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1 Introduction

We consider the problem of scheduling a set J = {1, . . . , n} of jobs in a two-machine

flowshop with the objective to minimize the sum of the completion times of jobs. The

jobs are available at time zero and they should be processed first on machine 1, and

then on machine 2. Each machine can process at most one job at a time. Let pmj denote

the processing time of job j on machine m, where m = 1, 2. All the processing times are

integer. Preemption of the processing of the jobs in not allowed on either machine. Let

Cm
j denote the completion time of job j on machine m. According to the scheduling

classification, the problem is denoted by F2||
∑
Cj . It is known to be NP-hard in the

strong sense [6]. It has been shown by Conway et al. [3] that there exists at least one

optimal solution where both machines have the same sequence of the jobs. Thus, we

may restrict the search to permutation schedules only.

The problem F2||
∑
Cj has been studied in the literature for many years. Akkan

and Karabati [1] suggest a network flow formulation for the problem. They use a

Lagrangian relaxation to obtain a lower bound which is used inside a branch-and-

bound algorithm. This algorithm is able to solve instances with up to 60 jobs with

small processing times (up to 10) and up to 45 jobs with large processing times (up

to 100). In this work, we propose an improved branch-and-bound algorithm for the

problem F2||
∑
Cj based on their work. To obtain stronger dual bounds, we use a

network which is larger than the one used in [1]. Different dominance rules and filtering

techniques are exploited in order to cope with the size of the network. The structure

of the network allows us to compute the dual bound only once in the root, and then

recompute the bound in linear time at every node of the enumeration tree. Thus, tens
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of millions of nodes can be checked in a reasonable time. Using the proposed algorithm,

we were able to solve all instances of the problem F2||
∑
Cj with up to 100 jobs with

large processing times.

2 Network formulation

In the following, [k] denotes the index of the job in position k. The completion times

Cm
[k] of the job in position k, k ∈ J , on machines m = 1, 2 can be computed as

C1
[k] = C1

[k−1] + p1[k] and C2
[k] = max{C1

[k], C
2
[k−1]}+ p2[k]

In [1], the authors introduce the notion of time lag between the processing of a

same job on both machines to write an assignment model and a network flow model

for the problem. This kind of models is also called waiting time-based [models] in [7].

The completion-to-completion lag Lc
k of the job in position k, k ∈ J is defined as

the time elapsed between the completion of the job on machine 1 and its completion

on machine 2 : Lc
k = C2

[k] − C
1
[k] = max{0, Lc

k−1 − p
1
[k]} + p2[k]. In order to design a

convenient network model, the objective function can be expressed as:∑
k

C2
[k] =

∑
k

(C1
[k] + Lc

k) =
∑
k

(
(n− k + 1)p1[k] + Lc

k

)
(1)

Our model is based on a transshipment type network G(V,A), which extends the

one proposed in [1]:

– Each node vk,l,i ∈ V of the network is associated with one position k in the

sequence, and the start of job i when the completion-to-completion lag of the

previous job is l. Two dummy nodes (0, 0, ∅) and (n+1, ∅, ∅) are added, representing

the start and the end of the schedule, respectively.

– Each arc (vk,l1,i1 , vk+1,l2,i2) ∈ A from node vk,l1,i1 to node vk+1,l2,i2 is associated

with the processing of job i1 in position k, when the completion-to-completion

lag of the previous job is equal to l1, so that job i1 ends with a completion-to-

completion lag equal to l2 and is immediately followed by job i2. According to

the expression of the objective function given by (1), the cost of using the arc is

c(vk,l1,i1 , vk+1,l2,i2 , j) = (n− k + 1)p1i1 + l2.

The scheduling problem can be seen as the problem of finding a minimum cost flow

of value 1 (a path) from the source node to the sink node, going through exactly one

arc associated with each job.

Network reduction By dualizing these job occurence constraints, we obtain a La-

grangian lower bound. Given a vector of Lagrange multipliers, this bound can be

computed by solving a simple shortest path problem in G. Using the same idea, a

lower bound of the length of a feasible path that passes through a node (resp. an

arc) is computed and the node (resp. the arc) is removed from the network if it is

greater than an upper bound of the path length. This lower bound can be computed

by applying dynamic programming in both forward and backward manners when the

shortest path problem is solved [8]. More reductions are obtained by reinforcing the job

assignment constraint in the shortest path problem for one job at a time [5]. Moreover,

several dominance rules from [10,4,2] are used to remove some arcs in the graph.



3 Branch-and-bound algorithm

The set of possible job sequences is explored, by enumerating the set of feasible (with

respect to the job occurence constraint) paths in graph G. We proceed from the left to

the right in the graph. We perform a Depth-First-Search. In a preprocessing stage, an

upper bound is computed using a dynasearch procedure [9], and graph G is reduced

using a subgradient procedure inside which the network reduction procedures are ap-

plied. For each job j and node v of G, we compute the cost of a shortest path from

v to the sink node going through exactly one arc representing j, as well as the cost

of one going through no arc representing j. In order to evaluate a partial sequence

σ represented by a path ending at node v, we compute a lower bound of the cost of

extending σ into a feasible schedule. For each job j, we derive in constant time a lower

bound in which the job assignment constraint is enforced for j. A job is a candidate for

the next job in the sequence only if there is a corresponding arc in G and the resulting

subsequence is not dominated according to several dominance rules, coming from the

literature or extending some of them. Candidate jobs are processed in non-decreasing

order of the distance from the corresponding terminal node to the sink.

4 Numerical results

The branch-and-bound algorithm solves to optimality all instances of our test bed,

composed of randomly generated instances with up to 100 jobs with up to 100-unit

long processing times (as in [1]). The hardest instance is solved in 7759 seconds, while

all the others are solved in less than one hour on a laptop equipped with a 2.7GHz

processor and 4GB RAM. The average computing time for 100-job instances is 502.6

seconds, and the average size of the search tree is 128.8 millions of nodes.

References

1. C. Akkan and S. Karabati. The two-machine flowshop total completion time problem: Im-
proved lower bounds and a branch-and-bound algorithm. European Journal of Operational
Research, 159(2):420–429, December 2004.

2. B.W. Cadambi and Y.S. Sathe. Two-machine flowshop scheduling to minimize mean flow
time. Opsearch, 30(1):35–41, 1993.

3. R. W. Conway, W. L. Maxwell, and L. W. Miller. Theory of Scheduling. Addison-Wesley,
Reading, MA, 1967.

4. F. Della Croce, V. Narayan, and R. Tadei. The two-machine total completion time flow
shop problem. European Journal of Operational Research, 90(2):227 – 237, 1996.

5. B. Detienne, S. Dauzère-Pérès, and C. Yugma. An exact approach for scheduling jobs
with regular step cost functions on a single machine. Computers & Operations Research,
39(5):1033–1043, 2012.

6. M. R. Garey, D. S. Johnson, and Ravi Sethi. The complexity of flowshop and jobshop
scheduling. Mathematics of Operations Research, 1(2):117–129, 1976.

7. A. Gharbi, T. Ladhari, M. K. Msakni, and M. Serairi. The two-machine flowshop schedul-
ing problem with sequence-independent setup times: New lower bounding strategies. Eu-
ropean Journal of Operational Research, 231(1):69–78, November 2013.

8. T. Ibaraki and Y. Nakamura. A dynamic programming method for single machine schedul-
ing. European Journal of Operational Research, 76(1):72–82, July 1994.

9. S. Tanaka. An extension of the dynasearch to the two-machine permutation flowshop
scheduling problem. In Proceedings of the 2010 International Symposium on Flexible
Automation, page 6, 2010.

10. S.L. van de Velde. Minimizing the sum of the job completion times in the two-machine
flow shop by lagrangian relaxation. Annals of Operations Research, pages 257–268, 1990.


