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Abstract

We study aC*-algebra generated by differential operators on a
tree. We give a complete description of its quotient with respect to
the compact operators. This allows us to compute the essential spec-
trum of self-adjoint operators affiliated to this algebra. The results
cover Schadinger operators with highly anisotropic, possibly un-
bounded potentials.

1 Introduction

Given av-fold treeI" of origin e with its canonical metrial, we write
x ~ y whenz andy are connected by an edge and we|s¢t= d(z, ¢).
For eachr € T'\ {e}, we denote by’ = z() the unique element ~ x
such thatly| = |z| — 1 and we setz® = (2~DY for 1 < p < |z].
Letal = {y € T | |y| > |z| andy¥~l=D) = 2}, where the convention
2 = 2 has been used.

On /*(T') we define the bounded operatdrgiven by (9f)(z) =
> y— J(y). Its adjoint is given by(9" f)(e) = 0 and (9" f)(z) = f(a')
for |z| > 1. Let Z be theC*-algebra generated I}
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In order to obtain our algebra of potentials, we consider the “hyper-
bolic” compactificationl' = I U OI" of I" constructed as follows. An ele-
mentz of the boundary at infinityI" is al’-valued sequence = (z,,),en
such thatjz,| = n andz, 4, ~ z, for all n € N. We set|z| = oo for
x € dl'.The spac@ is equipped with a natural ultrametric space structure.
Forz € o' and(y,).en @ Sequence il we havelim,, ... y, = z if for
eachm € Nthere isN € N such that for each > N we havey,, € z,,I'.
We denote byC'(I") the set of complex-valued continuous functions de-
fined onT'. Sincel is dense in", we can viewC(T') as aC*-subalgebra
of C,(I"), the algebra of bounded complex-valued functions defined.on
ForV e C(T'), we denote by/(QQ) the operator of multiplication by in
().

Let us now denote bif(f) theC*-algebra generated iy andC(f).
It contains the compact operators/fT'). Following the strategy exposed
in [6], we shall first compute its quotient with respect to the ideal of com-
pact operators. We stress that the crossed product technique introduced
in [6] in order to compute quotients cannot be used in our case. Instead,
we shall use the Theorem 4.5 in order to calculate the essential spectrum
of self-adjoint operators related ¥(I"). In this introduction we consider
only the most important case, when> 1.

Theorem 1.1 Lety > 1. There is a unique morphis/ : €(I) — Z ®
C(0T') suchthatb(D) = D 1forall D € 2 and®(p(Q)) = 1@ (p|ar).
This morphism is surjective and its kernelsI").

The rest of this introduction is devoted to some applications of this
theorem to spectral analysis. Let> 1andH = Y, ;4. 3(Q)0* 9"+ K,
whereK is a compact operatot,, ; € C(I') anda, 5 = 0 for all (o, 3) €
N? but a finite number of pairs. Clearliy ¢ %(f). As a consequence of
the Theorem 1.1, there i such thatb(H) = 3°, ;09" ® (aa,p)]or,
and, if H self-adjoint, its essential spectrum is:

ous(H) = | (2 tap(7)070).

~ear o,

This result can be made quite explicitin the particular case of ad8otger
operator



H = A + V(Q) with potentialV in C(T'). SinceA is a bounded ope-
rator on¢*(T") defined by(Af)(z) = >, _.(f(y) — f(z)), it belongs to

~

% (T'). We then sef\, = 9 + 0* — vId (which belongs ta7) and notice
thatA — Aq is compact. One then gets (see [1] for instance):

Gess (0 + 0) = 00e(0 + 0) = 0(D+ %) = [-2v/v, 27 ],

whereo,.(T) denotes the absolute continuous part of the spectrum of a
given self-adjoint operataf’. On the other hand, Theorem 1.1 gives us
directly o.ss(0* + 0) = o(0* + 0). We thus get

Oess(A+V(Q)) = 0(Ag) + V(IT) = [—v — 21, —v + 2/v ] + V(aT).

In fact this result holds (and is trivial) in the casewof= 1, i.e. when
I'=N.

Given a continuous function odl’, the Tietze theorem allows us to
extend it to a continuous function dh so one may construct a large class
of Hamiltonians with given essential spectra. Nevertheless, we are able to
point out a concrete class of non-trivial potentigllss C'(I") with uniform
behaviour at infinity which form a dense family 6‘f(f). Namely, for each
bounded functiory : I' — R and each real > 1 let

||

Vi)=Y % (1.1)

wherex;, = z!*=* for 2 € I (VV belongs toC(f) because of Proposition
2.3).

Concerning finer spectral features, based mainly on the Mourre esti-
mate, we mention that in the cagé = A + V(Q), with V as in (1.1)
wherea > 3 and such thal’(0T") = 0, the results of [1] can be ap-
plied (the hypotheses of the Lemmas 6 and 7 from [1] are verified since
V(z) = O(Jz|~*) when|z| — oo). The aim of our work in prepara-
tion [8] is to prove that the Mourre estimate holds for more general classes
of Hamiltonians affiliated t&#’(I") and to develop a scattering theory for
them. Theorem 1.1 remains the key technical point for these purposes.

The preceding results on trees allow us to treat more general graphs.
We recall that a graph is said to lbennectedf two of its elements can
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be joined by a sequence of neighbours. Get= | J"_, I';U G, be a finite
disjoint union ofl’;, eachl’; being av;-fold branching tree witlv; > 1 and
of G, a compact connected graph. We end@wvith a connected graph
structure that respects the graph structure of dgcénd the one of7,
such thatl’; is connected td’; (: # j) only throughG, and such that
I'; is connected tdx, only throughe;, the origin of ;. The graphG is
hyperbolic and its boundary at infiniyG is the disjoint unionJ;*_,0T';.
We now choos&” € C(GUIG). One had/ |z € c(Ty)foralli=1,...,n
and we easily obtain:

Tess(A +V(Q)) = U ([~vi — 2vWi, —vs + 24/ ] + V(O1)).

This covers in particular the case of the Cayley graph of a free group
with finite system of generators. We recall that the Cayley graph of a group
G with a system of generatofsis the graph defined on the s@twith the
relationz ~ yif 2y~ € Soryz—! € S. Let G be a free group with
a system of generators such thatS = S~!. We denote by its neutral
element and we séb| = v + 1. One may associate the restriction of the
Cayley graph to the set of words starting with a given generator with a
v-fold branching tree having as origin the generator. Hence, the Cayley
graph ofG will be UY_,T"; U {e} whereT’; is av-fold branching tree with
the above graph structure. R

We now go further by taking’ € C(T',R) such thatV(T) c R
(hereR = R U {co} is the Alexandrov compactification d). More
precisely,V € (J(f,@) if and only if for eachy € OI' we have either
lim, ., V(x) = l wherel € R or for each)M > 0 there iSN € N such that
|V (x)] > M foralln > N andz € v,I" (see Proposition 2.3). We set

D(V)={f e () [IIV(Q)f]* < oo}.

LetT € 9 andT, = ®(7T). SinceT is bounded, the operatdf = T +
V(Q) with domainD(V) is self-adjoint and it is affiliated t@?(f) (i.e.its
resolvent belongs t&'(T')). Indeed, we havéV (Q) + z)~* € C(T) for
eachz € C\ R, and for large such,

(H+2)'=(V(@Q+2)" D (T(V(@Q) +2)"),

n>0



where the series is norm convergent. Now, with the samge use the
Theorem 1.1 and the fact that ® C'(0I') ~ C'(0T', 2) to obtain

O, (H+2)"") = ®((H+2)") (1) = (V1) +2) 1 Y (To(V(7)+2) 7)™
n>0

Note that(V(y) +2)~ = 0if V(y) = co. By analytic continuation we get
P (T+V(Q)+2) ") =(Th+V(y)+2) !, forall z € C\ R. We used
the convention(Ty + V() + 2) ' = 0if V(v) = .

We now compute the essential spectrumibfiIf V() = oo then
o(®,(H)) = 0. Otherwise, one has(®.,(H)) = o(To+V (7)) = o(To)+
V(). Hence we obtain:

ess(T'+ V(Q)) = o(Tp) + V(0L),
wheredly is the set ofy € JI" such that/ () € R.

Remark: We mention an interesting question which has not been studied
in this paper. In fact, one could replace the algefray the (much bigger)
C~-algebra generated by all the right translatipn¢see Subsection 3.4 for
notations) and consider the corresponding algébg). This is a natural
object, since it contains all the “right-differential” operators acting on the
tree (not only polynomials i@ andd*). A combination of the techniques
that we use and that of [9, 10] could allow one to compute the quotient
in this case too. We also note that in [9, 10] a certain connection with the
notion of crossed-product is pointed out, and this could be useful in further
investigations. | would like to thank the referee for bringing to my attention
the two papers of A. Nica quoted above.

2 Trees and related objects

2.1 The free monad I

Let .o/ be a finite set consisting ofobjects. Let" be the free morid over
o/; its elements arevordsand those oky letters We refer to [3, Chapter

I, §7] for a detailed discussion of these notions, but we recall that a word
is an.«Z-valued map defined on a set of the fdrfit, n] with n € N, z(4)

lwe use the notatiofil,n] = [1,n] N N whereN is the set of integers 0 and
N* =N\ {0}.



being thei-th letter of the worde. The integem (the number of letters of
x) is the length of the word and will be denotpd. There is a unique word
e of lengtho0, its domain being the empty set. This is the neutral element of
I'. We will also identify.e7 with the set of words of length.
The monad I" will be endowed with the discrete topology.adfe T,
we denoter]” andI'x the right and left ideals generated byWe have on
I' a canonical order relation which is by definition:

r<y&syeaxl.

We recall some terminology from the theory of ordered setS.i¢fan
arbitrary ordered set and y € I, then one says thatcoversz if = < y
andifrt<z<y=z=zorz=y. lfzel,wedenotec ={y el |y
coverse}

In our casey coversz if + < y and|y| = |z| + 1. Notice that each
elementr € I'\ {e} covers a unique element itsfather, and each element
x € I'is covered by elements, itsons The set of sons af clearly is
T = {ze | ¢ € &/}. Hence:

ycovers v &y = v &y €.

For |z| > n, we definez™ inductively by settinge® = z andz(™*+V =
(™))" for m < n — 1. One may also notice that:'™| = |z| — a, if a <
|z|, and fora < |ab]:

@ ifa<|b
@ _ J abl®, if a <D
(ab)' = { a1 if o > [b].

We remark that ifr = 1 thenT' = N and ifv > 1 thenT is the set of
monoms ofvy non-commutative variables.

2.2 The treel’ and the extended tree associated to/

Recall that a graph is a couple = (V, E'), whereV is a set (ofvertice$

andFZ is a set of pairs of elements bf (theedges. If = andy are joined by
an edge, one says that they amghboursand one abbreviates~ y. The
graph structure allows one to enddwwith a canonical metrie, where
d(x,y) is the length of the shortest path@hjoining x to y.
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The graphGr associated to the free mdidd” is defined as follows:
V =T andz ~ y if z coversy or y coversz. It is usual to identify
I' and Gr, the so-calledv-fold branching tree. For alt € I', we have
|z| = d(e,z). We setB(z,r) ={y € I' | d(z,y) < r}andS™ = {x € T |
|z| = n}.

We shall now define an extended tree by mimicking the definition of
a free mon@ over.e/. We choose € .o7; this element will be fixed from
now on. For each integef, we setZ, = {i € Z | i < r}. Theextended
tree I associated ta is the set ofe7-valued maps defined on sets of
the formZ, such that{i | z(i) # o} is finite. Forx € T, the unique € Z
such thatr is a mapZ, — <7 will be denotedx| and will be calledength
of x.

We shall identifyl” with the set{x | |x| > 0 andz(i) = oif i <0} as
follows: if = € T then we associate to it the elementioflefined oz,
by extendingr with z(i) = o if i« < 0. The element will be identified
with the mape € I such thate| = 0 ande(i) = o, Vi < 0. Notice that the
two notions of length are consistentbn

There is a natural right action df on I' by concatenation, i.e. for
r € I'andy € I', zy will be the functionz defined oz, |, such that
2(1) = x(i), fori € Zjy andz(|z| 4+ i) = y(i) fori € [1,|y|]. Then we
equipf with an order relation by setting:

r<y&syeaxl.

As before,y coversz if and only if + < y and|y| = |z| + 1. Now, each
z € T covers a unique’ € I and each: € I is covered by elements,
namely those off = {zc | ¢ € &/}. We still have:y covers z < ' =

x < y € I. Observe that’ = x|z, ,. We will setz® = x| forall

a € Z. As we did it forI", we shall indentify the grapbrz with T. This

justifies the notion of extendecee used forl.

2.3 The boundary at infinity of I

We shall see in the ending remark of this subsection that the boundary at
infinity of I" can be thought as the boundary di-ayperbolic space in the
sense of Gromov. We prefer, however, to give a simpler presentation that
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is closer to the theory gi-adic numbers (see [11] for instance). In fact, if
v is prime the boundary will be the set efadic integers.

Definition 2.1 The boundary at infinity of is the se®l" = {z : N* —
o/}. Forx € OT', we sefz| = .

LetT bel'UAT. Forz € T, we define the sequence, ),,c[o, .| With values
in I by settingzy = e andz,, = x|[[17n]] for n > 1. Observe that the map
x — (Zn)neo,|2)] 1S INjECtive. There is a natural left action Bfon T. For
z € I'andy € T, zy will be defined on the s&{1, |z| + |y|] by z(i) for

i < |z[ and byy(i — [z[) for i > |z|.

We will now equipl’ with a structure of ultrametric space. We define
a kind of valuatiorv onI" x I" by

v(z,y) = { maxin |z, =ga} A2 7y 2.1)

00 if z=uy.
If x,y,z € Titis easy to see that:
v(z,y) = min(v(z, 2), v(z,y)). (2.2)

Let us set o

d(z,y) = exp(—v(z,y)).
The relation (2.2) clearly implies thaf, cf) is an ultrametric space, i.e. a
metric space such th§(x7y) < max(cf(a:, 2), af(z,y)), forz,y,z € T'. We
will denote, forr > 0, B(z,r) = {y € T' | d(z,y) < r}. Notice that
ultrametricity implies tha@(x,r) is closed for all: € T andr > 0.
The topology induced bf onI coincides with the initial topology of
', the discrete one. Far € 0I' andn € N,

~

.0 = {yeT |v(z,y)>n}= Bz, exp(—n+1))

which is the closure of,I" in T'. Hence for eachy € T, {z,[ } ey is
a basis of neighbourhoods ofin I'. Observe that ifc € T" thenzdl' =
xI'Nor.

2We use the conventiofi, co] = N* U {oo}.
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Proposition 2.2 T anddr are compact spaceﬁ. Is a compactification of
I.

Proof: oI' = &", thus the sefI" endowed with the product topology is
compact. This topology coincides with the one induced by the restriction
of d on I (for = € OT', the product topology gives us the same basis of
neighbourhood$z,,01"},,cn asd|sr).

Sincedl is compact, in order to show thitis compact, it suffices
to remark thatJ,cor B(z,exp(—k)) = {yI' | |y| = k + 1} has a finite
complementary if, for all k € N. Sincel is dense i, L' is a compacti-
fication of I". [J

Notice also that i > 1, the topological spacel is perfect. R

The C*-algebraC(I") of continuous complex-valued functions &n
plays an importantale. The dense embedding C r gives a canonical
inclusionC(I") C C,(I") (C,(I) is the space of bounded complex-valued
functions onl"). Moreover, we have

Co(T) = {f € C(T) | flar = 0}, (2.3)

whereCy(I') ={f: ' - C | Ve >0,3IM >0 | |z| > M = |f(z)] <
e}. We shall often abbreviat€,(I") by Cj.

The following proposition gives us a better understanding of the func-
tions inC(T").

Proposition 2.3 Let £/ be a metrisable topological space. A function:
' — FE extends to a continuous functidh: I' — E if and only if for each
x € JI' the limit of V(y), wheny € T" converges ta, exists.

Proof: Letz € O andV/ (z) be the above limit. Lef" be a closed neigh-
bourhood ofl/(z) in E; there isk such thatl (z,I") C F. Thenz,I'is a
neighbourhood of in T and, since is closed, we hav# (x,I') C F.

Later on, we will need the next ultrametricity result. We will say that
% = {x;I'} is acovering ofol" if 7 = {x;I'} is a covering oDI.

Proposition 2.4 For each open coverin§o; };c; of I, there is a disjoint
and finite covering z;I'};c; of OI" such that for eacli € J thereisi € 1

such thatrjf C 0;.



Proof: For eachr € OI' there isi such thatr belongs to the open sét;
and there i3y = n(z, ) such thate,I" C €;. Sincedl is compact, there
is a finite sub-covering odI" made by set:fgyjf}je[[l,mﬂ such that each of
its elements is a subset of some But in ultrametric spaces twopalls are
either disjoint or one of them is included in the other one. Singé'} are
balls, we get the result. One may also chofgk | |y| = maxX;cq,m] |¥;j|}

as the required coveringl

Remark: As we said previously, this section could be presented from the
perspective of hyperbolicity in the sense of Gromov, see [2, Chapter V] (a
deeper investigation can be found in [4] and [7]). &1, d) be a metric
space. For,y € M and a giverD € M, we define the&Gromov product

as:

(.9)0 = 5(d(0,2) + d(O,y) — d(z.y)) (2.9

The spacé), d) is calleds-hyperbolicif there isé such that for allc, y, 2,
O e M,
(.T, y)O > min((mv 2)07 (Za y)O) — 0. (25)

A metric space ihyperbolicif it is d-hyperbolic for a certaii. In fact,

if there isé such that (2.5) holds for alt,y,z € M and a givenO

then (M, d) is 2-hyperbolic. Classical examples 6fhyperbolic spaces

are trees (connected graphs with no cycle) and real trees (see [7] for this
notion). Cartan-Hadamard manifolds, the Poigchalf-plane and, more
generally, complete simply connected manifolds with sectional curvature
bounded by: < 0 ared-hyperbolic spaces with > 0.

We equip the set of sequences with valued/4rwith an equivalence
relation between (u,) and (v,) defined by the condition
lim(n m)—o0 (Un, Um)o = o0. The boundary at infinityp M is the set of
equivalence classes. A basis of open set#)dfis given by

0 = {~ € OM | ~ is not associated to any sequencebf, &'},

where ¢ is an open set of\/. The boundary of &-hyperbolic space is
ultrametric.

In our context, if we drop the conventiariz, ) = oo, our valuation
(2.1) is exactly (2.4). Hence (2.2) implies thais 0-hyperbolic. We define
ageodesic rays beingy : N — I' such thaty(n)| = nandvy(n + 1) ~
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v(n). Geodesic rays are representative elements of the above equivalence
classes. The two notions of boundary at infinity are identified by setting

Ty = y(n).

3 Operators in £2(T")

3.1 Bounded and compact operators

We are interested in operators acting on the Hilbert spa¢E) =
{f: T - C| >X,r|f(2)]* < oo} endowed with the inner product:
(f.9) = > ,cr f(@)g(z). We embed’ C ¢*(T') by identifying = with
Xz}, WhereX 4 is the characteristic function of the sét Observe thaf®
is the canonical orthonormal basis4hT") and eachf € ¢*(T") writes as
f= err f(*ﬂx

We denote byB(I"), K(T") the sets of bounded, respectively compact
operators in*(T"). ForT € B(T"), we will denote byT™ its adjoint. Given
A c T we denote byl 4 the operator of multiplication by 4 in ¢*(T).
The orthogonal projection associated{toc I" | |x| > r} is denoted by
1.,. ForT € I', we have the following compacity criterion for bounded
operators T in?(T):

Proposition 3.1 7 € K(I') <= ||15,T|| — 0 <= ||T1s,| — 0.

Proof: If one has for exampl@1., 7| — 0, then7 is the norm limit of
the sequence of finite rank operatars. 7', hence is compactl

3.2 The operatord

We now extendr — 2’ to a map/?(T") — ¢2(T"). We sete’ = 0 and define
the derivative of any € (*(T) as:

Of) (@) = () =D fy' (@) =>_ fly)=>_ fy)

yel YyEeT

Thusd € B(I'). Indeed || f'[|* = 3o,cr If () S v 3 0er 2oyes [F W) <
v||f||>. The adjointd* acts on eaclf € ¢*(T") as follows:

0" f(x) = Xr\gey () f(2").
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Indeed,(0f, f) = 3 ,cr Xpes W) (2) = Xoer f(@)Xryqe (2) f(2) =
(f,0°f). Moreover, 0" f||* = > ,cp oy If (@) = v 3 ser [F(@0)]* =
v|| f||* shows that

90" = vld. (3.1)

Thusd* //v is isometric or/?(T") and||9|| = ||0*]| = /v-

Fora € N we setf(® = 9°f. Thus for eache € T, z(® is well
defined in/?(I') andz(® = 0 < « > |z|. For|z| > « the notation is
consistent with our old definition.

3.3 (*-algebras of energy observables related tb

We first summarize the method used in [6] to study the essential spectrum
of large families of operators. Le¥” be a Hilbert space anH a bounded
self-adjoint operator oo?’. If C(#) = B(s¢)/ K (7€) is the CalkinC*-
algebra, we denote by — S the canonical surjection aB(.#) onto
C(s¢) and we recall thav..s(H) = a(f]) (this is a version of Weyl's
Theorem). If¢ is aC*-subalgebra of3(.7#°) which contains the compact
operators, then one has a canonical embed@jig(#) C C(.%). Thus,

in order to determine the essential spectrum of an opefater ¢ it suf-
fices to give a good description of the quoti€nt/ (.7#’) and to compute

H as element of it. As explained in [6], we can actually go further by tak-
ing H as an unbounded operator ov#f such that H + i)~ € €. We
shall apply this strategy in our context.

Let 2., be thex-algebra of operators inf?(I") generated by) and
9 the C*-algebra of operators if?(T") generated by). Because of (3.1),
P IS unital. We denote by(Q) the operator of multiplication by on
(2(T). If C is aC*-subalgebra of>(T") then we embed” in B(T") by
v — ¢(Q). Let (2, C) be theC*-algebra generated by U C. In this
paper we shall také = (2, C'). This algebra contains many Hamiltonians
of physical interest, for instance Sdlinger operators with potentials in
C. We recall that given a grapfi the Laplace operator acts ¢f(G) as

follows:
(Af)(x) =) (f(y) - f(z)).

12



With our definitionsA = 0 + 0* — vld 4 X.,. Notice that ifv > 1 thenZ
does not contain compact operators (see below} $6 Z. On the other
hand, ifC > Cy, andV € C then the Scliddinger operato\ + V(Q)
clearly belongs tqz, C).

We now give a new description &f(T").

Proposition 3.2 If %, be theC*-algebra generated by - C, then%, =
K(T).

Proof: For eachy € C, Proposition 3.1 shows(Q) € K(I'). Hence
%o C K(I'). For the opposite inclusion, 1&t € K(I") and fixe > 0. Propo-
sition 3.1, shows that there is an operatowith compactly supported ker-
nel such thaf|7" — 7"|| < ¢. Defined, , € K(I') by (0., f)(2) = f(y) if

z = z and0 elsewhere. We hav, , = X(,1(Q) € Cy. AsT" is a linear
combination ofy, ,, it suffices to show thai, , is in €. But this follows
fromd,, = 6,.(0%)*oWs, . O

If C' is a C*-subalgebra of>(I") that containsCy, then K(I') C
(2,C). Hence, in order to apply the technique described above, we have to
give a sufficiently explicit description of the quotigf®, C')/K(I'). In this
paper we concentrate on the case= C (f) which is, geometrically speak-
ing, the most interesting one (see the last RemagRi8). TheC*-algebra
generated by) and C'(I") will be denoted bys’'(I") and thex-subalgebra
generated by and C(f) will be denoted byﬁ(f)alg. We will need the
next fundamental property.

Proposition 3.3 [0, C(T)] € K(I).

Proof: For eachy € C(T') one has([d,¢(Q)]f)(z) = 3,_,(¢(y) —

() f(y) = (00 v(Q)f)(z), wherey belongs toC(T') and is defined by
»(y) = ¢(y) —¢(y') when|y| > 1 andy(e) = 0. Observe that fofy € OI"
we havey(vy) = ¢(v) — ¢(v) = 0. Hence by (2.3))) € Cy. Proposition
3.2 impliesy(Q) € K(I'). O

Remark: The algebraZ is the tree analogous of the algebra generated
by the momentum operator on the real line. However, these algebras are
rather different:Z is not commutative and the spectrum and the essential
spectrum of the operators from are not connected sets in general. For in-
stance, one has(0*0) = 0es(0*0) = {0, v} if v > 1. Indeed, we remind
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that if A, B are elements of a Banach algebra we have
0(AB) U {0} = o(BA) U {0} and, as noticed below, dim Kéris infi-
nite forv > 1.

3.4 Translations in¢*(T)

I acts on itself to the left and to the right: for eacke I' we may define
Ao, Pa - ' = T by N\, (z) = ax andp,(z) = za respectively. Clearly, for
a,b € T, \apy = pp), and for anyz € al’ we definea 'z as being they
for whichz = ay. Foreache € Ta = {y € I' | 3z € ' s.t.y = za},
we definey = za™! by x = ya. We extend now these translations to
(*(T). The translation\, acts on eaclf € (*(') as)_ ., f(z)az, i.e.
(Aof)(x) = Xor(z)f(a"tz). In the same manner, we defife, f)(z) =
Xro(7) f(za™'). The operators, andp, are isometries:

A A, = Id andp?p, = Id. (3.2)

It is easy to check that the adjoints act on ghyg ¢*(T') as(\:f)(z) =
f(ax)and(p: f)(x) = f(za). Moreover,

>\a)‘:: = 1aI‘ andpap: = ]—Fa~ (33)

Note also that* = >, _, po andd = -, _, p;.

3.5 Localizations at infinity

In order to study#'(T') /K(I") we have to define the localizations at infinity
of T € ¢(I') by looking at the behavior of the translated operatgF,
asa converges toy in r (abbreviated: — ~), for eachy € oT".

If T e K(I') then ulim,_,, AT\, = 0, where ulim means conver-
gence in norm. Indeed, by (3.2), (3.3) and Proposition 3.1 we get
INeT Al = |[1arT1or|| — 0, @aSa — . Now, we compute the uni-
form limit of \*T'\, whenT" € %(f)alg. There isP, a non-commutative
complex polynomial inm + 2 variables, and functiong; € C(f) for
i = [1,m], such thatl’ = P(p1,¢2,...,0m,0,0%). We setT(y) =
P(@l(’y)a @2(7)7 R SOm(’Y), 87 a*)
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Lemma 3.4 There isao € I' such thatu-lim, ., A\}T'A, = A}, T(7) Ag,-

Proof: The Proposition 3.3 and (3.1) give somg € C(T), K € K(I)
andag, By € N such thatl’ = >, ¢x(Q)0* 9% + K andT(vy) =
S dk(y)0***0%. Thus, it suffices to compute a limit of the form
U-lim, ., Xip(Q)9* 9P\, with ¢ € C(T'). We supposea| > a and take
f € £%(T). We first show the result fap = 1. Since

MO Nf)) = > NHy = D fl), (34

{ylyP=(az)(®)} {yl(ay) P =(az)()}

it suffices to show that the séy | (ay)!? = (az)@} is independent of
if |a| > «. But this is precisely what asserts the Lemma 3.5 below.

We now treat the general case ¢ %(f). The identity
(@A) ) =  plax) (N0 0N f)(x) gives us that
INP(Q) D Na—p(1)N0* P\ | < lp(aQ)—p(3)]-|07°07| — O as
a — 7. On the other hand, by the Lemma 3&;)\:0**9” ), is constant
for |a| > «. Thus, it suffices to choogdey| > max{ay | k =1,...,n}in
the statement of the lemma to end the praof.

Lemma 3.5 For |a| > o« we have:

O for|z|+ 5 —a <0,
{y ] (ay)® = (az)@} = Sk+F- for |z| < aand|z| + 3 — a > 0,
r®S%  for|z| > aand|z| + 3 —a > 0.
(3.5)
Proof: Let J, = {y | (ay)® = (az)®}. Then

al, = {ay|(ay)? = (ax)} = {y |y = (a2)“} nal
= ((az)@S5T)) Nal.
We first notice thataxz)® S8 ¢ Sleltlel=a+8 |f |2| — a 4+ 3 < 0 then
((ax) @ S")Nal = O, soaJ, = @. ThisimpliesJ, = @. If |z|—a+3 >0
then((az)®S%)Nal’ # @. If we suppose that:| < o, i.e.|(ax) ]| < |al,
we havea € (az)@T. Letb such thaty = (az)®b. Thus
((ax) S Nnal = ((ax)S?) N (az) @bl = (az)® (S NbD)
— (ax)(a)bsﬁ—lbl — qSP-1l — aSﬁJrlw\—a’
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so we haverJ, = aS°tl*l-o henceJ = §htlal—a
Finally, if |z| > a, i.e.|(az)®]| > |al, one hae{ax) € al'. Thus we
obtaina.J, = (ax)®S? = az'® S, henceJ, = (¥ 57, O

Remark: As seen in the proof of lemma 3.4, one may choose@rsuch
that |ay| > dedq P). On the other hand, we stress that the limit is not a
multiplicative function of7". Indeed,

U-Hm AZ9 0N, # (U-lim A29*\,) - (U-lim AZ0A,).

a—y a—y a—y

Therefore, in order to describe the morphism of the algﬁ(rﬁ) onto its
quotient?’(I") /K(I') we have to improve our definition of the localizations
at infinity.

3.6 Extensions ta

The space€2(~) is defined similarly to¢*(T"). Sincel' C T, we have
AT — EQ(F) As before, we embeH in ¢2(T ) by sendingz on X, and
we notice thaf is an orthonormal basis @#(I"). We defined : 2(T') —

(T') by
(Of) (= =) fly

y'=x

Fora € N, we setf(®) = 9°f, notation which is consistent with our old
definition ofz(® as the restriction of to Zj,|_,. Obviouslyd € B(I'), its

adjointd* acts agd* f)(z) = f(2'), &*//v is an isometry on*(I'):
99" = vld, (3.6)

thus||0|| = [|0*|| = v. We denote by’ the C*-algebra generated by and
by .@alg the x-algebra generated b@ Both of them are unital.
We now make the connection betwegy, and.@a,g.

Lemma 3.6 For |a| > «, one has\*0* 9%\, = 170" 9°1r.

Proof: For any f € (%), one has (1:0*"0°1pf)(z) =
1r(2) 22 gy oty 1r(y) f(y). Using the same arguments as in the proof
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of the Lemma 3.5, one shows that for eackr I' the set{y € ' | @) =

z(®} equals the r.h.s. of (3.5). Thus the above sum is the same as that of
the r.h.s. of (3.4)]

_ We will also need a result concerning the localization of the norm on
Ty

Lemma3.7 If T € éalg, then||T|| = ||1r71r||.

Proof: Because of (3.6), we can suppose that S0 .9 9% . We
denote byg the integemax{0; | £ € [1,n]}. For eache > 0, there is
somey € ¢2(T") with compact support such thay| = 1 and ||Tg| >

HTH — e. Note that ify, yo, . . . , y,, are distinct points of, ay, as, ..., a,,

are complex numbers and, x, € I~“, we have

1) " @iyl = lal* = 1) aiwayil | (3.7)
=1 =1 =1

Thus, sincey has compact support, there ares T,me N andy; € T,
lyil > B, a; € C,foralli € [1,m] such thaty = >/ | a;zy;. We set
f=>_k1 aieyi. Then (3.7) gives u§f|| = ||gl| = 1. Using|y;| > 3, we
getf € (*(T") andT f € ¢*(T). Also with (3.7) we obtain for € T,

ITg] = ||Z chaig*akgﬁkxyiﬂ = ||Z Z Z cvai(zy;) 2

k=1 i=1 k=1 i=1 |z|=ay
SIX Y S )@ =13 Y 3 cunelu) 2|
k=1 1=1 |z|=ay k=1 =1 |z|=ay
=IX2 20 X2 aalep) ™zl =1 Y enaid ™ 0% eyl = ITS])
k=1 i=1 |z|=ay k=1 i=1
Hence, there isf € (2(T) such that|1:T1f| = |Tf] = || Tg| >
IT| —e. O
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4 The main results

4.1 The morphism

In the sequel, a morphism will be understood as a morphisit eflgebras.

To describe the quotier#’(I") /K(I"), we need to find an adapted mor-
phism.

Theorem 4.1 For eachy € OI there is a unique morphisd, : %(f) —

2 such thatd.,(0) = 5and<1>7(<p(Q)) = o(7), forall ¢ € C(T'). One has
K(I') C Ker®,.

Proof: We use the notations frofi8.5. If T € %(f)alg then by Lemma 3.4
we have Uim, ., i, = A5, T(7) Ao LELT () be P(p1(7), 02 (7), - - .,
gom(y)ﬁ, 5*). By Lemma 3.6 and (3.6) one can choasgg such that
e T (V) Aay = 1:7()1r. Lemma 3.7 implies

ITOON = Tl = AT () Aao | = llu-lim XTA || < [T

Thus there is a linear multiplicative contractids, : %(f)alg - 9,
®Y(T) = T(y). The deAnsity ofa”(f)alg in ¢(I) allows us to extene!)
to a morphism®,, : ¥(I') — 2 which clearly satisfies the conditions of

the theorem. The uniqueness®f is obvious and the last assertion of the
theorem follows from the Proposition 32.

4.2 Thecase > 1

In this case, we are able to improve the Theorem 4.1. We recall first that
an isometry is said to bproperif it is not unitary. The operator§* and

0* are proper isometries and the dimensions of the kernelsamido are
infinite: in the case o, if one letsa, b be two different letters o7, and

one chooseg € (*(T'a) andh € ¢(*(T'b) such thath(xb) = g(xa) for all

x € T', theng — hisin Kero.

Let T be the unit circle ofR? and H? the closure of the subspace

spanned by{e™?, n € N} in £2(T). Forg € L>(T), we define thdoeplitz
operatorT, on H? by T,h = Pg2gh, where Py is the projection orff?.
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For eachz € C\ {0}, we denote bys the C*-algebra generated b, .
The next theorem is due to Coburn (see [5] for a proof).

Theorem 4.2 If Sis a proper isometry, then there is a unique isomorphism
Z of 7 onto.”, theC*-algebra generated by, such that 7 (7.) = S.

Thus there is a unique isomorphisg of 2 onto 2 such that # (9) =

7 (0), so in the case > 1 we can rewrite our Theorem 4.1 as follows.

Theorem 4.3 Lety € dI. There is a unique morphisi, : ¢(I') — 2
such that®., (¢(Q)) = ¢(y) forall ¢ € C(I') and®.,(D) = D for all
Deg.

Remark: Whenv = 1, there is no isomorphismy : 2 —  such that
F(0) = 0 because” is commutative. Thus, in this case, one cannot hope
in a result as above. There is an other way of proving Theorem 4.3 which
uses the next proposition.

Proposition 4.4 If v > 1 then {9**9°}, seny is a basis of the vector
spaceZ.i,. One hasy > 1 if and only if {9**9°} (. sery is @ basis of
spaceZ,;.

Proof: Let \; # 0 for all i € [1,n]. Assume thad " | \,0** 9% = 0,
where(q;, 3;) are distinct couples. We set= min{«; | ¢ € [1,n]} and
I = {i| a; = a}. We takex € I" such thatjz| = a and we obtain
>ier Mi(0% f)(e) = 0. Notice that{ 5;};c; are pairwise distinct by hypoth-
esis. Now, by taking, € I and f the characteristic function df;, , we
get that\;,, = 0 which is a contradiction. Hencg.!" | \;0** 9% # 0,
i.e. the familly is free. Let now > 1 and)\; # 0 for all i € [1,n].
We suppos&_", \,0*"' 9% = 0, with (y, 3;) pairwise distinct. We fix
z e T and setv = max{a;,i € [1,n]}. One hag> ", \;0*" 8% f)(z) =
S A Y eatan e [(y) = 0. Notice thate(*)S% N 2(*)S%" = @ if and
onlyif o/ —a # ' — 3. Taking f € ¢2(Sl*l=>1+01) 'we see that one can
reduce oneself o the case when there is sénseich thato; — 5, = k
for all i € [1,n]. Sincex(@-Dga-k-l c gla-h)ga—k=1  4(a)ga—Fk for
all I € [1,(a — k)], there is somey, € z(®S%*\ U, 52 5%, Then,
taking f = Xy,,; we get some, such that\;, = 0, which is a contra-
diction. Hence>™" | A,0*9*” +# 0. Finally, since whens = 1 one has
80* = 50 = Id, {9 9%} 4 sen is Obviously not a basis]
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4.3 Description of#(I") /K(I)

Theorem 4.51i) For anyv > 1, there is a unique morphisih : %(f) —
2 ® C(T) such that®(9) = 0 ® 1 and ®(¢(Q)) = 1 & (¢|sr). This
morphism is surjective and its kernelKgT").

i) For v > 1, there is a unique surjective morphisin: %(f) — 7®
C(0T) such that?(9) = 01, ®((Q)) = 1®(p|sr) and Kerd = K(T").

Once again, as in Remark 4.2, the statement (ii) of the theorem is false
if v = 1. As a corollary of Theorem 4.5 we obtain the following result.

Proposition 4.6 If v > 1 thenZ N K(I') = {0} and if» = 1 one has
K(I) c 2.

Proof: Letv > 1 andT € Z N K(I'). Theorem 4.5 gives us both(7") =
T ® 1and®(T) = 0 (sinceT is compact). For = 1, as in the proof of
Proposition 3.2, it suffices to prove that, is in . But this is clear since
5%% _ a*|z+1\a|x+1\ _ 8*\x|a\x| 0

We devote the rest of the section to the proof of the Theorem 4.5.

Proof: By Theorem 4.1 there is a morphisin: ¢(I') — 2° such that
(2(0))(7) = 0 and(2(¢(Q)))(7) = ¢(v) , forally € II', ¢ € C(I).
Since the images a and ¢(Q) through® belong to theC*-subalgebra
C(dT, ), and sincéf(f) is generated by and suchp(Q), it follows that
the range ofb is included inC/(9T", 7). We haveC (9T, 7) = 2@ C(dT),
so we get the required morphisin: (') — 2 @ C(T'). Now since
() = 0® 1 andd(p(Q)) = 1 ® (¢lor), and since any function in
C(0T) is the restriction of some function from(f), it follows that ® is
surjective. Its uniqueness is clear. It remains to compute the kernel.

As seen in the Theorem 4.K(I') ¢ Ker®. In the remainder of
this section we shall prove the reverse inclusion. For this we need some
preliminary lemmas.

Lemmad4.7 Let R = ¢(Q)9**0° and % = {a;l'}iep,n) be a disjoint
covering ofdl'. For eache > 0 there arecy,cs,...,c,, € Rany) and
there is a disjoint covering”’ = {b;I'}jc1,m) Of OT" finer than%/ such
that|[1,7R — R'|| < e, whereR' = 37" | 1;,rc;0°*0” andU’ = Uj b,T.
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Proof: Lete > 0 and denote/||0**9”|| by ’. Sincey(dT") is compact,
there arey;, s, ...,y C OT such thatp(or') € UY_, D(¢(vx), '), where
D(z,r) is the complex open disk of centerand rayr. The open sets
O = a;L N o Y (D(p(v1),€')) coverdT'. The Proposition 2.4 gives us a
disjoint covering{b;I'} jcp1,; Of O such that for eachi € [1,m] there
arei andk such thatbjf C 0, . To simplify the notations, we will de-
note by~; those; associated td;I". We set%’ = {b;I'}cp,n and
R = 370 Ly,rp(y;)0°0°. Recall thatsup,e,,r [¢(7;) — ¢(2)] < €,
SO

IR =1 R)fIF = Y 1> Lor(@)(p(r) = w(@)(@0° f) ()]

zel' j=1
= S liel) - e @ P N
j=1 zeb;I’
< Zsup () — (@) > 100" f)(x
zeb; I’
< 3 @) )
Jj=1 zeb,;I’

< oo’ (lor 7| - || 11* = €L 11
Denotingy(y;) by ¢; we obtain the result]

Lemma4.8 LetT = >}, ¢0r(Q)0***d% with ¢ € C(T) and lete >
0. There are a compact operatdt, a disjoint covering{a;I'} e m) Of
or and S = >0 D7 1o rr(y;.) 0" 0%, with mingepy g la;] >
maXyeqi,n) i and~y;, € OI' such that|T — S — K| <e.

Proof: We denote byy = max{ay, | k € [1,n]}. LetT}, bep,(Q)d* 9%,
Setting?%, = U{a|ja=a} {al'}, we apply the Lemma 4.7 inductively féarc
[1,n] with e/n instead ofs, % = .-, andR = T}, denotingZ’ by %
andR' by Si. Then, fork € [1,n] we get||1y, T, —Sk|| < ¢/k. SinC€%).41

is finer thanz, for k € [1,n — 1], we obtain||1y, > 7, (T, — S| <&,
hence|T' — 1y T — 1y, > __, Sk|| < €. To finish the proof, we denote the
compact operatat .7 by K, 1y, >, Si by S and?%, by {a;T'} jc1.m]-

0
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We now go back to the proof of Theorem 4.5. l[e€ Ker ®. For each
e > 0 there isT’ € €(I')., such that|T — T"|| < ¢/4. By relation (3.1)
and Proposition 3.3, we can writé = Y7, ¢ (Q)0*** 0% + K, where
K € K(I') andy,, € C(I'). Thus||®(7")|| < /4. Using Lemma 4.8, we
get an operatof and a compact operatdf, such thaf|7" — 5 — K, || <
£/4. This implies that|®(9)|| < /2.
Lemma 4.9 There isK, € K(I') such that|S — Ks|| < [|®(9)]].
Before proving the lemma, let us remark that it implies

|7 — K1 = Ksf| < T =T+ |T" =8 = Kil| +[|S — Kaf| < e.

Hencel' € K(I'). Thus Theorem 4.5 is proved.

Proof of Lemma 4.9irst, we remark that for each e I" anda, 7 > 0,
the Proposition 3.3 gives us thair0**0° — 1,00**0°1,r is a compact
operator. We defing’ = 37, > | Lo, rn(v5)0* €071, r and we set
K, = S —5', which is a compact operator. Sinf@;I'} e, is a disjoint
covering ofdT, for any f € ¢*(T):

ISFIP = Y1) D (Larwn(3n)d* 0% Lo,p f) ()

zel' k=1 j=1

= Z Z |Z (La;r@r(j0)0* 0% 100 f) ()

j=1 zel k=1

< YD 1arer(v) 0" 0% L | - (|10 I

j=1 k=1
Now we use (3.2) and (3.3) and get:

a0 (D er(vx) 0" 0% ) Lar ] = X5, (D @r(u)d" 0% ) Ao, |-

k=1 k=1
Since|a;| > max{ay | k € [1,n]}, the Lemmas 3.6 and 3.7 give us:

1AL (Y orrn)d 0 A | = 110( > or(r)0 ™ 8%) 10|
k=1 k=1
— 1S prlr) 0.
k=1
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For eachj we choosey; € a;0I'. The family {a;I'} ;cp1,m] is a disjoint
covering ofdl’, so we havéim, ., X,;r(z) = 1 andlim, ., X,,;r(7) = 0

fori # j. Henced., (S") = Sr_, @i (754" 8% . We obtain

ISTFIP < D 112, ()17 - Loy fIP < S;lapr|!¢w(5’)|l2-||fll2-
Y

J=1

Finally, sinceK(I') C Ker®,

()| = [I2(S)]| = sup,ear [|[8 (S]] T
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