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The scheduling problem we want to solve

» Set M of unrelated machines
» njobs,eachjobjeJ={1,...,n} has
» processing time p/’f, dependent on the machine
» release and due dates r; and ¢
» earliness and tardiness unitary penalties a; and /3,

» Given completion time C; of job j € J in the schedule, its
cost is

oEj + B;Tj = aj - max{0, d; — C;} + ;- max{0, C; — d;}

» There is a sequence-dependent setup time s,‘-f/- if job j is
scheduled immediately after job i/ on machine k.

» The objective is to minimize the total earliness/tardiness
cost.

» Problem’s notation:

RIG:S,’-}!Z,-Q/E/WJTJ
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Existing exact approaches in the literature for
scheduling on parallel machines with sum criteria
R| s,’-/‘. | > ajE; + 3;T; Only MIP formulations, up to 5 machines
and 12 jobs.
R > T;  Abranch-and-bound [Shim and Kim, 2007], up to 5
machines and 20 jobs.
R || > w;T; A branch-and-bound [Liaw et al., 2003], up to 4
machines and 18 jobs.
Q| sf/‘- | > Ej+ T; AMIP and a Benders decomposition
[Balakrishnan et al., 1999], up to 20 jobs.
P s | > T; Abranch-and-bound [Schaller, 2014], up to 3
machines and 14 jobs.
P r| > wT; Abranch-and-bound [Jouglet and Savourey, 2011],
up to 5 machines and 20 jobs
P || >~ w;T; A Branch-Cut-and-Price [Pessoa et al., 2010], up to
4 machines and 100 jobs.
P[] >~ w;C; A Branch-and-Price [Kowalczyk and Leus, 2016], up
to 12 machines and 150 jobs
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Set covering (master) formulation

» Q, — set of pseudo-schedules for machine k €¢ M

» &’ — number of times that job j appears in
pseudo-schedule w.

» ¢, — cost of pseudo-schedule w.

» Binary variable A} = 1 if and only if pseudo-schedule w is
assigned to machine k e M

min Z Z Culs

keM weQy
o> @ = 1, Vel
keM weQy
X £ 1, VkeM,
wE

Ao € {0,1}, VYwe Q Vk e M.



Pricing subproblem for machine k € M
Extended graph Gk

Arc (i,],t) — setup time between job / and j is started at time
t, and job j is started at time t + sff

Variable x| — arc (i, /, t) in the solution or not

J={1,2,3},T=8,p1=4,po=1,p3=3,5;=1,Vi,jed
Pseudo-schedules 0-2-3-2-0 and 0-2-1-0 are shown



Pricing subproblem: dynamic programming

Given dual solution 7 of the restricted master problem, the
pricing subproblem is

o= o t+sji+p; ) t
jed ijed, i#]

teT

i.e. the shortest path problem in the extended graph.

Dynamic program

Shortest path problem in an acyclic graph can be solved by a
dynamic program with states:

S(J, t) — best partial schedule with the last job j completing at
time t



Fixing of arc variables by reduced costs

» Zpy — optimal value of the current restricted master.
» ZK, — minimum reduced cost for machine keM.

» Lagrangian lower bound: Zay + > ey ZX .-

» Zi,c — value of the best known integer solution.
» ZK ,(a) — current minimum reduced cost of a path

containing arc a € Gy.

» Arc a can be removed (it cannot take part of any improving
solution) if

Z.'sub Z Zsub + Zam = Zinc-
k'e M\{k}

» A good heuristic is very important!



Computing sub( ) [Ibaraki and Nakamura, 1994]
How to compute the shortest path passing through arc

a:(i,j,t)eGk?
O O O O O

o Q0 O O 0+0O
O O O OO
&+-0 O O OO O OO0

. F(i, t) — the value of the shortest path from s to node (i, t)
2. B(k,t+ sl + pf) — the value of the shortest path from d

to node (j, t+sf+pf)
3. Zk

sub

—

k
(a=(i.j.k)) = F(i.t) + B, t + sk + pf) + i

@ Ibaraki, T. and Nakamura, Y. (1994).
A dynamic programming method for single machine scheduling.

European Journal of Operational Research, 76(1):72 — 82.
10/23



Dual price smoothing stabilization

» 7 — current dual solution of the restricted master
m* — dual solution giving the best Lagrangian bound so far
We solve the pricing problem using the dual vector

v

v

7=(01-a) 7T+a- 7

where a € [0, 1).

Parameter « is automatically adjusted in each column
generation iteration using the sub-gradient of the
Lagrangian function at ' [Pessoa et al., 2017].

v

@ Pessoa, A., Sadykov, R., Uchoa, E., and Vanderbeck, F. (2017).

Automation and combination of linear-programming based stabilization
techniques in column generation.

INFORMS Journal on Computing, (Forthcoming).
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Branching

» Branching on aggregated arc variables

> xffe{o,1},

0<i<T

i.e. job i immediately precedes job j on machine k or not
» Multi-phase strong branching is used
» Branching history is kept is used through pseudo-costs
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Subset-Row Cuts (SRCS) [Jepsen et al., 2008]
Given C C J and a multiplier p, the (C, p)-Subset Row Cut is:

5 [p¥a < e
keMweqy L iec
Special case of Chvatal-Gomory rank-1 cuts obtained by

rounding of |C| set-packing constraints in the master

Here we use only 1-row and 3-row cuts with p = %
We separate them by enumeration.

@ Mads Jepsen and Bjorn Petersen and Simon Spoorendonk and David
Pisinger (2008).
Subset-Row Inequalities Applied to the Vehicle-Routing Problem with
Time Windows.

Operations Research, 56(2):497-511.
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Example of a violated 3-row cut

3 1 value = 0.5
2 3 value = 0.5
1 2 value = 0.5
» C={1,2,3}

» coefficient of these three columns in the cut is 1
» |hs = 1.5, rhs = 1, violation is 0.5.
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Impact on the pricing problem
Given dual value v, < 0 for each active subset row cut y € T,
defined for subset C, of jobs, modified reduced cost of
pseudo-schedule w € Q is :

G= S (P em) - X |

ijed, teT ~yelr jeCy, ied,
i#£j, teT

An additional binary value for each cut v € ' in dynamic
programming states: S(j, t,...,6,,...), where 0, is the parity of
the number of appearances of jobs in C, (= 0/1 if pair/odd)

Instead of the dynamic program, we use a labeling algorithm
with labels L = (¢*, j-, t, {65} ,er) and the dominance rule

.L .L/ L L/ _L 7
jF=gt, =t et > <o
~yer: 9%>9#'

16/23



The labeling algorithm

t =0 1 2
5

4 L]
3 L]
2

1 L]

i=ol=| | [

Initial label
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The labeling algorithm

j =0 ]

L
N I N I O
L
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The labeling algorithm
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The labeling algorithm

Do both labels need to be kept in bucket (4,4)?
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The labeling algorithm

(8]

LM

The labels represent partial paths 0-1-4 and 0-3-4
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Limited memory cuts [Pecin et al., 2017]

v

For each active cut v € T, define a memory M., : set of
jobs which “remember” value 6, = 1.

» If jL ¢ M., then 0# + 0.
» Much less values 0# = 1 = stronger domination

» Memory M., of a cut vy € I is calculated during separation
as the smallest memory which does not decrease the cut
violation of the current fractional solution

» Limited memory cuts are weaker than full memory cuts,
however the labeling algorithm is much faster

@ Pecin, D., Pessoa, A., Poggi, M., and Uchoa, E. (2017).
Improved branch-cut-and-price for capacitated vehicle routing.
Mathematical Programming Computation, 9(1):61-100.
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k .
Results for R | rj, s | >~ ojEj + B Tj, small setup times
Initial heuristic and instances by [Kramer and Subramanian, 2017]

Size With cuts BKS
Root Gap Root Total Improv.
n m| #Solved Gap (%) (%) Time Time #Nodes (%) #New
40 2 | 60/60 0.01  0.00 4m 4m 11| 0.12 22
60 2 | 60/60 0.32 0.00 23m 28m 35| 0.33 46
60 3 | 60/60 0.86 0.00 16m 35m 10.6| 0.48 47
80 2 | 60/60 0.23 0.00 thi2m 1h37m 57| 0.14 41
80 4 | 48/60 1.69 052  37m 4h33m 92.0| 0.26 50
Size Without cuts
Root Gap Root  Total
I
n m| #Solved Gap (%) (%) Time Time #Nodes
40 2 | 60/60 1.72  0.00 3m 6m 44.8
60 2 | 59/60 1.99 0.05 13m 1h55m 412.8
60 3 | 60/60 223 0.00 10m 1h13m 361.5

@ Kramer, A. and Subramanian, A. (2017).
A unified heuristic and an annotated bibliography for a large class of
earliness-tardiness scheduling problems.
Journal of Scheduling, accepted.

20/23



k .
Results for R | rj, sii | >~ oy Ej + 5;Tj, larger setup times
Initial heuristic and instances by [Kramer and Subramanian, 2017]

Size With cuts BKS
Root  Gap Root Total Improv.

n m| #Solved Gap (%) (%) Time Time #Nodes (%) #New
40 2 60/60 0.43  0.00 13m 16m 28| 0.76 46
60 2 58/60 222 0.06 48m 2h56m 23.2| 1.34 58
60 3 45/60 4.29 1.21 29m  5h45m 85.8| 1.56 55
80 2 28/60 2.89 1.32 1h59m  9h49m 48.8| 0.80 54
80 4 10/60 5.17 3.91 1h18m 10h58m 120.4 | 0.39 27

Size Without cuts

Root Gap Root  Total
Gap (%) (%) Time Time 'hodes
40 2 | 60/60 4.08 0.00 5m 24m 172.6
60 2 43/60 4.71 1.21 23m 7h06m 1246.2
60 3 37/60 5.99 214 18m 7h05m 1702.3

n m| #Solved

@ Kramer, A. and Subramanian, A. (2017).
A unified heuristic and an annotated bibliography for a large class of
earliness-tardiness scheduling problems.

Journal of Scheduling, accepted.
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Results for R || > o, Ej + 5T,

Size Our Branch-Cut-and-Price BKS  |[Sen and Bulbul, 2015]
Root Gap Root Total Nod.|Impr. Gap
nom SN o) (%) Time Time num.| (%) ov| SOV (o) TMe
40 2/60/60 0.04 0.00 2m 5m 3.4/0.00 0 |26/60 0.16 1m
60 2|60/60 0.04 0.00 9m 12m 3.3/0.00 1 7/60 0.89 2m
60 3|60/60 0.05 0.00 6m 7m 29(0.01 5 | 7/60 0.82 2m
80 2|59/60 0.02 0.00 28m 40m 54(0.00 3 | 2/60 0.90 2m
80 4|60/60 0.11 0.00 15m 16m 3.9/0.07 15 | 0/60 4.54 4m
90 3|60/60 0.05 0.00 29m 34m 4.7/0.03 20 | 1/60 252 3m
100 5|59/60 0.20 0.02 31m 57m 26.7/0.10 27 | 0/60 8.83 5m
120 3(56/60 0.16 0.04 1h54m 3h0Om 16.7(0.07 22 | 0/60 4.12 3m
120 4(58/60 0.23 0.01 1h24m 2h12m 17.7({0.17 31 | 0/60 6.98 4m

With subset row cuts, root gap is 6 times smaller (40 and 60 jobs instances).
In 30 minutes, CPLEX solved 49/60 inst. with 40 jobs, 36/120 inst. with 60

jobs, 3/120 inst. with 80 jobs, 2/60 inst. with 90 jobs.

B Sen, H. and Bilbdl, K. (2015).
A strong preemptive relaxation for weighted tardiness and

earliness/tardiness problems on unrelated parallel machines.
INFORMS Journal on Computing, 27(1):135—-150.

22/23



Final remarks

» First use of non-robust cuts (modifying the structure of the
pricing problem) for scheduling problems

» Significant computational improvement over the existing
exact approaches for the problem
» scales up to 4 machines and 80 jobs for “generic” instances
with setup times
» solves 532/540 instances without setup times with up to 4
machines and 120 jobs

» Need more testing on “less generic” instances
» Ways to improve results:
» A better heuristic for generic instances is needed!
First convergence is very slow
More balanced branching
Separation for rank-1 cuts with 4 and more rows
Enumeration [Baldacci et al., 2008]
Avoid discretisation [loachim et al., 1998]

v

vV vy vy
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