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1. Introduction

The discontinuous Galerkin (DG) methods are locally conserva-
tive, stable and high-order accurate methods which represent one
of the most promising current trends in computational fluid
dynamics [3,4]. They can be viewed as a natural high-order exten-
sion of the classical finite volume methods. This extension is con-
structed by means of a local variational formulation in each cell,
which makes use of a piecewise polynomial approximation of the
unknowns. In the present work, we describe cell-centered DG
methods up to third-order not only for two-dimensional scalar
conservation laws on general unstructured grids but also for the
one-dimensional system of gas dynamics equations written in
the Lagrangian form. In this particular formalism, a computational
cell moves with the fluid velocity, its mass being constant, thus
contact discontinuity are captured very sharply. The main feature
of our DG method consists in using a local Taylor basis to express
the approximate solution in terms of cell averages and derivatives
at cell centroids [7]. The explicit Runge–Kutta method that pre-
serves the total variation diminishing property of a one-dimen-
sional space discretization is employed to perform the time
discretization up to third-order [3]. The monotonicity is enforced
by limiting the coefficients in the Taylor expansion in a hierarchical
ll rights reserved.
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manner using the vertex based slope limiter developed in [7,11].
We will first illustrate the robustness and the accuracy of this
scheme by testing it against analytical solutions for simple conser-
vation laws problems. Then, we will explore its performance in the
Lagrangian framework by applying it in one-dimension. We note
that in the case of systems, the limitation procedure is applied
using the characteristic variables. Extending the methodology de-
scribed in [2,10], we derive numerical fluxes which enforce the sta-
bility in L2 norm for the case of scalar conservation laws and
provide an entropy inequality in the case of gas dynamics
equations.
2. Scalar conservation laws

We develop our cell-centered DG method in the case of one and
two-dimensional scalar conservation laws.
2.1. One-dimensional case

Let u = u(x, t), for x 2 R and t P 0, be the solution of the follow-
ing one-dimensional scalar conservation law

@u
@t
þ @f ðuÞ

@x
¼ 0; uðx;0Þ ¼ u0ðxÞ; ð1Þ

where u0 is the initial data and f(u) is the flux function.
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2.1.1. Discretization
The DG discretization can be viewed as an extension of the fi-

nite volume method wherein a piecewise polynomial approxima-
tion of the unknown is used. Let us introduce Ci ¼ ½xi�1

2
; xiþ1

2
� a

generic cell of size Dxi and PKðCiÞ the set of polynomials of degree
up to K. We can express the numerical solution as

ui
hðx; tÞ ¼

XK

k¼0

ui
kðtÞei

kðxÞ;

where {ek}k = 0, . . . , K is a basis of PKðCiÞ. The coefficients ui
kðtÞ are

determined by writing the local variational formulation for
k = 0, . . . ,K

XK

l¼0

dui
l

dt

Z
Ci

ei
l; e

i
k

� �
dxþ f ðuÞei

k

h ix
iþ1

2

x
i�1

2

�
Z

Ci

f ui
h

� �dei
k

dx
dx ¼ 0: ð2Þ

Here, f ðuÞei
k

h ix
iþ1

2

x
i�1

2

¼ f iþ1
2
ei

k x�
iþ1

2

� �
� f i�1

2
ei

k xþ
i�1

2

� �
, where f iþ1

2
is again the

numerical flux, which is a single valued function defined at the cell
interfaces and in general depends on the numerical values of the
numerical solution from both sides of the interface. Finally, substi-
tuting the projection of f ðui

hÞ onto the approximation space into (2)
leads to

Mi d
dt

U i þ f ðuÞðxÞBiðxÞ
h ix

iþ1
2

x
i�1

2

� DiF i ¼ 0; ð3Þ

where Mi
kl ¼

R
Ci

ei
k; e

i
l

� �
dx is the mass matrix, U i ¼ ui

0; . . . ; ui
l; . . . ;

�
ui

KÞ
T is the unknown vector, BiðxÞ ¼ ei

0ðxÞ; . . . ; ei
lðxÞ; . . . ; ei

KðxÞ
� �T ,

F i ¼ f i
0; . . . ; f i

l ; . . . ; f i
K

� �T and Di
kl ¼

R
Ci
ð@xei

k; e
i
lÞdx. To achieve the dis-

cretization, we define the local Taylor basis {ek}k = 0, . . . , K by setting

ei
k ¼

1
k!

x� xi

Dxi

� �k

� x� xi

Dxi

� �k
* +" #

;

where h/i denotes the mean value of / over the cell Ci and xi is the
midpoint of Ci. We point out that the projection of a smooth func-
tion over this Taylor basis is strongly related to its Taylor expansion
at the cell center xi. More precisely, for K = 2, the approximate solu-
tion ui

h reads

ui
hðx; tÞ ¼ ui

0ðtÞ þ ui
1ðtÞ

x� xi

Dxi

� �
þ ui

2ðtÞ
1
2

x� xi

Dxi

� �2

� 1
12

" #
; ð4Þ

where ui
0 ¼ hui and ui

k ¼ @ku
@xk

D E
Dxk

i . The time discretization of (3) uti-
lizes the classical third-order TVD Runge–Kutta scheme [10].

2.1.2. Numerical flux and L2 stability
Following [2,10], we provide a numerical flux which ensures the

stability of our discretization in the L2 norm. To this end, let us con-
sider the local variational formulation written using ui

h as a test
function

1
2

d
dt

Z
Ci

ðui
hÞ

2 dxþ f ui
h

� �
ui

h

h ix
iþ1

2

x
i�1

2

� F ui
h

� �� 	x
iþ1

2
x

i�1
2

¼ 0: ð5Þ

Here, we make use of the function F which denotes a primitive of
the flux function defined as FðuÞ ¼

R u
0 f ðsÞds. Let us set Ri ¼

f ui
h

� �
ui

h

h ix
iþ1

2

x
i�1

2

� F ui
h

� �� 	x
iþ1

2
x

i�1
2

. For periodic boundary conditions, the

sum of (5) over all the cells writes

1
2

d
dt

X
i;cells

Z
Ci

ui
h

� �2
dxþ

X
i;cells

Ri ¼ 0: ð6Þ

At this point, we claim that the stability in L2 norm for our semi-dis-
crete scheme amounts to impose
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X
i;cells

Ri P 0: ð7Þ

Next, we determine the form of the numerical flux so that (7) is en-
forced. By interchanging the sum from cells to nodes, (7) re-writes

X
i;cells

Ri ¼
X

i;nodes

ðuL � uRÞ f iþ1
2
� 1

uR � uL

Z uR

uL

f ðuÞdu
� �

; ð8Þ

where uL and uR denote the left and right states on both sides of the
interface, i.e. uL ¼ ui

h x�
iþ1

2

� �
and uR ¼ uiþ1

h xþ
iþ1

2

� �
. Finally, the stability

of the semi-discrete scheme in L2 norm is ensured provided that the
numerical flux is written

f iþ1
2
¼ 1

uR � uL

Z uR

uL

f ðuÞdu� Ciþ1
2
ðuR � uLÞ; ð9Þ

where Ciþ1
2

is a positive scalar which has the physical dimension of a
velocity. In the linear case, f(u) = au, where a is the constant advec-
tion velocity, we get f iþ1

2
¼ a

2 ðuL þ uRÞ � Ciþ1
2
ðuR � uLÞ. We recognize

two different parts in this flux, the centered one a
2 ðuL þ uRÞ, and

the viscous one Ciþ1
2
ðuR � uLÞ which brings dissipation and conse-

quently stability. We also note that for Ciþ1
2
¼ jaj2 we recover the well

known upwind scheme, whereas for Ciþ1
2
¼ Dxi

2Dt we get the Lax–Fried-
richs scheme. In non-linear case, we can use a quadrature formula
to evaluate

R uR
uL

f ðuÞdu. If we choose the trapezoidal rule and take
Ciþ1

2
¼ 1

2 maxðjf 0ðuLÞj; jf 0ðuRÞjÞ, we recover the local Lax–Friedrichs
scheme

f iþ1
2
¼ f ðuLÞ þ f ðuRÞ

2
�maxðjf 0ðuLÞj; jf 0ðuRÞjÞ

uR � uL

2

� �
:

We notice that if f(u) = au, where a is a constant velocity, the local
Lax–Friedrichs flux reduces to the classical upwind flux. We also re-
mark that the proof of the L2 stability presented above has been al-
ready derived in [5,6].

2.1.3. Limitation
Following Kuzmin [7], we define a hierarchical limiting proce-

dure by multiplying all derivatives of order k by a factor ak. Thus
the limited counterpart of the approximate solution (4) writes

ui
hðxÞ ¼ ui

0 þ ai
1ui

1
x� xi

Dxi

� �
þ ai

2ui
2

1
2

x� xi

Dxi

� �2

� 1
12

" #
:

The coefficients ai
1 and ai

2 are determined using the vertex-based
limiter defined in [7]. That is, we want the extrapolated value at a
generic node to be bounded by the minimum and maximum aver-
aged values taken over the cells surrounding this node. We apply
this procedure to the linear reconstructions

Dxi
@ui

h

@x
¼ ui

1 þ ai
2ui

2
x� xi

Dxi

� �
; ui

h

� �1 ¼ ui
0 þ ai

1ui
1

x� xi

Dxi

� �
:

To preserve smooth extrema, we set ai
1 ¼maxðai

1;ai
2Þ. We note that

this limiter is a moment based limiter as the ones described in
[1,11].

2.1.4. Numerical results
We have checked the order of convergence of our DG scheme

for the non-linear Burgers equation (f(u) = u2/2), using the smooth
initial condition u0(x) = sin(2px) over the domain [0,1] with peri-
odic boundary conditions. The analytical solution is computed
using the method of characteristics prior to shock formation at
time t ¼ 1

2p. The results displayed in Table 1 illustrate the accuracy
of our discretization. To demonstrate the performance of the hier-
archical slope limiter, we have run the test case described in [11],
which consists in advecting a combination of smooth and discon-
tinuous profiles using periodic boundary conditions over the do-
main [�1,1]. The results obtained for the second and third-order
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Table 1
Convergence rate for smooth solution of Burgers equation.

L1 L2 L1

Burgers
First-order 0.86 0.68 0.23
Second-order 2.00 1.99 1.91
Second-order lim 2.12 1.99 1.57
Third-order 2.88 2.91 2.65
Third-order lim 2.87 2.89 2.62
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 1

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

solution
2nd order
3rd order

Fig. 1. Linear advection of a combination of smooth and discontinuous profiles.
Comparison between the second-order and the third-order scheme.

Table 2
Convergence rate for linear advection with and without slope
limitation for the smooth initial condition u0(x) = sin(2px)sin(2py)
on a sequence of Cartesian grids.

L1 L2

Linear advection
First-order 1.02 1.02
Second-order 1.99 1.98
Second-order lim 2.15 2.15
Third-order 2.98 2.98
Third-order lim 3.45 3.22
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schemes at time T = 8 are displayed in Fig. 1. They show that the
smooth extrema are perfectly preserved for the third-order
scheme.

2.2. Two-dimensional linear case

Let us now describe our cell-centered DG method for two-
dimensional scalar conservation laws on unstructured grids. Let
u = u(x, t) be the solution of the following two-dimensional scalar
conservation law, for x 2 R2 and t P 0

@u
@t
þr � f ðuÞ ¼ 0; uðx;0Þ ¼ u0ðxÞ; ð10Þ

where u0 is the initial data and f(u) = (f1(u), f2(u))T with f1(u) and
f2(u) are the two directional fluxes.

2.2.1. Discretization
Using the same approach than for the one-dimensional case, we

obtain a similar compact equation

Mi d
dt

U i þ
Z
@Ci

f ðuÞ � nBi dC� Di
1F i

1 � Di
2F i

2 ¼ 0; ð11Þ

where n denotes the outward unit normal to the cell interface C.

Mi
kl ¼

R
Ci

ei
k; e

i
l

� �
dC is the mass matrix, U i ¼ ui

0; . . . ;ui
l; . . . ; ui

K

� �T our

unknown vector, Di
jkl ¼

R
Ci
@jei

k; e
i
l

� �
dC; BiðxÞ ¼ ei

0ðxÞ; . . . ; ei
lðxÞ; . . . ;

�
ei

KðxÞÞ
T and F i

j ¼ f i
j;0; . . . ; f i

j;l; . . . ; f i
j;K

� �T
. The unknowns to be solved

in this formulation are the cell-averaged variables and their deriva-
tives at the center of the cells, regardless of elements shape. For the
third-order scheme, the dimension of the polynomial space is six
and the six basis functions are ei

0 ¼ 1; ei
1 ¼

x�xi
Dxi

; ei
2 ¼

y�yi
Dyi

,

ei
3 ¼ 1

2
x�xi
Dxi

� �2
� x�xi

Dxi

� �2

 �� 

, ei
4¼
ðx�xiÞðy�yiÞ

DxiDyi
� ðx�xiÞðy�yiÞ

DxiDyi

D E
,ei

5¼1
2

y�yi
Dyi

� �2
�

�
y�yi
Dyi

� �2

 �

�, where Dxi = 0.5(xmax � xmin) and Dyi = 0.5(ymax � ymin)
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and xmax, ymax, xmin, ymin are the maximum and the minimum x
and y-coordinates in the cell Ci.
2.2.2. Numerical flux and L2 stability
Following [2,10] we design a numerical flux which ensures L2

stability. To this end, let us consider the variational formulation

1
2

d
dt

Z
Ci

u2
h dC þ

Z
@Ci

ðf ðuÞuh � FðuhÞÞ � ndC ¼ 0; ð12Þ

where we have set FðuÞ ¼
R u

0 f1ðsÞds;
R u

0 f2ðsÞds
� �T

. Introducing
Ri ¼

R
@Ci
ðf ðuÞuh � FðuhÞÞ � ndC and summing over all the cells, we fi-

nally obtain the following positivity condition on Ri in order to en-
sure the L2 stability of our semi-discrete scheme

X
i;cells

Ri ¼
X
i;cells

X
fe2faceðCiÞ

Z
fe

ðf ðuÞfe uh � FðuhÞÞ � nfe dC P 0: ð13Þ

To design a numerical flux which enforces (13), we interchange the
sums from cells to faces to get

X
i

Ri ¼
X

fe

Z
fe

f ðuÞfe ðuL � uRÞ � ðFðuLÞ � FðuRÞÞ
h i

� nfe dC: ð14Þ

Here, uL and uR denote the extrapolated values of the variable u on
both sides of the interface fe. Namely, if xfe denotes a point located
on fe, then uL ¼ limk!0þuhðxfe � knfe Þ and uR ¼ limk!0þuhðxfe þ knfe Þ.
Finally, the stability of the semi-discrete scheme in L2 norm is en-
sured provided that the numerical flux is written

f ðuÞfe ¼ 1
uR � uL

Z uR

uL

f ðsÞds� ðuR � uLÞMfe nfe ; ð15Þ

where Mfe is a positive definite matrix which has the physical
dimension of a velocity. For linear case, f(u) = Au, where A is the
constant advection velocity, we get f ðuÞfe ¼ uLþuR

2 A� ðuR � uLÞ
Mfe nfe . By setting Mfe ¼ M1

fe ¼
1
2 jA � nfe jId, we recover the classical

upwind scheme. Note that by setting Mfe ¼ M2
fe ¼

1
2 jA � nfe j A�A

kAk2, we
define a less dissipative scheme since

M2
fe nfe ;nfe

� �
M1

fe nfe ;nfe

� � ¼ ðcos hÞ2 6 1;

where h is the angle between A and nfe . In the general non-linear
case, as in the one-dimensional study, a quadrature formula can
be used. Taking the same trapezoidal rule and Mfe ¼ 1

2 maxðjAðuLÞ�
nfe j; jAðuRÞ � nfe jÞ, we recover the local Lax–Friedrichs scheme

f ðuÞfe � nfe ¼
1
2
ðf ðuLÞ þ f ðuRÞÞ � nfe �maxðjAðuLÞ � nfe j; jAðuRÞ

� nfe jÞ
uR � uL

2

� �
;

where AðuÞ � d
du f ðuÞ ¼ ðf 01ðuÞ; f 02ðuÞÞ

T .
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Fig. 2. Numerical solutions for the solid body rotation test case [7], with third-order
GD and limitation for a 128 � 128 Cartesian grid. The L1 and L2 norms of the global
truncation error are E1 = 1.49e�2, E2 = 6.61e�2.
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2.2.3. Numerical results
2.2.3.1. Linear advection. First, we assess the accuracy of our DG
scheme by computing the order of convergence for a smooth initial
condition using a velocity field corresponding to a rigid rotation de-
fined by A = (0.5 � y,x � 0.5)T. The results displayed in Table 2 dem-
onstrate the expected order of convergence is reached even with
limitation. Following [7], we compute the solid body rotation test
case using the same velocity field. The numerical solution, plotted
in Fig. 2 exhibits quite similar results than those obtained in [7].
2.2.3.2. KPP rotating wave problem. Here, we consider the non-lin-
ear KPP problem taken from [8]. For this particular problem, the
fluxes are non-convex and defined by f1(u) = sin(u), f2(u) = cos(u).
−2 −1.5 −1 −0.5 0
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Fig. 3. Numerical solution for the KPP problem at time t = 1, using
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The computational domain [�2,2] � [�2.5,1.5] is paved using
polygonal cells which result from a Voronoi tessellation. Initial
condition is defined by

u0ðxÞ ¼
7p
2 if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
6 1;

p
4 if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
> 1:

(

The numerical result plotted in Fig. 3 and obtained using a general
unstructured grid made of 2500 polygonal cells, with the third-or-
der DG scheme, is very similar to the result obtained in [8]. It exhib-
its the correct composite wave structure.

3. One-dimensional Lagrange hydrodynamics

In this section, we solve the one-dimensional gas dynamics
equations written in Lagrangian formalism

q0 d
dt

1
q

� �
� @u
@x
¼ 0; ð16aÞ

q0 du
dt
þ @p
@x
¼ 0; ð16bÞ

q0 dE
dt
þ @ðpuÞ

@x
¼ 0; ð16cÞ

where q is the density of the fluid, q0 > 0 its initial density, u its
velocity and E its total energy. Here x denotes the Lagrangian coor-
dinate. The thermodynamic closure of this system is obtained
through the use of an equation of state, which writes p = p(q,e),
where e is the specific internal energy, e ¼ E� u2

2 . For numerical
application, we use a gamma gas law, i.e. p = q(c � 1)e, where c is
the polytropic index of the gas.

3.1. Flux and entropy inequality

The aim of this section is to design numerical flux so that our
semi-discrete DG scheme satisfies a global entropy inequality. If
0.5 1 1.5 2

1

2

3

4

5

6

7

8

9

10

third-order limited DG on a polygonal grid made of 2500 cells.
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Fig. 4. Numerical solutions for gas dynamics with and without limitation.
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/ denotes an exact solution of the previous system, we denote by
/h its piecewise polynomial approximation. Namely, the restriction
of /h over the cell Ci ¼ ½xi�1

2
; xiþ1

2
� is a polynomial. To construct a var-

iational formulation of the previous system, we multiply respec-
tively (16a), (16b) and (16c) by the test functions ph, uh and 1h,

integrate over Ci and replace the exact solution 1
q ;u; E
� �

by its

approximation 1
q

� �
h
;uh; Eh

h i
:

Z
Ci

q0
hph

d
dt

1
q

� �
h

dx ¼ ½phu�
x

iþ1
2

x
i�1

2

�
Z

Ci

uh
@ph

@x
dx; ð17aÞ

Z
Ci

q0
huh

d
dt

uh dx ¼ �½puh�
x

iþ1
2

x
i�1

2

þ
Z

Ci

ph
@uh

@x
dx; ð17bÞ

Z
Ci

q0
h

d
dt

Eh dx ¼ �½pu�
x

iþ1
2

x
i�1

2

: ð17cÞ

Here, u; p and pu are the numerical fluxes that we look for. We note
that the polynomial approximation of the pressure, ph, is obtained
through the use of an orthogonal projection onto the polynomial
basis using the pointwise defined equation of state. The combina-
tion (17c) � (17b) + (17a) leads to

Z
Ci

q0
h

d
dt

Eh �
1
2

u2
h

� �
þ ph

d
dt

1
q

� �
h

� 
dx

¼ ½phuþ puh � pu�
x

iþ1
2

x
i�1

2

�
Z

Ci

ph
@uh

@x
þ uh

@ph

@x

� �
dx

¼ ½phuþ puh � pu� phuh�
x

iþ1
2

x
i�1

2

:

Knowing that specific internal energy writes as e ¼ E� 1
2 u2, and

specific entropy is expressed according to the Gibbs formula as

TdS ¼ deþ pd 1
q

� �
, where T denotes the temperature, we deduceZ

C
q0

hTh
dSh

dt
dx ¼

X
i;cells

Ri;

where Ri ¼ ½phuþ puh � pu� phuh�
x

iþ1
2

x
i�1

2

. At this point, it remains to ex-

press the numerical fluxes in such a way that an entropic inequality
is satisfied. To this end, we first make the following fundamental
assumption

pu ¼ pu:
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This assumption allows to factorize Ri and to write it as

Ri ¼ ½ðph � pÞðu� uhÞ�
x

iþ1
2

x
i�1

2

. Thus, entropy production related to the

semi-discrete scheme writesZ
C
q0

hTh
dSh

dt
dx ¼

X
i;cells

½ðph � pÞðu� uhÞ�
x

iþ1
2

x
i�1

2

: ð18Þ

We want our DG formulation to satisfy the second law of thermody-
namics, that is we want it to convert kinetic energy into internal en-
ergy through shock waves. This amounts to design numerical fluxes
so that

P
iRi P 0. Interchanging the sum from cells to nodes and

setting /h x�
iþ1

2

� �
¼ /L and /h xþ

iþ1
2

� �
¼ /R yields

X
i;cells

Ri ¼
X

i;nodes

ðpL � piþ1
2
Þðuiþ1

2
� uLÞ � ðpR � piþ1

2
Þðuiþ1

2
� uRÞ

h i
:

Here, we note that the previous equation has been obtained using
periodic boundary conditions. We claim that a sufficient condition
to satisfy

P
iRi P 0 consists in setting

piþ1
2
¼ pR þ ZR

iþ1
2
ðuiþ1

2
� uRÞ;

piþ1
2
¼ pL þ ZL

iþ1
2
ðuL � uiþ1

2
Þ;

where ZL=R
iþ1

2
are positive scalars which have the physical dimension

of a density times a velocity. The numerical fluxes at node xiþ1
2

are

obtained by solving the previous linear system

piþ1
2
¼

ZL
iþ1

2
pR þ ZR

iþ1
2
pL

ZL
iþ1

2
þ ZR

iþ1
2

�
ZL

iþ1
2
ZR

iþ1
2

ZL
iþ1

2
þ ZR

iþ1
2

ðuR � uLÞ;

uiþ1
2
¼

ZL
iþ1

2
uL þ ZR

iþ1
2
uR

ZL
iþ1

2
þ ZR

iþ1
2

� 1
ZL

iþ1
2
þ ZR

iþ1
2

ðpR � pLÞ:

By taking Z = qC, where C is the sound speed, we recover the classi-
cal acoustic Godunov solver.

3.2. Limitation

Concerning the slope limitation, before trying to apply it on the
gas dynamics system, we firstly focus on the acoustic waves one.
We noticed that if we perform the limitation on the physical vari-
ables, some oscillations remain. On the other hand, if we limit the
Riemann invariants, our solution is perfectly monotone. We see
in Fig. 4 that the oscillations are quite strong at the shock front,
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Fig. 5. Numerical solutions for gas dynamics with limitation for third-order DG method.

Table 3
Rate of convergence for gas dynamics with and without the slope
limitation for a smooth flow.

L1 L2

Gas dynamics
First-order 0.80 0.73
Second-order 2.25 2.26
Second-order lim 2.04 2.21
Third-order 3.39 3.15
Third-order lim 2.75 2.72
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without any limitation. But, unlike the acoustic problem, our system
is not linear anymore. We cannot find the Riemann invariants with
the same procedure than before. In the case of a regular flow,
we get three quantities that are the differentials of the Riemann
invariants

dJ� ¼ du	 qCd
1
q

� �
; dJ0 ¼ dE� uduþ pd

1
q

� �
: ð19Þ

Linearizing these quantities, on each cells, around the mean values
in the cell yields

Ji
� ¼ ui

h 	 qi
0Ci

0
1
q

� �i

h
; Ji

0 ¼ Ei
h � ui

0ui
h þ pi

0
1
q

� �i

h
; ð20Þ

where /i
h is the polynomial approximation of / on the cell Ci and /i

0

its mean value. This procedure is equivalent to linearize the equa-
tions, on each cells, around a mean state. Applying the above
high-order limitation procedure, we obtain the limiting coefficients
for the linearized Riemann invariants. Then, inverting the 3 � 3 lin-
ear system given by (20), we recover the limiting coefficients corre-
sponding to the physical variables. Now, as displayed in Fig. 4, if we
perform our limitation on these quantities, we suppress most of the
oscillations.

3.3. Numerical results

To demonstrate the accuracy and the robustness of our scheme
on the gas dynamics system, we have run test cases taken from the
literature. These results, displayed in Fig. 5, have been obtained
with our third-order scheme with slope limiters. In Fig. 5a, our
scheme is perform on the Shu oscillating shock tube problem. De-
spite the strong perturbations, we note that the numerical solution
is very close to the reference solution. In Fig. 5b, the run test case is
the uniformly accelerated piston problem found in [9]. For a
smooth solution this time, we notice once more, how accurate
our solution is. Next, we compute the convergence rate of our
DG scheme using a smooth solution of the gas dynamics equations.
This solutions is constructed through the use of the Riemann
invariants which write J� ¼ u� 2

c�1 C for a gamma gas law. It is well
known that the Riemann invariants are constant along the charac-
teristic curves. These curves being defined by the differential
equations
Please cite this article in press as: Vilar F et al. Cell-centered discontinuous
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ðC�Þ
dX
dt

�

¼ u� C ¼ ð2� ðc� 1ÞÞJþ þ ð2	 ðc� 1ÞÞJ�
4

; Xð0Þ ¼ x:

Here, we have expressed the slopes of the characteristic curves in
terms of the Riemann invariants. In the special case c = 3, we notice
that the characteristic curves are straight lines. Hence, the gas
dynamics equations are equivalent to two following Burgers
equations

@J�
@t
þ J�

@J�
@x
¼ 0;

for which an analytical solution is easy to construct. Using this ana-
lytical solution we compute the global truncation error correspond-
ing to our DG scheme and display it in Table 3.
4. Conclusion

We have presented a cell-centered DG discretization using Tay-
lor basis for solving two-dimensional scalar conservations laws on
general unstructured grids and also one-dimensional gas dynamics
equations written in Lagrangian form. Numerical flux has been de-
signed to enforce L2 stability and an entropy inequality in the case
of gas dynamics. A robust and accurate limitation procedure has
been constructed. In future, we plan to investigate the extension
of the present DG discretization to two-dimensional Lagrangian
hydrodynamics.
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