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Consider
i
∂

∂t
φt = Helφt , φt ∈ Hel ,

the Schrödinger equation for an atom, where

Hel := P2 + V = −∆ + V ,

where
P := −i∇, V : R3 → R

and
Hel := L2(R3).

The possible energies of the atom are

σ(Hel) := {ei}Mi=0 ∪ [0,∞).

If the initial state φ0 is an eigenvalue All the physical properties
of the system do not depend on time.
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Contradiction with experiments
Excited states decay to lower energy states

The key ingredient:

The atom emits photons when it decays to a lower energy
state.
Photons are not represented in the Hamiltonian.

After introducing the photons in our equations we obtain the
Pauli-Fierz Model

Our Main Result:
In the Pauli-Fierz Model the eigenvalues ei for i ≥ 1 turn into
resonances after introducing the photons.

Similar Results
Sigal (2009)
Bach-Fröhlich-Sigal (1998)
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The Pauli-Fierz Model
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The Fock Space (the Hilbert Space for Photons)

Let β ∈ (0,1) be small enough. We define

σn := βn , (n ∈ N), σ∞ = 0 , σ−1 =∞,

and
For n > m,

Kn,m :=
{

k = (~k , λ) ∈ R3 × Z2
∣∣ σn ≤ |k | = |~k | < σm

}
.
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We denote by
hn,m := L2[Kn,m] , (1)

the one particle photon space and by

Fn,m = F(hn,m)

the corresponding Fock space.

The Interacting Hilbert Space

The interacting Hilbert space is defined to be

Hn,m := Hel ⊗Fn,m . (2)
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The electron Hamiltonian
We recall that the electron Hamiltonian is

Hel := −∆ + V (x) . (3)
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The Photon Hamiltonian
The Photon Hamiltonian Ȟn,m : Fn,m → Fn,m is defined by

Ȟn,m(⊕∞j=0φj) = ⊕∞j=0ψj ,

ψj(k1, · · · , kj) := (|k1|+ · · ·+ |kj |)φj(k1, · · · , kj) ,

(4)

with (k1, · · · , kj) ∈ (Kn,m)j .

We assume the following convention: in the case that m = −1
we write "n" instead of "n,−1" in the subscripts:

(·)n ≡ (·)n,−1.
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The full Hamiltonian

We define the function

G(k , x) := −g
1

(2π)3/2
exp(−|k |2)√

2 |k |
e−ig2/3~k ·~x ~ε(k), (5)

where ~ε := (ε1, ε2, ε3) : R3 × Z2 → C3 satisfies

~ε(~k , λ)∗ · ~ε(~k , µ) = δλ,µ , ~k · ~ε(~k , λ) = 0

~ε(−~k , λ) = ~ε(~k , λ), ~ε(r~k , λ) = ~ε(~k , λ), r > 0 ,
(6)
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The full Hamiltonian is defined by the formula

H := (P − A)2 + V + Ȟ∞. (7)

where
A = a∗(G) + a(G).

is the quantized magnetic potential.
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The Pauli-Fierz

Transformation
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Let η ∈ C∞0 (R3; [0,1])
We introduce the function

GP−F (k , x) := G(k ,0) ·
(
− η
(
|x ||k |

)
x
)
, (8)

and the operator

AP−F := a∗(GP−F ) + a(GP−F ) . (9)

We now define

H := e−iAP−F HeiAP−F . (10)
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Analytic Continuation

of the Hamiltonian
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The Group of Dilation Operators

For any real θ, we define the unitary operator
u(θ) : L2(R3)→ L2(R3) as follows

u(θ)φ(x) := e3θ/2φ(eθx) . (11)

We denote by U(θ), the resulting operator after lifting u(θ) to
H∞ = Hel ⊗F∞:

U(θ) := u(θ)⊗
∞⊗

j=0

u(−θ)⊗
j
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We define the operator

H(θ) := U(θ)HU(θ)∗. (12)

We extend it analytically for θ in a neighborhood of 0 in the
complex plane.
The restriction of this Hamiltonian to the space Hn is
denoted by

Hn(θ). (13)

We identify
H∞(θ) ≡ H(θ) . (14)

Ballesteros Resonances for Atoms Coupled to the Quantized Radiation Field



We define the operator

H(θ) := U(θ)HU(θ)∗. (12)

We extend it analytically for θ in a neighborhood of 0 in the
complex plane.
The restriction of this Hamiltonian to the space Hn is
denoted by

Hn(θ). (13)

We identify
H∞(θ) ≡ H(θ) . (14)

Ballesteros Resonances for Atoms Coupled to the Quantized Radiation Field



We define the operator

H(θ) := U(θ)HU(θ)∗. (12)

We extend it analytically for θ in a neighborhood of 0 in the
complex plane.
The restriction of this Hamiltonian to the space Hn is
denoted by

Hn(θ). (13)

We identify
H∞(θ) ≡ H(θ) . (14)

Ballesteros Resonances for Atoms Coupled to the Quantized Radiation Field



We define the operator

H(θ) := U(θ)HU(θ)∗. (12)

We extend it analytically for θ in a neighborhood of 0 in the
complex plane.
The restriction of this Hamiltonian to the space Hn is
denoted by

Hn(θ). (13)

We identify
H∞(θ) ≡ H(θ) . (14)

Ballesteros Resonances for Atoms Coupled to the Quantized Radiation Field



We define the operator

H(θ) := U(θ)HU(θ)∗. (12)

We extend it analytically for θ in a neighborhood of 0 in the
complex plane.
The restriction of this Hamiltonian to the space Hn is
denoted by

Hn(θ). (13)

We identify
H∞(θ) ≡ H(θ) . (14)

Ballesteros Resonances for Atoms Coupled to the Quantized Radiation Field



We define the operator

H(θ) := U(θ)HU(θ)∗. (12)

We extend it analytically for θ in a neighborhood of 0 in the
complex plane.
The restriction of this Hamiltonian to the space Hn is
denoted by

Hn(θ). (13)

We identify
H∞(θ) ≡ H(θ) . (14)

Ballesteros Resonances for Atoms Coupled to the Quantized Radiation Field



We define the operator

H(θ) := U(θ)HU(θ)∗. (12)

We extend it analytically for θ in a neighborhood of 0 in the
complex plane.
The restriction of this Hamiltonian to the space Hn is
denoted by

Hn(θ). (13)

We identify
H∞(θ) ≡ H(θ) . (14)

Ballesteros Resonances for Atoms Coupled to the Quantized Radiation Field



We define the operator

H(θ) := U(θ)HU(θ)∗. (12)

We extend it analytically for θ in a neighborhood of 0 in the
complex plane.
The restriction of this Hamiltonian to the space Hn is
denoted by

Hn(θ). (13)

We identify
H∞(θ) ≡ H(θ) . (14)

Ballesteros Resonances for Atoms Coupled to the Quantized Radiation Field



We define the operator

H(θ) := U(θ)HU(θ)∗. (12)

We extend it analytically for θ in a neighborhood of 0 in the
complex plane.
The restriction of this Hamiltonian to the space Hn is
denoted by

Hn(θ). (13)

We identify
H∞(θ) ≡ H(θ) . (14)

Ballesteros Resonances for Atoms Coupled to the Quantized Radiation Field



We define the operator

H(θ) := U(θ)HU(θ)∗. (12)

We extend it analytically for θ in a neighborhood of 0 in the
complex plane.
The restriction of this Hamiltonian to the space Hn is
denoted by

Hn(θ). (13)

We identify
H∞(θ) ≡ H(θ) . (14)

Ballesteros Resonances for Atoms Coupled to the Quantized Radiation Field



Main Result
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Theorem
The operator H(θ) has an eigenvalue E in a neighborhood of
e1. The imaginary part of E is strictly negative. There is no
point in the spectrum of H(θ) above E, in a neighborhood of e1.
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The Strategy for the Proof
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We set θ = iν with ν > 0 and define

τ(ν) :=
1
2

sin(ν) .

We prove by induction that for every m ∈ N the following holds
true:

(i) There is an open set Em ⊂ C and a complex number Em,
which is a simple eigenvalue of Hm(θ). Em is the only
spectral point of Hm(θ) in Em.
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e1

Em

ν

1
2τ(ν)σ01

2τ(ν)σm
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(ii) We denote by

Pm =
i

2π

∫
γ

1
Hn(θ)− z

dz (15)

the projection onto the vector space generated by the
eigenvector φm corresponding to Em.
Here γ is a contour that surrounds Em and lies in a small
neighborhood of Em.
There is a (universal) constant C > 1 such that

‖Pm − Pm−1‖ ≤ C2m+2σ
1/2
m−1 . (16)
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(iii)

‖Pm
1

Hm(θ)− z
‖ ≤ Cm+1 1

τ(ν)σm + |z − Em|
(17)

for every z ∈ Em, where

Pm = 1− Pm.

(iv)
|Em − Em−1| < Cm+1gσ2

m−1 . (18)
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Once (i)-(iv) is established by an inductive argument, we prove
that the sequence of eigenvalues {Em}m∈N and the
corresponding sequence of eigenvectors φm have a limit:

φ := lim
m→∞

φm, E := lim
m→∞

Em (19)

We conclude by proving that E is a simple eigenvalue of H(θ)
with the corresponding eigenvector φ.
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The Infrared Problem
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The key ingredient that permits the induction step to be proved
is the smallness of the quantity∥∥∥[Hm+1(θ)−

(
Hm(θ)+e−θȞm+1,m

)](
Hm(θ)+e−θȞm+1,m−z

)−1∥∥∥.
(20)

The |k |−1/2 factor in the interaction implies that the difference
(20) does not approach zero as m approaches infinity (it is at
least of order 1). As the term Cm diverge exponentially to∞ we
cannot proceed with the induction step.
To solve this problem we make use of the Feshbach-Schur
Map.
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We define P to be the projection onto the vector space
generated by

ψ1(θ)⊗ 1Fm+1 , (21)

where ψ1(θ) is the first eigenvalue of Hel(θ).
We define the Feshbach-Schur map

F (Hm+1(θ)− z) := P(Hm+1(θ)− z)P

−PHm+1(θ)P(P(Hm+1(θ)− z)P)−1

·PHm+1(θ)P,

(22)

where
P = 1− P.

Similarly we define F (Hm(θ) + e−θȞm+1,m − z).
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Ballesteros Resonances for Atoms Coupled to the Quantized Radiation Field



We finally estimate∥∥∥[F(Hm+1(θ)− z
)
− F

(
Hm(θ) + e−θȞm+1,m − z

)]
·
(

F (Hm(θ) + Ȟm+1,m(θ)− z)
)−1∥∥∥ .

(23)
instead of (20), and use this to complete the induction step.
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Sketch of the Proof:
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The Hamiltonian Hn(θ) can be written as the sum of a free part,
whose spectrum is known plus an interacting part:

Hn(θ) = H0
n(θ) + Wn(θ), (24)

where
H0

n(θ) := e−2θ∆ + V(θ) + e−θȞn. (25)

The spectrum of H0
n(θ) below 0 consists of isolated eigenvalues

and line pieces of absolutely continuous spectrum with an
angle ν = =θ with respect to the real line.
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That the eigenvalues are isolated is a consequence of the
infrared cutoff. The distance of each one of these isolated
eigenvalues to the rest of the spectrum is of order σn.
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Since the eigenvalues of Hn(θ) are isolated, we can use
standard perturbation theory for every n ∈ N to estimate
the eigenvalues of Hn(θ) and the resolvent operator, for
small values of the coupling constant g.
The possible values of the coupling constant that permit us
to use perturbation theory go to zero as n tends to infinity,
since the distance of the eigenvalues to the rest of the
spectrum goes to zero as n goes to∞.
We can analyze, thus, easily (using standard techniques)
the eigenvalues and the resolvent only for the zeroth-step.

We conclude the following:
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Theorem (Induction Basis)
Properties (i)-(iv) are valid for the case m = 0.

The important estimation is item (iii):

‖P0
1

H0(θ)− z
‖ ≤ C0+1 1

τ(ν)σ0 + |z − E0|
, (26)

the other properties are deduced once this one is established.
The constant C > 1 is an error produced by the fact that H0(θ)
is non-selfadjoint. Otherwise we can use functional calculus
and bound the resolvent by the inverse of the distance to the
spectrum.
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Now we suppose the existence of an eigenvalue En and the
inequality

‖Pn
1

Hn(θ)− z
‖ ≤ Cn+1 1

τ(ν)σn + |z − En|
. (27)

We construct En+1 and prove the corresponding inequality for
n + 1.
We fix z with

|z − En| =
τ(ν)

10
σn+1.
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We define

H̃n := Hn(θ)⊗ 1Fn+1,n + e−θ1Hn ⊗ Ȟn+1,n,

R̃n(z) =
(

H̃n − z
)−1

,

(28)

and
P̃n = Pn ⊗ PΩn+1,n , P̃n = 1− P̃n . (29)

We omit in general the dependence on θ:

HJ ≡ HJ(θ), J ∈ {n,n + 1} .

Lemma

‖R̃n(z)P̃n‖ ≤
2(Cn+1 + 2)

τ(ν)

1
τ(ν)σn+1 + |z − En|

. (30)
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R̃n(z) =
(

H̃n − z
)−1

,

(28)

and
P̃n = Pn ⊗ PΩn+1,n , P̃n = 1− P̃n . (29)

We omit in general the dependence on θ:

HJ ≡ HJ(θ), J ∈ {n,n + 1} .

Lemma

‖R̃n(z)P̃n‖ ≤
2(Cn+1 + 2)

τ(ν)

1
τ(ν)σn+1 + |z − En|

. (30)
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We define the operator

W n
n+1 := Hn+1 − H̃n . (31)

Theorem
There is a constant C(1) such that

‖(1 + |x |2)−1W n
n+1R̃n(z)‖ ≤C(1)gCn+1σn , (32)

‖W n
n+1R̃n(z)‖ ≤C(1)gCn+1 . (33)
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The reason why we gain a σn when we have the term
(1 + |x |2)−1 is that in the operator W n

n+1 there are factors of the
form

e−ig2/3~k ·x − 1.

We estimate them by

(1 + |x |2)−1|e−ig2/3~k ·x − 1| ≤ |x |
(1 + |x |)2 |k | ≤ |k |.

The factor |k | produces a σn in the infrared regime.
Having the −1 subtracted from e−ig2/3~k ·x is the actual reason to
apply the Pauli-Fierz transformation.
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Remarks:
To estimate the resolvent∥∥∥ 1

Hn+1(θ)− z

∥∥∥
one would use Neumann Series:

1
Hn+1(θ)− z

=
1

Hn+1(θ)− z

∞∑
j=0

[
W n

n+1
−1

Hn+1(θ)− z

]j

provided
‖W n

n+1R̃n(z)‖ ≤ C(1)gCn+1 < 1 ,

which is not possible, since C > 1.
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Fortunately:

‖(1 + |x |2)−1W n
n+1R̃n(z)‖ ≤ C(1)gCn+1σn

and
σn = Bnσ0

is exponentially decreasing.
Choosing B small enough we can have

C(1)gCn+1σn << 1 ,

which makes the solution of the problem possible, but using an
indirect argument by the Feshbach map.
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Idea:
Whenever we have the term

W n
n+1,

we want to introduce a factor (1 + x2)−1 and substitute:

W n
n+1 7→ (1 + x2)−1W n

n+1.

How:
We change the Hilbert space by another one in which all
functions are exponentially decaying in the electron
variable.
Which concrete mathematical object
permit us to do that?
The Feshbach map.
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The Use of the Feshbach

Map
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The main properties that we use are the following:

(F (Hn+1 − z))−1 = P(Hn+1 − z)−1P , (34)

(Hn+1 − z)−1 = Q(F (Hn+1 − z))−1Q# + (PHn+1P− z)−1 ,
(35)

where
Q := P− (PHn+1P− z)−1Hn+1P (36)

and
Q# := P− PHn+1(PHn+1P− z)−1. (37)

The existence of (Hn+1 − z)−1 follows from the existence of
(F (Hn+1 − z))−1. As the operator (PHn+1P− z)−1 can be
controlled uniformly as in n goes to infinity, estimating
(Hn+1 − z)−1 amounts to estimate (F (Hn+1 − z))−1.
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Why is

(F (Hn+1 − z))−1

more easy to handle than

(Hn+1 − z)−1

?
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We define

W F
n+1,n := F (Hn+1 − z)− F (H̃n − z).

We compute (F (Hn+1 − z))−1 using Neumann series:

(F (Hn+1 − z))−1 =
1

F (H̃n − z)

∞∑
l=0

[
W F

n+1,n
−1

F (H̃n − z)

]l
,

which converges if

‖W F
n+1,n

−1

F (H̃n − z)
‖ < 1.
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Using the properties of the Feshbach map we estimate

‖W F
n+1,n

−1
F (H̃n−z)

‖ ≤

‖PW n
n+1P 1

H̃n−z
P‖+ ‖PW n

n+1(PHn+1P− z)−1‖ · ‖Wn+1P 1
H̃n−z

P‖

+‖Peβ〈x〉‖ · ‖e−β〈x〉Wn(PHn+1P− z)−1eβ〈x〉‖

·‖e−β〈x〉W n
n+1

1
PH̃nP−z

‖ · ‖Wn+1P 1
H̃n−z

P‖

+‖PWn
1

PH̃nP−z
‖ · ‖W n

n+1P 1
H̃n−z

P‖

≤ C(2)gCn+1σn ,
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which implies, together with the Neumann series, that
F (Hn+1 − z) is invertible and that

‖ 1
F (Hn+1 − z)

‖ ≤ C(3)Cn+1 1
τ(ν)σn+1 + |z − En|

. (38)
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From the Feshbach Map to

the original Hamiltonian
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Once we establish the invertibility of the Feshbach map
F (Hn+1 − z), we conclude that Hn+1 − z in invertible and

‖(Hn+1 − z)−1‖ =‖Q(F (Hn+1 − z))−1Q#‖+ ‖(PHn+1P− z)−1‖

≤C(4)Cn+1 1
τ(ν)σn+1 + |z − En|

. (39)

And similarly, using the Feshbach map we obtain

‖(Hn+1 − z)−1 − (H̃n − z)−1‖ ≤C(5)(C2)n+1 1

σ
1/2
n+1

. (40)
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Final Estimates:

Completion of the

Induction Step
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We integrate (40) over a (small) path γ surrounding En to obtain

‖Pn+1 − P̃n‖ =
∥∥∥ 1

2πi

∫
γ

(Hn+1 − z)−1 − (H̃n − z)−1
∥∥∥ (41)

≤C(5)(C2)n+1σ
1/2
n < 1 ,

which proves the existence of the (simple) eigenvalue En+1.
Let ψ be an eigenvalue of Hn. Using that

En+1 =
〈ψ| Hn+1Pn+1ψ〉
〈ψ| Pn+1ψ〉

(42)

we obtain that

|En+1 − En| ≤ C(6)Cn+1gσ2
n. (43)
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〈ψ| Pn+1ψ〉
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we obtain that

|En+1 − En| ≤ C(6)Cn+1gσ2
n. (43)
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Using (39) and (43) we get that for |z − En| = τ(ν)
10 σn+1,

‖(Hn+1 − z)−1‖ ≤ C(7)Cn+1 1
τ(ν)σn+1 + |z − En+1|

, (44)

which implies that for such z

‖Pn+1(Hn+1 − z)−1‖ ≤ C(8)Cn+1 1
τ(ν)σn+1 + |z − En+1|

. (45)

As the operator on the left hand side is analytic in z, by the
maximum modulus principle, the same inequality holds for
z ≤ τ(ν)

10 σn+1.
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Taking
C > C(1) + · · ·+ C(8)

we achieve the induction step with

‖Pn+1(Hn+1 − z)−1‖ ≤ Cn+2 1
τ(ν)σn+1 + |z − En+1|

. (46)
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Construction of the

Resonant Eigenvalue
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It is clear from the induction construction that the sequence of
eigenvalues {En}n∈N converges. We define

E∞ := lim
n→∞

En. (47)

Let φel be a normalized eigenvector of the atom Hamiltonian
corresponding to the first excited eigenvalue e1. We define the
sequence of vectors

ψn := Pnφel . (48)

We define
ψ∞ := lim

n→∞
ψn, (49)

which exists by the induction scheme.
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We define

H̃n
∞ := Hn(θ)⊗ 1F∞,n + e−θ1Hn ⊗ Ȟ∞,n,

R̃n
∞(z) =

(
H̃n
∞ − z

)−1
,

(50)

We select some zn ∈ E(n,∞) with |zn − En| = σn and compute

H∞ψn = (H̃n
∞ + W n

∞)ψn = Enψn + (zn − En)W n
∞R̃n
∞(z)ψn .

(51)
Thus we have that

‖H∞ψn − Enψn‖ ≤ (C)n+2σn , (52)

which implies that

lim
n→∞

H∞ψn = E∞ψ∞ . (53)
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Moreover, since
lim

n→∞
ψn = ψ∞ (54)

and H∞ is closed, we conclude that ψ∞ belongs to the domain
of H∞ and that

H∞ψ∞ = E∞ψ∞ , (55)

which proves the statement.
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