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May 19, 2004

Abstract

We study aC∗-algebra generated by differential operators on a
tree. We give a complete description of its quotient with respect to
the compact operators. This allows us to compute the essential spec-
trum of self-adjoint operators affiliated to this algebra. The results
cover Schr̈odinger operators with highly anisotropic, possibly un-
bounded potentials.

1 Introduction

Given aν-fold tree Γ of origin e with its canonical metricd, we write
x ∼ y whenx andy are connected by an edge and we set|x| = d(x, e).
For eachx ∈ Γ \ {e}, we denote byx′ ≡ x(1) the unique elementy ∼ x
such that|y| = |x| − 1 and we setx(p) = (x(p−1))′ for 1 ≤ p ≤ |x|.
Let xΓ = {y ∈ Γ | |y| ≥ |x| andy(|y|−|x|) = x}, where the convention
x(0) = x has been used.

On `2(Γ) we define the bounded operator∂ given by (∂f)(x) =∑
y′=x f(y). Its adjoint is given by(∂∗f)(e) = 0 and(∂∗f)(x) = f(x′)

for |x| ≥ 1. Let D be theC∗-algebra generated by∂.
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In order to obtain our algebra of potentials, we consider the “hyper-
bolic” compactification̂Γ = Γ ∪ ∂Γ of Γ constructed as follows. An ele-
mentx of the boundary at infinity∂Γ is aΓ-valued sequencex = (xn)n∈N
such that|xn| = n andxn+1 ∼ xn for all n ∈ N. We set|x| = ∞ for
x ∈ ∂Γ. The spacêΓ is equipped with a natural ultrametric space structure.
For x ∈ ∂Γ and(yn)n∈N a sequence inΓ we havelimn→∞ yn = x if for
eachm ∈ N there isN ∈ N such that for eachn ≥ N we haveyn ∈ xmΓ.
We denote byC(Γ̂) the set of complex-valued continuous functions de-
fined onΓ̂. SinceΓ is dense in̂Γ, we can viewC(Γ̂) as aC∗-subalgebra
of Cb(Γ), the algebra of bounded complex-valued functions defined onΓ.
ForV ∈ C(Γ̂), we denote byV (Q) the operator of multiplication byV in
`2(Γ).

Let us now denote byC (Γ̂) theC∗-algebra generated byD andC(Γ̂).
It contains the compact operators of`2(Γ). Following the strategy exposed
in [6], we shall first compute its quotient with respect to the ideal of com-
pact operators. We stress that the crossed product technique introduced
in [6] in order to compute quotients cannot be used in our case. Instead,
we shall use the Theorem 4.5 in order to calculate the essential spectrum
of self-adjoint operators related toC (Γ̂). In this introduction we consider
only the most important case, whenν > 1.

Theorem 1.1 Let ν > 1. There is a unique morphismΦ : C (Γ̂) → D ⊗
C(∂Γ) such thatΦ(D) = D⊗1 for all D ∈ D andΦ(ϕ(Q)) = 1⊗(ϕ|∂Γ).
This morphism is surjective and its kernel isK(Γ).

The rest of this introduction is devoted to some applications of this
theorem to spectral analysis. Letν > 1 andH =

∑
α,β aα,β(Q)∂∗α∂β +K,

whereK is a compact operator,aα,β ∈ C(Γ̂) andaα,β = 0 for all (α, β) ∈
N2 but a finite number of pairs. ClearlyH ∈ C (Γ̂). As a consequence of
the Theorem 1.1, there isΦ such thatΦ(H) =

∑
α,β ∂

∗α∂β ⊗ (aα,β)|∂Γ,
and, ifH self-adjoint, its essential spectrum is:

σess(H) =
⋃

γ∈∂Γ

σ
( ∑

α,β

aα,β(γ)∂∗α∂β
)
.

This result can be made quite explicit in the particular case of a Schrödinger
operator
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H = ∆ + V (Q) with potentialV in C(Γ̂). Since∆ is a bounded ope-
rator on`2(Γ) defined by(∆f)(x) =

∑
y∼x(f(y) − f(x)), it belongs to

C (Γ̂). We then set∆0 = ∂ + ∂∗ − νId (which belongs toD) and notice
that∆−∆0 is compact. One then gets (see [1] for instance):

σess(∂ + ∂∗) = σac(∂ + ∂∗) = σ(∂ + ∂∗) = [−2
√
ν, 2

√
ν ],

whereσac(T ) denotes the absolute continuous part of the spectrum of a
given self-adjoint operatorT . On the other hand, Theorem 1.1 gives us
directlyσess(∂

∗ + ∂) = σ(∂∗ + ∂). We thus get

σess(∆ + V (Q)) = σ(∆0) + V (∂Γ) = [−ν − 2
√
ν,−ν + 2

√
ν ] + V (∂Γ).

In fact this result holds (and is trivial) in the case ofν = 1, i.e. when
Γ = N.

Given a continuous function on∂Γ, the Tietze theorem allows us to
extend it to a continuous function on̂Γ, so one may construct a large class
of Hamiltonians with given essential spectra. Nevertheless, we are able to
point out a concrete class of non-trivial potentialsV ∈ C(Γ̂) with uniform
behaviour at infinity which form a dense family ofC(Γ̂). Namely, for each
bounded functionf : Γ → R and each realα > 1 let

V (x) =

|x|∑

k=1

f(xk)

kα
, (1.1)

wherexk = x|x|−k for x ∈ Γ (V belongs toC(Γ̂) because of Proposition
2.3).

Concerning finer spectral features, based mainly on the Mourre esti-
mate, we mention that in the caseH = ∆ + V (Q), with V as in (1.1)
whereα ≥ 3 and such thatV (∂Γ) = 0, the results of [1] can be ap-
plied (the hypotheses of the Lemmas 6 and 7 from [1] are verified since
V (x) = O(|x|−α+1) when |x| → ∞). The aim of our work in prepara-
tion [8] is to prove that the Mourre estimate holds for more general classes
of Hamiltonians affiliated toC (Γ̂) and to develop a scattering theory for
them. Theorem 1.1 remains the key technical point for these purposes.

The preceding results on trees allow us to treat more general graphs.
We recall that a graph is said to beconnectedif two of its elements can
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be joined by a sequence of neighbours. LetG =
⋃n

i=1 Γi∪G0 be a finite
disjoint union ofΓi, eachΓi being aνi-fold branching tree withνi ≥ 1 and
of G0, a compact connected graph. We endowG with a connected graph
structure that respects the graph structure of eachΓi and the one ofG0,
such thatΓi is connected toΓj (i 6= j) only throughG0 and such that
Γi is connected toG0 only throughei, the origin ofΓi. The graphG is
hyperbolic and its boundary at infinity∂G is the disjoint union∪n

i=1∂Γi.
We now chooseV ∈ C(G∪∂G). One hasV |bΓi

∈ C(Γ̂i) for all i = 1, . . . , n
and we easily obtain:

σess(∆ + V (Q)) =
n⋃

i=1

(
[−νi − 2

√
νi,−νi + 2

√
νi ] + V (∂Γi)

)
.

This covers in particular the case of the Cayley graph of a free group
with finite system of generators. We recall that the Cayley graph of a group
G with a system of generatorsS is the graph defined on the setG with the
relationx ∼ y if xy−1 ∈ S or yx−1 ∈ S. Let G be a free group with
a system of generatorsS such thatS = S−1. We denote bye its neutral
element and we set|S| = ν + 1. One may associate the restriction of the
Cayley graph to the set of words starting with a given generator with a
ν-fold branching tree having as origin the generator. Hence, the Cayley
graph ofG will be ∪ν

i=1Γi ∪ {e} whereΓi is aν-fold branching tree with
the above graph structure.

We now go further by takingV ∈ C(Γ̂,R) such thatV (Γ) ⊂ R
(hereR = R ∪ {∞} is the Alexandrov compactification ofR). More
precisely,V ∈ C(Γ̂,R) if and only if for eachγ ∈ ∂Γ we have either
limx→γ V (x) = l wherel ∈ R or for eachM ≥ 0 there isN ∈ N such that
|V (x)| ≥M for all n ≥ N andx ∈ γnΓ (see Proposition 2.3). We set

D(V ) = {f ∈ `2(Γ) | ‖V (Q)f‖2 <∞}.
Let T ∈ D andT0 = Φ(T ). SinceT is bounded, the operatorH = T +

V (Q) with domainD(V ) is self-adjoint and it is affiliated toC (Γ̂) (i.e. its
resolvent belongs toC (Γ̂)). Indeed, we have(V (Q) + z)−1 ∈ C(Γ̂) for
eachz ∈ C \ R, and for large suchz,

(H + z)−1 = (V (Q) + z)−1
∑
n≥0

(T (V (Q) + z)−1)n,
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where the series is norm convergent. Now, with the samez, we use the
Theorem 1.1 and the fact thatD ⊗ C(∂Γ) ' C(∂Γ,D) to obtain

Φγ

(
(H+z)−1

) ≡ Φ
(
(H+z)−1

)
(γ) = (V (γ)+z)−1

∑
n≥0

(T0(V (γ)+z)−1)n.

Note that(V (γ)+z)−1 = 0 if V (γ) = ∞. By analytic continuation we get
Φγ((T + V (Q) + z)−1) = (T0 + V (γ) + z)−1, for all z ∈ C \R. We used
the convention(T0 + V (γ) + z)−1 = 0 if V (γ) = ∞.

We now compute the essential spectrum ofH. If V (γ) = ∞ then
σ(Φγ(H)) = Ø. Otherwise, one hasσ(Φγ(H)) = σ(T0+V (γ)) = σ(T0)+
V (γ). Hence we obtain:

σess(T + V (Q)) = σ(T0) + V (∂Γ0),

where∂Γ0 is the set ofγ ∈ ∂Γ such thatV (γ) ∈ R.

Remark: We mention an interesting question which has not been studied
in this paper. In fact, one could replace the algebraD by the (much bigger)
C∗-algebra generated by all the right translationsρa (see Subsection 3.4 for
notations) and consider the corresponding algebraC (Γ̂). This is a natural
object, since it contains all the “right-differential” operators acting on the
tree (not only polynomials in∂ and∂∗). A combination of the techniques
that we use and that of [9, 10] could allow one to compute the quotient
in this case too. We also note that in [9, 10] a certain connection with the
notion of crossed-product is pointed out, and this could be useful in further
investigations. I would like to thank the referee for bringing to my attention
the two papers of A. Nica quoted above.

2 Trees and related objects

2.1 The free monöıd Γ

Let A be a finite set consisting ofν objects. LetΓ be the free monöıd over
A ; its elements arewordsand those ofA letters. We refer to [3, Chapter
I, §7] for a detailed discussion of these notions, but we recall that a wordx
is anA -valued map defined on a set of the form1 J1, nK with n ∈ N , x(i)

1We use the notationJ1, nK = [1, n] ∩ N whereN is the set of integers≥ 0 and
N∗ = N \ {0}.
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being thei-th letter of the wordx. The integern (the number of letters of
x) is the length of the word and will be denoted|x|. There is a unique word
e of length0, its domain being the empty set. This is the neutral element of
Γ. We will also identifyA with the set of words of length1.

The monöıd Γ will be endowed with the discrete topology. Ifx ∈ Γ,
we denotexΓ andΓx the right and left ideals generated byx. We have on
Γ a canonical order relation which is by definition:

x ≤ y ⇔ y ∈ xΓ.
We recall some terminology from the theory of ordered sets. IfΓ is an

arbitrary ordered set andx, y ∈ Γ, then one says thaty coversx if x < y
and ifx ≤ z ≤ y ⇒ z = x or z = y. If x ∈ Γ, we denotẽx = {y ∈ Γ | y
coversx}

In our case,y coversx if x ≤ y and|y| = |x| + 1. Notice that each
elementx ∈ Γ\{e} covers a unique elementx′, its father, and each element
x ∈ Γ is covered byν elements, itssons. The set of sons ofx clearly is
x̃ = {xε | ε ∈ A }. Hence:

y covers x⇔ y′ = x⇔ y ∈ x̃.
For |x| ≥ n, we definex(n) inductively by settingx(0) = x andx(m+1) =
(x(m))′ for m ≤ n− 1. One may also notice that:|x(α)| = |x| − α, if α ≤
|x|, and forα ≤ |ab|:

(ab)(α) =

{
ab(α), if α ≤ |b|
a(α−|b|), if α ≥ |b|.

We remark that ifν = 1 thenΓ = N and if ν > 1 thenΓ is the set of
monoms ofν non-commutative variables.

2.2 The treeΓ and the extended tree associated toA

Recall that a graph is a coupleG = (V,E), whereV is a set (ofvertices)
andE is a set of pairs of elements ofV (theedges). If x andy are joined by
an edge, one says that they areneighboursand one abbreviatesx ∼ y. The
graph structure allows one to endowV with a canonical metricd, where
d(x, y) is the length of the shortest path inG joining x to y.
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The graphGΓ associated to the free monoı̈d Γ is defined as follows:
V = Γ andx ∼ y if x coversy or y coversx. It is usual to identify
Γ andGΓ, the so-calledν-fold branching tree. For allx ∈ Γ, we have
|x| = d(e, x). We setB(x, r) = {y ∈ Γ | d(x, y) < r} andSn = {x ∈ Γ |
|x| = n}.

We shall now define an extended tree by mimicking the definition of
a free monöıd overA . We chooseo ∈ A ; this element will be fixed from
now on. For each integerr, we setZr = {i ∈ Z | i ≤ r}. Theextended
tree Γ̃ associated toA is the set ofA -valued mapsx defined on sets of
the formZr such that{i | x(i) 6= o} is finite. Forx ∈ Γ̃, the uniquer ∈ Z
such thatx is a mapZr → A will be denoted|x| and will be calledlength
of x.

We shall identifyΓ with the set{x | |x| ≥ 0 andx(i) = o if i ≤ 0} as
follows: if x ∈ Γ then we associate to it the element ofΓ̃ defined onZ|x|
by extendingx with x(i) = o if i ≤ 0. The elemente will be identified
with the mape ∈ Γ̃ such that|e| = 0 ande(i) = o, ∀i ≤ 0. Notice that the
two notions of length are consistent onΓ.

There is a natural right action ofΓ on Γ̃ by concatenation, i.e. for
x ∈ Γ̃ andy ∈ Γ, xy will be the functionz defined onZ|x|+|y| such that
z(i) = x(i), for i ∈ Z|x| andz(|x| + i) = y(i) for i ∈ J1, |y| K. Then we
equipΓ̃ with an order relation by setting:

x ≤ y ⇔ y ∈ xΓ.

As before,y coversx if and only if x ≤ y and|y| = |x| + 1. Now, each
x ∈ Γ̃ covers a uniquex′ ∈ Γ̃ and eachx ∈ Γ̃ is covered byν elements,
namely those of̃x = {xε | ε ∈ A }. We still have:y covers x ⇔ y′ =
x ⇔ y ∈ x̃. Observe thatx′ = x|Z|x|−1

. We will setx(α) = x|Z|x|−α
for all

α ∈ Z. As we did it forΓ, we shall indentify the graphGeΓ with Γ̃. This
justifies the notion of extendedtreeused for̃Γ.

2.3 The boundary at infinity of Γ

We shall see in the ending remark of this subsection that the boundary at
infinity of Γ can be thought as the boundary of a0-hyperbolic space in the
sense of Gromov. We prefer, however, to give a simpler presentation that
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is closer to the theory ofp-adic numbers (see [11] for instance). In fact, if
ν is prime the boundary will be the set ofν-adic integers.

Definition 2.1 The boundary at infinity ofΓ is the set∂Γ = {x : N∗ →
A }. For x ∈ ∂Γ, we set|x| = ∞ .

Let Γ̂ beΓ∪∂Γ. Forx ∈ Γ̂, we define the sequence(xn)n∈J0,|x|K with values
in Γ by settingx0 = e andxn = x|J1,nK for n ≥ 1. Observe that the map
x 7→ (xn)n∈J0,|x|K is injective. There is a natural left action ofΓ on Γ̂. For
x ∈ Γ andy ∈ Γ̂, xy will be defined on the set2 J1, |x| + |y|K by x(i) for
i ≤ |x| and byy(i− |x|) for i > |x|.

We will now equipΓ̂ with a structure of ultrametric space. We define
a kind of valuationv on Γ̂× Γ̂ by

v(x, y) =

{
max{n | xn = yn} if x 6= y
∞ if x = y.

(2.1)

If x, y, z ∈ Γ̂ it is easy to see that:

v(x, y) ≥ min(v(x, z), v(z, y)). (2.2)

Let us set on̂Γ:
d̂(x, y) = exp(−v(x, y)).

The relation (2.2) clearly implies that(Γ̂, d̂) is an ultrametric space, i.e. a
metric space such that̂d(x, y) ≤ max(d̂(x, z), d̂(z, y)), for x, y, z ∈ Γ̂. We
will denote, forr > 0, B̂(x, r) = {y ∈ Γ̂ | d̂(x, y) < r}. Notice that
ultrametricity implies that̂B(x, r) is closed for allx ∈ Γ̂ andr > 0.

The topology induced bŷΓ onΓ coincides with the initial topology of
Γ, the discrete one. Forx ∈ ∂Γ andn ∈ N,

xnΓ̂ = {y ∈ Γ̂ | v(x, y) ≥ n} = B̂(x, exp(−n+ 1))

which is the closure ofxnΓ in Γ̂. Hence for eachx ∈ ∂Γ, {xnΓ̂}n∈N is
a basis of neighbourhoods ofx in Γ̂. Observe that ifx ∈ Γ thenx∂Γ =
xΓ̂ ∩ ∂Γ.

2We use the conventionJ1,∞K = N∗ ∪ {∞}.
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Proposition 2.2 Γ̂ and∂Γ are compact spaces.̂Γ is a compactification of
Γ.

Proof: ∂Γ = A N∗ , thus the set∂Γ endowed with the product topology is
compact. This topology coincides with the one induced by the restriction
of d̂ on ∂Γ (for x ∈ ∂Γ, the product topology gives us the same basis of
neighbourhoods{xn∂Γ}n∈N asd̂|∂Γ).

Since∂Γ is compact, in order to show that̂Γ is compact, it suffices
to remark that∪x∈∂ΓB̂(x, exp(−k)) = {yΓ̂ | |y| = k + 1} has a finite
complementary in̂Γ, for all k ∈ N. SinceΓ is dense in̂Γ, Γ̂ is a compacti-
fication ofΓ. ¤

Notice also that ifν > 1, the topological space∂Γ is perfect.
TheC∗-algebraC(Γ̂) of continuous complex-valued functions onΓ̂

plays an important r̂ole. The dense embeddingΓ ⊂ Γ̂ gives a canonical
inclusionC(Γ̂) ⊂ Cb(Γ) (Cb(Γ) is the space of bounded complex-valued
functions onΓ). Moreover, we have

C0(Γ) = {f ∈ C(Γ̂) | f |∂Γ = 0}, (2.3)

whereC0(Γ) = {f : Γ → C | ∀ε > 0, ∃M > 0 | |x| > M ⇒ |f(x)| <
ε}. We shall often abbreviateC0(Γ) byC0.

The following proposition gives us a better understanding of the func-
tions inC(Γ̂).

Proposition 2.3 LetE be a metrisable topological space. A functionV :
Γ → E extends to a continuous function̂V : Γ̂ → E if and only if for each
x ∈ ∂Γ the limit ofV (y), wheny ∈ Γ converges tox, exists.

Proof: Let x ∈ ∂Γ andV̂ (x) be the above limit. LetF be a closed neigh-
bourhood ofV̂ (x) in E; there isk such thatV (xkΓ) ⊂ F . ThenxkΓ̂ is a
neighbourhood ofx in Γ̂ and, sinceF is closed, we havêV (xkΓ̂) ⊂ F . ¤

Later on, we will need the next ultrametricity result. We will say that
U = {xiΓ} is acovering of∂Γ if Û = {xiΓ̂} is a covering of∂Γ.

Proposition 2.4 For each open covering{Oi}i∈I of ∂Γ, there is a disjoint
and finite covering{xjΓ}j∈J of ∂Γ such that for eachj ∈ J there isi ∈ I
such thatxjΓ̂ ⊂ Oi.
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Proof: For eachx ∈ ∂Γ there isi such thatx belongs to the open setOi

and there isn = n(x, i) such thatxnΓ̂ ⊂ Oi. Since∂Γ is compact, there
is a finite sub-covering of∂Γ made by sets{yjΓ̂}j∈J1,mK such that each of
its elements is a subset of someOi. But in ultrametric spaces two balls are
either disjoint or one of them is included in the other one. Since{yjΓ̂} are
balls, we get the result. One may also choose{yΓ̂ | |y| = maxj∈J1,mK |yj|}
as the required covering.¤
Remark: As we said previously, this section could be presented from the
perspective of hyperbolicity in the sense of Gromov, see [2, Chapter V] (a
deeper investigation can be found in [4] and [7]). Let(M,d) be a metric
space. Forx, y ∈ M and a givenO ∈ M , we define theGromov product
as:

(x, y)O =
1

2
(d(O, x) + d(O, y)− d(x, y)). (2.4)

The space(M,d) is calledδ-hyperbolicif there isδ such that for allx, y, z,
O ∈M ,

(x, y)O ≥ min((x, z)O, (z, y)O)− δ. (2.5)

A metric space ishyperbolicif it is δ-hyperbolic for a certainδ. In fact,
if there is δ such that (2.5) holds for allx, y, z ∈ M and a givenO
then (M,d) is 2δ-hyperbolic. Classical examples of0-hyperbolic spaces
are trees (connected graphs with no cycle) and real trees (see [7] for this
notion). Cartan-Hadamard manifolds, the Poincaré half-plane and, more
generally, complete simply connected manifolds with sectional curvature
bounded byκ < 0 areδ-hyperbolic spaces withδ > 0.

We equip the set of sequences with values inM with an equivalence
relation between (un) and (vn) defined by the condition
lim(n,m)→∞(un, vm)O = ∞. The boundary at infinity∂M is the set of
equivalence classes. A basis of open sets of∂M is given by

Õ = {γ ∈ ∂M | γ is not associated to any sequence ofM \ O},

whereO is an open set ofM . The boundary of a0-hyperbolic space is
ultrametric.

In our context, if we drop the conventionv(x, x) = ∞, our valuation
(2.1) is exactly (2.4). Hence (2.2) implies thatΓ is 0-hyperbolic. We define
a geodesic rayas beingγ : N → Γ such that|γ(n)| = n andγ(n + 1) ∼
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γ(n). Geodesic rays are representative elements of the above equivalence
classes. The two notions of boundary at infinity are identified by setting
xn = γ(n).

3 Operators in `2(Γ)

3.1 Bounded and compact operators

We are interested in operators acting on the Hilbert space`2(Γ) =
{f : Γ → C | ∑

x∈Γ |f(x)|2 < ∞} endowed with the inner product:
〈f, g〉 =

∑
x∈Γ f(x)g(x). We embedΓ ⊂ `2(Γ) by identifying x with

χ{x}, whereχA is the characteristic function of the setA. Observe thatΓ
is the canonical orthonormal basis in`2(Γ) and eachf ∈ `2(Γ) writes as
f =

∑
x∈Γ f(x)x.

We denote byB(Γ), K(Γ) the sets of bounded, respectively compact
operators iǹ 2(Γ). ForT ∈ B(Γ), we will denote byT ∗ its adjoint. Given
A ⊂ Γ we denote by1A the operator of multiplication byχA in `2(Γ).
The orthogonal projection associated to{x ∈ Γ | |x| ≥ r} is denoted by
1≥r. For T ∈ Γ, we have the following compacity criterion for bounded
operators T iǹ 2(Γ):

Proposition 3.1 T ∈ K(Γ) ⇐⇒ ‖1≥rT‖ −→
r→∞

0 ⇐⇒ ‖T1≥r‖ −→
r→∞

0.

Proof: If one has for example‖1≥rT‖ → 0, thenT is the norm limit of
the sequence of finite rank operators1B(e,r)T , hence is compact.¤

3.2 The operator∂

We now extendx 7→ x′ to a map̀ 2(Γ) → `2(Γ). We sete′ = 0 and define
the derivative of anyf ∈ `2(Γ) as:

(∂f)(x) ≡ f ′(x) =
∑
y∈Γ

f(y)y′(x) =
∑

y′=x

f(y) =
∑

y∈ex
f(y).

Thus∂ ∈ B(Γ). Indeed,‖f ′‖2 =
∑

x∈Γ |f ′(x)|2 ≤ ν
∑

x∈Γ

∑
y∈ex |f(y)|2 ≤

ν‖f‖2. The adjoint∂∗ acts on eachf ∈ `2(Γ) as follows:

∂∗f(x) = χ
Γ\{e}(x)f(x′).
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Indeed,〈∂f, f〉 =
∑

x∈Γ

∑
y∈ex f(y)f(x) =

∑
x∈Γ f(x)χΓ\{e}(x)f(x′) =

〈f, ∂∗f〉. Moreover,‖∂∗f‖2 =
∑

x∈Γ\{e} |f(x′)|2 = ν
∑

x∈Γ |f(x)|2 =

ν‖f‖2 shows that
∂∂∗ = νId. (3.1)

Thus∂∗/
√
ν is isometric oǹ 2(Γ) and‖∂‖ = ‖∂∗‖ =

√
ν.

For α ∈ N we setf (α) = ∂αf . Thus for eachx ∈ Γ, x(α) is well
defined in`2(Γ) andx(α) = 0 ⇔ α > |x|. For |x| ≥ α the notation is
consistent with our old definition.

3.3 C∗-algebras of energy observables related toΓ

We first summarize the method used in [6] to study the essential spectrum
of large families of operators. LetH be a Hilbert space andH a bounded
self-adjoint operator onH . If C(H ) = B(H )/K(H ) is the CalkinC∗-
algebra, we denote byS 7→ Ŝ the canonical surjection ofB(H ) onto
C(H ) and we recall thatσess(H) = σ(Ĥ) (this is a version of Weyl’s
Theorem). IfC is aC∗-subalgebra ofB(H ) which contains the compact
operators, then one has a canonical embeddingC/K(H ) ⊂ C(H ). Thus,
in order to determine the essential spectrum of an operatorH ∈ C it suf-
fices to give a good description of the quotientC/K(H ) and to compute
Ĥ as element of it. As explained in [6], we can actually go further by tak-
ing H as an unbounded operator overH such that(H + i)−1 ∈ C. We
shall apply this strategy in our context.

Let Dalg be the∗-algebra of operators iǹ 2(Γ) generated by∂ and
D theC∗-algebra of operators iǹ2(Γ) generated by∂. Because of (3.1),
Dalg is unital. We denote byϕ(Q) the operator of multiplication byϕ on
`2(Γ). If C is a C∗-subalgebra of̀∞(Γ) then we embedC in B(Γ) by
ϕ 7→ ϕ(Q). Let 〈D , C〉 be theC∗-algebra generated byD ∪ C. In this
paper we shall takeC = 〈D , C〉. This algebra contains many Hamiltonians
of physical interest, for instance Schrödinger operators with potentials in
C. We recall that given a graphG the Laplace operator acts on`2(G) as
follows:

(∆f)(x) =
∑
y∼x

(f(y)− f(x)).
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With our definitions∆ = ∂+ ∂∗− νId +χ{e}. Notice that ifν > 1 thenD
does not contain compact operators (see below), so∆ /∈ D . On the other
hand, ifC ⊃ C0 andV ∈ C then the Schr̈odinger operator∆ + V (Q)
clearly belongs to〈D , C〉.

We now give a new description ofK(Γ).

Proposition 3.2 If C0 be theC∗-algebra generated byD · C0 thenC0 =
K(Γ).

Proof: For eachϕ ∈ C0, Proposition 3.1 showsϕ(Q) ∈ K(Γ). Hence
C0 ⊂ K(Γ). For the opposite inclusion, letT ∈ K(Γ) and fixε > 0. Propo-
sition 3.1, shows that there is an operatorT ′ with compactly supported ker-
nel such that‖T − T ′‖ ≤ ε. Defineδx,y ∈ K(Γ) by (δx,yf)(z) = f(y) if
z = x and0 elsewhere. We haveδx,x = χ{x}(Q) ∈ C0. As T ′ is a linear
combination ofδx,y, it suffices to show thatδx,y is in C0. But this follows
from δx,y = δx,x(∂

∗)|x|∂|y|δy,y. ¤
If C is a C∗-subalgebra of̀ ∞(Γ) that containsC0, thenK(Γ) ⊂

〈D , C〉. Hence, in order to apply the technique described above, we have to
give a sufficiently explicit description of the quotient〈D , C〉/K(Γ). In this
paper we concentrate on the caseC ≡ C(Γ̂) which is, geometrically speak-
ing, the most interesting one (see the last Remark in§2.3).TheC∗-algebra
generated by∂ andC(Γ̂) will be denoted byC (Γ̂) and the∗-subalgebra
generated by∂ andC(Γ̂) will be denoted byC (Γ̂)alg. We will need the
next fundamental property.

Proposition 3.3 [∂, C(Γ̂)] ⊂ K(Γ).

Proof: For eachϕ ∈ C(Γ̂) one has([∂, ϕ(Q)]f)(x) =
∑

y′=x(ϕ(y) −
ϕ(x))f(y) = (∂ ◦ ψ(Q)f)(x), whereψ belongs toC(Γ̂) and is defined by
ψ(y) = ϕ(y)−ϕ(y′) when|y| ≥ 1 andψ(e) = 0. Observe that forγ ∈ ∂Γ
we haveψ(γ) = ϕ(γ) − ϕ(γ) = 0. Hence by (2.3),ψ ∈ C0. Proposition
3.2 impliesψ(Q) ∈ K(Γ). ¤
Remark: The algebraD is the tree analogous of the algebra generated
by the momentum operator on the real line. However, these algebras are
rather different:D is not commutative and the spectrum and the essential
spectrum of the operators fromD are not connected sets in general. For in-
stance, one hasσ(∂∗∂) = σess(∂

∗∂) = {0, ν} if ν > 1. Indeed, we remind
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that if A, B are elements of a Banach algebra we have
σ(AB) ∪ {0} = σ(BA) ∪ {0} and, as noticed below, dim Ker∂ is infi-
nite forν > 1.

3.4 Translations in`2(Γ)

Γ acts on itself to the left and to the right: for eacha ∈ Γ we may define
λa, ρa : Γ → Γ by λa(x) = ax andρa(x) = xa respectively. Clearly, for
a, b ∈ Γ, λaρb = ρbλa and for anyx ∈ aΓ we definea−1x as being they
for which x = ay. For eachx ∈ Γa = {y ∈ Γ | ∃z ∈ Γ s.t. y = za},
we definey = xa−1 by x = ya. We extend now these translations to
`2(Γ). The translationλa acts on eachf ∈ `2(Γ) as

∑
x∈Γ f(x)ax, i.e.

(λaf)(x) = χ
aΓ(x)f(a−1x). In the same manner, we define(ρaf)(x) =

χ
Γa(x)f(xa−1). The operatorsλa andρa are isometries:

λ∗aλa = Id andρ∗aρa = Id. (3.2)

It is easy to check that the adjoints act on anyf ∈ `2(Γ) as(λ∗af)(x) =
f(ax) and(ρ∗af)(x) = f(xa). Moreover,

λaλ
∗
a = 1aΓ andρaρ

∗
a = 1Γa. (3.3)

Note also that∂∗ =
∑

|a|=1 ρa and∂ =
∑

|a|=1 ρ
∗
a.

3.5 Localizations at infinity

In order to studyC (Γ̂)/K(Γ) we have to define the localizations at infinity
of T ∈ C (Γ̂) by looking at the behavior of the translated operatorλ∗aTλa

asa converges toγ in Γ̂ (abbreviateda→ γ), for eachγ ∈ ∂Γ.
If T ∈ K(Γ) then u-lima→γ λ

∗
aTλa = 0, where u-lim means conver-

gence in norm. Indeed, by (3.2), (3.3) and Proposition 3.1 we get
‖λ∗aTλa‖ = ‖1aΓT1aΓ‖ → 0, asa → γ. Now, we compute the uni-
form limit of λ∗aTλa whenT ∈ C (Γ̂)alg. There isP , a non-commutative
complex polynomial inm + 2 variables, and functionsϕi ∈ C(Γ̂) for
i = J1,mK, such thatT = P (ϕ1, ϕ2, . . . , ϕm, ∂, ∂

∗). We setT (γ) =
P (ϕ1(γ), ϕ2(γ), . . . , ϕm(γ), ∂, ∂∗).
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Lemma 3.4 There isa0 ∈ Γ such thatu-lima→γ λ
∗
aTλa = λ∗a0

T (γ)λa0 .

Proof: The Proposition 3.3 and (3.1) give someφk ∈ C(Γ̂), K ∈ K(Γ)
andαk, βk ∈ N such thatT =

∑n
k=1 φk(Q)∂∗αk∂βk + K andT (γ) =∑n

k=1 φk(γ)∂
∗αk∂βk . Thus, it suffices to compute a limit of the form

u-lima→γ λ
∗
aϕ(Q)∂∗α∂βλa with ϕ ∈ C(Γ̂). We suppose|a| ≥ α and take

f ∈ `2(Γ). We first show the result forϕ = 1. Since

(λ∗a∂
∗α∂βλaf)(x) =

∑

{y|y(β)=(ax)(α)}
(λaf)(y) =

∑

{y|(ay)(β)=(ax)(α)}
f(y), (3.4)

it suffices to show that the set{y | (ay)(β) = (ax)(α)} is independent ofa
if |a| ≥ α. But this is precisely what asserts the Lemma 3.5 below.

We now treat the general caseϕ ∈ C (Γ̂). The identity
(λ∗aϕ(Q)∂∗α∂βλaf)(x) = ϕ(ax)(λ∗a∂

∗α∂βλaf)(x) gives us that
‖λ∗aϕ(Q)∂∗α∂βλa−ϕ(γ)λ∗a∂

∗α∂βλa‖ ≤ ‖ϕ(aQ)−ϕ(γ)‖·‖∂∗α∂β‖ → 0 as
a→ γ. On the other hand, by the Lemma 3.5,ϕ(γ)λ∗a∂

∗α∂βλa is constant
for |a| ≥ α. Thus, it suffices to choose|a0| ≥ max{αk | k = 1, . . . , n} in
the statement of the lemma to end the proof.¤

Lemma 3.5 For |a| ≥ α we have:

{y | (ay)(β) = (ax)(α)} =





Ø for |x|+ β − α < 0,
S|x|+β−α for |x| < α and|x|+ β − α ≥ 0,
x(α)Sβ for |x| ≥ α and|x|+ β − α ≥ 0.

(3.5)

Proof: Let Jx = {y | (ay)(β) = (ax)(α)}. Then

aJx = {ay | (ay)(β) = (ax)(α)} = {y | y(β) = (ax)(α)} ∩ aΓ
= ((ax)(α)Sβ(Γ)) ∩ aΓ.

We first notice that(ax)(α)Sβ ⊂ S|a|+|x|−α+β. If |x| − α + β < 0 then
((ax)(α)Sβ)∩aΓ = Ø, soaJx = Ø. This impliesJx = Ø. If |x|−α+β ≥ 0
then((ax)(α)Sβ)∩aΓ 6= Ø. If we suppose that|x| < α, i.e.|(ax)(α)| < |a|,
we havea ∈ (ax)(α)Γ. Let b such thata = (ax)(α)b. Thus

((ax)(α)Sβ) ∩ aΓ = ((ax)(α)Sβ) ∩ (ax)(α)bΓ = (ax)(α)(Sβ ∩ bΓ)

= (ax)(α)bSβ−|b| = aSβ−|b| = aSβ+|x|−α,
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so we haveaJx = aSβ+|x|−α, henceJx = Sβ+|x|−α.
Finally, if |x| ≥ α, i.e. |(ax)(α)| ≥ |a|, one has(ax)(α) ∈ aΓ. Thus we

obtainaJx = (ax)(α)Sβ = ax(α)Sβ, henceJx = x(α)Sβ. ¤
Remark: As seen in the proof of lemma 3.4, one may choose anya0 such
that |a0| ≥ deg(P ). On the other hand, we stress that the limit is not a
multiplicative function ofT . Indeed,

u-lim
a→γ

λ∗a∂
∗∂λa 6= (u-lim

a→γ
λ∗a∂

∗λa) · (u-lim
a→γ

λ∗a∂λa).

Therefore, in order to describe the morphism of the algebraC (Γ̂) onto its
quotientC (Γ̂)/K(Γ) we have to improve our definition of the localizations
at infinity.

3.6 Extensions tõΓ

The spacè 2(Γ̃) is defined similarly to`2(Γ). SinceΓ ⊂ Γ̃, we have
`2(Γ) ↪→ `2(Γ̃). As before, we embed̃Γ in `2(Γ̃) by sendingx onχ{x} and
we notice that̃Γ is an orthonormal basis of`2(Γ̃). We define∂̃ : `2(Γ̃) →
`2(Γ̃) by

(∂̃f)(x) = f ′(x) =
∑

y′=x

f(y).

Forα ∈ N, we setf (α) = ∂̃αf , notation which is consistent with our old
definition ofx(α) as the restriction ofx to Z|x|−α. Obviously∂̃ ∈ B(Γ), its
adjoint ∂̃∗ acts as(∂̃∗f)(x) = f(x′), ∂̃∗/

√
ν is an isometry oǹ2(Γ̃):

∂̃∂̃∗ = νId, (3.6)

thus‖∂̃‖ = ‖∂̃∗‖ = ν. We denote bỹD theC∗-algebra generated bỹ∂ and
by D̃alg the∗-algebra generated bỹ∂. Both of them are unital.

We now make the connection betweenDalg andD̃alg.

Lemma 3.6 For |a| ≥ α, one has:λ∗a∂
∗α∂βλa = 1Γ∂̃

∗α ∂̃β1Γ.

Proof: For any f ∈ `2(Γ̃), one has (1Γ∂̃
∗α ∂̃β1Γf)(x) =

1Γ(x)
∑

{y|y(β)=x(α)} 1Γ(y)f(y). Using the same arguments as in the proof
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of the Lemma 3.5, one shows that for eachx ∈ Γ the set{y ∈ Γ | y(β) =
x(α)} equals the r.h.s. of (3.5). Thus the above sum is the same as that of
the r.h.s. of (3.4).¤

We will also need a result concerning the localization of the norm on
D̃alg.

Lemma 3.7 If T̃ ∈ D̃alg, then‖T̃‖ = ‖1ΓT̃1Γ‖.

Proof: Because of (3.6), we can suppose thatT̃ =
∑n

k=1 ck∂̃
∗αk ∂̃βk . We

denote byβ the integermax{βk | k ∈ J1, nK}. For eachε > 0, there is
someg ∈ `2(Γ̃) with compact support such that‖g‖ = 1 and‖T̃ g‖ ≥
‖T̃‖ − ε. Note that ify1, y2, . . . , ym are distinct points ofΓ, a1, a2, . . . , am

are complex numbers andx1, x2 ∈ Γ̃, we have

‖
m∑

i=1

aix1yi‖2 =
m∑

i=1

|ai|2 = ‖
m∑

i=1

aix2yi‖2. (3.7)

Thus, sinceg has compact support, there arex ∈ Γ̃, m ∈ N∗ andyi ∈ Γ,
|yi| ≥ β, ai ∈ C, for all i ∈ J1,mK such thatg =

∑m
k=1 aixyi. We set

f =
∑m

k=1 aieyi. Then (3.7) gives us‖f‖ = ‖g‖ = 1. Using|yi| ≥ β, we
getf ∈ `2(Γ) andT̃ f ∈ `2(Γ). Also with (3.7) we obtain forz ∈ Γ,

‖T̃ g‖ = ‖
n∑

k=1

m∑
i=1

ckai∂̃
∗αk

∂̃βkxyi‖ = ‖
n∑

k=1

m∑
i=1

∑

|z|=αk

ckai(xyi)
(βk)z‖

=‖
n∑

k=1

m∑
i=1

∑

|z|=αk

ckaix(yi)
(βk)z‖ = ‖

n∑

k=1

m∑
i=1

∑

|z|=αk

ckaie(yi)
(βk)z‖

=‖
n∑

k=1

m∑
i=1

∑

|z|=αk

ckai(eyi)
(βk)z‖ = ‖

n∑

k=1

m∑
i=1

ckai∂̃
∗αk

∂̃βkeyi‖ = ‖T̃ f‖.

Hence, there isf ∈ `2(Γ̃) such that‖1ΓT̃1Γf‖ = ‖T̃ f‖ = ‖T̃ g‖ ≥
‖T̃‖ − ε. ¤
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4 The main results

4.1 The morphism

In the sequel, a morphism will be understood as a morphism ofC∗-algebras.
To describe the quotientC (Γ̂)/K(Γ), we need to find an adapted mor-
phism.

Theorem 4.1 For eachγ ∈ ∂Γ there is a unique morphismΦγ : C (Γ̂) →
D̃ such thatΦγ(∂) = ∂̃ andΦγ(ϕ(Q)) = ϕ(γ), for all ϕ ∈ C(Γ̂). One has
K(Γ) ⊂ KerΦγ.

Proof: We use the notations from§3.5. IfT ∈ C (Γ̂)alg then by Lemma 3.4
we have u-lima→γ λ

∗
aTλa = λ∗a0

T (γ)λa0. Let T̃ (γ) beP (ϕ1(γ), ϕ2(γ), . . . ,

ϕm(γ), ∂̃, ∂̃∗). By Lemma 3.6 and (3.6) one can choosea0 such that
λ∗a0

T (γ)λa0 = 1ΓT̃ (γ)1Γ. Lemma 3.7 implies

‖T̃ (γ)‖ = ‖1ΓT̃ (γ)1Γ‖ = ‖λ∗a0
T (γ)λa0‖ = ‖u-lim

a→γ
λ∗aTλa‖ ≤ ‖T‖.

Thus there is a linear multiplicative contractionΦ0
γ : C (Γ̂)alg → D̃ ,

Φ0
γ(T ) = T (γ). The density ofC (Γ̂)alg in C (Γ̂) allows us to extendΦ0

γ

to a morphismΦγ : C (Γ̂) → D̃ which clearly satisfies the conditions of
the theorem. The uniqueness ofΦγ is obvious and the last assertion of the
theorem follows from the Proposition 3.2.¤

4.2 The caseν > 1

In this case, we are able to improve the Theorem 4.1. We recall first that
an isometry is said to beproper if it is not unitary. The operators∂∗ and
∂̃∗ are proper isometries and the dimensions of the kernels of∂ and∂̃ are
infinite: in the case of∂, if one letsa, b be two different letters ofA , and
one choosesg ∈ `2(Γa) andh ∈ `2(Γb) such thath(xb) = g(xa) for all
x ∈ Γ, theng − h is in Ker∂.

Let T be the unit circle ofR2 andH2 the closure of the subspace
spanned by{einQ, n ∈ N} in `2(T). Forg ∈ L∞(T), we define theToeplitz
operatorTg onH2 by Tgh = PH2gh, wherePH2 is the projection onH2.
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For eachz ∈ C \ {0}, we denote byT theC∗-algebra generated byTz.
The next theorem is due to Coburn (see [5] for a proof).

Theorem 4.2 If S is a proper isometry, then there is a unique isomorphism
J of T ontoS , theC∗-algebra generated byS, such thatJ (Tz) = S.

Thus there is a unique isomorphismJ of D onto D̃ such thatJ (∂) =

J (∂̃), so in the caseν > 1 we can rewrite our Theorem 4.1 as follows.

Theorem 4.3 Let γ ∈ ∂Γ. There is a unique morphismΦγ : C (Γ̂) → D

such thatΦγ(ϕ(Q)) = ϕ(γ) for all ϕ ∈ C(Γ̂) and Φγ(D) = D for all
D ∈ D .

Remark: Whenν = 1, there is no isomorphismJ : D → D̃ such that
J (∂) = ∂̃ becausẽD is commutative. Thus, in this case, one cannot hope
in a result as above. There is an other way of proving Theorem 4.3 which
uses the next proposition.

Proposition 4.4 If ν ≥ 1 then {∂∗α∂β}{α,β∈N} is a basis of the vector

spaceDalg. One hasν > 1 if and only if {∂̃∗α ∂̃β}{α,β∈N} is a basis of

spaceD̃alg.

Proof: Let λi 6= 0 for all i ∈ J1, nK. Assume that
∑n

i=1 λi∂
∗αi∂βi = 0,

where(αi, βi) are distinct couples. We setα = min{αi | i ∈ J1, nK} and
I = { i | αi = α}. We takex ∈ Γ such that|x| = α and we obtain∑

i∈I λi(∂
βif)(e) = 0. Notice that{βi}i∈I are pairwise distinct by hypoth-

esis. Now, by takingi0 ∈ I andf the characteristic function ofSβi0
, we

get thatλi0 = 0 which is a contradiction. Hence
∑n

i=1 λi∂
∗αi∂βi 6= 0,

i.e. the familly is free. Let nowν > 1 andλi 6= 0 for all i ∈ J1, nK.
We suppose

∑n
i=1 λi∂̃

∗αi ∂̃βi = 0, with (αi, βi) pairwise distinct. We fix
x ∈ Γ̃ and set̄α = max{αi, i ∈ J1, nK}. One has(

∑n
i=1 λi∂̃

∗αi ∂̃βif)(x) =∑n
i=1 λi

∑
y∈x(αi)Sβi f(y) = 0. Notice thatx(α)Sβ ∩ x(α′)Sβ′ = Ø if and

only if α′ − α 6= β′ − β. Takingf ∈ `2(S|x|−α1+β1), we see that one can
reduce oneself o the case when there is somek such thatαi − βi = k
for all i ∈ J1, nK. Sincex(ᾱ−l)Sᾱ−k−l ⊂ x(ᾱ−1)Sᾱ−k−1 ( x(ᾱ)Sᾱ−k for
all l ∈ J1, (ᾱ − k)K, there is somey0 ∈ x(ᾱ)Sᾱ−k \ ∪αi 6=ᾱx

(αi)Sβi. Then,
taking f = χ{y0} we get somei0 such thatλi0 = 0, which is a contra-

diction. Hence
∑n

i=1 λi∂̃
∗αi ∂̃∗

βi 6= 0. Finally, since whenν = 1 one has
∂̃∂̃∗ = ∂̃∗ ∂̃ = Id, {∂̃∗α ∂̃β}α,β∈N is obviously not a basis.¤
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4.3 Description ofC (Γ̂)/K(Γ)

Theorem 4.5 i) For anyν ≥ 1, there is a unique morphismΦ : C (Γ̂) →
D̃ ⊗ C(∂Γ) such thatΦ(∂) = ∂̃ ⊗ 1 and Φ(ϕ(Q)) = 1 ⊗ (ϕ|∂Γ). This
morphism is surjective and its kernel isK(Γ).
ii) For ν > 1, there is a unique surjective morphismΦ : C (Γ̂) → D ⊗
C(∂Γ) such thatΦ(∂) = ∂⊗1, Φ(ϕ(Q)) = 1⊗(ϕ|∂Γ) and KerΦ = K(Γ).

Once again, as in Remark 4.2, the statement (ii) of the theorem is false
if ν = 1. As a corollary of Theorem 4.5 we obtain the following result.

Proposition 4.6 If ν > 1 thenD ∩ K(Γ) = {0} and if ν = 1 one has
K(Γ) ⊂ D .

Proof: Let ν > 1 andT ∈ D ∩K(Γ). Theorem 4.5 gives us bothΦ(T ) =
T ⊗ 1 andΦ(T ) = 0 (sinceT is compact). Forν = 1, as in the proof of
Proposition 3.2, it suffices to prove thatδx,x is in D . But this is clear since
δx,x = ∂∗|x+1|∂|x+1| − ∂∗|x|∂|x|. ¤

We devote the rest of the section to the proof of the Theorem 4.5.

Proof: By Theorem 4.1 there is a morphismΦ : C (Γ̂) → D̃∂Γ such that
(Φ(∂))(γ) = ∂̃ and(Φ(ϕ(Q)))(γ) = ϕ(γ) , for all γ ∈ ∂Γ, ϕ ∈ C(Γ̂).
Since the images of∂ andϕ(Q) throughΦ belong to theC∗-subalgebra
C(∂Γ, D̃), and sinceC (Γ̂) is generated by∂ and suchϕ(Q), it follows that
the range ofΦ is included inC(∂Γ, D̃). We haveC(∂Γ, D̃) ∼= D̃⊗C(∂Γ),
so we get the required morphismΦ : C (Γ̂) → D̃ ⊗ C(∂Γ). Now since
Φ(∂) = ∂̃ ⊗ 1 and Φ(ϕ(Q)) = 1 ⊗ (ϕ|∂Γ), and since any function in
C(∂Γ) is the restriction of some function fromC(Γ̂), it follows thatΦ is
surjective. Its uniqueness is clear. It remains to compute the kernel.

As seen in the Theorem 4.1,K(Γ) ⊂ KerΦ. In the remainder of
this section we shall prove the reverse inclusion. For this we need some
preliminary lemmas.

Lemma 4.7 Let R = ϕ(Q)∂∗α∂β and U = {aiΓ}i∈J1,nK be a disjoint
covering of∂Γ. For eachε > 0 there arec1, c2, . . . , cm ∈ Ran(ϕ) and
there is a disjoint coveringU ′ = {bjΓ}j∈J1,mK of ∂Γ finer thanU such
that‖1U ′R−R′‖ ≤ ε, whereR′ =

∑m
j=1 1bjΓcj∂

∗α∂β andU ′ = ∪m
j=1bjΓ.
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Proof: Let ε > 0 and denoteε/‖∂∗α∂β‖ by ε′. Sinceϕ(∂Γ) is compact,
there areγ1, γ2, . . . , γN ⊂ ∂Γ such thatϕ(∂Γ) ⊂ ∪N

k=1D(ϕ(γk), ε
′), where

D(z, r) is the complex open disk of centerz and rayr. The open sets
Oi,k = aiΓ̂ ∩ ϕ−1(D(ϕ(γk), ε

′)) cover∂Γ. The Proposition 2.4 gives us a
disjoint covering{bjΓ}j∈J1,mK of ∂Γ such that for eachj ∈ J1,mK there
are i andk such thatbjΓ̂ ⊂ Oi,k. To simplify the notations, we will de-
note byγj thoseγk associated tobjΓ. We setU ′ = {bjΓ}j∈J1,mK and
R′ =

∑n
j=1 1bjΓϕ(γj)∂

∗α∂β. Recall thatsupx∈bjΓ
|ϕ(γj) − ϕ(x)| ≤ ε′,

so

‖(R′ − 1U ′R)f‖2 =
∑
x∈Γ

|
m∑

j=1

1bjΓ(x)(ϕ(γj)− ϕ(x))(∂∗α∂βf)(x)|2

=
m∑

j=1

∑

x∈bjΓ

|(ϕ(γj)− ϕ(x))(∂∗α∂βf)(x)|2

≤
m∑

j=1

sup
x∈bjΓ

|ϕ(γj)− ϕ(x)|2
∑

x∈bjΓ

|(∂∗α∂βf)(x)|2

≤ ε′2
m∑

j=1

∑

x∈bjΓ

|(∂∗α∂βf)(x)|2

≤ ε2‖∂∗α∂β‖−2 · ‖∂∗α∂β‖2 · ‖f‖2 = ε2‖f‖2.

Denotingϕ(γj) by cj we obtain the result.¤

Lemma 4.8 Let T =
∑n

k=1 ϕk(Q)∂∗αk∂βk with ϕk ∈ C(Γ̂) and letε >
0. There are a compact operatorK, a disjoint covering{ajΓ}j∈J1,mK of
∂Γ and S =

∑n
k=1

∑m
j=1 1ajΓϕk(γj,k)∂

∗αk∂βk , with minj∈J1,mK |aj| ≥
maxk∈J1,nK αk andγj,k ∈ ∂Γ such that‖T − S −K‖ ≤ ε.

Proof: We denote byα = max{αk | k ∈ J1, nK}. LetTk beϕk(Q)∂∗αk∂βk .
SettingU0 = ∪{a||a|=α}{aΓ}, we apply the Lemma 4.7 inductively fork ∈
J1, nK with ε/n instead ofε, U = Uk−1 andR = Tk, denotingU ′ by Uk

andR′ bySk. Then, fork ∈ J1, nKwe get‖1Uk
Tk−Sk‖ ≤ ε/k. SinceUk+1

is finer thanUk for k ∈ J1, n− 1K, we obtain‖1Un

∑n
k=1(Tk − Sk)‖ ≤ ε,

hence‖T − 1Uc
n
T − 1Un

∑n
k=1 Sk‖ ≤ ε. To finish the proof, we denote the

compact operator1Uc
n
T byK, 1Un

∑n
k=1 Sk byS andUn by {ajΓ}j∈J1,mK.

¤
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We now go back to the proof of Theorem 4.5. LetT ∈ KerΦ. For each
ε > 0 there isT ′ ∈ C (Γ̂)alg such that‖T − T ′‖ ≤ ε/4. By relation (3.1)
and Proposition 3.3, we can writeT ′ =

∑n
k=1 ϕk(Q)∂∗αk∂βk +K, where

K ∈ K(Γ) andϕk ∈ C(Γ̂). Thus‖Φ(T ′)‖ ≤ ε/4. Using Lemma 4.8, we
get an operatorS and a compact operatorK1 such that‖T ′ − S −K1‖ ≤
ε/4. This implies that‖Φ(S)‖ ≤ ε/2.

Lemma 4.9 There isK2 ∈ K(Γ) such that‖S −K2‖ ≤ ‖Φ(S)‖.
Before proving the lemma, let us remark that it implies

‖T −K1 −K2‖ ≤ ‖T − T ′‖+ ‖T ′ − S −K1‖+ ‖S −K2‖ ≤ ε.

HenceT ∈ K(Γ). Thus Theorem 4.5 is proved.¤

Proof of Lemma 4.9.First, we remark that for eacha ∈ Γ andα, β ≥ 0,
the Proposition 3.3 gives us that1aΓ∂

∗α∂β − 1aΓ∂
∗α∂β1aΓ is a compact

operator. We defineS ′ =
∑n

k=1

∑m
j=1 1ajΓϕk(γj,k)∂

∗αk∂βk1ajΓ and we set
K2 = S−S ′, which is a compact operator. Since{ajΓ}j∈J1,mK is a disjoint
covering of∂Γ, for anyf ∈ `2(Γ):

‖S ′f‖2 =
∑
x∈Γ

|
n∑

k=1

m∑
j=1

(1ajΓϕk(γj,k)∂
∗αk∂βk1ajΓf)(x)|2

=
m∑

j=1

∑
x∈Γ

|
n∑

k=1

(1ajΓϕk(γj,k)∂
∗αk∂βk1ajΓf)(x)|2

≤
m∑

j=1

‖
n∑

k=1

1ajΓϕk(γj,k)∂
∗αk∂βk1ajΓ‖2 · ‖1ajΓf‖2.

Now we use (3.2) and (3.3) and get:

‖1ajΓ

( n∑

k=1

ϕk(γj,k)∂
∗αk∂βk

)
1ajΓ‖ = ‖λ∗aj

( n∑

k=1

ϕk(γj,k)∂
∗αk∂βk

)
λaj
‖.

Since|aj| ≥ max{αk | k ∈ J1, nK}, the Lemmas 3.6 and 3.7 give us:

‖λ∗aj

( n∑

k=1

ϕk(γj,k)∂
∗αk∂βk

)
λaj
‖ = ‖1Γ

( n∑

k=1

ϕk(γj,k)∂̃
∗αk

∂̃βk
)
1Γ‖

= ‖
n∑

k=1

ϕk(γj,k)∂̃
∗αk

∂̃βk‖.
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For eachj we chooseγj ∈ aj∂Γ. The family {ajΓ}j∈J1,mK is a disjoint
covering of∂Γ, so we havelimx→γj

χ
ajΓ(x) = 1 andlimx→γj

χ
aiΓ(x) = 0

for i 6= j. HenceΦγj
(S ′) =

∑n
k=1 ϕk(γj,k)∂̃

∗αk ∂̃βk . We obtain

‖S ′f‖2 ≤
m∑

j=1

‖Φγj
(S ′)‖2 · ‖1ajΓf‖2 ≤ sup

γ∈∂Γ
‖Φγ(S

′)‖2 · ‖f‖2.

Finally, sinceK(Γ) ⊂ KerΦ, ‖Φ(S)‖ = ‖Φ(S ′)‖ = supγ∈∂Γ ‖Φγ(S
′)‖. ¤
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