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Plan of talk

Goal

Quantum systems of type: Small system + bath (or field). Can we
derive microscopically thermalization, scattering, etc. ?

1 Cluster expansion for polymer model

2 Weakly perturbed Markov chain as a non-commutative
polymer model.

3 From noncommutative to ordinary polymer model.

4 The quantum setup: why is it a weakly perturbed Markov
chain?



Polymer models

Polymer Model on IN = {1, 2, . . . ,N}

ZN =
∑
A∈2IN

χ(A admissible)
∏
A∈A

%(A)

Polymer weights %(A) ∈ C.

Adjacency relation on 2IN : A ∼ A′ ⇔ A ∩ A′ 6= ∅
A admissible means: ∀A 6= A′ ∈ A : A � A′

Examples: Product and Weakly coupled systems

’Product’ %(A) = χ(A = {τ})z(τ) ⇒ ZN =
∏
τ (1 + z(τ)).

’Weak coupling’ %(A) = O(ε) for |A| = 2 ⇒ ZN =??

Good type of expansion of ’weak’ around ’product’ turns out:

FN := logZN =
∑
τ

log(1 + z(τ)) + NO(ε), N →∞
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Relation to correlation function

In case ZN = 1, can interpret (if not, just normalize)

P(A) = χ(A admissible)
∏
A∈A

%(A), ZN = 1

(prob. of config. of ’real’ polymers, interacting via exclusion)

Correlation function between points τ, τ ′

Let SuppA = ∪A∈AA.

ν(τ, τ ′) := P(τ, τ ′ ∈ SuppA)− P(τ ∈ SuppA)P(τ ′ ∈ SuppA)

Does it decay: ν(τ, τ ′)→ 0 as |τ − τ ′| → ∞?

For product system: Yes! (Probs are products)
For weak coupling: Yes! (|ν(τ, τ ′)| ≤ (Cε)|τ−τ

′|)

This is known in STAT-MECH as ’high-temperature behaviour’.
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Relation to correlation function

Correlation

ν(τ, τ ′) := P(τ, τ ′ ∈ SuppA)− P(τ ∈ SuppA)P(τ ′ ∈ SuppA)

satisfies
ν(τ, τ ′) := ∂κτ ′∂κτ logZ (κ)

∣∣
κ=0

with κ = (κτ )τ∈IN

Z (κ) = E(e
∑
τ κτχ(τ∈SuppA))

=
∑
A

∏
A∈A

%κA(A), %κA(A) = %(A)e
∑
τ∈A κτ

Cluster Expansion

A way to write a FN = logZN as a sum of local terms

⇒ No (or only very small) terms that depend on both κτ , κτ ′ .
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Cluster Expansion: Naive approach

Try to expand logarithm! Take ’weakly coupled’ model:

%(A) =

{
ε A = {τ, τ + 1}
0 otherwise

Truncate at order ε2

Z = 1 +
∑
A

%(A) +
∑
A,A′

χ(A � A′)%(A)%(A′) +O(ε4)

Use log(1 + x) = 1 + x − x2 +O(x3):

logZ = 1 +
∑
A

%(A)−
∑
A,A′

%(A)%(A′) +
∑
A,A′

χ(A � A′)%(A)%(A′) +O(ε4)

= 1 +
∑
A

%(A)−
∑
A,A′

χ(A ∼ A′)%(A)%(A′)) +O(ε4)



Cluster Expansion: Naive approach

logZ = 1 +
∑
A

%(A)−
∑
A,A′

χ(A ∼ A′)%(A)%(A′)︸ ︷︷ ︸
=0 if diam(A∪A′)>3

+O(ε4)

This means that logZ is sum of local terms, depending on at most
3 neighboring points. ⇒ Sucess! (Locality ⇒ Correlation decay)
Of course, this is nonsense because O(ε4) is rather O(N2ε4).
Yet, the expansion turns out to be correct for small ε!
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Cluster Expansion: A theorem

Assumption on %: ‘close to independence’

sup
τ

∑
A3τ

ea|A||%(A)| ≤ a, (Kotecky.Preiss criterion)

Result

Provided KP holds,

logZ =
∑
A

%T (A), with
∑
A3τ
|%T (A)| ≤ a

with %T (A) function of %(A′),A′ ⊂ A

∑
A3τ |%T (A)| ≤ a gives some locality (summability) in FN

Most powerful if a can be chosen independent of N.

Note that exp. decay in |A| for %(A) is required.

Polymers A = {τ} can always be scaled out, not covered here.
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Correlation decay from cluster expansion
Assume that KP-criterion holds in a stronger way

Assumption on %: encode decay (d(A) = diam(A))

sup
τ

∑
A3τ

ea|A||%α(A)| ≤ a, %α(A) = %(A)d(A)α

Results with and without α

logZ =
∑
A

%T (A), with
∑
A3τ

d(A)α|%T (A)| ≤ a

∂τκ∂τ ′κ logZ =
∑

A:{τ,τ ′}⊂A

∂τκ∂τ ′κ%
T (A)

= |τ − τ ′|−α
∑

A:{τ,τ ′}⊂A

|∂τκ∂τ ′κ%
T
α (A)|

∼ |τ − τ ′|−α a. (if KP uniform in κ ∈ D ⊂ C.)



Markov chains

Let Ω be a finite set (|Ω| = d) and U a transition kernel on `1(Ω),
i.e.

U is an d × d- matrix with entries U(s, s ′) ≥ 0

Conservation of probability. U∗1 = 1.

Interpretation: If ρ ∈ `1(Ω) is a pdf. on Ω then Ukρ is the pdf.
after k time-steps.

U has spectral gap ⇒ chain exponentially ergodic

If σ(U) consists of simple eigenvalue 1 and all other eigenvalues µ
have |µ| < 1− g , then

Uk − |ρ∗〉〈1| = O((1− g)k), k →∞

for some pdf. ρ∗ (= unique invariant pdf.)



Weakly random Markov chains

Let transition kernels U = Uτ depend on timestep τ through some
randomness ω, such that

Uτ for different τ are ‘weakly dependent’ (formalize later)

Joint law Uτ is time-translation invariant.

T = Eω(Uτ ) (also transition kernel) has a gap.

Interpretation: Still UN . . .U1 is transition kernel.

Chain still (exponentially) ergodic?

For example; Consider the ‘average total transition map’

ZN := Eω(UN . . .U1)
?→ |ρ̃∗〉〈1|

Don’t expect exp. decay unless correlations Uτ decay exp.

∃ prob. solutions, but want brutal method (later: prob →
C-numbers)



Cluster expansion would help if applicable

Assume that we obtain (v ,w ∈ `1(Ω))

〈v |ZN |w〉 =
∑
A

∏
A∈A

%(A) = e
∑

A %
T (A)

where

ρ(A) (and hence %(A)) depend on w only if 1 ∈ A and on v
only if N ∈ A.

some decay:
∑

A3τ |%T (A)|d(A)α ≤ a.

Then philosphy on correlation decay applies ⇒ Interpret v as
observable, then dependence on w decays:

‖|ρ̃∗〉〈1| − ZN‖ ≤ CN−α, N →∞

for some pdf. ρ̃∗.



Expansion of ZN

Set
Uτ = T + Bτ , T := E(Uτ )

Bτ is small ⇒ expand in powers of B.

ZN = E(UN . . .U1)

=
∑
A⊂IN

E(. . .Bτ2 . . .Bτ1 . . .︸ ︷︷ ︸
T whenever ...

), A = {τ1, τ2, . . . , τm})

Need more formalism to write this:



Formalism: Tensor Lattice (but all is finite!)

Let
R := B(`1(Ω)), (space of d × d-matrices)

and
RIN = ⊗NR ∼ RN ⊗ . . .⊗R2 ⊗R1

with subalgebras RA for A ⊂ IN . Contraction T

T : R{k,k+1,...,k+l} → R : T (Ok+l ⊗ . . .⊗ Ok) = Ok+l . . .Ok

and extend by linearity. Redefine

Bτ
new
= 1 . . . 1⊗ Bτ ⊗ 1 . . . 1, Tτ

new
= 1 . . . 1⊗ Tτ ⊗ 1 . . . 1

Then Bτ ,Tτ ∈ RIN :

B3TB1︸ ︷︷ ︸
previously

⇒ T (T2B3B1)︸ ︷︷ ︸
now

(= T (B1B3T2))



Use of formalism

ZN = E(UN . . .U1)

=
∑
A⊂IN

ET

[
(
∏
τ∈Ac

Tτ )(
∏
τ∈A

Bτ )

]

=
∑
A⊂IN

T E

[
(
∏
τ∈Ac

Tτ )(
∏
τ∈A

Bτ )

]

=
∑
A⊂IN

T

[
(
∏
τ∈Ac

Tτ )E(
∏
τ∈A

Bτ )

]

=:
∑
A⊂IN

T

[
(
∏
τ∈Ac

Tτ )GA

]

Ways to write operations on big matrices: T selects some entries,
E averages all entries. GA is a matrix of moments.



Formalism: Lattice systems

ZN =:
∑
A⊂IN

T

[
(
∏
τ∈Ac

Tτ )GA

]

Not very meaningful. GA need not be small when diam(A) is large.
We need correlations G c

A instead of moments GA!

Relation between moments and correlations

GA′ =
∑

partitions A ofA′

∏
A∈A

G c
A

⇒ defines correlations G c
A by recursion:

Gτ = G c
τ ′ , G{τ ′,τ} = G c

τ ′G
c
τ + G c

{τ ′,τ}

hence G c
{τ ′,τ} = G{τ ′,τ} − Gτ ′Gτ
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Expand ZN in G c
A

ZN =:
∑
A′⊂IN

T

(
∏

τ∈(A′)c
Tτ )GA′


=:

∑
A′⊂IN

∑
partitions A ofA′

T

(
∏

τ∈(A′)c
Tτ )

∏
A∈A

G c
A


=:

∑
A admissible

T

(
∏

τ 6∈Supp(A)

Tτ )
∏
A∈A

G c
A


Has the same form as polymer model, with weights %̃(A) = G c

A,
but matrix-valued. A natural extra-severe ’KP’-condition is∑

A3τ
ε−(|A|−1)‖G c

A‖d(A)α ≤ 1, for some ε� 1.

⇒ What to do: 6 ∃ noncommutative cluster expansion



Graphical rep: Noncommutative polymers

A1

A3

A2 A4

τ
1 2 . . .3

: τ ∈ SuppA , : τ 6∈ SuppA.

Operator weight (Contribution to ZN): each gives T , each
connected component of gives G c

A.

Failure: Weight is not a product of numbers depending only on A

〈v |ZN |w〉 6=
∑
A

∏
A∈A

f (A)



Way out: Use gap of T

Gap of T

Ergodicity assumption: T = RT + R⊥T with R = RT = |ρ∗〉〈1|
one-dimensional projection and ‖(R⊥T )k‖ ≤ C (1− g)k .

Insert in expansion:

ZN =
∑
A,J
T

∏
A∈A

G c
A

∏
τ∈SuppJ

(R⊥T )τ
∏

τ∈IN\(SuppJ∪SuppA)

(R)τ

 .
A is admissible collection, J is collection of intervals

SuppA ∩ SuppJ = ∅.
R decouples: ROmR . . .RO2RO1R = R

∏
j Tr(ROj) ⇒

Product of operators turns into product of numbers

Price to pay: new polymers: intervals in J , but their weight
decays exp. : ‖(R⊥T )k‖ ≤ C (1− g)k



Way out: Use gap of T
First split

T = TR + TR⊥ = = +

then resum new and old polymers

= + .

A1 A3

A2

A4

A′1
A′2

Figure: In the upper picture, we split T = TR + TR⊥ for all τ 6∈ ∪4
i=1Ai and

we choose one of the two terms for each τ . In the example displayed, we
choose TR⊥ for τ1,2,3 = 14, 15, 21 (those that correspond to the triple lines in
the upper picture), and TR for all other τ ’s. We fuse blocks marked with TR⊥
with a polymer whenever they are adjacent to that polymer and we fuse two
polymers whenever they are adjacent (possibly after having been fused with
TR⊥-blocks). In the example above, A′1 = A1 ∪A2,A

′
2 = A3 ∪A4 ∪ {τ1, τ2, τ3}.



New polymers

Expansion for
〈v |ZN |w〉
〈v |ρ∗〉〈1|w〉

=
∑
A′

∏
A∈A′

%(A)

with, for bulk A (1 6∈ A,N 6∈ A)

%(A)R =
∑
A,J

(A,J )connected

T

[∏
A∈A

G c
A

∏
τ∈J

(R⊥T )τ
∏
τ∈∂A

Rτ

]

∂A = {τ ∈ Ac : dist(τ,A) = 1}
Note: SuppA ∪ SuppJ is completely sandwiched between R

(A,J ) connected means: set of sets A ∈ A and intervals
J ∈ J are connected by the adjacency relation

S ∼ S ′ ⇔ dist(S ,S ′) = 1

.



New polymers satisfy KP

The A with weight G c
A satisfy∑

A3τ
ε−(|A|−1)‖G c

A‖d(A)α ≤ 1, for some ε� 1,

i.e. they have d(A)−α decay in diameter and ε|A| decay in size.

The intervals J ∈ J have weight (R⊥T )|J|: exponential decay
in diameter and size, but decay rate O(1), not ε.

New KP: ∑
A3τ

ea|A||%(A)|d(A)α ≤ Cε

Polymers % inherit bad properties from their parents:

d(A)−α decay in diameter.

e−a|A| decay in size (decay rate O(1))

However, still at least one ε because every new polymer is
made out of at least one G c

A (this is a lie)



We get the result

The new KP: ∑
A3τ

ea|A||%(A)|d(A)α ≤ Cε

is indeed of the form∑
A3τ

ea|A||%(A)|d(A)α ≤ a

so machinery applies and we get the result:

‖|ρ̃∗〉〈1| − ZN‖ ≤ CN−α, N →∞

for some pdf. ρ̃∗. Moreover,

‖ρ̃∗ − ρ∗‖ = O(ε)



’Generalized’ Spin-boson model

Hilbert space H = HS ⊗HF

HS = Cm (atom space) and HF = Γ(L2(R3)) (photon field).

Hamiltonian: HS : diag(E1.E2, . . . ,Em) and weak coupling.

H = HS ⊗ 1 + 1⊗ HF + λHSF, 0 < |λ| < 1

Free photon Hamiltonian HF =
∫
dq|q|a∗qaq.

Atom-photon coupling: D = D∗ ∈ HS

HSF = D ⊗
∫

dq (φ(q)⊗ aq + φ(q)⊗ a∗q)

with form factor φ(q) ∼ |q|−1+α/2+δ as q → 0.

If α > 0, H bounded below. If α > 1, H has ground state.

Wojciech De Roeck Institute of Theoretical Physics, Heidelberg Time-dependent approach to irreversibility and scattering in open quantum systems



Result

Fermi Golden Rule condition (explained later)

Correlation decay (explained later)∫
dt|ζ(t)|(1 + |t|)α <∞, ζ(t) :=

∫
dq|φ(q)|2ei|q|t

Write 〈A〉t = Tr ρe−itHAeitH with ρ density matrix and A
observable.

Approach to steady state (DR, Kupiainen)

Assume Fermi Golden Rule and Correlation decay with α > 0, then

|〈A〉t − 〈A〉∞| ≤ C (1 + |t|)−α, for |λ| � 1

for sufficiently local A and ρ0. (Example, ρ0 = ρS ⊗ |Ω〉〈Ω| and
A = AS ⊗ 1). State 〈A〉∞ equals 〈Ψgs ,AΨgs〉 whenever Ψgs exists.

Wojciech De Roeck Institute of Theoretical Physics, Heidelberg Time-dependent approach to irreversibility and scattering in open quantum systems



Some easier questions: Markovian limits

Let ρS,t = TrF e−itHρ0e
itH and assume all eigenvalues of HS simple.

General Idea (Van Hove ’50, Davies ’74)

lim
t=λ−2τ,λ→0

ρS,t = eτLρS,0

with L a Lindbladian (Quantum Markov generator). Limit
corresponds to tFcorrelations � tdissipation ∼ λ−2 (phonons are like
white noise).

Write ρS,0 = diag(µ1(0), . . . , µm(0)) + ρoff-diag,0, then

eτLρS,0 = diag(µ1(τ), . . . , µm(τ)) + ρoff-diag,τ ,

where µ(τ) is a jump process on σ(HS). Jumps e → e ′, ∼
emission of photon with |q| = e − e ′.
Furthermore, Decoherence: ‖ρoff-diag,τ‖ ∼ e−cτ

Wojciech De Roeck Institute of Theoretical Physics, Heidelberg Time-dependent approach to irreversibility and scattering in open quantum systems



Character of jump process

The jump rate j(e → e ′) is calculated from second-order
perturbation theory:

j(e → e ′) = 2π|〈e|D|e ′〉|2
∫

dqδ(e − e ′ − |q|)|φ(q)|2

Iff directed graph with edges (e ∼ e ′)⇔ j(e → e ′) 6= 0 is
connected, then the jump process converges to the state
egs = min{e ∈ spHS} exponentially fast (Perron-Frobenius
theorem): ⇒ atom cascades down to ground state. This
(together with uniqueness of egs) is our Fermi Golden Rule
condition. In fact, only real necessity: L has a gap!

Wojciech De Roeck Institute of Theoretical Physics, Heidelberg Time-dependent approach to irreversibility and scattering in open quantum systems



Non-Markovian corrections

Since the photon field is not white noise, the true evolution is not
Markovian:

Correlation function ζ(t) := 〈Ω,Φ(t)Φ(0)Ω〉 =

∫
dq|φ(q)|2ei|q|t

where Φ(t) :=
∫
dqφ(q)eit|q|aq + h.c . .

ζ(t) cannot decay exponentially. The decay is
ζ(t) = O(t−(1+α)).

In general, one should not expect time-correlation of
observables to decay faster than ζ(t). However, in the
Markovian approximation, atom observables decorrelate
exponentially. (Long-standing confusion in physics literature:
Adler-Wainwright, Slow decorrelation in gases causes
anomalous diffusion in d = 1, 2)

Wojciech De Roeck Institute of Theoretical Physics, Heidelberg Time-dependent approach to irreversibility and scattering in open quantum systems



Reduced evolution ZN

Yesterday: Study ZN = E(UN . . .U1).
Now: essentially idem (reduced evolution)

ZN : B1(HS)→ B1(HS), ZNρS := TrF e−i(N/λ2)L(ρS ⊗ |Ω〉〈Ω|)

where L = [H, ·] and L0 = [HS + HF, ·]. Set

Uτ = ei(τ/λ2)L0e−i(1/λ2)Le−i((τ−1)/λ2)L0

then (with ρ0 = ρS ⊗ |Ω〉〈Ω|)

ZNρS = TrF ei(N/λ2)L0e−i(N/λ2)Lρ0 = TrF(UN . . .U2U1ρ0)

=: E(UN . . .U2U1)ρS

Hence; averaging over randomness = tensoring with vacuum state
and taking partial trace



Reduced evolution ZN
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Formalism for expansion

Set R = RS = B(B1(HS)) and RF = B(B1(HF)), and the tensor
lattice

RIN = RN ⊗ . . .⊗R1,

and subalgebras RA ⊂ RIN for A ⊂ IN .

For V = VS ⊗ VF,V
′ = V ′S ⊗ V ′F ∈ R ⊗RF, put

V ′ � V := V ′S ⊗ VS ⊗ (V ′FVF) ∈ R⊗2 ⊗RF

(tensor in S, product in F: think of F as space of disorder). Extend
by linearity.

More generally, for Vτ ∈ Rτ ⊗RF, we define

Vτm � . . .� Vτ2 � Vτ1 ∈ RA ⊗RF, A = {τ1 . . . , τm}
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Formalism for expansion

Recall

Vτm � . . .� Vτ2 � Vτ1 ∈ RA ⊗RF, A = {τ1 . . . , τm}

Expectation: E: averages over disorder,i.e. removes disorder
variables

E : RA ⊗RF → RA : E(W )ρS := TrF W (ρS ⊗ |Ω〉〈Ω|)

For example, with |A| = 1;

T := E(Uτ ), Bτ := Uτ − T

Think again of Tτ ,Bτ ,Uτ as ∈ RIN acting only on Rτ . Moments

G (A) := E(Bτm � . . .� Bτ2 � Bτ1)



Formalism for expansion: Correlations

Moments
GA := E(Bτm � . . .� Bτ2 � Bτ1)

Relation between moments and correlations

GA′ =
∑

partitions A ofA′

∏
A∈A

G c
A

⇒ defines correlations G c
A by recursion:

Gτ = G c
τ ′ , G{τ ′,τ} = G c

τ ′G
c
τ + G c

{τ ′,τ}

hence G c
{τ ′,τ} = G{τ ′,τ} − Gτ ′Gτ
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Final expansion

Contraction T

T : R{k,k+1,...,k+l} → R : T (Ok+l ⊗ . . .⊗ Ok) = Ok+l . . .Ok

ZN = E(UN . . .U1) (1)

= E((TN + BN) . . . (T1 + B1)) (2)∑
A
T (
∏
A∈A

G c
A

∏
τ 6∈Supp(A)

Tτ ) (3)

(sum over admissible A). Note that algebra is identical to
yesterday.



Facts about T and G

What was important yesterday?

1 T has gap `1(Ω)→ `1(Ω)

2 G c
A satisfy some ’KP’ criterion.

These two statements will hold without change

1 T has simple eigenvalue 1 and gap as operator
B1(HS)→ B1(HS).

2 Same KP condition∑
A3τ

ε−(|A|−1)‖G c
A‖d(A)α ≤ 1, for some ε� 1,

where

Decay parameter α given by
∫
dtζ(t)(1 + t)α <∞.

Small parameter ε ∼ |λ|2α.

Now: Outline how to get these properties
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Gap for T

This is a consequence of

Theorem on master equation (Davies, 74)

Assume that ζ(t) ∈ L1(R+), then

TrF Uτ (ρS ⊗ |Ω〉〈Ω|) −→
λ→0

eLρS

The left-hand side is T , so we get

T − eL is small for small λ

If L generates ergodic semigroup, then eL has a gap. Spectral
perturbation theory of isolated e.v. then gives

T has gap for small λ



Expansion

Duhamel expansion L = L0 + λLSF:

ZNρS =
∞∑

m=0

(−iλ)m
∫

0<t1<...<tm<(N/λ2)

dt

TrF(LSF(tm) . . . LSF(t2)LSF(t1)ρS ⊗ |Ω〉〈Ω|)

with LSF(ti ) = e−itiL0LSFe
itiL0 . Use Wick theorem and group terms

into

ZN =

∫
dudv K(u, v)

u = (u1, . . . , um), v = (v1, . . . , vm) such that ui ≤ ui+1 and
ui ≤ vi

Bound ‖K(u, v)‖ ≤
∏

j Cλ
2|ζ(vj − uj)|



Link between K and G c
A

ZN =

∫
dudv K(u, v)

(u, v)⇒ Partition A′ of IN ⇒ A′ = (A, {τ}, {τ ′}, . . . {τ ′′′′}︸ ︷︷ ︸
singletons

)

so
(u, v) ⇒ AdmissibleA(u, v)

Then ∫
A(u,v)=A

dudv K(u, v) = T (
∏
A∈A

G c
A

∏
τ 6∈SuppA

Tτ )



Bound on G c
A

‖G c
A‖ ≤

∫
A(u,v)={A}

dudv ‖K(u, v)‖

Estimate this integral

There has to be set of pairs (ui , vi ), i ∈ J1 ⊂ {1, . . . ,m} that
makes the necessary links. ⇒ smallness comes from those

Ohter pairs (ui , vi ), i ∈ J2 can repeat these links or stay within
one block. ⇒ no smallness from them, but have to control
sum over them and bound it by C |A| (which then turns out be
harmless since we get in a natural way ε|A|−1)

Usually, in Feynman diagrams, one cannot control sum over all
(absolute values of) diagrams (i.e. sets of pairs). The fact that we
can do it in this model is what makes the analysis so easy!



Results in the time-dependent approach

The following results follow with only trivial changes in the setup:
,for example, conjugating the Hamiltonian

H → eκNHe−κN , κ ∈ R, (obtain number bound)

and under the same assumptions:

Mixing at positive T and in non-equilibrium setup.

Statistics (CLT,LDP) of energy transport.

(Hence, situations with non-self adjoints Liouvillians included:
seems to have robustness of spectral PT for isolated e.v.)

If one assumes
∫
dt t1+δζ(t) < C , then get number bound:

Technique is the same, but in the resulting polymer model, one has
to integrate all polymers crossing a given point, which requires one
power more than integrability.

With more effort, control photon numbers in localized spatial
regions: Expansion gets messy but idea is identical. (Asymptotic
completeness then follows from this)
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Problems in the time-dependent approach

If one considers a model with ionization threshold, technique
breaks down completely: diagrams in infinite space instead of finite
spin space cannot be controlled.
⇒ Natural to try initial state with energy well-below ionization
threshold, but expansion in time does not go well with energy
localization.

On the other hand, if the propagation velocity of the particle is
small of order λ2, and space is discrete (lattice), it is again OK and
this led to a proof of diffusion at positive T : Only small space
portion needs to be considered

The model at T = 0 with velocity ∝ λ2 (e.g. because of large
mass) also fails because the Lindbladian here is not ergodic. This
is not a technical problem; in this regime, one does not have
dissipative phenomena.

The technique is blind for global spectral information: e.g. cannot
take advantage of the presense of photon mass to prove anything
at all.
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