Time-dependent approach to irreversibility and scattering in open quantum systems

Wojciech De Roeck
Institute of Theoretical Physics, Heidelberg

12th June 2013
based on work with A. Kupiainen.

Goal

Quantum systems of type: Small system + bath (or field). Can we derive microscopically thermalization, scattering, etc. ?
(1) Cluster expansion for polymer model
(2) Weakly perturbed Markov chain as a non-commutative polymer model.
(3) From noncommutative to ordinary polymer model.
(9) The quantum setup: why is it a weakly perturbed Markov chain?

Polymer models

Polymer Model on $I_{N}=\{1,2, \ldots, N\}$

$$
Z_{N}=\sum_{\mathcal{A} \in 2^{\prime / N}} \chi(\mathcal{A} \text { admissible }) \prod_{A \in \mathcal{A}} \varrho(A)
$$

- Polymer weights $\varrho(A) \in \mathbb{C}$.
- Adjacency relation on $2^{I_{N}}: A \sim A^{\prime} \quad \Leftrightarrow \quad A \cap A^{\prime} \neq \emptyset$
- \mathcal{A} admissible means: $\forall A \neq A^{\prime} \in \mathcal{A}: A \nsim A^{\prime}$

Polymer models

Polymer Model on $I_{N}=\{1,2, \ldots, N\}$

$$
Z_{N}=\sum_{\mathcal{A} \in 2^{\prime / N}} \chi(\mathcal{A} \text { admissible }) \prod_{A \in \mathcal{A}} \varrho(A)
$$

- Polymer weights $\varrho(A) \in \mathbb{C}$.
- Adjacency relation on $2^{I_{N}}: \quad A \sim A^{\prime} \quad \Leftrightarrow \quad A \cap A^{\prime} \neq \emptyset$
- \mathcal{A} admissible means: $\forall A \neq A^{\prime} \in \mathcal{A}: A \nsim A^{\prime}$

Examples: Product and Weakly coupled systems

'Product' $\varrho(A)=\chi(A=\{\tau\}) z(\tau) \quad \Rightarrow \quad Z_{N}=\prod_{\tau}(1+z(\tau))$.
'Weak coupling' $\varrho(A)=\mathcal{O}(\epsilon)$ for $|A|=2 \quad \Rightarrow \quad Z_{N}=$??
Good type of expansion of 'weak' around 'product' turns out:

$$
F_{N}:=\log Z_{N}=\sum_{\tau} \log (1+z(\tau))+N \mathcal{O}(\epsilon), \quad N \rightarrow \infty
$$

Relation to correlation function

In case $Z_{N}=1$, can interpret (if not, just normalize)

$$
\mathbb{P}(\mathcal{A})=\chi(\mathcal{A} \text { admissible }) \prod_{A \in \mathcal{A}} \varrho(A), \quad Z_{N}=1
$$

(prob. of config. of 'real' polymers, interacting via exclusion)
Correlation function between points τ, τ^{\prime}
Let $\operatorname{Supp} \mathcal{A}=\cup_{A \in \mathcal{A}} A$.

$$
\nu\left(\tau, \tau^{\prime}\right):=\mathbb{P}\left(\tau, \tau^{\prime} \in \operatorname{Supp} \mathcal{A}\right)-\mathbb{P}(\tau \in \operatorname{Supp} \mathcal{A}) \mathbb{P}\left(\tau^{\prime} \in \operatorname{Supp} \mathcal{A}\right)
$$

Does it decay: $\nu\left(\tau, \tau^{\prime}\right) \rightarrow 0$ as $\left|\tau-\tau^{\prime}\right| \rightarrow \infty$?

Relation to correlation function

In case $Z_{N}=1$, can interpret (if not, just normalize)

$$
\mathbb{P}(\mathcal{A})=\chi(\mathcal{A} \text { admissible }) \prod_{A \in \mathcal{A}} \varrho(A), \quad Z_{N}=1
$$

(prob. of config. of 'real' polymers, interacting via exclusion)
Correlation function between points τ, τ^{\prime}
Let $\operatorname{Supp} \mathcal{A}=\cup_{A \in \mathcal{A}} A$.

$$
\nu\left(\tau, \tau^{\prime}\right):=\mathbb{P}\left(\tau, \tau^{\prime} \in \operatorname{Supp} \mathcal{A}\right)-\mathbb{P}(\tau \in \operatorname{Supp} \mathcal{A}) \mathbb{P}\left(\tau^{\prime} \in \operatorname{Supp} \mathcal{A}\right)
$$

Does it decay: $\nu\left(\tau, \tau^{\prime}\right) \rightarrow 0$ as $\left|\tau-\tau^{\prime}\right| \rightarrow \infty$?
For product system: Yes!
(Probs are products)

Relation to correlation function

In case $Z_{N}=1$, can interpret (if not, just normalize)

$$
\mathbb{P}(\mathcal{A})=\chi(\mathcal{A} \text { admissible }) \prod_{A \in \mathcal{A}} \varrho(A), \quad Z_{N}=1
$$

(prob. of config. of 'real' polymers, interacting via exclusion)
Correlation function between points τ, τ^{\prime}
Let $\operatorname{Supp} \mathcal{A}=\cup_{A \in \mathcal{A}} A$.

$$
\nu\left(\tau, \tau^{\prime}\right):=\mathbb{P}\left(\tau, \tau^{\prime} \in \operatorname{Supp} \mathcal{A}\right)-\mathbb{P}(\tau \in \operatorname{Supp} \mathcal{A}) \mathbb{P}\left(\tau^{\prime} \in \operatorname{Supp} \mathcal{A}\right)
$$

Does it decay: $\nu\left(\tau, \tau^{\prime}\right) \rightarrow 0$ as $\left|\tau-\tau^{\prime}\right| \rightarrow \infty$?
For product system: Yes!
For weak coupling: Yes!
(Probs are products)
$\left(\left|\nu\left(\tau, \tau^{\prime}\right)\right| \leq(C \epsilon)^{\left|\tau-\tau^{\prime}\right|}\right)$

Relation to correlation function

In case $Z_{N}=1$, can interpret (if not, just normalize)

$$
\mathbb{P}(\mathcal{A})=\chi(\mathcal{A} \text { admissible }) \prod_{A \in \mathcal{A}} \varrho(A), \quad Z_{N}=1
$$

(prob. of config. of 'real' polymers, interacting via exclusion)
Correlation function between points τ, τ^{\prime}
Let $\operatorname{Supp} \mathcal{A}=\cup_{A \in \mathcal{A}} A$.

$$
\nu\left(\tau, \tau^{\prime}\right):=\mathbb{P}\left(\tau, \tau^{\prime} \in \operatorname{Supp} \mathcal{A}\right)-\mathbb{P}(\tau \in \operatorname{Supp} \mathcal{A}) \mathbb{P}\left(\tau^{\prime} \in \operatorname{Supp} \mathcal{A}\right)
$$

Does it decay: $\nu\left(\tau, \tau^{\prime}\right) \rightarrow 0$ as $\left|\tau-\tau^{\prime}\right| \rightarrow \infty$?
For product system: Yes!
For weak coupling: Yes!
(Probs are products)
$\left(\left|\nu\left(\tau, \tau^{\prime}\right)\right| \leq(C \epsilon)^{\left|\tau-\tau^{\prime}\right|}\right)$

This is known in STAT-MECH as 'high-temperature behaviour'.

Relation to correlation function

Correlation

$$
\nu\left(\tau, \tau^{\prime}\right):=\mathbb{P}\left(\tau, \tau^{\prime} \in \operatorname{Supp} \mathcal{A}\right)-\mathbb{P}(\tau \in \operatorname{Supp} \mathcal{A}) \mathbb{P}\left(\tau^{\prime} \in \operatorname{Supp} \mathcal{A}\right)
$$

satisfies

$$
\nu\left(\tau, \tau^{\prime}\right):=\left.\partial_{\kappa_{\tau^{\prime}}} \partial_{\kappa_{\tau}} \log Z(\kappa)\right|_{\kappa=0}
$$

with $\kappa=\left(\kappa_{\tau}\right)_{\tau \in I_{N}}$

$$
\begin{aligned}
Z(\kappa) & =\mathbb{E}\left(\mathrm{e}^{\sum_{\tau} \kappa_{\tau} \chi(\tau \in \operatorname{Supp} \mathcal{A})}\right) \\
& =\sum_{\mathcal{A}} \prod_{A \in \mathcal{A}} \varrho_{\kappa_{A}}(A), \quad \varrho_{\kappa_{A}}(A)=\varrho(A) \mathrm{e}^{\sum_{\tau \in A} \kappa_{\tau}}
\end{aligned}
$$

Relation to correlation function

Correlation

$$
\nu\left(\tau, \tau^{\prime}\right):=\mathbb{P}\left(\tau, \tau^{\prime} \in \operatorname{Supp} \mathcal{A}\right)-\mathbb{P}(\tau \in \operatorname{Supp} \mathcal{A}) \mathbb{P}\left(\tau^{\prime} \in \operatorname{Supp} \mathcal{A}\right)
$$

satisfies

$$
\nu\left(\tau, \tau^{\prime}\right):=\left.\partial_{\kappa_{\tau^{\prime}}} \partial_{\kappa_{\tau}} \log Z(\kappa)\right|_{\kappa=0}
$$

with $\kappa=\left(\kappa_{\tau}\right)_{\tau \in I_{N}}$

$$
\begin{aligned}
Z(\kappa) & =\mathbb{E}\left(\mathrm{e}^{\sum_{\tau} \kappa_{\tau} \chi(\tau \in \operatorname{Supp} \mathcal{A})}\right) \\
& =\sum_{\mathcal{A}} \prod_{A \in \mathcal{A}} \varrho_{\kappa_{A}}(A), \quad \varrho_{\kappa_{A}}(A)=\varrho(A) \mathrm{e}^{\sum_{\tau \in A} \kappa_{\tau}}
\end{aligned}
$$

Cluster Expansion

A way to write a $F_{N}=\log Z_{N}$ as a sum of local terms
\Rightarrow No (or only very small) terms that depend on both $\kappa_{\tau}, \kappa_{\tau^{\prime}}$.

Cluster Expansion: Naive approach

Try to expand logarithm! Take 'weakly coupled' model:

$$
\varrho(A)= \begin{cases}\epsilon & A=\{\tau, \tau+1\} \\ 0 & \text { otherwise }\end{cases}
$$

Truncate at order ϵ^{2}

$$
Z=1+\sum_{A} \varrho(A)+\sum_{A, A^{\prime}} \chi\left(A \nsim A^{\prime}\right) \varrho(A) \varrho\left(A^{\prime}\right)+\mathcal{O}\left(\epsilon^{4}\right)
$$

Use $\log (1+x)=1+x-x^{2}+\mathcal{O}\left(x^{3}\right)$:

$$
\begin{aligned}
\log Z & =1+\sum_{A} \varrho(A)-\sum_{A, A^{\prime}} \varrho(A) \varrho\left(A^{\prime}\right)+\sum_{A, A^{\prime}} \chi\left(A \nsim A^{\prime}\right) \varrho(A) \varrho\left(A^{\prime}\right)+\mathcal{O}\left(\epsilon^{4}\right) \\
& \left.=1+\sum_{A} \varrho(A)-\sum_{A, A^{\prime}} \chi\left(A \sim A^{\prime}\right) \varrho(A) \varrho\left(A^{\prime}\right)\right)+\mathcal{O}\left(\epsilon^{4}\right)
\end{aligned}
$$

Cluster Expansion: Naive approach

$$
\log Z=1+\sum_{A} \varrho(A)-\underbrace{\sum_{A, A^{\prime}} \chi\left(A \sim A^{\prime}\right) \varrho(A) \varrho\left(A^{\prime}\right)}_{=0 \text { if } \operatorname{diam}\left(A \cup A^{\prime}\right)>3}+\mathcal{O}\left(\epsilon^{4}\right)
$$

This means that $\log Z$ is sum of local terms, depending on at most 3 neighboring points. \Rightarrow Sucess! (Locality \Rightarrow Correlation decay)

Cluster Expansion: Naive approach

$$
\log Z=1+\sum_{A} \varrho(A)-\underbrace{\sum_{A, A^{\prime}} \chi\left(A \sim A^{\prime}\right) \varrho(A) \varrho\left(A^{\prime}\right)}_{=0 \text { if } \operatorname{diam}\left(A \cup A^{\prime}\right)>3}+\mathcal{O}\left(\epsilon^{4}\right)
$$

This means that $\log Z$ is sum of local terms, depending on at most 3 neighboring points. \Rightarrow Sucess! (Locality \Rightarrow Correlation decay) Of course, this is nonsense because $\mathcal{O}\left(\epsilon^{4}\right)$ is rather $\mathcal{O}\left(N^{2} \epsilon^{4}\right)$.

Cluster Expansion: Naive approach

$$
\log Z=1+\sum_{A} \varrho(A)-\underbrace{\sum_{A, A^{\prime}} \chi\left(A \sim A^{\prime}\right) \varrho(A) \varrho\left(A^{\prime}\right)}_{=0 \text { if } \operatorname{diam}\left(A \cup A^{\prime}\right)>3}+\mathcal{O}\left(\epsilon^{4}\right)
$$

This means that $\log Z$ is sum of local terms, depending on at most 3 neighboring points. \Rightarrow Sucess! (Locality \Rightarrow Correlation decay) Of course, this is nonsense because $\mathcal{O}\left(\epsilon^{4}\right)$ is rather $\mathcal{O}\left(N^{2} \epsilon^{4}\right)$. Yet, the expansion turns out to be correct for small ϵ !

Cluster Expansion: A theorem

Assumption on ϱ : 'close to independence'

$$
\sup _{\tau} \sum_{A \ni \tau} \mathrm{e}^{a|A|}|\varrho(A)| \leq a, \quad \text { (Kotecky.Preiss criterion) }
$$

Result

Provided KP holds,

$$
\log Z=\sum_{A} \varrho^{T}(A), \quad \text { with } \sum_{A \ni \tau}\left|\varrho^{T}(A)\right| \leq a
$$

with $\varrho^{T}(A)$ function of $\varrho\left(A^{\prime}\right), A^{\prime} \subset A$

Cluster Expansion: A theorem

Assumption on ϱ : 'close to independence'

$$
\sup _{\tau} \sum_{A \ni \tau} \mathrm{e}^{a|A|}|\varrho(A)| \leq a, \quad \text { (Kotecky.Preiss criterion) }
$$

Result

Provided KP holds,

$$
\log Z=\sum_{A} \varrho^{T}(A), \quad \text { with } \sum_{A \ni \tau}\left|\varrho^{T}(A)\right| \leq a
$$

with $\varrho^{T}(A)$ function of $\varrho\left(A^{\prime}\right), A^{\prime} \subset A$

- $\sum_{A \ni \tau}\left|\varrho^{T}(A)\right| \leq$ a gives some locality (summability) in F_{N}
- Most powerful if a can be chosen independent of N.
- Note that exp. decay in $|A|$ for $\varrho(A)$ is required.
- Polymers $A=\{\tau\}$ can always be scaled out, not covered here.

Correlation decay from cluster expansion

Assume that KP-criterion holds in a stronger way
Assumption on ϱ : encode decay $(d(A)=\operatorname{diam}(A))$

$$
\sup _{\tau} \sum_{A \ni \tau} \mathrm{e}^{\mathrm{a}|A|}\left|\varrho_{\alpha}(A)\right| \leq a, \quad \varrho_{\alpha}(A)=\varrho(A) d(A)^{\alpha}
$$

Results with and without α

$$
\log Z=\sum_{A} \varrho^{T}(A), \quad \text { with } \sum_{A \ni \tau} d(A)^{\alpha}\left|\varrho^{T}(A)\right| \leq a
$$

$$
\begin{aligned}
\partial_{\tau_{\kappa}} \partial_{\tau_{\kappa}^{\prime}} \log Z & =\sum_{A:\left\{\tau, \tau^{\prime}\right\} \subset A} \partial_{\tau_{\kappa}} \partial_{\tau_{\kappa}^{\prime}} \varrho^{T}(A) \\
& =\left|\tau-\tau^{\prime}\right|^{-\alpha} \sum_{A:\left\{\tau, \tau^{\prime}\right\} \subset A}\left|\partial_{\tau_{\kappa}} \partial_{\tau_{\kappa}^{\prime}} \varrho_{\alpha}^{T}(A)\right| \\
& \sim\left|\tau-\tau^{\prime}\right|^{-\alpha} a . \quad(\text { if } K P \text { uniform in } \kappa \in D \subset \mathbb{C} .)
\end{aligned}
$$

Let Ω be a finite set $(|\Omega|=d)$ and U a transition kernel on $\ell^{1}(\Omega)$, i.e.

- U is an $d \times d$ - matrix with entries $U\left(s, s^{\prime}\right) \geq 0$
- Conservation of probability. $U^{*} 1=1$. Interpretation: If $\rho \in \ell^{1}(\Omega)$ is a pdf. on Ω then $U^{k} \rho$ is the pdf. after k time-steps.

U has spectral gap \Rightarrow chain exponentially ergodic

If $\sigma(U)$ consists of simple eigenvalue 1 and all other eigenvalues μ have $|\mu|<1-g$, then

$$
U^{k}-\left|\rho_{*}\right\rangle\langle 1|=\mathcal{O}\left((1-g)^{k}\right), \quad k \rightarrow \infty
$$

for some pdf. ρ_{*} (= unique invariant pdf.)

Let transition kernels $U=U_{\tau}$ depend on timestep τ through some randomness ω, such that

- U_{τ} for different τ are 'weakly dependent' (formalize later)
- Joint law U_{τ} is time-translation invariant.
- $T=\mathbb{E}_{\omega}\left(U_{\tau}\right)$ (also transition kernel) has a gap. Interpretation: Still $U_{N} \ldots U_{1}$ is transition kernel.

Chain still (exponentially) ergodic?

For example; Consider the 'average total transition map'

$$
\mathcal{Z}_{N}:=\mathbb{E}_{\omega}\left(U_{N} \ldots U_{1}\right) \quad \xrightarrow{?} \quad\left|\tilde{\rho}_{*}\right\rangle\langle 1|
$$

- Don't expect exp. decay unless correlations U_{τ} decay exp.
- \exists prob. solutions, but want brutal method (later: prob \rightarrow \mathbb{C}-numbers)

Cluster expansion would help if applicable

Assume that we obtain $\left(v, w \in \ell^{1}(\Omega)\right)$

$$
\langle v| \mathcal{Z}_{N}|w\rangle=\sum_{\mathcal{A}} \prod_{A \in \mathcal{A}} \varrho(A)=\mathrm{e}^{\sum_{A} \varrho^{T}(A)}
$$

where

- $\rho(A)$ (and hence $\varrho(A)$) depend on w only if $1 \in A$ and on v only if $N \in A$.
- some decay: $\sum_{A \ni \tau}\left|\varrho^{T}(A)\right| d(A)^{\alpha} \leq a$.

Then philosphy on correlation decay applies \Rightarrow Interpret v as observable, then dependence on w decays:

$$
\|\left|\tilde{\rho}_{*}\right\rangle\langle 1|-\mathcal{Z}_{N} \| \leq C N^{-\alpha}, \quad N \rightarrow \infty
$$

for some pdf. $\tilde{\rho}_{*}$.

Expansion of \mathcal{Z}_{N}

Set

$$
U_{\tau}=T+B_{\tau}, \quad T:=\mathbb{E}\left(U_{\tau}\right)
$$

B_{τ} is small \Rightarrow expand in powers of B.

$$
\begin{aligned}
\mathcal{Z}_{N} & =\mathbb{E}\left(U_{N} \ldots U_{1}\right) \\
& =\sum_{A \subset I_{N}} \mathbb{E}(\underbrace{\ldots B_{\tau_{2}} \ldots B_{\tau_{1}} \ldots}_{T \text { whenever } \ldots}), \quad A=\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{m}\right\})
\end{aligned}
$$

Need more formalism to write this:

Let

$$
\mathscr{R}:=\mathcal{B}\left(\ell^{1}(\Omega)\right), \quad \text { (space of } d \times d \text {-matrices) }
$$

and

$$
\mathscr{R}_{I_{N}}=\otimes^{N} \mathscr{R}^{\sim} \mathscr{R}_{N} \otimes \ldots \otimes \mathscr{R}_{2} \otimes \mathscr{R}_{1}
$$

with subalgebras \mathscr{R}_{A} for $A \subset I_{N}$. Contraction \mathcal{T}

$$
\mathcal{T}: \mathscr{R}_{\{k, k+1, \ldots, k+l\}} \rightarrow \mathscr{R}: \quad \mathcal{T}\left(O_{k+1} \otimes \ldots \otimes O_{k}\right)=O_{k+1} \ldots O_{k}
$$

and extend by linearity. Redefine

$$
B_{\tau} \stackrel{\text { new }}{=} 1 \ldots 1 \otimes B_{\tau} \otimes 1 \ldots 1, \quad T_{\tau} \stackrel{\text { new }}{=} 1 \ldots 1 \otimes T_{\tau} \otimes 1 \ldots 1
$$

Then $B_{\tau}, T_{\tau} \in \mathscr{R}_{I_{N}}$:

$$
\underbrace{B_{3} T B_{1}}_{\text {previously }} \Rightarrow \underbrace{\mathcal{T}\left(T_{2} B_{3} B_{1}\right)}_{\text {now }} \quad\left(=\mathcal{T}\left(B_{1} B_{3} T_{2}\right)\right)
$$

$$
\begin{aligned}
\mathcal{Z}_{N} & =\mathbb{E}\left(U_{N} \ldots U_{1}\right) \\
& =\sum_{A \subset I_{N}} \mathbb{E} \mathcal{T}\left[\left(\prod_{\tau \in A^{c}} T_{\tau}\right)\left(\prod_{\tau \in A} B_{\tau}\right)\right] \\
& =\sum_{A \subset I_{N}} \mathcal{T}\left[\left(\prod_{\tau \in A^{c}} T_{\tau}\right)\left(\prod_{\tau \in A} B_{\tau}\right)\right] \\
& =\sum_{A \subset I_{N}} \mathcal{T}\left[\left(\prod_{\tau \in A^{c}} T_{\tau}\right) \mathbb{E}\left(\prod_{\tau \in A} B_{\tau}\right)\right] \\
& =\sum_{A \subset I_{N}} \mathcal{T}\left[\left(\prod_{\tau \in A^{c}} T_{\tau}\right) G_{A}\right]
\end{aligned}
$$

Ways to write operations on big matrices: \mathcal{T} selects some entries, \mathbb{E} averages all entries. G_{A} is a matrix of moments.

Formalism: Lattice systems

$$
\mathcal{Z}_{N}=: \sum_{A \subset I_{N}} \mathcal{T}\left[\left(\prod_{\tau \in A^{c}} T_{\tau}\right) G_{A}\right]
$$

Not very meaningful. G_{A} need not be small when $\operatorname{diam}(A)$ is large. We need correlations G_{A}^{c} instead of moments G_{A} !

$$
\mathcal{Z}_{N}=: \sum_{A \subset I_{N}} \mathcal{T}\left[\left(\prod_{\tau \in A^{c}} T_{\tau}\right) G_{A}\right]
$$

Not very meaningful. G_{A} need not be small when $\operatorname{diam}(A)$ is large. We need correlations G_{A}^{C} instead of moments G_{A} !
Relation between moments and correlations

$$
G_{A^{\prime}}=\sum_{\text {partitions } \mathcal{A} \text { of } A^{\prime}} \prod_{A \in \mathcal{A}} G_{A}^{c}
$$

\Rightarrow defines correlations G_{A}^{c} by recursion:

$$
G_{\tau}=G_{\tau^{\prime}}^{c}, \quad G_{\left\{\tau^{\prime}, \tau\right\}}=G_{\tau^{\prime}}^{c} G_{\tau}^{c}+G_{\left\{\tau^{\prime}, \tau\right\}}^{c}
$$

hence $G_{\left\{\tau^{\prime}, \tau\right\}}^{c}=G_{\left\{\tau^{\prime}, \tau\right\}}-G_{\tau^{\prime}} G_{\tau}$

$$
\begin{aligned}
\mathcal{Z}_{N} & =: \sum_{A^{\prime} \subset I_{N}} \mathcal{T}\left[\left(\prod_{\tau \in\left(\mathcal{A}^{\prime}\right)^{c}} T_{\tau}\right) G_{\mathcal{A}^{\prime}}\right] \\
& =\sum_{A^{\prime} \subset I_{N}} \sum_{\text {partitions } \mathcal{A} \text { of } \mathcal{A}^{\prime}} \mathcal{T}\left[\left(\prod_{\tau \in\left(\mathcal{A}^{\prime}\right)^{c}} T_{\tau}\right) \prod_{A \in \mathcal{A}} G_{A}^{c}\right] \\
& =\sum_{\mathcal{A} \text { admissible }} \mathcal{T}\left[\left(\prod_{\tau \notin \operatorname{Supp}(\mathcal{A})} T_{\tau}\right) \prod_{A \in \mathcal{A}} G_{A}^{c}\right]
\end{aligned}
$$

Has the same form as polymer model, with weights $\tilde{\varrho}(A)=G_{A}^{c}$, but matrix-valued. A natural extra-severe 'KP'-condition is

$$
\sum_{A \ni \tau} \epsilon^{-(|A|-1)}\left\|G_{A}^{c}\right\| d(A)^{\alpha} \leq 1, \quad \text { for some } \epsilon \ll 1 .
$$

\Rightarrow What to do: \nexists noncommutative cluster expansion

Graphical rep: Noncommutative polymers

Operator weight (Contribution to \mathcal{Z}_{N}): each \simeq gives T, each connected component of - gives G_{A}^{C}.
Failure: Weight is not a product of numbers depending only on A

$$
\langle v| \mathcal{Z}_{N}|w\rangle \neq \sum_{\mathcal{A}} \prod_{A \in \mathcal{A}} f(A)
$$

Way out: Use gap of T

Gap of T

Ergodicity assumption: $T=R T+R_{\perp} T$ with $R=R T=\left|\rho_{*}\right\rangle\langle 1|$ one-dimensional projection and $\left\|\left(R_{\perp} T\right)^{k}\right\| \leq C(1-g)^{k}$.

Insert in expansion:
$\mathcal{Z}_{N}=\sum_{\mathcal{A}, \mathcal{J}} \mathcal{T}\left[\prod_{A \in \mathcal{A}} G_{A}^{c} \prod_{\tau \in \operatorname{Supp} \mathcal{J}}\left(R_{\perp} T\right)_{\tau} \prod_{\tau \in I_{N} \backslash(\operatorname{Supp} \mathcal{J} \cup \operatorname{Supp} \mathcal{A})}(R)_{\tau}\right]$.

- \mathcal{A} is admissible collection, \mathcal{J} is collection of intervals
- $\operatorname{Supp} \mathcal{A} \cap \operatorname{Supp} \mathcal{J}=\emptyset$.
- R decouples: $R O_{m} R \ldots R O_{2} R O_{1} R=R \prod_{j} \operatorname{Tr}\left(R O_{j}\right) \Rightarrow$ Product of operators turns into product of numbers
- Price to pay: new polymers: intervals in \mathcal{J}, but their weight decays exp. : $\left\|\left(R_{\perp} T\right)^{k}\right\| \leq C(1-g)^{k}$

Way out: Use gap of T
First split

$$
T=T R+T R_{\perp}=\sim=\text { миm }+
$$

then resum new and old polymers

$$
\Xi=\rightleftharpoons+\curvearrowleft
$$

New polymers

Expansion for

$$
\frac{\langle v| \mathcal{Z}_{N}|w\rangle}{\left\langle v \mid \rho_{*}\right\rangle\langle 1 \mid w\rangle}=\sum_{\mathcal{A}^{\prime}} \prod_{A \in \mathcal{A}^{\prime}} \varrho(A)
$$

with, for bulk $A(1 \notin A, N \notin A)$

$$
\varrho(A) R=\sum_{\substack{\mathcal{A}, \mathcal{J} \\(\mathcal{A}, \mathcal{J}) \text { connected }}} \mathcal{T}\left[\prod_{A \in \mathcal{A}} G_{A}^{c} \prod_{\tau \in \mathcal{J}}\left(R_{\perp} T\right)_{\tau} \prod_{\tau \in \partial \mathcal{A}} R_{\tau}\right]
$$

- $\partial A=\left\{\tau \in A^{c}: \operatorname{dist}(\tau, A)=1\right\}$
- Note: $\operatorname{Supp} \mathcal{A} \cup \operatorname{Supp} \mathcal{J}$ is completely sandwiched between R
- $(\mathcal{A}, \mathcal{J})$ connected means: set of sets $A \in \mathcal{A}$ and intervals $J \in \mathcal{J}$ are connected by the adjacency relation

$$
S \sim S^{\prime} \Leftrightarrow \operatorname{dist}\left(S, S^{\prime}\right)=1
$$

- The A with weight G_{A}^{c} satisfy

$$
\sum_{A \ni \tau} \epsilon^{-(|A|-1)}\left\|G_{A}^{c}\right\| d(A)^{\alpha} \leq 1, \quad \text { for some } \epsilon \ll 1
$$

i.e. they have $d(A)^{-\alpha}$ decay in diameter and $\epsilon^{|A|}$ decay in size.

- The intervals $J \in \mathcal{J}$ have weight $\left(R_{\perp} T\right)^{|J|}$: exponential decay in diameter and size, but decay rate $\mathcal{O}(1)$, not ϵ.

New KP:

$$
\sum_{A \ni \tau} \mathrm{e}^{a|A|}|\varrho(A)| d(A)^{\alpha} \leq C \epsilon
$$

Polymers ϱ inherit bad properties from their parents:

- $d(A)^{-\alpha}$ decay in diameter.
- $\mathrm{e}^{-a|A|}$ decay in size (decay rate $\mathcal{O}(1)$)
- However, still at least one ϵ because every new polymer is made out of at least one G_{A}^{c} (this is a lie)

We get the result

The new KP:

$$
\sum_{A \ni \tau} \mathrm{e}^{a|A|}|\varrho(A)| d(A)^{\alpha} \leq C \epsilon
$$

is indeed of the form

$$
\sum_{A \ni \tau} \mathrm{e}^{\mathrm{a}|A|}|\varrho(A)| d(A)^{\alpha} \leq a
$$

so machinery applies and we get the result:

$$
\|\left|\tilde{\rho}_{*}\right\rangle\langle 1|-\mathcal{Z}_{N} \| \leq C N^{-\alpha}, \quad N \rightarrow \infty
$$

for some pdf. $\tilde{\rho}_{*}$. Moreover,

$$
\left\|\tilde{\rho}_{*}-\rho_{*}\right\|=\mathcal{O}(\epsilon)
$$

'Generalized' Spin-boson model

- Hilbert space $\mathcal{H}=\mathcal{H}_{\mathrm{S}} \otimes \mathcal{H}_{\mathrm{F}}$ $\mathcal{H}_{\mathrm{S}}=\mathbb{C}^{m}$ (atom space) and $\mathcal{H}_{\mathrm{F}}=\Gamma\left(L^{2}\left(\mathbb{R}^{3}\right)\right)$ (photon field).
- Hamiltonian: $H_{\mathrm{S}}: \operatorname{diag}\left(E_{1} . E_{2}, \ldots, E_{m}\right)$ and weak coupling.

$$
H=H_{\mathrm{S}} \otimes 1+1 \otimes H_{\mathrm{F}}+\lambda H_{\mathrm{SF}}, \quad 0<|\lambda|<1
$$

- Free photon Hamiltonian $H_{F}=\int \mathrm{d} q|q| a_{q}^{*} a_{q}$.
- Atom-photon coupling: $D=D^{*} \in \mathcal{H}_{\mathrm{S}}$

$$
H_{\mathrm{SF}}=D \otimes \int \mathrm{~d} q\left(\phi(q) \otimes a_{q}+\bar{\phi}(q) \otimes a_{q}^{*}\right)
$$

with form factor $\phi(q) \sim|q|^{-1+\alpha / 2+\delta}$ as $q \rightarrow 0$.

- If $\alpha>0, H$ bounded below. If $\alpha>1, H$ has ground state.

Result

- Fermi Golden Rule condition (explained later)
- Correlation decay (explained later)

$$
\int \mathrm{d} t|\zeta(t)|(1+|t|)^{\alpha}<\infty, \quad \zeta(t):=\int \mathrm{d} \boldsymbol{q}|\phi(q)|^{2} \mathrm{e}^{\mathrm{i}|q| t}
$$

Write $\langle A\rangle_{t}=\operatorname{Tr} \rho \mathrm{e}^{-\mathrm{i} t H} A \mathrm{e}^{\mathrm{i} t H}$ with ρ density matrix and A observable.

Approach to steady state (DR, Kupiainen)

Assume Fermi Golden Rule and Correlation decay with $\alpha>0$, then

$$
\left|\langle A\rangle_{t}-\langle A\rangle_{\infty}\right| \leq C(1+|t|)^{-\alpha}, \quad \text { for }|\lambda| \ll 1
$$

for sufficiently local A and ρ_{0}. (Example, $\rho_{0}=\rho_{\mathrm{S}} \otimes|\Omega\rangle\langle\Omega|$ and $A=A_{\mathrm{S}} \otimes 1$). State $\langle A\rangle_{\infty}$ equals $\left\langle\Psi_{g s}, A \Psi_{g s}\right\rangle$ whenever $\Psi_{g s}$ exists.

Some easier questions: Markovian limits

Let $\rho_{\mathrm{S}, t}=\operatorname{Tr}_{\mathrm{F}} \mathrm{e}^{-\mathrm{i} t H} \rho_{0} \mathrm{e}^{\mathrm{i} t H}$ and assume all eigenvalues of H_{S} simple.

General Idea (Van Hove '50, Davies '74)

$$
\lim _{t=\lambda^{-2} \tau, \lambda \rightarrow 0} \rho_{\mathrm{S}, t}=\mathrm{e}^{\tau \mathcal{L}} \rho_{\mathrm{S}, 0}
$$

with \mathcal{L} a Lindbladian (Quantum Markov generator). Limit corresponds to $t_{\text {Fcorrelations }} \ll t_{\text {dissipation }} \sim \lambda^{-2}$ (phonons are like white noise).

Write $\rho_{\mathrm{S}, 0}=\operatorname{diag}\left(\mu_{1}(0), \ldots, \mu_{m}(0)\right)+\rho_{\text {off-diag }, 0}$, then

$$
\mathrm{e}^{\tau \mathcal{L}} \rho_{\mathrm{S}, 0}=\operatorname{diag}\left(\mu_{1}(\tau), \ldots, \mu_{m}(\tau)\right)+\rho_{\text {off-diag }, \tau},
$$

where $\bar{\mu}(\tau)$ is a jump process on $\sigma\left(H_{\mathrm{S}}\right)$. Jumps $e \rightarrow e^{\prime}, \sim$ emission of photon with $|q|=e-e^{\prime}$.
Furthermore, Decoherence: $\left\|\rho_{\text {off-diag }, \tau}\right\| \sim \mathrm{e}^{-c \tau}$

Character of jump process

- The jump rate $j\left(e \rightarrow e^{\prime}\right)$ is calculated from second-order perturbation theory:

$$
\left.j\left(e \rightarrow e^{\prime}\right)=2 \pi|\langle e| D| e^{\prime}\right\rangle\left.\right|^{2} \int \mathrm{~d} q \delta\left(e-e^{\prime}-|q|\right)|\phi(q)|^{2}
$$

- Iff directed graph with edges $\left(e \sim e^{\prime}\right) \Leftrightarrow j\left(e \rightarrow e^{\prime}\right) \neq 0$ is connected, then the jump process converges to the state $e_{g s}=\min \left\{e \in \operatorname{sp} H_{S}\right\}$ exponentially fast (Perron-Frobenius theorem): \Rightarrow atom cascades down to ground state. This (together with uniqueness of $e_{g s}$) is our Fermi Golden Rule condition. In fact, only real necessity: \mathcal{L} has a gap!

Non-Markovian corrections

Since the photon field is not white noise, the true evolution is not Markovian:

Correlation function $\zeta(t):=\langle\Omega, \Phi(t) \Phi(0) \Omega\rangle=\int \mathrm{d} q|\phi(q)|^{2} \mathrm{e}^{\mathrm{i}|q| t}$ where $\Phi(t):=\int \mathrm{d} q \phi(q) \mathrm{e}^{\mathrm{i} t|q|} a_{q}+$ h.c..

- $\zeta(t)$ cannot decay exponentially. The decay is $\left.\zeta(t)=O\left(t^{-(1+\alpha}\right)\right)$.
- In general, one should not expect time-correlation of observables to decay faster than $\zeta(t)$. However, in the Markovian approximation, atom observables decorrelate exponentially. (Long-standing confusion in physics literature: Adler-Wainwright, Slow decorrelation in gases causes anomalous diffusion in $d=1,2$)

Yesterday: Study $\mathcal{Z}_{N}=\mathbb{E}\left(U_{N} \ldots U_{1}\right)$.
Now: essentially idem (reduced evolution)

$$
\mathcal{Z}_{N}: \mathcal{B}_{1}\left(\mathcal{H}_{\mathrm{S}}\right) \rightarrow \mathcal{B}_{1}\left(\mathcal{H}_{\mathrm{S}}\right), \quad \mathcal{Z}_{N} \rho_{\mathrm{S}}:=\operatorname{Tr}_{\mathrm{F}} \mathrm{e}^{-\mathrm{i}\left(N / \lambda^{2}\right) L}\left(\rho_{\mathrm{S}} \otimes|\Omega\rangle\langle\Omega|\right)
$$

where $L=[H, \cdot]$ and $L_{0}=\left[H_{S}+H_{F}, \cdot\right]$. Set

$$
U_{\tau}=\mathrm{e}^{\mathrm{i}\left(\tau / \lambda^{2}\right) L_{0}} \mathrm{e}^{-\mathrm{i}\left(1 / \lambda^{2}\right) L} \mathrm{e}^{-\mathrm{i}\left((\tau-1) / \lambda^{2}\right) L_{0}}
$$

then (with $\rho_{0}=\rho_{\mathrm{S}} \otimes|\Omega\rangle\langle\Omega|$)

$$
\begin{aligned}
\mathcal{Z}_{N} \rho_{\mathrm{S}}=\operatorname{Tr}_{\mathrm{F}} \mathrm{e}^{\mathrm{i}\left(N / \lambda^{2}\right) L_{0}} \mathrm{e}^{-\mathrm{i}\left(N / \lambda^{2}\right) L} \rho_{0} & =\operatorname{Tr}_{\mathrm{F}}\left(U_{N} \ldots U_{2} U_{1} \rho_{0}\right) \\
& =: \mathbb{E}\left(U_{N} \ldots U_{2} U_{1}\right) \rho_{\mathrm{S}}
\end{aligned}
$$

Yesterday: Study $\mathcal{Z}_{N}=\mathbb{E}\left(U_{N} \ldots U_{1}\right)$.
Now: essentially idem (reduced evolution)

$$
\mathcal{Z}_{N}: \mathcal{B}_{1}\left(\mathcal{H}_{\mathrm{S}}\right) \rightarrow \mathcal{B}_{1}\left(\mathcal{H}_{\mathrm{S}}\right), \quad \mathcal{Z}_{N} \rho_{\mathrm{S}}:=\operatorname{Tr}_{\mathrm{F}} \mathrm{e}^{-\mathrm{i}\left(N / \lambda^{2}\right) L}\left(\rho_{\mathrm{S}} \otimes|\Omega\rangle\langle\Omega|\right)
$$

where $L=[H, \cdot]$ and $L_{0}=\left[H_{\mathrm{S}}+H_{\mathrm{F}}, \cdot\right]$. Set

$$
U_{\tau}=\mathrm{e}^{\mathrm{i}\left(\tau / \lambda^{2}\right) L_{0}} \mathrm{e}^{-\mathrm{i}\left(1 / \lambda^{2}\right) L} \mathrm{e}^{-\mathrm{i}\left((\tau-1) / \lambda^{2}\right) L_{0}}
$$

then (with $\rho_{0}=\rho_{\mathrm{S}} \otimes|\Omega\rangle\langle\Omega|$)

$$
\begin{aligned}
\mathcal{Z}_{N} \rho_{\mathrm{S}}=\operatorname{Tr}_{\mathrm{F}} \mathrm{e}^{\mathrm{i}\left(N / \lambda^{2}\right) L_{0}} \mathrm{e}^{-\mathrm{i}\left(N / \lambda^{2}\right) L} \rho_{0} & =\operatorname{Tr}_{\mathrm{F}}\left(U_{N} \ldots U_{2} U_{1} \rho_{0}\right) \\
& =: \mathbb{E}\left(U_{N} \ldots U_{2} U_{1}\right) \rho_{\mathrm{S}}
\end{aligned}
$$

Hence; averaging over randomness $=$ tensoring with vacuum state and taking partial trace

Formalism for expansion

Set $\mathscr{R}=\mathscr{R}_{\mathrm{S}}=\mathcal{B}\left(\mathcal{B}_{1}\left(\mathscr{H}_{\mathrm{S}}\right)\right)$ and $\mathscr{R}_{\mathrm{F}}=\mathcal{B}\left(\mathcal{B}_{1}\left(\mathscr{H}_{\mathrm{F}}\right)\right)$, and the tensor lattice

$$
\mathscr{R}_{l_{N}}=\mathscr{R}_{N} \otimes \ldots \otimes \mathscr{R}_{1},
$$

and subalgebras $\mathscr{R}_{A} \subset \mathscr{R}_{I_{N}}$ for $A \subset I_{N}$.

Set $\mathscr{R}=\mathscr{R}_{\mathrm{S}}=\mathcal{B}\left(\mathcal{B}_{1}\left(\mathscr{H}_{\mathrm{S}}\right)\right)$ and $\mathscr{R}_{\mathrm{F}}=\mathcal{B}\left(\mathcal{B}_{1}\left(\mathscr{H}_{\mathrm{F}}\right)\right)$, and the tensor lattice

$$
\mathscr{R}_{I_{N}}=\mathscr{R}_{N} \otimes \ldots \otimes \mathscr{R}_{1},
$$

and subalgebras $\mathscr{R}_{A} \subset \mathscr{R}_{I_{N}}$ for $A \subset I_{N}$.
For $V=V_{\mathrm{S}} \otimes V_{\mathrm{F}}, V^{\prime}=V_{\mathrm{S}}^{\prime} \otimes V_{\mathrm{F}}^{\prime} \in \mathscr{R} \otimes \mathscr{R}_{\mathrm{F}}$, put

$$
V^{\prime} \odot V:=V_{\mathrm{S}}^{\prime} \otimes V_{\mathrm{S}} \otimes\left(V_{\mathrm{F}}^{\prime} V_{\mathrm{F}}\right) \in \mathscr{R}^{\otimes_{2}} \otimes \mathscr{R}_{\mathrm{F}}
$$

(tensor in S , product in F : think of F as space of disorder). Extend by linearity.
More generally, for $V_{\tau} \in \mathscr{R}_{\tau} \otimes \mathscr{R}_{\text {F }}$, we define

$$
V_{\tau_{m}} \odot \ldots \odot V_{\tau_{2}} \odot V_{\tau_{1}} \in \mathscr{R}_{A} \otimes \mathscr{R}_{\mathrm{F}}, \quad A=\left\{\tau_{1} \ldots, \tau_{m}\right\}
$$

Set $\mathscr{R}=\mathscr{R}_{\mathrm{S}}=\mathcal{B}\left(\mathcal{B}_{1}\left(\mathscr{H}_{\mathrm{S}}\right)\right)$ and $\mathscr{R}_{\mathrm{F}}=\mathcal{B}\left(\mathcal{B}_{1}\left(\mathscr{H}_{\mathrm{F}}\right)\right)$, and the tensor lattice

$$
\mathscr{R}_{I_{N}}=\mathscr{R}_{N} \otimes \ldots \otimes \mathscr{R}_{1},
$$

and subalgebras $\mathscr{R}_{A} \subset \mathscr{R}_{I_{N}}$ for $A \subset I_{N}$.
For $V=V_{\mathrm{S}} \otimes V_{\mathrm{F}}, V^{\prime}=V_{\mathrm{S}}^{\prime} \otimes V_{\mathrm{F}}^{\prime} \in \mathscr{R} \otimes \mathscr{R}_{\mathrm{F}}$, put

$$
V^{\prime} \odot V:=V_{\mathrm{S}}^{\prime} \otimes V_{\mathrm{S}} \otimes\left(V_{\mathrm{F}}^{\prime} V_{\mathrm{F}}\right) \in \mathscr{R}^{\otimes_{2}} \otimes \mathscr{R}_{\mathrm{F}}
$$

(tensor in S , product in F : think of F as space of disorder). Extend by linearity.
More generally, for $V_{\tau} \in \mathscr{R}_{\tau} \otimes \mathscr{R}_{\text {F }}$, we define

$$
V_{\tau_{m}} \odot \ldots \odot V_{\tau_{2}} \odot V_{\tau_{1}} \in \mathscr{R}_{A} \otimes \mathscr{R}_{\mathrm{F}}, \quad A=\left\{\tau_{1} \ldots, \tau_{m}\right\}
$$

Recall

$$
V_{\tau_{m}} \odot \ldots \odot V_{\tau_{2}} \odot V_{\tau_{1}} \in \mathscr{R}_{A} \otimes \mathscr{R}_{F}, \quad A=\left\{\tau_{1} \ldots, \tau_{m}\right\}
$$

Expectation: \mathbb{E} : averages over disorder,i.e. removes disorder variables

$$
\mathbb{E}: \mathscr{R}_{A} \otimes \mathscr{R}_{\mathrm{F}} \rightarrow \mathscr{R}_{A}: \quad \mathbb{E}(W) \rho_{\mathrm{S}}:=\operatorname{Tr}_{\mathrm{F}} W\left(\rho_{\mathrm{S}} \otimes|\Omega\rangle\langle\Omega|\right)
$$

For example, with $|A|=1$;

$$
T:=\mathbb{E}\left(U_{\tau}\right), \quad B_{\tau}:=U_{\tau}-T
$$

Think again of $T_{\tau}, B_{\tau}, U_{\tau}$ as $\in \mathscr{R}_{I_{N}}$ acting only on \mathscr{R}_{τ}. Moments

$$
G(A):=\mathbb{E}\left(B_{\tau_{m}} \odot \ldots \odot B_{\tau_{2}} \odot B_{\tau_{1}}\right)
$$

Formalism for expansion: Correlations

Moments

$$
G_{A}:=\mathbb{E}\left(B_{\tau_{m}} \odot \ldots \odot B_{\tau_{2}} \odot B_{\tau_{1}}\right)
$$

Moments

$$
G_{A}:=\mathbb{E}\left(B_{\tau_{m}} \odot \ldots \odot B_{\tau_{2}} \odot B_{\tau_{1}}\right)
$$

Relation between moments and correlations

$$
G_{A^{\prime}}=\sum_{\text {partitions } \mathcal{A} \text { of } A^{\prime}} \prod_{A \in \mathcal{A}} G_{A}^{c}
$$

\Rightarrow defines correlations G_{A}^{c} by recursion:

$$
G_{\tau}=G_{\tau^{\prime}}^{c}, \quad G_{\left\{\tau^{\prime}, \tau\right\}}=G_{\tau^{\prime}}^{c} G_{\tau}^{c}+G_{\left\{\tau^{\prime}, \tau\right\}}^{c}
$$

hence $G_{\left\{\tau^{\prime}, \tau\right\}}^{c}=G_{\left\{\tau^{\prime}, \tau\right\}}-G_{\tau^{\prime}} G_{\tau}$

Contraction \mathcal{T}
$\mathcal{T}: \mathscr{R}_{\{k, k+1, \ldots, k+1\}} \rightarrow \mathscr{R}: \quad \mathcal{T}\left(O_{k+1} \otimes \ldots \otimes O_{k}\right)=O_{k+1} \ldots O_{k}$

$$
\begin{align*}
\mathcal{Z}_{N} & =\mathbb{E}\left(U_{N} \ldots U_{1}\right) \tag{1}\\
& =\mathbb{E}\left(\left(T_{N}+B_{N}\right) \ldots\left(T_{1}+B_{1}\right)\right) \tag{2}\\
& \sum_{\mathcal{A}} \mathcal{T}\left(\prod_{A \in \mathcal{A}} G_{A}^{c} \prod_{\tau \notin \operatorname{Supp}(\mathcal{A})} T_{\tau}\right) \tag{3}
\end{align*}
$$

(sum over admissible \mathcal{A}). Note that algebra is identical to yesterday.

Facts about T and G

What was important yesterday?
(1) T has gap $\ell^{1}(\Omega) \rightarrow \ell^{1}(\Omega)$
(2) G_{A}^{C} satisfy some 'KP' criterion.

What was important yesterday?

(1) T has gap $\ell^{1}(\Omega) \rightarrow \ell^{1}(\Omega)$
(2) G_{A}^{C} satisfy some 'KP' criterion.

These two statements will hold without change
(1) T has simple eigenvalue 1 and gap as operator $\mathcal{B}_{1}\left(\mathcal{H}_{\mathrm{S}}\right) \rightarrow \mathcal{B}_{1}\left(\mathcal{H}_{\mathrm{S}}\right)$.
(2) Same KP condition

$$
\sum_{A \ni \tau} \epsilon^{-(|A|-1)}\left\|G_{A}^{c}\right\| d(A)^{\alpha} \leq 1, \quad \text { for some } \epsilon \ll 1
$$

where

- Decay parameter α given by $\int \mathrm{d} t \zeta(t)(1+t)^{\alpha}<\infty$.
- Small parameter $\epsilon \sim|\lambda|^{2 \alpha}$.

Now: Outline how to get these properties

Gap for T

This is a consequence of
Theorem on master equation (Davies, 74)
Assume that $\zeta(t) \in L^{1}\left(\mathbb{R}_{+}\right)$, then

$$
\operatorname{Tr}_{\mathrm{F}} U_{\tau}\left(\rho_{\mathrm{S}} \otimes|\Omega\rangle\langle\Omega|\right) \quad \underset{\lambda \rightarrow 0}{\longrightarrow} \quad \mathrm{e}^{\mathcal{L}} \rho_{\mathrm{S}}
$$

The left-hand side is T, so we get

$$
T-\mathrm{e}^{\mathcal{L}} \text { is small for small } \lambda
$$

If \mathcal{L} generates ergodic semigroup, then $e^{\mathcal{L}}$ has a gap. Spectral perturbation theory of isolated e.v. then gives

$$
T \text { has gap for small } \lambda
$$

Duhamel expansion $L=L_{0}+\lambda L_{\mathrm{SF}}$:

$$
\begin{aligned}
\mathcal{Z}_{N} \rho_{\mathrm{S}}= & \sum_{m=0}^{\infty}(-\mathrm{i} \lambda)^{m} \int_{0<t_{1}<\ldots<t_{m}<\left(N / \lambda^{2}\right)} \mathrm{d} \underline{t} \\
& \operatorname{Tr}_{\mathrm{F}}\left(L_{\mathrm{SF}}\left(t_{m}\right) \ldots L_{\mathrm{SF}}\left(t_{2}\right) L_{\mathrm{SF}}\left(t_{1}\right) \rho_{\mathrm{S}} \otimes|\Omega\rangle\langle\Omega|\right)
\end{aligned}
$$

with $L_{\mathrm{SF}}\left(t_{i}\right)=\mathrm{e}^{-\mathrm{i} t_{i} L_{0}} L_{\mathrm{SF}} \mathrm{e}^{\mathrm{i} t_{i} L_{0}}$. Use Wick theorem and group terms into

$$
\mathcal{Z}_{N}=\int \mathrm{d} \underline{u} \mathrm{~d} \underline{v} \mathcal{K}(\underline{u}, \underline{v})
$$

- $\underline{u}=\left(u_{1}, \ldots, u_{m}\right), \underline{v}=\left(v_{1}, \ldots, v_{m}\right)$ such that $u_{i} \leq u_{i+1}$ and $u_{i} \leq v_{i}$
- Bound $\|\mathcal{K}(\underline{u}, \underline{v})\| \leq \prod_{j} C \lambda^{2}\left|\zeta\left(v_{j}-u_{j}\right)\right|$

Link between \mathcal{K} and G_{A}^{c}

$$
\mathcal{Z}_{N}=\int \mathrm{d} \underline{d} \mathrm{~d} \underline{v} \mathcal{K}(\underline{u}, \underline{v})
$$

$$
(\underline{u}, \underline{v}) \Rightarrow \text { Partition } \mathcal{A}^{\prime} \text { of } I_{N} \Rightarrow \mathcal{A}^{\prime}=(\mathcal{A}, \underbrace{\{\tau\},\left\{\tau^{\prime}\right\}, \ldots\left\{\tau^{\prime \prime \prime \prime}\right\}}_{\text {singletons }})
$$

so

$$
(\underline{u}, \underline{v}) \quad \Rightarrow \quad \text { Admissible } \mathcal{A}(\underline{u}, \underline{v})
$$

Then

$$
\int_{\mathcal{A}(\underline{u}, \underline{v})=\mathcal{A}} \mathrm{d} \underline{\mathrm{u}} \mathrm{~d} \underline{\mathcal{L}}(\underline{u}, \underline{v})=\mathcal{T}\left(\prod_{\mathcal{A} \in \mathcal{A}} G_{A}^{c} \prod_{\tau \notin \operatorname{Supp} \mathcal{A}} T_{\tau}\right)
$$

$$
\left\|G_{A}^{c}\right\| \leq \int_{\mathcal{A}(\underline{u}, v)=\{A\}} \mathrm{d} \underline{u} \mathrm{~d} \underline{v}\|\mathcal{K}(\underline{u}, \underline{v})\|
$$

Estimate this integral

- There has to be set of pairs $\left(u_{i}, v_{i}\right), i \in J_{1} \subset\{1, \ldots, m\}$ that makes the necessary links. \Rightarrow smallness comes from those
- Ohter pairs $\left(u_{i}, v_{i}\right), i \in J_{2}$ can repeat these links or stay within one block. \Rightarrow no smallness from them, but have to control sum over them and bound it by $C^{|A|}$ (which then turns out be harmless since we get in a natural way $\epsilon^{|A|-1}$)
Usually, in Feynman diagrams, one cannot control sum over all (absolute values of) diagrams (i.e. sets of pairs). The fact that we can do it in this model is what makes the analysis so easy!

Results in the time-dependent approach

The following results follow with only trivial changes in the setup: ,for example, conjugating the Hamiltonian

$$
H \rightarrow \mathrm{e}^{\kappa N} \mathrm{He}^{-\kappa N}, \quad \kappa \in \mathbb{R}, \quad \text { (obtain number bound) }
$$

and under the same assumptions:

- Mixing at positive T and in non-equilibrium setup.
- Statistics (CLT,LDP) of energy transport.
(Hence, situations with non-self adjoints Liouvillians included: seems to have robustness of spectral PT for isolated e.v.)

Results in the time-dependent approach

The following results follow with only trivial changes in the setup: ,for example, conjugating the Hamiltonian

$$
H \rightarrow \mathrm{e}^{\kappa N} \mathrm{He}^{-\kappa N}, \quad \kappa \in \mathbb{R}, \quad \text { (obtain number bound) }
$$

and under the same assumptions:

- Mixing at positive T and in non-equilibrium setup.
- Statistics (CLT,LDP) of energy transport.
(Hence, situations with non-self adjoints Liouvillians included: seems to have robustness of spectral PT for isolated e.v.)

If one assumes $\int \mathrm{d} t t^{1+\delta} \zeta(t)<C$, then get number bound:
Technique is the same, but in the resulting polymer model, one has to integrate all polymers crossing a given point, which requires one power more than integrability.

Results in the time-dependent approach

The following results follow with only trivial changes in the setup: ,for example, conjugating the Hamiltonian

$$
H \rightarrow \mathrm{e}^{\kappa N} \mathrm{He}^{-\kappa N}, \quad \kappa \in \mathbb{R}, \quad \text { (obtain number bound) }
$$

and under the same assumptions:

- Mixing at positive T and in non-equilibrium setup.
- Statistics (CLT,LDP) of energy transport.
(Hence, situations with non-self adjoints Liouvillians included: seems to have robustness of spectral PT for isolated e.v.)

If one assumes $\int \mathrm{d} t t^{1+\delta} \zeta(t)<C$, then get number bound:
Technique is the same, but in the resulting polymer model, one has to integrate all polymers crossing a given point, which requires one power more than integrability.

With more effort, control photon numbers in localized spatial regions: Expansion gets messy but idea is identical. (Asymptotic completeness then follows from this)

If one considers a model with ionization threshold, technique breaks down completely: diagrams in infinite space instead of finite spin space cannot be controlled.
\Rightarrow Natural to try initial state with energy well-below ionization threshold, but expansion in time does not go well with energy localization.

Problems in the time-dependent approach

If one considers a model with ionization threshold, technique breaks down completely: diagrams in infinite space instead of finite spin space cannot be controlled.
\Rightarrow Natural to try initial state with energy well-below ionization threshold, but expansion in time does not go well with energy localization.

On the other hand, if the propagation velocity of the particle is small of order λ^{2}, and space is discrete (lattice), it is again OK and this led to a proof of diffusion at positive T : Only small space portion needs to be considered

Problems in the time-dependent approach

If one considers a model with ionization threshold, technique breaks down completely: diagrams in infinite space instead of finite spin space cannot be controlled.
\Rightarrow Natural to try initial state with energy well-below ionization threshold, but expansion in time does not go well with energy localization.

On the other hand, if the propagation velocity of the particle is small of order λ^{2}, and space is discrete (lattice), it is again OK and this led to a proof of diffusion at positive T : Only small space portion needs to be considered
The model at $T=0$ with velocity $\propto \lambda^{2}$ (e.g. because of large mass) also fails because the Lindbladian here is not ergodic. This is not a technical problem; in this regime, one does not have dissipative phenomena.

Problems in the time-dependent approach

If one considers a model with ionization threshold, technique breaks down completely: diagrams in infinite space instead of finite spin space cannot be controlled.
\Rightarrow Natural to try initial state with energy well-below ionization threshold, but expansion in time does not go well with energy localization.

On the other hand, if the propagation velocity of the particle is small of order λ^{2}, and space is discrete (lattice), it is again OK and this led to a proof of diffusion at positive T : Only small space portion needs to be considered
The model at $T=0$ with velocity $\propto \lambda^{2}$ (e.g. because of large mass) also fails because the Lindbladian here is not ergodic. This is not a technical problem; in this regime, one does not have dissipative phenomena.

The technique is blind for global spectral information: e.g. cannot take advantage of the presense of photon mass to prove anything at all.

