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The Branch-and-Price approach
Assume a bounded integer program with decomposable
structure:

[P] ≡ min c x :

A y ≥ a

y =
∑
k∈K

xk

xk ∈ X k = { Bk xk ≥ bk

xk ∈ Nn(k) }, ∀k ∈ K

Assume that subproblems

[SP]k ≡ min{c xk : xk ∈ X k} (1)

are “relatively easy” to solve compared to problem [P]. Then,

X k = {zq}q∈Q(k)

conv(X k ) =
{

xk ∈ Rn(k)
+ :

∑
q∈Q(k)

zqλq ,
∑

q∈Q(k)

λq = 1, λq ≥ 0 q ∈ Q(k)
}

4 / 30



The Branch-and-Price approach (2)
Reformulation as the master program (Dantzig-Wolfe reformulation):

[M] ≡ min
∑
k∈K

∑
q∈Q(k)

(czq) λk
q :

∑
k∈K

∑
q∈Q(k)

(Azq)λk
q ≥ a

∑
q∈Q(k)

λk
q = 1, ∀k ∈ K

λk
q ∈ {0,1}, k ∈ K,q ∈ Q(k).

Aggregation of identical blocks in K:

[AM] ≡ min
∑
q∈Q

(czq) λq :

∑
q∈Q

(Azq)λq ≥ a

∑
q∈Q

λq = K ,

λq ∈ N, q ∈ Q.
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Rounding heuristics in λ var space

Rounding a variable λq → new dual variable

I Adding upper bound λq ≤ uq :
If dual variable is ignored, λq might be wrongly
regenerated as best.
If enforced, significant modifications to pricing.

I Adding lower bound λq ≥ lq :
If ignored, λq ’s reduced cost is overestimated, hence not
regenerated

I Adapted to Column Generation: if one only uses λq ≥ lq

Remark
Fixing λq ← dλ̄qc as a partial solution is equivalent to setting a
lower bound on λq

7 / 30



Diving heuristics in λ var space

The residual master problem may become infeasible after
rounding, as

I the partial solution may not satisfy the master constraints;
I the partial solution may not be completed with columns

generated so far.

Solution 1
One should work with proper columns, i.e. columns that could
take a non-zero value in a master integer solution (may be
harder to price such columns).

Solution 2
Diving, i.e. further column generation after rounding is a
generic way to restore feasibility, i.e. to generate “missing”
complementary columns.
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Pure Diving

I use Depth-First Search
I at each node of the tree

I select a column with its fractional
value λ̄q closest to a non-zero
integer

I add dλ̄qc to the partial solution

I update right-hand-side of the
master constraints

I apply preprocessing which results
in removing non-proper columns

I solve the updated master LP
I repeat until a complete feasible

solution is found or until the master
LP is infeasible
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Diving with Limited Discrepancy Search
Idea: add some diversification through limited backtracking
(Limited Discrepancy Search by [Harvey and Ginsberg, 1995])

MaxDiscrepancy = 2, MaxDepth = 3

At each node, we have a tabu list of columns forbidden to be
added to the partial solution.
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Variants of Diving with LDS

I Diving for feasibility
We are doing backtracking in diving until a
feasible solution is found, corresponds to
Diving with LDS with parameters
MaxDiscrepancy = 1, MaxDepth =∞

I Strong Diving
The candidate columns for selection are
evaluated (as in strong branching). We
choose a candidate which deteriorates the
least the column generation bound.
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Diving with Restarts
I Keep a fraction of columns participating in the best solution
I Remove other columns from the solution
I Restart diving
I Resembles Relaxation Induced Neighbourhood Search

[Danna et al., 2005].
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Diving with sub-MIPing

Run Diving Run Restricted Master
Heuristic with all columns
generated during diving

A variant with “local branching” [Fischetti and Lodi, 2003]

The following constraint is added to the restricted master:∑
q∈Qinc

λq ≥ r∗ − dr∗ · deviationRatioe, where r∗ =
∑

q∈Qinc

λinc
q
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Test problems and instances

Master is always the set covering formulation

Generalized Assignment
I Pricing : multiple distinct 0− 1 knapsack problems

I Instances of the most difficult in literature type D with
(number of tasks, number of machines) in {(90,18), (160,8)}

Bin Packing
I Pricing : multiple identical 0− 1 knapsack problems

I Instances of the most difficult (for heuristics) type AI
[Delorme et al., 2016] with number of items in {201,402}.

Vertex Coloring
I Pricing : multiple identical weighted stable set problems

I Random instances with number of vertices in {50, . . . ,90}
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Comparison of heuristics

Average gap is relative for Generalized Assignment and
absolute for Bin Packing and Vertex Coloring

Generalized Bin Vertex

Assignment Packing Coloring

Heuristic Time Found Gap Time Opt Gap Time Opt Gap

Restricted Master 26.50 55% 11.00% 224.37 5% 1.22 3.94 49% 0.54

Pure Diving 0.80 70% 0.37% 13.71 46% 0.54 0.94 71% 0.29

Diving for Feasibility 0.81 100% 0.39% ↑ same ↑ ↑ same ↑
Diving + SubMIPing 40.22 100% 0.38% 85.49 53% 0.47 1.93 81% 0.19

Local Branching 1.90 100% 0.38% 44.40 52% 0.48 1.00 74% 0.26

Diving with Restarts 1.52 100% 0.24% 14.83 51% 0.49 1.06 74% 0.26

Diving with LDS 4.21 100% 0.10% 27.44 89% 0.11 1.38 88% 0.12

Strong Diving 33.45 100% 0.05% 67.42 90% 0.10 3.65 94% 0.06
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Generalized Assignment: Description

cost

cost

cost

cost

cost

Tasks Machines
assignment

Pricing oracle: 0− 1 knapsack problem
(solver by [Pisinger, 1997])
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Comparison with the best heuristic in the literature

I Classic literature instances
I Critical to use heavy stabilization ([Pessoa et al., 2014])
I Times are “normalised”

[Yagiura et al., 2006] Diving heuristic with LDS
Group Time Opt RelGap Gap Time Opt RelGap Gap
Type C 145.1 53% 0.010% 0.9 30.0 47% 0.015% 0.7
Type D 145.1 7% 0.103% 21.1 69.5 7% 0.047% 8.5
Type E 145.1 33% 0.013% 6.7 38.1 47% 0.014% 3.2
n = 100 9.4 67% 0.073% 4.8 1.4 44% 0.045% 3.4
n = 200 18.8 44% 0.045% 5.3 6.1 11% 0.054% 6.0
n = 400 187.5 33% 0.051% 12.8 40.2 44% 0.017% 4.1
n = 900 625.0 0% 0.029% 14.7 291.1 33% 0.006% 3.0
n = 1600 3125.0 11% 0.011% 10.2 1500.7 33% 0.006% 4.1
high n/m 145.1 47% 0.006% 2.5 19.1 33% 0.023% 3.3
med n/m 145.1 27% 0.031% 7.1 46.7 27% 0.025% 3.7
low n/m 145.1 33% 0.089% 19.1 88.7 40% 0.029% 5.3
All 145.1 31% 0.042% 9.6 43.0 33% 0.026% 4.1
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GAP: Results for large open instances

I Best known bounds and solutions are from
[Posta et al., 2012]

I Seven runs with different col. gen. parameters
I 3 hours time limit

Best known Best run Average
Instance Bound Solution Solution Time Red. gap Time Red. gap
D-20-200 12235 12244 12238 <1m 66% <1m 3%
D-20-400 24563 24585 24567 1m 82% 1m 56%
D-40-400 24350 24417 24356 2m 89% 2m 72%
D-15-900 55404 55414 54404 1m 100% 3m 43%
D-30-900 54834 54868 54838 9m 88% 8m 61%
D-60-900 54551 54606 54554 24m 95% 25m 83%
D-20-1600 97824 97837 97825 12m 92% 11m 69%
D-40-1600 97105 97113 97105 53m 100% 2h03m 38%
D-80-1600 97034 97052 97035 3h00m 94% 3h00m -48%
C-80-1600 16284 16289 16285 36m 80% 43m 80%
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Tour Scheduling: Description

A tour scheduling problem

1. Needs: to perform at best a limited list of activities
(workload) during a planning horizon (a week).

2. Human Ressources: list of employees with skills,
individualised contract and personal
preferences/obligations.

Main objective
[Chan, 2002]
To design a JuSTE
planning: Juridical,
Social, Technical,
Economical.

→ feasibility and
optimisation problem.
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Tour Scheduling: Objective Function
Daily workload for a production activity (time period = 15 min)

Piecewise linear cost function for each period - production activity
Objective

Value

under-coverage over-coverage

OVa,tUNa,t

ova,t ov crit
a,tuna,tuncrit

a,t
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Tour Scheduling: Formulation
I T — set of time periods, A— set of activities

I C(e) — set of feasible individual plannings for employee e ∈ E

min
∑
a∈A

∑
t∈T

COa · ova,t + CUa · una,t

s.t.
∑
e∈E

∑
c∈C(e)

xc,a,tλc − ova,t + una,t = DEa,t ∀t ∈ T ,∀a ∈ A

∑
c∈C(e)

λc = 1 ∀e ∈ E

λc ∈ {0,1} ∀e ∈ E ,∀c ∈ C(e)

una,t ,ova,t ∈ R+ ∀t ∈ T ,∀a ∈ A

Pricing problem for employee e ∈ E
Construct a feasible individual planning with objective∑

a∈A,a∈T πa,txa,t , where binary variable xa,t determines whether
activity a is performed at time period t , and π are reduced costs
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Tour Scheduling: Pricing Oracle
4 Segmentations in our nested dynamic program (5 levels)

Individual
planning

Day-shift

Day-off

Timeslot Task
Time

Period

Day1(1)
8h-12h

... Day1(i)
8h-18h

... Day1(n)
9h-18h

...

AM1,1
8h-12h

AM1,2
8h-13h

AM1,3
9h-12h ...

PM1,1
13h-18h

PM1,2
14h-18h ...

... ...
.........

... ... ...
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Tour Scheduling: results for customer instances
I Greedy heuristic time is from 0.3 to 2.3 seconds
I Diving times are 2, 10, and 30 minutes
I The best solutions were obtained by a heuristic Branch and

Price with 24 hours time limit

Instance Gap with “easily computable” lower bound
|E| |A| Greedy Diving 2 Diving 10 Diving 30 Best sol.

5 1 21.1% 4.0% 4.0% 4.0% 0.9%1

5 1 41.5% 0.0% 0.0% 0.0% 0.0%1

10 1 34.4% 0.0% 0.0% 0.0% 0.0%1

10 1 44.2% 0.9% 0.9% 0.9% 0.9%1

25 3 31.3% 1.5% 1.7% 1.5% 0.5%
25 3 24.2% 3.5% 0.9% 3.8% 0.3%
30 3 37.3% 3.6% 2.8% 1.9% 1.9%
30 3 90.8% 21.3% 12.9% 11.3% 8.4%
45 5 13.9% 1.2% 0.4% 0.0% 0.0%1

45 5 18.9% 1.4% 1.1% 1.9% 0.3%
Average 35.8% 3.7% 2.5% 2.5% 1.3%
1Optimum
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Tour Scheduling: variant with 4 weeks horizon

Column generation
Restricted master becomes too heavy for the LP solver.

Solution
Use sub-gradient instead!

I Find good Lagrangian multipliers (within time limit)
I Generate a pricing problem solution with these multipliers
I Fix this partial solution and iterate

Results for a hard instance with |E| = 15, |A| = 2
Greedy solution gap reduction

with time limit of
Algorithm 8 min 40 min 2 hours
Diving with ColGen 3% 5% 17%
Diving with SubGrad 10% 74% 79%
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Conclusions

I Seven variants of generic diving heuristics were tested on
three different problems

I All this variants are significantly better than the most
used in the literature Restricted Master Heuristic

I Such generic primal heuristics may outperform ad-hoc
heuristics of the literature.

I Rounding/Diving based on fixing master var. works when

1. Sufficiently many columns in the solution:∑
k
∑

q∈Q(k) λq = K with K � 1
2. Column generation (Lagrangian) bound is tight
3. Most of the combinatorial difficulty is in the subproblem
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