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The scheduling problem we want to solve
I Set M of unrelated machines
I n jobs, each job j ∈ J = {1, . . . ,n} has

I processing time pk
j , dependent on the machine

I release and due dates rj and dj
I earliness and tardiness unitary penalties αj and βj

I Given completion time Cj of job j ∈ J in the schedule, its
cost is

αjEj + βjTj = αj ·max{0,dj − Cj}+ βj ·max{0,Cj − dj}

I There is a sequence-dependent setup time sk
i,j if job j is

scheduled immediately after job i on machine k .
I The objective is to minimize the total earliness/tardiness

cost.
I Problem’s notation:

R|rj , sk
ij |
∑

j αjEj + βjTj
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Existing exact approaches in the literature for
scheduling on parallel machines with sum criteria

R | sk
ij |
∑
αjEj + βjTj Only MIP formulations, up to 5 machines

and 12 jobs.
R ||

∑
Tj A branch-and-bound [Shim and Kim, 2007], up to 5

machines and 20 jobs.
R ||

∑
wjTj A branch-and-bound [Liaw et al., 2003], up to 4

machines and 18 jobs.
Q | sk

ij |
∑

Ej + Tj A MIP and a Benders decomposition
[Balakrishnan et al., 1999], up to 20 jobs.

P | sf |
∑

Tj A branch-and-bound [Schaller, 2014], up to 3
machines and 14 jobs.

P | rj |
∑

wjTj A branch-and-bound [Jouglet and Savourey, 2011],
up to 5 machines and 20 jobs

P ||
∑

wjTj A Branch-Cut-and-Price [Pessoa et al., 2010], up to
4 machines and 100 jobs.

P ||
∑

wjCj A Branch-and-Price [Kowalczyk and Leus, 2016], up
to 12 machines and 150 jobs
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Set covering (master) formulation
I Ωk — set of pseudo-schedules for machine k ∈ M
I aωj — number of times that job j appears in

pseudo-schedule ω.
I cω — cost of pseudo-schedule ω.
I Binary variable λωk = 1 if and only if pseudo-schedule ω is

assigned to machine k ∈ M

min
∑
k∈M

∑
ω∈Ωu

cωλs∑
k∈M

∑
ω∈Ωu

aωj λω = 1, ∀j ∈ J,

∑
ω∈Ωk

λω ≤ 1, ∀k ∈ M,

λω ∈ {0,1}, ∀ω ∈ Ωk , ∀k ∈ M.
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Pricing subproblem for machine k ∈ M
Extended graph Gk

Arc (i , j , t) — setup time between job i and j is started at time
t , and job j is started at time t + sk

ij

Variable x t
ij — arc (i , j , t) in the solution or not

j = 1

j = 2

j = 3

s d

x0
02

x1
23

x5
33

x6
32

x1
02 x1

21

x7
11

J = {1,2,3}, T = 8 , p1 = 4, p2 = 1, p3 = 3, sij = 1, ∀i , j ∈ J

Pseudo-schedules 0-2-3-2-0 and 0-2-1-0 are shown
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Pricing subproblem: dynamic programming

Given dual solution π of the restricted master problem, the
pricing subproblem is

min
ω∈Ωk

c̄ω = cω −
∑
j∈J

aωj πj =
∑

i,j∈J, i 6=j
t∈T

(
ct+sij +pj

j − πj

)
· x t

ij

i.e. the shortest path problem in the extended graph.

Dynamic program
Shortest path problem in an acyclic graph can be solved by a
dynamic program with states:
S(j , t) — best partial schedule with the last job j completing at
time t
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Fixing of arc variables by reduced costs

I ZRM — optimal value of the current restricted master.
I Z k

sub — minimum reduced cost for machine k ∈ M.
I Lagrangian lower bound: ZRM +

∑
k∈M Z k

sub.

I Zinc — value of the best known integer solution.
I Z k

sub(a) — current minimum reduced cost of a path
containing arc a ∈ Gk .

I Arc a can be removed (it cannot take part of any improving
solution) if

Z k
sub(a) +

∑
k ′∈M\{k}

Z k ′

sub + ZRM ≥ Zinc .

I A good heuristic is very important!
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Computing Z k
sub(a) [Ibaraki and Nakamura, 1994]

How to compute the shortest path passing through arc
a = (i , j , t) ∈ Gk ?

s d

1. F (i , t) — the value of the shortest path from s to node (i , t)
2. B(k , t + sk

ij + pk
j ) — the value of the shortest path from d

to node (j , t + sk
ij + pk

j )

3. Z k
sub(a = (i , j , k)) = F (i , t) + B(j , t + sk

ij + pk
j ) + c

t+sk
ij +pk

j
j .

Ibaraki, T. and Nakamura, Y. (1994).
A dynamic programming method for single machine scheduling.
European Journal of Operational Research, 76(1):72 – 82.
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Dual price smoothing stabilization

I π — current dual solution of the restricted master
I π∗ — dual solution giving the best Lagrangian bound so far
I We solve the pricing problem using the dual vector

π′ = (1− α) · π + α · π∗,

where α ∈ [0,1).
I Parameter α is automatically adjusted in each column

generation iteration using the sub-gradient of the
Lagrangian function at π′ [Pessoa et al., 2017].

Pessoa, A., Sadykov, R., Uchoa, E., and Vanderbeck, F. (2017).
Automation and combination of linear-programming based stabilization
techniques in column generation.
INFORMS Journal on Computing, (Forthcoming).
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Branching

I Branching on aggregated arc variables∑
0≤t≤T

x tk
ij ∈ {0,1},

i.e. job i immediately precedes job j on machine k or not
I Multi-phase strong branching is used
I Branching history is kept is used through pseudo-costs
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Subset-Row Cuts (SRCs) [Jepsen et al., 2008]

Given C ⊆ J and a multiplier ρ, the (C, ρ)-Subset Row Cut is:

∑
k∈M

∑
ω∈Ωk

⌊
ρ
∑
i∈C

aωj

⌋
λω ≤ bρ|C|c

Special case of Chvátal-Gomory rank-1 cuts obtained by
rounding of |C| set-packing constraints in the master

Here we use only 1-row and 3-row cuts with ρ = 1
2 .

We separate them by enumeration.

Mads Jepsen and Bjorn Petersen and Simon Spoorendonk and David
Pisinger (2008).
Subset-Row Inequalities Applied to the Vehicle-Routing Problem with
Time Windows.
Operations Research, 56(2):497–511.
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Example of a violated 3-row cut

value = 0.5

value = 0.5

value = 0.5

1 2

2 3

3 1

I C = {1,2,3}
I coefficient of these three columns in the cut is 1
I lhs = 1.5, rhs = 1, violation is 0.5.
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Impact on the pricing problem
Given dual value νγ < 0 for each active subset row cut γ ∈ Γ,
defined for subset Cγ of jobs, modified reduced cost of
pseudo-schedule ω ∈ Ωk is :

c̄ω =
∑

i,j∈J, t∈T

(
ct+sij +pj

j − πj

)
· x t

ij −
∑
γ∈Γ

 1
2
·
∑

j∈Cη , i∈J,
i 6=j, t∈T

x t
ij

 · νγ

An additional binary value for each cut γ ∈ Γ in dynamic
programming states: S(j , t , . . . , θγ , . . . ), where θγ is the parity of
the number of appearances of jobs in Cγ (= 0/1 if pair/odd)

Instead of the dynamic program, we use a labeling algorithm
with labels L =

(
c̄L, jL, tL, {θL

γ}γ∈Γ

)
and the dominance rule

jL = jL
′
, tL = tL′

, c̄L −
∑

γ∈Γ: θL
γ>θ

L′
γ

νγ ≤ c̄L′
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The labeling algorithm
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The labeling algorithm
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Limited memory cuts [Pecin et al., 2017]

I For each active cut γ ∈ Γ, define a memoryMγ : set of
jobs which “remember” value θγ = 1.

I If jL 6∈ Mγ , then θL
γ ← 0.

I Much less values θL
γ = 1⇒ stronger domination

I MemoryMγ of a cut γ ∈ Γ is calculated during separation
as the smallest memory which does not decrease the cut
violation of the current fractional solution

I Limited memory cuts are weaker than full memory cuts,
however the labeling algorithm is much faster

Pecin, D., Pessoa, A., Poggi, M., and Uchoa, E. (2017).
Improved branch-cut-and-price for capacitated vehicle routing.
Mathematical Programming Computation, 9(1):61–100.
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Results for R | rj , sk
ij |
∑
αjEj + βjTj , small setup times

Initial heuristic and instances by [Kramer and Subramanian, 2017]

Size With cuts BKS
Root Gap Root Total Improv.n m #Solved

Gap (%) (%) Time Time
#Nodes

(%)
#New

40 2 60/60 0.01 0.00 4m 4m 1.1 0.12 22
60 2 60/60 0.32 0.00 23m 28m 3.5 0.33 46
60 3 60/60 0.86 0.00 16m 35m 10.6 0.48 47
80 2 60/60 0.23 0.00 1h12m 1h37m 5.7 0.14 41
80 4 48/60 1.69 0.52 37m 4h33m 92.0 0.26 50

Size Without cuts
Root Gap Root Totaln m #Solved

Gap (%) (%) Time Time
#Nodes

40 2 60/60 1.72 0.00 3m 6m 44.8
60 2 59/60 1.99 0.05 13m 1h55m 412.8
60 3 60/60 2.23 0.00 10m 1h13m 361.5

Kramer, A. and Subramanian, A. (2017).
A unified heuristic and an annotated bibliography for a large class of
earliness-tardiness scheduling problems.
Journal of Scheduling, accepted.
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Results for R | rj , sk
ij |
∑
αjEj + βjTj , larger setup times

Initial heuristic and instances by [Kramer and Subramanian, 2017]

Size With cuts BKS
Root Gap Root Total Improv.n m #Solved

Gap (%) (%) Time Time
#Nodes

(%)
#New

40 2 60/60 0.43 0.00 13m 16m 2.8 0.76 46
60 2 58/60 2.22 0.06 48m 2h56m 23.2 1.34 58
60 3 45/60 4.29 1.21 29m 5h45m 85.8 1.56 55
80 2 28/60 2.89 1.32 1h59m 9h49m 48.8 0.80 54
80 4 10/60 5.17 3.91 1h18m 10h58m 120.4 0.39 27

Size Without cuts
Root Gap Root Totaln m #Solved

Gap (%) (%) Time Time
#Nodes

40 2 60/60 4.08 0.00 5m 24m 172.6
60 2 43/60 4.71 1.21 23m 7h06m 1246.2
60 3 37/60 5.99 2.14 18m 7h05m 1702.3

Kramer, A. and Subramanian, A. (2017).
A unified heuristic and an annotated bibliography for a large class of
earliness-tardiness scheduling problems.
Journal of Scheduling, accepted.
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Results for R ||
∑
αjEj + βjTj

Size Our Branch-Cut-and-Price BKS [Şen and Bülbül, 2015]
Root Gap Root Total Nod. Impr. Gapn m Solv.

Gap(%) (%) Time Time num. (%)
New Solv.

(%)
Time

40 2 60/60 0.04 0.00 2m 5m 3.4 0.00 0 26/60 0.16 1m
60 2 60/60 0.04 0.00 9m 12m 3.3 0.00 1 7/60 0.89 2m
60 3 60/60 0.05 0.00 6m 7m 2.9 0.01 5 7/60 0.82 2m
80 2 59/60 0.02 0.00 28m 40m 5.4 0.00 3 2/60 0.90 2m
80 4 60/60 0.11 0.00 15m 16m 3.9 0.07 15 0/60 4.54 4m
90 3 60/60 0.05 0.00 29m 34m 4.7 0.03 20 1/60 2.52 3m

100 5 59/60 0.20 0.02 31m 57m 26.7 0.10 27 0/60 8.83 5m
120 3 56/60 0.16 0.04 1h54m 3h00m 16.7 0.07 22 0/60 4.12 3m
120 4 58/60 0.23 0.01 1h24m 2h12m 17.7 0.17 31 0/60 6.98 4m

With subset row cuts, root gap is 6 times smaller (40 and 60 jobs instances).

In 30 minutes, CPLEX solved 49/60 inst. with 40 jobs, 36/120 inst. with 60
jobs, 3/120 inst. with 80 jobs, 2/60 inst. with 90 jobs.

Şen, H. and Bülbül, K. (2015).
A strong preemptive relaxation for weighted tardiness and
earliness/tardiness problems on unrelated parallel machines.
INFORMS Journal on Computing, 27(1):135–150.
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Final remarks

I First use of non-robust cuts (modifying the structure of the
pricing problem) for scheduling problems

I Significant computational improvement over the existing
exact approaches for the problem

I scales up to 4 machines and 80 jobs for “generic” instances
with setup times

I solves 532/540 instances without setup times with up to 4
machines and 120 jobs

I Need more testing on “less generic” instances
I Ways to improve results:

I A better heuristic for generic instances is needed!
I First convergence is very slow
I More balanced branching
I Separation for rank-1 cuts with 4 and more rows
I Enumeration [Baldacci et al., 2008]
I Avoid discretisation [Ioachim et al., 1998]
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