proof. The scheme writes in variational formulation: find uh 2 Vh

such that for all vh 2 Vh,

a0ðuh; vhÞ ¼ ‘ðvhÞ

with

a0 ¼ aþ b; ‘0 ¼ ‘

where

bðuh; vhÞ ¼
X

K2Th

X
r2K

vrwK
r

with wK
r defined by (25) and using the scalar product

huh; vhi ¼
X

K2Th

jKj
X
r2K

urvr

 !
;

The iterative scheme (13) writes,

unþ1 ¼ un �xðAun � FÞ
with

hAuh
; vhi :¼ aðuh; vhÞ; hF; vhi ¼ ‘ðvhÞ:

The scheme is convergent if

kId�xAk < 1:

A necessary condition is that for any vh,

�2hAvh
; vhi þxkAvhk 6 0

for some x > 0. This condition needs

aðvh; vhÞ ¼ hAvh
; vhi > 0 ð28Þ

for any vh. Coming back to the problem,

aðvh; vhÞ ¼
Z

oXþ
~k �~nv2

hdlþ
X

K

hKðaKðvh; vhÞ þ hHqKðvhÞÞ;

hence a necessary condition for having (28) is that on any K we have

aKðvh; vhÞ þ hHqKðvhÞ > 0:

From Assumption 3.1, we see that

KerqK ¼ fvh 2 PK ; qKðvhÞ ¼ 0g � KeraK ¼ fvh 2 PK ; aKðvhÞ ¼ 0g;

so that which means that, since qK is positive definite, the scheme is
contractant provided that



R. Abgrall et al. / Computers & Fluids 38 (2009) 1314–1323 1319
hH > hK;0 ¼ min 0;�
sup
vh2Pq

aðvh; vhÞ

inf
vh2Pq ;vhRKer qK

qKðvhÞ

0
B@

1
CA 2 R

for each K. h
u,  min = -0.5,  max = 1.5 u

u,  min = -0.5255,  max = 1.526

Fig. 3. Results obtained for problem (30) with various choices of h and quadrature point
and the points of coordinates (0.6,0.2,0.2), (0.2,0.6,0.2), (0.2,0.2,0.6) with weights 25=48
the weights 1/3.

Fig. 2. Isolines of the solution of (29) when 1 point or 3 points are used in (25). The ba
4. Examples and numerical illustrations

4.1. Accuracy study

We apply the method on a simple linear problem, namely
,  min = -0.5538,  max = 1.549

,

s. In the case of 4 quadrature points we have chosen the centroid (weight �27/48),
. In the case of 3 quadrature points, they are simply the vertices of the triangle with

seline scheme is formally third order. All the degrees of freedom are represented.
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ou
oy
¼ 0 ðx; yÞ 2 ½0;1�2

uðx; yÞ ¼ sinðpxÞ2 x ¼ 0
ð29Þ

for which the solution is simply uðx; yÞ ¼ sinðp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Þ2.

We have run the formally second order scheme, third order and
fourth order schemes with respectively 1, 3, 6 ‘‘quadrature points”
in (25).

For the third order scheme, the ‘‘quadrature” points are simply
the vertices of the triangle. For the third order case, we have cho-
Fig. 5. Supersonic ject, t

0 0.2 0.4 0.6 0.8 1

-0.5

0

0.5

1

1.5
Theta=0
Theta=1,3 quad points
Theta(Res),3 quad points

-

Fig. 4. Cross-section of the solution at y ¼ 0:25 and y ¼ 0:75. For y ¼ 0:25, the solution co
labelled hðResiduÞ corresponds to the choice (31). Some difference appears for the cross
sen the vertices and the mid-point edges. The weights are 1, 1/3
and 1/6 respectively. The results, in term of accuracy, are indepen-
dent of choices of the ‘‘quadrature” points, provided that (24) de-
fines a positive definite quadrature form. The constant h in (25)
is set to unity. The results are displayed in Table 2. We see that
the expected order of accuracy is met in each case. If now we re-
peat the same experiment with a smaller number of ‘‘quadrature”
points, the accuracy is degraded and the results are only first order
accurate or the scheme is only consistent, see Tables 3 and 4. This
can also be seen visually on Fig. 2.
hird order solution.

0.6 0.8 1
0.5

0

0.5

1

1.5

2

Theta(Residual)
Theta=0
Theta=1

rresponding to 3 and 4 quadrature points and h–0 are undistinguishable. The curve
-section at y ¼ 0:75. The choice (31) appears to be a good compromise.
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4.2. The non-linear case

The second example is the solution of the problem

1
2

ou2

ox
þ ou

oy
¼ 0 if x 2 ½0;1�2

uðx; yÞ ¼ 1:5x� 0:5 when y ¼ 0 or x 2 f0;1g
ð30Þ

The solution consists in a compression merging into a shock which
foot is located at (0.5,0.75). Several schemes are tested. We only
represent the solutions obtained by the formally third order scheme
since the behavior for the fourth order one is the same. The ‘‘quad-
rature” points are again the vertices of the elements with and with-
out the centroid depending on if we take 3 or 4 points.
Fig. 7. Comparison between 1st, second and

Fig. 6. With and without diss
On Fig. 3, we represent the isolines of the scheme when h is set
to 0, 1 or

h ¼ jTjP
vertices

jkij
min 1;

ffiffiffiffiffiffi
jTj

p P
vertices

jkij
� �

R
oT nx

u2

2 þ nyu
� �

dl
�� ��þ �

0
BB@

1
CCA: ð31Þ
In (31), if ni
x and ni

y are the components of the inward normal oppo-
site the vertex i in the triangle, ki ¼ ni

x
u2

2 þ ni
yu and � ¼ 10�10. Once

again, the same conclusions hold: 3 points are necessary to get
accurate results. We compare the solutions depending on which op-
tion is chose (3/4 quad points, the choice of h). To do this, we make
third order, same degrees of freedom.

ipation, density isolines.



Fig. 8. Four-state Riemann problem, comparison stabilized, unstabilized solution on a coars mesh.

Fig. 9. Convergence study 101� 101 and 201� 201, density isolines.
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cross-section at y ¼ 0:25, i.e. in the fan, and y ¼ 0:75, i.e. in the
discontinuity.

The results of Fig. 4 show that if h ¼ 0, the oscillations visible in
Fig. 3 are not a manifestation of an instability, the scheme is over-
compressive. When h ¼ 1 or is chosen as (31), there is no difference
in the solution, whatever the number of quadrature points. In
Fig. 4, we plot the result at y ¼ 0:75. If we add the addition of
the term (25), the scheme is no longer formaly monotonicity pre-
serving, but the Fig. 4 indicate that no undershoot nor overshoot
are created. The same figure also indicate that the choice (31) is
the best compromise between accuracy and stability. The effect
of this term is that when the solution is smooth, h ’ 1 while
h ’ 0 in the discontinuity.

4.3. Euler equations

The last examples that we show are for the Euler equations. De-
tails about the scheme can be found in [2] in particular about the
way Eq. (12) is implemented. The method has been implemented
only for P2 element so far again with 3 ‘‘quadrature” points. The
first example is a supersonic jet with M ¼ 2:4 on the bottom and
M ¼ 4:4 on the top. The solution, see Fig. 5, is made of a shock wave
followed by a contact and a fan. On Fig. 6, we show the effect of
adding and removing the term (25). We can also see the increase
of accuracy. On Fig. 7, we have run the first order, second order
and third order RD schemes with the same number of degrees of
freedom, namely the vertices and the mid-points of the mesh. A
last example is a 4 state shock tube problem (configuration 12 of
[7]). This case is time dependant, but we can compute the solution
at time t since the solution is self-similar, Uðx; y; tÞ ¼ V x
t ;

y
t

� �
. The

function Vðn; mÞ satisfies

�nVn � mVm þ divðn;mÞFðVÞ ¼ 0:

The case has been chosen that the boundary condition can easily be
computed analytically. The scheme is the same as before, but we
modify the definition of the total residual by

UT :¼
Z

T
ð�nVn � mVm þ divðn;mÞFðVÞÞdndm:

This integral is evaluated by

UT ¼
Z

oT
ðFðVÞ �~n� ðn; mÞ �~nÞdlþ

Z
T

Vðn; mÞdndm:

Again we see the improvement obtained by adding the term (25).
The scheme is very robust and non-oscillatory, despite the interac-
tion between many waves.

5. Conclusion

In this paper, we have discussed a simple way to construct sim-
ple and accurate very high order residual distribution schemes. A
theoretical discussion is provided which is confirmed by numerical
experiments on scalar problems and the Euler equations. We have
focussed on schemes like Residual Distribution schemes, but we
believe however that the method we present in this paper can be
adapted to other type of schemes. Note also that it shares common
features with the work of Corre and Lerat, see [8,9,3] for example
(see Figs. 8 and 9).
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