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The Dirac operator
Anti-commutation relations

Let �i , for i ∈ {1, 2, 3, 4}, be linearly independent self-adjoint linear applications, acting in ℂ2� ,
satisfying the anti-commutation relations:

�i�j + �j�i = 2�i,j Idℂ2� ,

for i, j = 1, . . . , 4. We set � := �4.

For � = 1, there is no solution.

When � = 2, one may choose the Pauli-Dirac representation:

�i =

(
0 �i
�i 0

)
and � =

(
Idℂ� 0

0 −Idℂ�

)
where �1 =

(
0 1
1 0

)
, �2 =

(
0 −i
i 0

)
and �3 =

(
1 0
0 −1

)
,

for i = 1, 2, 3.
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The Dirac operator
The self-adjoint operator

The movement of a relativistic massive charged particles with spin-1/2 particle is given by the
Dirac equation,

iℏ
∂'

∂t
= Dm', in L2(ℝ3;ℂ2�),

where m > 0 is the mass, c the speed of light, ℏ the reduced Planck constant, and

Dm := cℏ� ⋅ P + mc2� = −icℏ
3∑

k=1

�k∂k + mc2�.

Here we set � := (�1, �2, �3) and � := �4.

We take c = ℏ = 1.

We define Dm on C∞c (ℝ3;ℂ2�). We also denote its closure by Dm.

It is self-adjoint with domain D(Dm) = H 1(ℝ3;ℂ2�).
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The Dirac operator
The spectrum

One has:
D2

m = (−Δℝ3 + m2)⊗ Idℂ2� ,

where L2(ℝ3;ℂ2�) ≃ L2(ℝ3)⊗ ℂ2� .

Set �5 := �1�2�3�4. It is unitary.

Moreover, using the anti-commutation relation, we infer

�5 Dm �
−1
5 = −Dm

Then,

�5 '(Dm)�−1
5 = '(−Dm), for all ' : ℝ→ ℂ measurable.

Therefore, the spectrum of Dm is given by:

�(Dm) = (−∞,−m] ∪ [m,∞)

and it is purely absolutely continuous, with respect to the Lebesgue measure.
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The Coulombic potential
Self-adjointness

We have the Hardy inequality:

1
4

∫
ℝ3

∣∣∣∣ 1
∣x ∣

f (x)

∣∣∣∣2 dx ≤
∣∣⟨f ,−Δℝ3 f ⟩

∣∣ = ∥∇f∥2 = ∥� ⋅ P f∥2,

where f ∈ C∞c (ℝ3;ℂ2�).

For j = 1, . . . , n, we choose n distinct points xj of ℝ3. On C∞c (ℝ3;ℂ2�), we set:

H := Dm + 
n∑

j=1

1
∣Q − xi ∣

⊗ Idℂ2� = � ⋅ P + m� + 
n∑

j=1

1
∣Q − xi ∣

⊗ Idℂ2� .

One has:

∣∣ < 1/2: H is essentially self-adjoint and D(H) = H 1(ℝ3;ℂ2�).
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LAP at threshold energy
The main result

Theorem

There are �, �,C > 0 such that the following limiting absorption principle holds:

sup
∣�∣∈[m,m+�], ">0,∣∣≤�

∥⟨Q⟩−1(H − �− i")−1⟨Q⟩−1∥ ≤ C.

In particular, H has no eigenvalue in ±m.

Moreover, there is C′ so that

sup
∣∣≤�

∫
ℝ
∥⟨Q⟩−1e−itHEℐ(H)f∥2dt ≤ C′∥f∥2,

where ℐ = [−m − �,−m] ∪ [m,m + �] and where Eℐ(H) denotes the spectral measure of H .
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LAP at threshold energy
Reduction to the bounded case

Since we are interested in small coupling constants, by perturbation theory, it is enough to
consider:

Hbd
 := Dm + v(Q)⊗ Idℂ2� ,

with v : ℝ3 → ℝ, smooth with
∥v∥∞ ≤ m/2

and

v(x) =
n∑

j=1

1
∣Q − xi ∣

,

for ∣x ∣ big enough.
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LAP at threshold energy
Reduction to positive energies

To show the limiting absorption principle (LAP)

sup
∣�∣∈[m,m+�], ">0, ∣∣≤�

∥⟨Q⟩−1(Hbd
 − �− i")−1⟨Q⟩−1∥ ≤ C,

for some � > 0. It is equivalent to show:

sup
�∈[m,m+�], ">0, ∣∣≤�

∥⟨Q⟩−1(Hbd
 − �− i")−1⟨Q⟩−1∥ ≤ C,

Indeed, we have:

�5 (Dm + v)�−1
5 = −Dm + v .

Then, we shall work at energy [m,m + �] with v and with −v .
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LAP at threshold energy
The spin down/up decomposition

Since � = �4 has the eigenvalues ±1 and the eigenspaces have the same dimension.

Let P+ be the orthogonal projection on ker(� − 1). Let P− := 1− P+.

By the anti-commutation relation, we get P±�j P± = 0. We set:

�+
j := P+�j P− and �−j := P−�j P+, for j ∈ {1, 2, 3}.

They are partial isometries:
(
�+

j

)∗
= �−j , �+

j �
−
j = P+ and �−j �

+
j = P−, for j ∈ {1, 2, 3}.

We set ℂ�± := P±ℂ2� . In the direct sum ℂ�+ ⊕ ℂ�−, one can write

� =

(
Idℂ� 0

0 −Idℂ�

)
and �j =

(
0 �+

j
�−j 0

)
, for j ∈ {1, 2, 3}.
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LAP at threshold energy
The spin down/up decomposition, on the way to the resolvent equation

We now split the Hilbert space H = L2(ℝ3;ℂ2�) with respect to the spin-up and -down part:

H = H + ⊕H −, where H ± := L2(ℝ3;ℂ�±) ≃ L2(ℝ3;ℂ�).

We rewrite the equation (Dm + v(Q)− z) = f to get:{
�+ ⋅ P − + m + + v(Q) + − z + = f+,
�− ⋅ P + −m − + v(Q) − − z − = f−.

then⎧⎨⎩
(
�+ ⋅ P

1
m − v(Q) + z

�− ⋅ P + v(Q) + m − z
)
 + = f+ + �+ ⋅ P

1
m − v(Q) + z

f−,

 − =
1

m − v(Q) + z

(
�− ⋅ P + − f−

)
.
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LAP at threshold energy
The spin down/up decomposition, farther on the way to the resolvent equation

In other words, ⎧⎨⎩
(Δm,v,z + m − z) + = f+ + �+ ⋅ P

1
m − v(Q) + z

f−,

 − =
1

m − v(Q) + z

(
�− ⋅ P + − f−.

)
where we defined the operator Δm,v,z , as being the closure of:

Δm,v,z := �+ ⋅ P
1

m − v(Q) + z
�− ⋅ P + v(Q),

acting on C∞c (ℝ3;ℂ�+).
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LAP at threshold energy
The spin down/up decomposition, the resolvent at last

At least formally, we get (Hbd
1 − z)−1 =⎛⎜⎜⎝

(Δm,v,z + m − z)−1

1
m − v(Q) + z

�− ⋅ P(Δm,v,z + m − z)−1

(Δm,v,z + m − z)−1�+ ⋅ P
1

m − v(Q) + z

1
m − v(Q) + z

�− ⋅ P(Δm,v,z + m − z)−1�+ ⋅ P
1

m − v(Q) + z
−

1
m − v(Q) + z

⎞⎟⎟⎟⎠ .
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LAP at threshold energy
On the spectrum the operator Δm,v,z

Problem: Does (Δm,v,z + m − z)−1 even exist for ℑz ∕= 0?

Using ∥v∥∞ ≤ m/2, one shows D(Δm,v,z ) = D
(
(Δm,v,z )∗

)
= H 2(ℝ3;ℂ�+).

Take now f ∈ H 2(ℝ3;ℂ�+). Since

ℑ⟨f ,Δm,v,z f ⟩ = ⟨�− ⋅ P f ,
−ℑ(z)(

m − v(Q) + ℜ(z)
)2

+ ℑ(z)2
�− ⋅ P f ⟩,

is of the sign of −ℑ(z).

The numerical range theorem ensures that the spectrum of Δm,v,z is contained in the lower/upper
half-plane which does not contain z.

In other words:

Yes, (Δm,v,z + m − z)−1 exists for ℑz ∕= 0.
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LAP at threshold energy
The strategy

Strategy:

1. Reduce the problem to show:

sup
ℜ(z)∈[m,m+�],ℑ(z)>0, ∣∣≤�

∥⟨Q⟩−1(Δm,v,z + m − z)−1⟨Q⟩−1∥ ≤ C, (1)

for some � > 0.

2. Prove (1).

Sylvain Golénia (Université de Bordeaux 1) LAP and propagation of long range Dirac systems Bordeaux, 01/03 15 / 26



LAP at threshold energy
The strategy

Strategy:

1. Reduce the problem to show:

sup
ℜ(z)∈[m,m+�],ℑ(z)>0, ∣∣≤�

∥⟨Q⟩−1(Δm,v,z + m − z)−1⟨Q⟩−1∥ ≤ C, (1)

for some � > 0.

2. Prove (1).

Sylvain Golénia (Université de Bordeaux 1) LAP and propagation of long range Dirac systems Bordeaux, 01/03 15 / 26



LAP at threshold energy
Remark on the first point

We put ⟨Q⟩−1 on the right and on the left of spin up/down decomposition of (Hbd
 − z)−1.

For instance, we need to control uniformly in ℜz ∈ [m,m + �] and ℑz ∕= 0:

⟨Q⟩−1(Δm,v,z + m − z)−1 �+ ⋅ P
1

m − v(Q) + z
⟨Q⟩−1.

Sylvain Golénia (Université de Bordeaux 1) LAP and propagation of long range Dirac systems Bordeaux, 01/03 16 / 26



LAP at threshold energy
Remark on the first point

We put ⟨Q⟩−1 on the right and on the left of spin up/down decomposition of (Hbd
 − z)−1.

For instance, we need to control uniformly in ℜz ∈ [m,m + �] and ℑz ∕= 0:

⟨Q⟩−1(Δm,v,z + m − z)−1⟨Q⟩−1︸ ︷︷ ︸
bounded from LAP for Δm,v,z

⟨Q⟩�+ ⋅ P⟨Q⟩−1︸ ︷︷ ︸
unbounded

1
m − v(Q) + z︸ ︷︷ ︸

bounded by ∥v∥∞≤m/2

.

Idea: There is ' ∈ C∞c (ℝ3;ℝ) such that

sup
ℜz∈[m,m+�],ℑz>0,∣∣≤�

∥∥∥⟨Q⟩−1'(� ⋅ P)(Dm + V (Q)− z)−1'(� ⋅ P)⟨Q⟩−1
∥∥∥ <∞,

is equivalent to

sup
ℜz∈[m,m+�],ℑz>0,∣∣≤�

∥∥∥⟨Q⟩−1(Dm + V (Q)− z)−1⟨Q⟩−1
∥∥∥ <∞.
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LAP at threshold energy
Remark on the first point

We put ⟨Q⟩−1 on the right and on the left of spin up/down decomposition of (Hbd
 − z)−1.

For instance, we need to control uniformly in ℜz ∈ [m,m + �] and ℑz ∕= 0:

⟨Q⟩−1(Δm,v,z + m − z)−1⟨Q⟩−1︸ ︷︷ ︸
bounded from LAP for Δm,v,z

⟨Q⟩'(� ⋅ P)�+ ⋅ P⟨Q⟩−1︸ ︷︷ ︸
easily bounded

1
m − v(Q) + z︸ ︷︷ ︸

bounded by ∥v∥∞≤m/2

.
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LAP at threshold energy
More on the operator Δm,v,z

Problem:

In (Δm,v,z + m − z)−1, the operator depends on the spectral parameter.

It is more convenient to work for a spectral estimate above [0, �], instead of [m,m + �].

We recall:
Δm,v,z := �+ ⋅ P

1
m − v(Q) + z

�− ⋅ P + v(Q),

with domain H 2(ℝ3;ℂ�+).

We perform the shift, z 7→ z + m and study the operator

Δ2m,v,�, uniformly in (, �) ∈ ℰ = ℰ(�, �) := [−�, �]× [0, �]× (0, 1].
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LAP at threshold energy
More on the operator Δm,v,z

In other words, we will show there are �, �,C > 0 such that

sup
ℜz≥0,ℑz>0,(,�)∈ℰ

∥∥∥∣Q∣−1(Δ2m,v,� − z)−1∣Q∣−1
∥∥∥ ≤ C,

where ℰ = ℰ(�, �) := [−�, �]× [0, �]× (0, 1].

and then take � = z.
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Positive commutator estimates
The self-adjoint case

Take H,A self-adjoint operators and c ≥ 0 so that:

[H, iA]− cH > 0,

where the symbol > means non-negative and injective.

With further hypothesis, one finds B closed, densely defined and injective such that:

sup
ℜ(z)≥0,ℑ(z)>0

∥(B−1)∗(H − z)−1B−1∥ <∞,

see [S. Richard].
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Positive commutator estimates
The non-self-adjoint case

In our setting, we deal with Δm,v,� which is non-self-adjoint.

Take A self-adjoint, H non-self-adjoint and c ≥ 0 so that

[ℜ(H), iA]− cℜ(H) > 0,

and

ℑ(H) ≥ 0 and [ℑ(H), iA] ≥ 0.

Problem: Δm,v,� depends on the external parameter � and we need estimates uniform in �.
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Positive commutator estimates
The non-self-adjoint case

In our setting, we deal with Δm,v,� with is non-self-adjoint.

Take A self-adjoint and H(�) a family of non-self-adjoint operators so that

[ℜ
(
H(�)

)
, iA]− cℜ

(
H(�)

)
≥ S > 0,

and

ℑ
(
H(�)

)
≥ 0 and

[
ℑ
(
H(�)

)
, iA
]
≥ 0,

with S a self-adjoint operator independent of �.

With further hypothesis, one finds B closed, densely defined and injective and C independent of �
such that:

sup
ℜ(z)≥0,ℑ(z)>0,�

∥(B−1)∗(H(�)− z)−1B−1∥ <∞,

Sylvain Golénia (Université de Bordeaux 1) LAP and propagation of long range Dirac systems Bordeaux, 01/03 23 / 26



Positive commutator estimates
The non-self-adjoint case

In our setting, we deal with Δm,v,� with is non-self-adjoint.

Take A self-adjoint and H(�) a family of non-self-adjoint operators so that

[ℜ
(
H(�)

)
, iA]− cℜ

(
H(�)

)
≥ S > 0,

and

ℑ
(
H(�)

)
≥ 0 and

[
ℑ
(
H(�)

)
, iA
]
≥ 0,

with S a self-adjoint operator independent of �.

With further hypothesis, one finds B closed, densely defined and injective and C independent of �
such that:

sup
ℜ(z)≥0,ℑ(z)>0,�

∥(B−1)∗(H(�)− z)−1B−1∥ <∞,

Sylvain Golénia (Université de Bordeaux 1) LAP and propagation of long range Dirac systems Bordeaux, 01/03 23 / 26



Positive commutator estimates
Back to Δm,v,z

We consider the generator of dilation given by:

A =
1
2

(P ⋅ Q + Q ⋅ P)⊗ Idℂ�+ on L2(ℝ3;ℂ�+).

Then we have: [ℜ(Δ2m,v,�), iA]−ℜ(Δ2m,v,�) =

=�+ ⋅ P
2m − v + ℜ(�)(

2m − v + ℜ(�)
)2

+ ℑ(�)2
�− ⋅ P

−  �+ ⋅ P
(

Q ⋅ ∇v(Q)
((

2m − v + ℜ(�)
)2 −ℑ(�)2)((

2m − v + ℜ(�)
)2

+ ℑ(�)2
)2

)
�− ⋅ P −  Q ⋅ ∇v(Q)− v(Q).

Sylvain Golénia (Université de Bordeaux 1) LAP and propagation of long range Dirac systems Bordeaux, 01/03 24 / 26



Positive commutator estimates
Back to Δm,v,z

We consider the generator of dilation given by:

A =
1
2

(P ⋅ Q + Q ⋅ P)⊗ Idℂ�+ on L2(ℝ3;ℂ�+).

Then we have: [ℜ(Δ2m,v,�), iA]−ℜ(Δ2m,v,�) ≥

≥ c0 �
+ ⋅ P�− ⋅ P︸ ︷︷ ︸

=−Δℝ3⊗Idℂ+
�

− 
(
Q ⋅ ∇v(Q) + v(Q)

)︸ ︷︷ ︸
unsigned!

But we have:

≥− c0 Δℝ3 ⊗ Idℂ+
�
− 

c1

∣Q∣
≥ − c Δℝ3 ⊗ Idℂ+

�
, with Hardy,

for small  and c, c1, c2 independent of �.
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Back to the problem
Sum-up

With some care, we can show there are �, �,C > 0 such that

sup
ℜz≥0,ℑz>0,(,�)∈ℰ

∥∥∥∣Q∣−1(Δ2m,v,� − z)−1∣Q∣−1
∥∥∥ ≤ C,

where ℰ = ℰ(�, �) := [−�, �]× [0, �]× (0, 1].

Then we take � = z and deduce there are �, �,C > 0 such that

sup
∣�∣∈[m,m+�], ">0,∣∣≤�

∥⟨Q⟩−1(H − �− i")−1⟨Q⟩−1∥ ≤ C.
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