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The Dirac operator

Anti-commutation relations

Let o, for i € {1,2,3,4}, be linearly independent self-adjoint linear applications, acting in C2¥,
satisfying the anti-commutation relations:

ajoj + ojo = 25,',1' Idczy,

fori,j=1,...,4. Weset 8 := ay.
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The Dirac operator

Anti-commutation relations

Let o, for i € {1,2,3,4}, be linearly independent self-adjoint linear applications, acting in C2¥,
satisfying the anti-commutation relations:

ajoj + ojo = 25,',1' Idczy,

fori,j=1,...,4. Weset 8 := ay.
For v = 1, there is no solution.

When v = 2, one may choose the Pauli-Dirac representation:
L 0 agj o Id(cl/ 0
“i= ( o 0 ) and  f = ( 0 —ldev )

wherean — (O 1 (0 i wd o (10
eear=141 o) 2={i o and o3={ o9 4 )

fori=1,2,3.

Sylvain Golénia (Université de Bordeaux 1) LAP and propagation of long range Dirac systems Bordeaux, 01/03 2/26



The Dirac operator

The self-adjoint operator

The movement of a relativistic massive charged particles with spin-1/2 particle is given by the
Dirac equation,

ih% = Dmy, in 2R3 C?),

where m > 0 is the mass, c¢ the speed of light, i the reduced Planck constant, and

3
m = Cho - P+ mc®B = —ich Y axdy + mc?p.
k=1

Here we set a := (ay, a2, ag) and 3 := ay.
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The Dirac operator

The self-adjoint operator

The movement of a relativistic massive charged particles with spin-1/2 particle is given by the
Dirac equation,
in2% — Dmep, in [2(R3;C?Y),
ot
where m > 0 is the mass, c¢ the speed of light, i the reduced Planck constant, and

3
m = Cho - P+ mc®B = —ich Y axdy + mc?p.
k=1

Here we set a := (ay, a2, ag) and 3 := ay.

Wetakec=h =1.
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The Dirac operator

The self-adjoint operator

The movement of a relativistic massive charged particles with spin-1/2 particle is given by the
Dirac equation,

ih% = Dmy, in 2R3 C?),

where m > 0 is the mass, c¢ the speed of light, i the reduced Planck constant, and

3
D := Cho - P+ mc?B = —ich» _ axdk + mc?B.
k=1
Here we set a := (ay, a2, ag) and 3 := ay.
Wetakec=h =1.

We define D, on CZ°(R3; C2¥). We also denote its closure by Dp,.

It is self-adjoint with domain D(Dp) = 1 (R3; C?¥).
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The Dirac operator

The spectrum

One has:
D2 = (—Qgs + M) ® ldca,,

where [2(R3; C?) ~ [2(R3) @ C?".
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The Dirac operator

The spectrum

One has:
D2m = (7A]R3 =+ m2) ® Id(cz,,,

where [2(R3; C?) ~ [2(R3) @ C?".
Set a5 := ajasagay. Itis unitary.

Moreover, using the anti-commutation relation, we infer

as D a5_1 = —Dnm
Then,

a5 ©(Dm) ag ' = ¢(—Dm), forall ¢ : R — C measurable.
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The Dirac operator

The spectrum

One has:
D2m = (7A]R3 =+ m2) ® Id(cz,,,

where [2(R3; C?) ~ [2(R3) @ C?".
Set a5 := ajasagay. Itis unitary.

Moreover, using the anti-commutation relation, we infer
as D a5_1 = —Dp
Then,
a5 ©(Dm) ag ' = ¢(—Dm), forall ¢ : R — C measurable.
Therefore, the spectrum of Dy, is given by:
o(Dm) = (=00, —m] U [m, o0)

and it is purely absolutely continuous, with respect to the Lebesgue measure.
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The Coulombic potential

Self-adjointness

We have the Hardy inequality:

1
4R3

L)

2
X ax < [(f,=Bpsf)| = |VFI? = [|o - P,

where f € C$° (R®; C?¥).
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The Coulombic potential
Self-adjointness

We have the Hardy inequality:

1 1 2
- f
4 X (x)

dx < [(f, =Agaf)| = |VFI? = ||o - P,

where f € C$° (R®; C?¥).
Forj=1,...,n, we choose n distinct points x; of R3. On C3°(R3; C?¥), we set:

1 1
H, —Dm-‘r'yz‘o g © oz = - P+mﬁ+vzlo ~ @ 1dga, .
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The Coulombic potential
Self-adjointness

We have the Hardy inequality:

1 1

2
- —f < [{f,—=ApsH)| = |VF|? = ||o - Pf|]?
2 e |ix (X)| dx < [(f,—LgshH)| = IVI|? = |lo - Pf||?,

where f € C$° (R®; C?¥).

Forj=1,...,n, we choose n distinct points x; of R3. On C3°(R3; C?¥), we set:

1 1
Hn,—Dm-i-’yZ‘Q |®Idc2u—a P-i-mﬁ-i-'yZ'Q — ®ldcay .

One has:
@ |y| < 1/2: H, is essentially self-adjoint and D(H,) = 51 (R3; C?¥).
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The Coulombic potential
Self-adjointness

We have the Hardy inequality:

1 1

2
- —f < [{f,—=ApsH)| = |VF|? = ||o - Pf|]?
7 ||y (X)| dx < [(f,—LgshH)| = IVI|? = |lo - Pf||?,

where f € C$° (R®; C?¥).

Forj=1,...,n, we choose n distinct points x; of R3. On C3°(R3; C?¥), we set:

1 1
Hn,—Dm-i-’yZ‘Q |®Idc2u—a P-i-mﬁ-i-'yZ'Q — ®ldcay.

In fact, one has:
@ || < V/3/2: H, is essentially self-adjoint and D(H,) = 1 (R3; C?).
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LAP at threshold energy

The main result

Theorem

There are k, 6, C > 0 such that the following limiting absorption principle holds:

sup Q™' (Hy —A—ie) (@' < C.
X €[m,m+6], e>0,|v|<k

Bordeaux, 01/03 7126
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LAP at threshold energy
The main result

Theorem

There are k, 6, C > 0 such that the following limiting absorption principle holds:

sup Q™' (Hy —A—ie) (@' < C.
X €[m,m+6], e>0,|v|<k

In particular, H, has no eigenvalue in £m.

Moreover, there is C' so that

sup [ |(Q)~"e ™ Ex(H,)f|%at < C'||f|]?,
7Sk /R

where T = [-m — §, —m] U [m, m + 6] and where Ez(H.,) denotes the spectral measure of H .

v
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LAP at threshold energy

Reduction to the bounded case

Since we are interested in small coupling constants, by perturbation theory, it is enough to
consider:

H,l;d = Dm +vv(Q) ® Idcay,

with v : R® — R, smooth with
Vileo < m/2

and

v(x) = Z |Q ot

for | x| big enough.
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LAP at threshold energy

Reduction to positive energies

To show the limiting absorption principle (LAP)

sup K@ (H! = x—ie) @' < C,
[X€[m,m+6], £>0, |y|<k

for some k > 0. It is equivalent to show:

sup QTN (HY = A - @' < C,
AE[m,m+38], >0, |v|<k

Bordeaux, 01/03
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LAP at threshold energy

Reduction to positive energies

To show the limiting absorption principle (LAP)
sup K@)~ ' (HyY =2 —ie) (@)l < C,

[X|€[m,m+6], e>0, |v|<k
for some k > 0. It is equivalent to show:

sup QTN (HY = A - @' < C,
AE[m,m+38], >0, |v|<k

Indeed, we have:

as (Dm + yv) a5_1 = —Dmp + V.
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LAP at threshold energy

Reduction to positive energies

To show the limiting absorption principle (LAP)
sup K@)~ ' (HyY =2 —ie) (@)l < C,

[X|€[m,m+6], e>0, |v|<k
for some k > 0. It is equivalent to show:

sup K@) '(HyY = —ie) (@' < C,

Ae[m,m+6],e>0, |v|<k

Indeed, we have:
as (Dm + yv) a5_1 = —Dmp + V.

Then, we shall work at energy [m, m + §] with v and with —v.
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LAP at threshold energy

The spin down/up decomposition

Since 8 = a4 has the eigenvalues +1 and the eigenspaces have the same dimension.
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LAP at threshold energy

The spin down/up decomposition

Since 8 = a4 has the eigenvalues +1 and the eigenspaces have the same dimension.

Let P* be the orthogonal projection on ker(8 — 1). Let P~ :=1 — P+,
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LAP at threshold energy

The spin down/up decomposition

Since 8 = a4 has the eigenvalues +1 and the eigenspaces have the same dimension.
Let P* be the orthogonal projection on ker(8 — 1). Let P~ :=1 — P+,

By the anti-commutation relation, we get P¥«;P* = 0. We set:
Oé]_-'— = Ptq;P~ and o = P~q;PT, forje {1,2,3}.

They are partial isometries: (al.*)* =0, aj*aj‘ = Pt and a/.‘oll.+ = P~ forj e {1,2,3}.
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LAP at threshold energy

The spin down/up decomposition

Since 8 = a4 has the eigenvalues +1 and the eigenspaces have the same dimension.
Let P* be the orthogonal projection on ker(8 — 1). Let P~ :=1 — P+,

By the anti-commutation relation, we get P¥«;P* = 0. We set:
Oé]_-'— = Ptq;P~ and o = P~q;PT, forje {1,2,3}.

They are partial isometries: (al.*)* =0, aj*aj‘ = Pt and a/.‘oll.+ = P~ forj e {1,2,3}.

We set Cf := P*C?. In the direct sum C¥ & C, one can write

[ ldev O (0 o .
ﬁf< 0 Idcu)anda/<aj_ 0 , forj e {1,2,3}.
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LAP at threshold energy

The spin down/up decomposition, on the way to the resolvent equation

We now split the Hilbert space ## = L2(R3; C?) with respect to the spin-up and -down part:

H =" ® A, where st = [2(R%;,CY) ~ L®(R3; CY).
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LAP at threshold e

The spin down/up decomposition, on the way to the resolvent equation

We now split the Hilbert space ## = L2(R3; C?) with respect to the spin-up and -down part:
H =" ® A, where st = [2(R%;,CY) ~ L®(R3; CY).
We rewrite the equation (Dm + v(Q) — z)y = f to get:

ot Py +mipy + v(Qy — zpy = £y,
a Py —my_ +v(Qp— —z¢p_ =1f_.
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LAP at threshold e

The spin down/up decomposition, on the way to the resolvent equation

We now split the Hilbert space ## = L2(R3; C?) with respect to the spin-up and -down part:
H =" ® A, where st = [2(R%;,CY) ~ L®(R3; CY).
We rewrite the equation (Dm + v(Q) — z)y = f to get:
{a+. Py + muy + v(Qpy — z¢py = fy,
a Py —my_ +v(Qp— —z¢p_ =1f_.
then
1

1
("”'Pi“"’*”(o)*m‘z)mz fotot Py

m-v(Q)+z

1
'AZL: 7(04_'P’l/)+—f7).

m—v(Q)+z
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LAP at threshold energy

The spin down/up decomposition, farther on the way to the resolvent equation

In other words,

1

A — = f P f

(Amy.z+m=2)p+ ++a1 m—-v(Q)+z
.= ————— (a7 - Py —f_.
v m—v(Q)+z (c i )

where we defined the operator Apm,v,z, as being the closure of:
1
A =at - P————a - P
myv,z o m—v(O)-i-za +v(Q),

acting on C3°(R%; CY).
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LAP at threshold energy

The spin down/up decomposition, the resolvent at last

At least formally, we get (H? — z)~" =
(Am,v,z +m— Z)_1

a” - P(Amyz+m—z)""

m—v(Q)+z
A et P
(Amy,z+m=2)""a m—v(Q)+z
. . P(A +m—z)"ta". P ! - L
m—v(Q)+z" mvz Mm@tz m-v(Q+z
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LAP at threshold energy

On the spectrum the operator Ap v~

Problem: Does (Am,v,> + m — z)~! even exist for 3z # 0?
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LAP at threshold energy

On the spectrum the operator Ap v~

Problem: Does (Am,v,> + m — z)~! even exist for 3z # 0?

Using ||V]|co < M/2, one shows D(Am,v,z) = D((Amv,2)*) = H#2(R3;CY).
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LAP at threshold energy

On the spectrum the operator Ap v~

Problem: Does (Am,v,> + m — z)~! even exist for 3z # 0?
Using [|v|leo < m/2, one shows D(Am,v,z) = D((Amv,z)*) = S2(R3%; CY).

Take now f € /#2(R3; CY). Since

—S(2)

T (m—v(Q) + R(2))® + S(2)?

S, Amy.zf) = (a= Pf o~ P,

is of the sign of —J(2).
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LAP at threshold energy

On the spectrum the operator Ap v~

Problem: Does (Am,v,> + m — z)~! even exist for 3z # 0?
Using [|v|leo < m/2, one shows D(Am,v,z) = D((Amv,z)*) = S2(R3%; CY).

Take now f € /#2(R3; CY). Since

—S(2)

S{f, Amyzf) = (o~ P,
< I=4 (m—v(Q) +R(2))% + S(2)?

a” - Pf),
is of the sign of —J(2).

The numerical range theorem ensures that the spectrum of A, v, is contained in the lower/upper
half-plane which does not contain z.

In other words:

Yes, (Amy,z+m—z)~" exists for 3z # 0.
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LAP at threshold energy

The strategy

Strategy:
1. Reduce the problem to show:

sup Q) (Amav,z+m—2)"(Q)7' < C, (1)
R(z)e[m,m+5], S(2)>0, |v|<k

for some k > 0.
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LAP at threshold energy

The strategy

Strategy:
1. Reduce the problem to show:

sup Q) (Amav,z+m—2)"(Q)7' < C, (1)
R(z)e[m,m+5], S(2)>0, |v|<k

for some k > 0.
2. Prove (1).
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LAP at threshold energy

Remark on the first point

We put (Q)~" on the right and on the left of spin up/down decomposition of (H2d — z)~1.

For instance, we need to control uniformly in z € [m, m + 6] and Sz # 0:

(@ Y Amvz+m—2z)"Tat-P
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LAP at threshold energy

Remark on the first point

We put (Q)~" on the right and on the left of spin up/down decomposition of (H¢ — z)~.

For instance, we need to control uniformly in ®z € [m, m + 6] and Sz # 0:

(@ ' (Amvz+m—2"HQ) (Q)at - P(@Q m

bounded from LAP for A,y ~ unbounded

bounded by ||v||co <m/2

Bordeaux, 01/03
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LAP at threshold energy
Remark on the first point

We put (Q)~" on the right and on the left of spin up/down decomposition of (H¢ — z)~.
For instance, we need to control uniformly in ®z € [m, m + 6] and Sz # 0:

1

(@ @yt m-2) 1A (@t PO
—

bounded from LAP for A,y ~ unbounded

bounded by ||v||co <m/2
Idea: There is ¢ € C3°(R3; R) such that

sup (@ "p(a- P)(Dm+ V(@) — 2) (e PU@) | < ox,

Rze[m,m+68],32>0,|v|<k

is equivalent to

sup (@)~ (Dm+4V(@) = 2)7 (@) < oo,

Rze[m,m+6],32>0,|v|<k
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LAP at threshold energy

Remark on the first point

We put (Q)~" on the right and on the left of spin up/down decomposition of (H2d — z)~'.
For instance, we need to control uniformly in Rz € [m, m + §] and Sz # 0:

1

(@Q N (Amyv,z+m—2)"HQ) ™" (Q)p(c- P)a™ - P(Q)" m—vQ) +z

bounded from LAP for Apm v 2 easily bounded

D —
bounded by ||v|| oo <m/2
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LAP at threshold energy

More on the operator Ap_ v

Problem:
@ In(Am,y,> +m— z)~1, the operator depends on the spectral parameter.
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LAP at threshold energy

More on the operator Ap_ v

Problem:
@ In(Am,y,> +m— z)~1, the operator depends on the spectral parameter.
@ It is more convenient to work for a spectral estimate above [0, 5], instead of [m, m + §].
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LAP at threshold energy

More on the operator Ap_ v

Problem:
@ In(Am,y,> +m— z)~1, the operator depends on the spectral parameter.
@ It is more convenient to work for a spectral estimate above [0, 5], instead of [m, m + §].
We recall: |
A =at-P————a~ - P+ v(Q),
m,v,z (o] m_V(Q)+zC¥ + ( )

with domain J#2(R3; CY¥ ).

We perform the shift, z— z+ m
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LAP at threshold energy

More on the operator Ap_ v

Problem:
@ In(Am,y,> +m— z)~1, the operator depends on the spectral parameter.
@ It is more convenient to work for a spectral estimate above [0, 5], instead of [m, m + §].
We recall: |
A =at-P————a~ - P+ v(Q),
m,v,z (o] m_V(Q)+zC¥ + ( )

with domain J#2(R3; CY¥ ).

We perform the shift, z — z + m and study the operator

Dom yv,e, uniformly in (v,€) € € = £(k, 6) := [—k, k] x [0,4] x (0,1].
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LAP at threshold energy

More on the operator Ap_ v

In other words, we will show there are 6, x, C > 0 such that

sip [lla " (e —2)7'IQ < 0
Rz>0,32>0,(v,£)€E

where £ = £(k, ) := [—k, k] x [0,0] x (0, 1].

and then take £ = z.
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Positive commutator estimates

The self-adjoint case

Take H, A self-adjoint operators and ¢ > 0 so that:
[H,iA] — cH > 0,

where the symbol > means non-negative and injective.
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Positive commutator estimates
The self-adjoint case

Take H, A self-adjoint operators and ¢ > 0 so that:
[H,iA] — cH > 0,

where the symbol > means non-negative and injective.

With further hypothesis, one finds B closed, densely defined and injective such that:

sup  [[(B7)*(H—2)"'B7"|| < oo,
R(2)>0,3(2)>0

see [S. Richard].
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Positive commutator estimates

The non-self-adjoint case

In our setting, we deal with A, , « which is non-self-adjoint.
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Positive commutator estimates

The non-self-adjoint case

In our setting, we deal with A, , « which is non-self-adjoint.

Take A self-adjoint, H non-self-adjoint and ¢ > 0 so that

[R(H),iA] — cR(H) > 0,
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Positive commutator estimates
The non-self-adjoint case

In our setting, we deal with A, , « which is non-self-adjoint.

Take A self-adjoint, H non-self-adjoint and ¢ > 0 so that
[R(H),1A] — cR(H) > 0,
and

S(H) > 0 and [S(H),iA] > 0.
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Positive commutator estimates

The non-self-adjoint case

In our setting, we deal with A, , « which is non-self-adjoint.

Take A self-adjoint, H non-self-adjoint and ¢ > 0 so that
[R(H),iA] — cR(H) > 0,
and
S(H) > 0 and [S(H),1A] > 0.

Problem: A, , ¢« depends on the external parameter £ and we need estimates uniform in £.
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Positive commutator estimates
The non-self-adjoint case

In our setting, we deal with A, , ¢ with is non-self-adjoint.

Take A self-adjoint and H(¢) a family of non-self-adjoint operators so that
[R(H(E)),iAl — cR(H(¢)) > S > 0,

and
S(H()) > 0and [S(H(£)),iA] >0,

with S a self-adjoint operator independent of £.
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Positive commutator estimates
The non-self-adjoint case

In our setting, we deal with A, , ¢ with is non-self-adjoint.

Take A self-adjoint and H(¢) a family of non-self-adjoint operators so that
[R(H(E)),iAl — cR(H(¢)) > S > 0,

and
S(H()) > 0and [S(H(£)),iA] >0,

with S a self-adjoint operator independent of £.

With further hypothesis, one finds B closed, densely defined and injective and C independent of £
such that: -

sup I(B=")*(H(&) —=2)~'B7'|| < oo,
R(2)20,3(2)>0.¢
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Positive commutator estimates
Backto Am, v,z

We consider the generator of dilation given by:

1 v
A=3(P-Q+Q-P)@ldcy on L2(R3; CY).

Then we have: [R(Azm yv.¢), iAl = R(A2m,yv,e) =
(2m — v + R(€))" + 3(€)?

o.Vv(O)<(2m—w+éR(s))2—%(5)2)> -
vt P a”-P—~Q-vv(Q) — yv(Q).
K ( ((2m — v + (€))% + S(£)?) TaTETe

=

Sylvain Golénia (Université de Bordeaux 1) LAP and propagation of long range Dirac systems Bordeaux, 01/03 24/26



Positive commutator estimates
Backto Am, v,z

We consider the generator of dilation given by:
1 4
A=5(P-Q+Q-P)®ldcy on L3(R3; CY).

Then we have: [R(Azm ~v,e), 1Al — R(Domyv,e) >

> +.Pa— - P— -V
> gat - Pa 7(Q-Vv(Q) + v(Q))
= AR3 ®Idc-$ unsigned!
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Positive commutator estimates

Backto Am, v,z

We consider the generator of dilation given by:
1 4
A=5(P-Q+Q-P)®ldcy on L3(R3; CY).
Then we have: [R(Azm ~v,e), 1Al — R(Domyv,e) >

> cpat-Pam - P—~(Q-Vv(Q)+ v(Q))

== Dpa®ld g

unsigned!

But we have:
C1
2 — CpAps @ ldy —’Y@

2 — CAps ®1d, with Hardy,

for small v and c, ¢y, ¢, independent of .
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Back to the problem

Sum-up

With some care, we can show there are 6, x, C > 0 such that

sip [lla " (e — 2@ < 6
Rz>0,32>0,(7,£)€E

where € = £(k, 8) := [k, k] X [0, 8] x (0,1].
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Back to the problem

Sum-up

With some care, we can show there are 6, x, C > 0 such that

sip [lla " (e — 2@ < 6
Rz>0,32>0,(7,£)€E

where € = £(k, 8) := [k, k] X [0, 8] x (0,1].

Then we take { = z
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Back to the problem

Sum-up

With some care, we can show there are 6, x, C > 0 such that

sip [la (Bemave —2) 1O < €,
Rz>0,32>0,(7,£)€E

where € = £(k, 8) := [k, k] X [0, 8] x (0,1].

Then we take ¢ = z and deduce there are «, §, C > 0 such that

sup K@)~ (Hy =2 —ie) (@) "I < C.

(X €[m,m+5], e>0,|v|<r
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