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Abstract

In this paper, we study the long wave approximation for quasilinear symmetric hyper-
bolic systems. Using the technics developped by Joly-Métivier-Rauch for nonlinear
geometrical optics, we prove that under suitable assumptions the long wave limit is
described by KdV-type systems. The error estimate if the system is coupled appears
to be better. We apply formally our technics to Euler equations with free surface and
Euler-Poisson systems. This leads to new systems of KdV-type.

Résumé

Dans cet article, nous étudions l’approximation de type ondes longues pour des
systèmes hyperboliques quasi-linéaires symétriques. En utilisant des techniques dé-
veloppées par Joly-Métivier-Rauch pour l’optique géométrique non linéaire, nous mon-
trons (sous des hypothèses convenables) que la limite onde longue est décrite par des
systèmes de type KdV. L’estimation d’erreur est d’autant meilleure que l’on conserve
les couplages dans ces systèmes. Nous appliquons ensuite formellement notre tech-
nique aux équations d’Euler avec surface libre et au système d’Euler-Poisson. Cela
conduit à de nouveaux systèmes de type KdV.

1 Introduction

1.1 Setting up the problem

This paper is mainly concerned with the exact derivation of Korteweg-de Vries type
systems in one dimensional space, starting from generic quasilinear and symmetric
hyperbolic systems. The Korteweg-de Vries systems are considered as asymptotical
equations as the amplitude of the wave is considered small whereas the wavelength is
large. The KdV equations occur in several physical situations such as plasma physics
[26], meteorology and more importantly in the shallow water-waves context, which
is the historical background in which Korteweg and de Vries obtained their result in
1895 [21].

1



As we said above, we present a systematic study of long wave approximation. More
precisely, one considers:

∂tu
ǫ + A(∂x)uǫ +

Euǫ

ǫ
= B(uǫ)∂xuǫ (1.1)

The function uǫ(x, t) is a IRN -valued function, where x lies in IR and t is the time
variable. The nonlinearity is taken to be as simple as possible in the quasi-linear
context. ∀u ∈ IRN , B(u) is a symmetric matrix and u 7→ B(u) is linear so that the
system has a quadratic nonlinearity. We assume that the N×N matrix A is symmetric
and real and that E is a N × N skew-symmetric matrix. To finish, this description,
let us suppose that E is non invertible in order to derive non trivial approximate
solution.

Our aim is to derive from the hyperbolic equation (1.1) KdV systems. In order to
do so, we keep in mind that we need our approximate solutions to approach small
amplitude solutions with large wavelength and be governed by a system where non-
linear and dispersive effects exist at the same long time scale. There are two types
of KdV systems: the coupled systems and the uncoupled ones which are nothing else
but a pair of independent KdV equations each one of which describing a propagation
in opposite directions. One of the motivation of this study is to establish a distinc-
tion between these two models as we prove that they do not approximate the exact
solution of our problem (1.1) at the same level of accuracy with respect to the small
parameter ǫ.

Note that the problem of the rigorous justification of the KdV equation from the
Euler equations with free surface has been solved by W. Craig in [11]. Recently
Schneider & Wayne [24] have extended this result to the case where two directions
of propagation are present: they obtain a set of two uncoupled KdV equations. Here
we study this problem, in a general framework, namely starting from system (1.1).
And we derive systems of two uncoupled KdV equations as well as coupled systems
of KdV type and we compare both approximations. Our results do not apply directly
to the water-wave problem nor to the Euler-Poisson problem (both presented in the
last section) since these systems can not be written under the simple form (1.1). We
postpone this study for a latter work.

Notations. Within the course of this paper, the norm L2 in space will be denoted as
‖.‖2, whereas the Hs norm of a function u will be denoted as ‖u‖s = ‖(1 + ξ2)s/2û‖2.

1.2 Formulating the ansatz

Our aim is to study the behavior of solutions for the system (1.1) for time scales
where the nonlinearity and dispersion compete at the same order with respect to the
small parameter ǫ in the leading order term of our approximate solution.

Following the work of [12], [17], [14], [22], in the context of geometrical optics, one
ought to set our ansatz a priori as follows,

Uǫ(x, t) = ǫpu(x, t, ǫqt)
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where ǫp is the size of the solutions and t1 = ǫqt the long time variable at which
our above intentions must meet their requirements. Note that we have here only two
scales compared to the three scales of classical geometrical optics where one has to
take into account the oscillatory nature of light by adding a scale for high frequencies
and oscillatory modes, which does not fit our physical context here. From the degree
of the nonlinearity in the set up of the problem and the presence of the parameter
ǫ in the dispersive term of (1.1), (p, q) must satisfy p + q = 2p ⇒ p = q to have the
nonlinear contribution occurring at the long time scale t1 and q must be equal to 2
for the third order dispersive term to be present at the same time scale, considering
the nature of the nonlinear term.

Therefore, we start off with an ansatz, with t and t1 = ǫ2t, namely the short and long
time variable, that reads,

Uǫ(x, t) =

3∑

j=0

ǫj+2uj(x, t, ǫ2t) (1.2)

With this model, the nonlinear contribution occurs in large time scales of order O( 1
ǫ2 )

along with the dispersive effects as it was our aim in the construction of (1.2).

Before going any further, our ansatz can be described as follows: u0 is the leading
order term whereas u1, u2 and u3 are supposed to be correctors, which means that
they remain smaller than u0 for all times. Besides our intention is to study the
behavior of the leading order term for large time scales of order O( 1

ǫ2 ) which implies
that the overall expansion (1.2) must be valid for such times. Hence, one must control,
somehow, the growth in time of the corrector terms. Thus, to make sure that these
terms are indeed correctors on time intervals of the form [0; O( 1

ǫ2 )], we assume that
they satisfy a priori an analog of a sub-linear growth condition introduced in [14],
[22], that reads for any function a sufficiently smooth in our case as,

Sub-squareroot growth condition.
The function a(x, t,1 ) satisfies a sub-squareroot growth condition if only if

lim
t→∞

1√
t
‖∂α

x,t,t1a(x, t, t1)‖2 = 0 for all α ∈ IN3 (1.3)

Remark 1.1 In fact we will show in the course of this paper that the correctors are
even better controlled since they are most of the time L2-bounded in time.

We now plug in (1.1) the ansatz (1.2), assuming that the uj are smooth enough and
we get

∂tUǫ + A(∂x)Uǫ +
1

ǫ
EUǫ − B(Uǫ)∂xUǫ =

10∑

j=1

ǫjrj (1.4)

where the rj are given by,
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




r1 = Eu0

r2 = ∂tu0 + A(∂x)u0 + Eu1

r3 = ∂tu1 + A(∂x)u1 + Eu2

r4 = ∂t1u0 + ∂tu2 + A(∂x)u2 + Eu3 − B(u0)∂xu0

r5 = ∂t1u1 + ∂tu3 + A(∂x)u3 − B(u1)∂xu0 − B(u0)∂xu1

r6 = ∂t1u2 − B(u0)∂xu2 − B(u2)∂xu0 − B(u1)∂xu1

r7 = ∂t1u3 − B(u3)∂xu0 − B(u0)∂xu3 − B(u1)∂xu2 − B(u2)∂xu1

r8 = −B(u3)∂xu1 − B(u1)∂xu3 − B(u2)∂xu2

r9 = −B(u3)∂xu2 − B(u2)∂xu3

r10 = −B(u3)∂xu3

Our strategy to construct an approximate solution of (1.1) up to to the order 4 is to
solve simultaneously the four equations rj = 0 for j = 1, 2, 3, 4. These equations will
be referred to as the profile equations and constitute a set of necessary conditions for
Uǫ to be an approximate solution. They read

r1 = 0 =⇒ Eu0 = 0 (1.5)

r2 = 0 =⇒ ∂tu0 + A(∂x)u0 + Eu1 = 0 (1.6)

r3 = 0 =⇒ ∂tu1 + A(∂x)u1 + Eu2 = 0 (1.7)

r4 = 0 =⇒ ∂t1u0 + ∂tu2 + A(∂x)u2 + Eu3 = B(u0)∂xu0 (1.8)

The paper is organized as follows: in the second section, we derive necessary conditions
on the unknowns from equations (1.5)-(1.8) and establish the equations satisfied by
the profiles u0, u1, u2 and u3. We show that u0 = u01 + u02, where each function u01,
u02 has to solve a KdV type equation.
In the following section, we prove that the set of equations obtained in the second
section can be solved and that the function ǫ3u1 + ǫ4u2 + ǫ5u3 is a corrector with
respect to the first term of the expansion (1.2) and finally we prove in Theorem 3.1
that there exists a solution uǫ of (1.1) such that

‖uǫ − ǫ2u0(x, t, ǫ2t)‖L∞([0, T

ǫ2
];Hs) = o(ǫ2) as ǫ → 0

In the fourth section, we show in Theorem 4.1 that, if one modifies slightly the ansatz,
on can find two functions (u01, u02) satisfying a system of KdV type such that,

‖uǫ − ǫ2u0‖L∞([0, T

ǫ2
];Hs) = O(ǫ3) as ǫ → 0

The error estimate is therefore better if one keeps some coupling between the two
components of u0.
Finally in the last section, we apply the second section to Euler-Poisson and Euler
with free surface problems and derive new asymptotical models.
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2 Equations for the profiles

2.1 Algebraic solvability conditions

Following the analysis used in [14], [17], [22], we introduce some formal operators in
order to modify and simplify our set of profile equations and find a simplified set of
equations satisfied by u0, u1, u2 and u3.

Definition 2.1 For (τ, ξ) ∈ IR×IR, let us denote by L(τ, ξ) and L1(τ, ξ) the following
maps,

L(τ, ξ) = τI + Aξ +
E

i
as well as L1(τ, ξ) = τI + Aξ

and we denote by Π(τ, ξ) the orthogonal projector on the Kernel of L(τ, ξ). We also
define Q(τ, ξ) the partial inverse of L(τ, ξ) such that

Q(τ, ξ)L(τ, ξ) = L(τ, ξ)Q(τ, ξ) = I − Π(τ, ξ)

and,

Q(τ, ξ)Π(τ, ξ) = Π(τ, ξ)Q(τ, ξ) = 0

Let us point out that along the course of this paper L(0, 0) will play an important role
and will be denoted as L0 along with Π(0, 0) as Π0. Again Π0 is nothing else but the
projection on the Kernel of 1

i E = L0 which is symmetric.

Following [18], we first define the caracteristic variety of the operator L, such as

CharL =

{
β = (τ, ξ) ∈ IR × IR/det(τI + Aξ +

E

i
) = 0

}
(2.1)

Since the operator L is symmetric, we know that the polynomial equation in τ i.e
detL(τ, ξ) = 0 has only real roots for all ξ. CharL can then be parametrized by a
finite number of functions τi(ξ). Thereafter, following [22], β0 = (τ0, ξ0) ∈ CharL is
called singular if it coincides with the intersection of different functions τi(ξ). β0 is
called regular otherwise.

The main assumption is the following one,

Assumption 2.1 (0, 0) is an isolated singular point of CharL of multiplicity 2.
There exists a regular function λ(ξ) defined on a neighborhood of 0 such that λ(0) =
λ′′(0) = 0 and λ′(0) 6= 0 with (λ(ξ), ξ) ∈ CharL and (−λ(ξ), ξ) ∈ CharL.

From Assumption 2.1, we denote by Π1(ξ) and Π2(ξ) the two projectors,

{
Π1(ξ) = Π(λ(ξ), ξ)
Π2(ξ) = Π(−λ(ξ), ξ)

for ξ 6= 0

These two projectors are nonzero since λ and −λ are eigenvalues of L. We denote
also by Π(ξ) the projector Π(ξ) = Π1(ξ) + Π2(ξ) and one has that Π0 = Π(0) and
Π′

0 = Π′(0).
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λ(0)

− λ(0)’

’

Figure 1: The characteristic variety around 0

Remark 2.1 Since all the operators herein defined are analytical with respect to ξ
around any point of the Characteristic variety, these operators can be extended to 0
[19].

We intend now to use all these operators in order to solve the equations of the profiles
(1.5)-(1.8), that are of the type L(τ, ξ)a = b for any a, b in IRN . For that matter, we
state the following straightforward lemma, that is easily deduced from the symmetry
of the operators.

Lemma 2.1 For any a, b ∈ IRN

L(τ, ξ)a = b ⇔ Π(τ, ξ)b = 0 and a = Π(τ, ξ)a + Q(τ, ξ)b

2.2 Consequences for the profile equations

One turns now to the resolution of the set of equations (1.5)-(1.8).

• The first equation (1.5): Eu0 = 0, from Lemma 2.1 reads as

Π0u0 = u0. (2.2)

This equation is non trivial since we assumed that L0 is non invertible.

• The second equation (1.6): ∂tu0 + A(∂x)u0 + Eu1 = 0 reads as,

L0u1 = iL1(∂t, ∂x)u0

which is equivalent from Lemma 2.1 to the following necessary solvability conditions,
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




0 = iΠ0L1(∂t, ∂x)u0 = iΠ0L1(∂t, ∂x)Π0u0 thanks to (2.2)

(I − Π0)u1 = iQ0L1(∂t, ∂x)u0 = iQ0L1(∂t, ∂x)Π0u0 thanks to (2.2)
(2.3)

• The third equation (1.7): ∂tu1 + A(∂x)u1 + Eu2 = 0 reads as,

L0u2 = iL1(∂t, ∂x)u1

which is equivalent, using Lemma 2.1 again, to






iΠ0L1(∂t, ∂x)u1 = 0

(I − Π0)u2 = iQ0L1(∂t, ∂x)u1

(2.4)

We decompose in the first equation u1 = Π0u1 + (I − Π0)u1 and use (2.3) to obtain
the following equivalent solvability condition,






Π0L1(∂t, ∂x)Π0u1 = −iΠ0L1(∂t, ∂x)Q0L1(∂t, ∂x)Π0u0

(I − Π0)u2 = iQ0L1(∂t, ∂x)u1

(2.5)

• Let us turn now to the fourth profile equation (1.8), where the nonlinearity and
the long time evolution appear: ∂t1u0 + ∂tu2 + A(∂x)u2 + Eu3 = B(u0)∂xu0,
that reads,

L0u3 = i∂t1u0 + iL1(∂t, ∂x)u2 − iB(u0)∂xu0

which is again equivalent to, thanks to Lemma 2.1,






∂t1Π0u0 + Π0L1(∂t, ∂x)u2 = Π0B(u0)∂xu0

(I − Π0)u3 = i∂t1Q0u0 + iQ0L1(∂t, ∂x)u2 − iQ0B(u0)∂xu0

(2.6)

Decomposing u2 with the projector Π0 and using (2.5), the first equation in the above
system becomes,

∂t1Π0u0 + Π0L1(∂t, ∂x)Π0u2 + i∂0L1(∂t, ∂x)Q0L1(∂t, ∂x)u1 = Π0B(u0)∂xu0

which again gives using (2.3) and writing u1 = Π0u1 + (I − Π0)u1, the following
equivalent system to (1.8),






∂t1Π0u0 + Π0L1(∂t, ∂x)Π0u2 + iΠ0L1(∂t, ∂x)Q0L1(∂t, ∂x)Π0u1

− Π0L1(∂t, ∂x)Q0L1(∂t, ∂x)Q0L1(∂t, ∂x)Π0u0 = Π0B(u0)∂xu0

(I − Π0)u3 = i∂t1Q0u0 + iQ0L1(∂t, ∂x)u2 − iQ0B(u0)∂xu0

(2.7)
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The equations obtained (2.2)-(2.7) constitute our set of solvability conditions on the
profiles u0, u1, u2 and u3.
The last equation (2.7) is at this stage, the equation in u0 (e.g. the principal term in
the expansion) that contains nonlinear terms and dispersive third order terms in the
long time evolution of u0 and our ansatz was specifically constructed for this reason.
In order to use the properties of our problem (e.g. the particular form of Char L),
one needs to project this equation “on both branches of the characteristic variety”,
to be able to derive as claimed, KdV type systems either coupled or uncoupled with
two components moving in two opposite directions, defined by each branch in figure
2.1. We begin by describing the differential operators arising in (2.7).

The operator Π0L1(∂t, ∂x)Π0.
To begin with, it is essential to understand the operator Π(τ, ξ)L1(∂t, ∂x)Π(τ, ξ) both
in 0 (e.g. (τ, ξ) = (0, 0) and Π(0, 0) = Π0) as well as on the branches of Char L on
regular points. Indeed, when (τ, ξ) is not a singularity of the characteristic variety,
Π(τ, ξ)L1(∂t, ∂x)Π(τ, ξ) happen to be a simple scalar operator. This result is well
known and proved in [14], [17], [22]. We give the proof here for the convenience of
the reader and also because this proof leads to the result at ξ = 0.

Lemma 2.2 If Assumption 2.1 is satisfied, for all ξ in a neighborhood of 0 and ξ 6= 0,
we have






Π1(ξ)L1(∂t, ∂x)Π1(ξ) = (∂t − λ′(ξ)∂x)Π1(ξ)

Π2(ξ)L1(∂t, ∂x)Π2(ξ) = (∂t + λ′(ξ)∂x)Π2(ξ)
(2.8)

and if we set, for any ξ ∈ IR, Π(ξ) = Π1(ξ) + Π2(ξ), one has that

Π(ξ)L1(∂t, ∂x)Π(ξ) =

∂tΠ(ξ) − λ′(ξ)∂x(Π1(ξ) − Π2(ξ)) + 2λ(ξ) [Π1(ξ)Π
′

2(ξ) − Π2(ξ)Π
′

1(ξ)]
(2.9)

Proof of Lemma 2.2
We recall that by definition, one has,

(λ(ξ) + Aξ +
E

i
)Π1(ξ) = 0 for ξ 6= 0

we differentiate this equation with respect to ξ and obtain,

(λ′(ξ) + A)Π1(ξ) + (λ(ξ) + Aξ +
E

i
)Π′

1(ξ) = 0 (2.10)

Applying Π1(ξ) on the left side gives,

Π1(ξ)(λ
′(ξ) + A)Π1(ξ) = 0

which yields the first relation in (2.8) and the second relation is obtained likewise
with Π2.
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To derive the last relation (2.9), we develop the operator Π(ξ)AΠ(ξ):

Π(ξ)AΠ(ξ) = Π1(ξ)AΠ1(ξ) + Π2(ξ)AΠ2(ξ) + Π1(ξ)AΠ2(ξ) + Π2(ξ)AΠ1(ξ).

In order to evaluate the crossed products, we apply the projector Π2(ξ) on (2.10),

Π2(ξ)(λ
′(ξ) + A)Π1(ξ) + Π2(ξ)(λ(ξ) + Aξ +

E

i
)Π′

1(ξ) = 0.

Then,

Π2(ξ)AΠ1(ξ) + 2λ(ξ)Π2(ξ)Π
′

1(ξ) = 0

and likewise, we have that,

Π1(ξ)AΠ2(ξ) − 2λ(ξ)Π1(ξ)Π
′

2(ξ) = 0

Finally, we gather all the previous relations in the above development and obtain as
claimed (2.9), which finishes the proof.

�

Corollary 2.1 At the singular point (0, 0) of Char L, one has that, under Assumption
2.1,

Π0L1(∂t, ∂x)Π0 = ∂tΠ0 − λ′(0)∂x (Π1(0) − Π2(0)) (2.11)

Proof
The proof of this corollary is straightforward from the previous lemma since it is
simply the value of the order 1 operator (2.9) extended to ξ = 0, using the fact that
the projectors Π1 and Π2 are analytic on a neighborhood of 0.

�

We therefore obtain from (2.3) and the previous Corollary 2.1, the following funda-
mental transport proposition for each component of u0.

Proposition 2.1 One has






(∂t − λ′(0)∂x)Π1(0)u0 = 0

(∂t + λ′(0)∂x)Π2(0)u0 = 0
(2.12)

The operator Π0L1(∂t, ∂x)Q0L1(∂t, ∂x)Π0.
At a regular point of the characteristic variety, one has that, as it is proved in [14],

Π(λ(ξ), ξ)AQ(λ(ξ), ξ)AΠ(λ(ξ), ξ) = λ′′(ξ)Π(λ(ξ), ξ)

Here, since (0, 0) is not regular and λ′′(0) = 0, one has
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Proposition 2.2 The matrix Π0AQ0AΠ0 is given by,

Π0AQ0AΠ0 = 2λ′(0) (Π2(0)Π′

1(0) + Π′

1(0)Π2(0)) (2.13)

We deduce from this proposition the following corollary,

Corollary 2.2 




Π1(0)L1(∂t, ∂x)Q0L1(∂t, ∂x)Π1(0) = 0

Π2(0)L1(∂t, ∂x)Q0L1(∂t, ∂x)Π2(0) = 0
(2.14)

Proof of Proposition 2.2
Let us introduce the ratio ϕ(ξ):

ϕ(ξ) =
Π(ξ)AΠ(ξ) − Π0AΠ0

ξ

The idea is to compute this ratio in two different manners as ξ → 0 to derive the
desired relation (2.13). One has, using Lemma 2.2 that,

ϕ(ξ) =
Π1(ξ)AΠ2(ξ)

ξ
+

Π2(ξ)AΠ1(ξ)

ξ
− λ′(ξ)

ξ
Π1(ξ) +

λ′(ξ)

ξ
Π2(ξ)

+
λ′(0)

ξ
Π1(0) − λ′(0)

ξ
Π2(0)

which can be written as,

ϕ(ξ) = −
(

λ′(ξ) − λ′(0)

ξ

)
Π1(ξ) − λ′(0)

(
Π1(ξ) − Π1(0)

ξ

)

+λ′(0)

(
Π2(ξ) − Π2(0)

ξ

)
+ 2

(
λ(ξ) − λ(0)

ξ

)
Π1(ξ)Π

′

2(ξ)

−2

(
λ(ξ) − λ(0)

ξ

)
Π2(ξ)Π

′

1(ξ) +

(
λ′(ξ) − λ′(0)

ξ

)
Π2(ξ)

The operators Π1(ξ) and Π2(ξ) being analytical, they are, along with their derivative
bounded around 0 and since we assumed (Assumption 2.1) that λ(0) = λ′′(0) = 0, we
let ξ → 0 and obtain,

lim
ξ→0

ϕ(ξ) = λ′(0)(Π′

1(0) + Π′

2(0)) + 2λ′(0) [Π1(0)Π′

2(0) − Π2(0)Π′

1(0)] (2.15)

We go back to ϕ(ξ) and compute its limit in a different way. One can write,

ϕ(ξ) =

(
Π(ξ) − Π0

ξ

)
AΠ(ξ) + Π0A

(
Π(ξ) − Π0

ξ

)
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which gives lim
ξ→0

ϕ(ξ) = Π′
0AΠ0 + Π0AΠ′

0. To evaluate the terms in the right hand

side, we differentiate the following quantity with respect to ξ, where Π(ξ) is defined
as in Lemma 2.2,

(λ(ξ) + Aξ +
E

i
)(−λ(ξ) + Aξ +

E

i
)Π(ξ) = 0

which gives,

(λ′(ξ) + A)(−λ(ξ) + Aξ +
E

i
)Π(ξ) + (λ(ξ) + Aξ +

E

i
)(−λ′(ξ) + A)Π(ξ)

+(λ(ξ) + Aξ +
E

i
)(−λ(ξ) + Aξ +

E

i
)Π′(ξ) = 0

At ξ = 0, this reads as,

(λ′(0) + A)
E

i
Π0

︸ ︷︷ ︸
=0

+
E

i
(−λ′(0) + A)Π0 − E2Π′

0 = 0

The first term is null since Π0 is the projector on KerE
i . Thus,

EAΠ0 − iE2Π′

0 = 0

and applying Q0 twice on the right side of the relation above gives,

Q0AΠ0 + (I − Π0)Π
′

0 = 0 (2.16)

And likewise one obtains that,

Π0AQ0 + Π′

0(I − Π0) = 0. (2.17)

It follows that,

Π′

0AΠ0 = −Π0AQ0AΠ0 − λ′(0)Π′

0(Π1(0) − Π2(0))

Π0AΠ′

0 = −Π0AQ0AΠ0 − λ′(0)(Π1(0) − Π2(0))Π′

0

Equaling both expressions of lim
ξ→0

ϕ(ξ), leads to

−2Π0AQ0AΠ0 − λ′(0)Π′

0(Π1(0) − Π2(0)) − λ′(0)(Π1(0) − Π2(0))Π′

0

= λ′(0)(Π′

1(0) + Π′

2(0)) + 2λ′(0) (Π1(0)Π′

2(0) − Π2(0)Π′

1(0))

This latter equation is simplified using straightforward algebraic relations on the
projectors that we will constantly refer to, namely,
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




Π1(ξ)Π
′

1(ξ) + Π′

1(ξ)Π1(ξ) = Π′

1(ξ)

Π2(ξ)Π
′

2(ξ) + Π′

2(ξ)Π2(ξ) = Π′

2(ξ)

Π1(ξ)Π
′

2(ξ) + Π′

1(ξ)Π2(ξ) = 0

Π′

2(ξ)Π1(ξ) + Π2(ξ)Π
′

1(ξ) = 0

(2.18)

and the proof is complete.

�

The corollary follows in a straightforward manner from Proposition 2.2 thanks to
relations (2.18).

With all these tools in hand, we apply Π1(0) on the first equation of (2.7), which
gives, thanks to Lemma 2.2 and Proposition 2.2 and their corresponding corollaries,

∂t1Π1(0)u0 + Π1(0)L1(∂t, ∂x)Π1(0)u2 + iΠ1(0)L1(∂t, ∂x)Q0L1(∂t, ∂x)Π2(0)u1

−Π1(0)L1(∂t, ∂x)Q0L1(∂t, ∂x)Q0L1(∂t, ∂x)Π0u0 = Π0B(u0)∂xu0.
(2.19)

Going back to the solvability conditions established earlier, it is possible from (2.5)
to solve exactly u1 in terms of u0. Indeed, applying succesively Π1(0) and Π2(0) on
(2.5), one recalls thanks to Lemma 2.2 that,

(∂t − λ′(0)∂x)Π1(0)u1 = −iΠ1(0)L1(∂t, ∂x)Q0L1(∂t, ∂x)Π0u0

= −iΠ1(0)L1(∂t, ∂x)Q0L1(∂t, ∂x)Π2(0)u0︸ ︷︷ ︸
thanks to Corollary 2.2

and likewise,

(∂t + λ′(0)∂x)Π2(0)u1 = −iΠ2(0)L1(∂t, ∂x)Q0L1(∂t, ∂x)Π1(0)u0

Thanks to Proposition 2.2, these two latter equations can be solved and one obtains:

Π1(0)u1 =
i

2λ′(0)
Π1(0)AQ0AΠ2(0)∂xu0 + Π1(0)v1 (2.20)

where v1 is an unknown function such that

(∂t − λ′(0)∂x)Π1(0)v1 = 0

And likewise for the second component,

Π2(0)u1 =
−i

2λ′(0)
Π2(0)AQ0AΠ1(0)∂xu0 + Π2(0)v1 (2.21)
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with (∂t + λ′(0)∂x)Π2(0)v1 = 0.

Plugging these values of Π1(0)u1 and Π2(0)u1 in (2.7) and applying the projector
Π1(0) on the result yields

∂t1Π1(0)u0 + Π1(0)L1(∂t, ∂x)Π1(0)u2 + iΠ1(0)L1Q0L1Π2(0)v1

+
1

2λ′(0)
Π1(0)AQ0AΠ2(0)AQ0AΠ1(0)∂3

xu0

−Π1(0)AQ0AQ0A[Π1(0) + Π2(0)]∂3
xu0 − λ′(0)Π1(0)AQ2

0AΠ1(0)∂3
xu0

+λ′(0)Π1(0)AQ2
0AΠ2(0)∂3

xu0 = Π1(0)B([Π1(0) + Π2(0)]u0)∂xΠ0u0

(2.22)

We replaced L1(∂t, ∂x) by ∂t + A∂x in the previous calculation. As we developped
∂t +A∂x in some terms, the derivative with respect to t reads simply as either λ′(0)∂x

or −λ′(0)∂x depending on the component of u0 to which it is applied, thanks to the
transport Proposition 2.12. We obtain likewise the second fundamental solvability
equation for Π2(0)u0:

∂t1Π2(0)u0 + Π2(0)L1(∂t, ∂x)Π2(0)u2 + iΠ2(0)L1Q0L1Π1(0)v1

− 1

2λ′(0)
Π2(0)AQ0AΠ1(0)AQ0AΠ2(0)∂3

xu0

−Π2(0)AQ0AQ0A[Π1(0) + Π2(0)]∂3
xu0 − λ′(0)Π2(0)AQ2

0AΠ1(0)∂3
xu0

+λ′(0)Π2(0)AQ2
0AΠ2(0)∂3

xu0 = Π2(0)B([Π1(0) + Π2(0)]u0)∂xΠ0u0

(2.23)

Transport operators. We introduce for convenience and clarity at this point some
notations for the two transport operators that are scalar, corresponding respectively
to the transport along the tangent space of both branches of the characteristic variety
at 0:






T1(∂t, ∂x) = ∂t − λ′(0)∂x

T2(∂t, ∂x) = ∂t + λ′(0)∂x

(2.24)

and obviously one has, from Lemma 2.2, that






Π1(0)L1(∂t, ∂x)Π1(0) = T1(∂t, ∂x)Π1(0)

Π2(0)L1(∂t, ∂x)Π2(0) = T2(∂t, ∂x)Π2(0)

Comments on (2.22)-(2.23). Let us make a few remarks on the previous equations
(2.22) and (2.23). For large times of order O( 1

ǫ2 ), both the nonlinearity and the
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dispersion occur in the evolution equations for u0, which is separated in two waves
Π1(0)u0 and Π2(0)u0 evolving in two opposite directions. As they are written in
(2.22) and (2.23), these equations do not constitute exactly a system of KdV type,
mainly because of the presence of the corrector u2 that we need to get rid of somehow.
We denote also the presence in both equations of dispersive terms of order 3 in both
directions. Besides the nonlinearities in (2.22)-(2.23) are in both case coupled in the
sense that we come across combination of derivatives of quadratic polynoms of terms
moving in two different direction.

In order to simplify these equations and derive the KdV systems as claimed, we
introduce average operators as in [22] to apply them on the two equations that govern
the evolution of u0. The aim of this technique is to derive supplementary necessary
conditions that eliminate the corrector terms along with the dispersive terms moving
in the wrong direction. After this operation, the system (2.22)-(2.23) turns into as
claimed, a pair of two independent KdV equations for each component Π1(0) and
Π2(0) moving in two different directions.

2.3 Average operators

We must keep in mind that these operators are constructed in order to eliminate
u2 from the equations (2.22)-(2.23) governing the profile u0. We recall that u2 was
supposed to respect some growth condition.

As in [22], an average operator is defined relatively to a transport operator. Hence
for T1 and T2, we define two average operators GT1 and GT2 ,

Definition 2.2 For h > 0 and w sufficiently smooth,

Gh
T1

w(x, t, τ) =
1

h

∫ h

0

w(x − λ′(0)s, t + s, τ) ds

Gh
T2

w(x, t, τ) =
1

h

∫ h

0

w(x + λ′(0)s, t + s, τ) ds

and,






GT1w = lim
h→∞

Gh
T1

GT2w = lim
h→∞

Gh
T2

(2.25)

when this limit exists.

These operators were described and introduced in detail in [22]. We recall their
properties and refer to [22] for the corresponding proofs.

Proposition 2.3 (Properties of the average operator) Let T be a transport op-
erator such that T (∂t, ∂x) = ∂t − c∂x, then
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i) If w satisfies T (∂t, ∂x)w = 0, then GT w exists and GT w = w.

ii) If w satisfies T ′(∂t, ∂x)w = 0 where T ′(∂t, ∂x) = ∂t − c′∂x and if c 6= c′ then
GT w exists and GT w = 0.

iii) If w respects a sub-squareroot growth condition (1.3), then GT T (∂t, ∂x)w is well
defined and GT T (∂t, ∂x)w = 0.

iv) Let W := ww′ where w and w′ are such that T (∂t, ∂x)w = 0 and T ′(∂t, ∂x)w′ =
0. If T (∂t, ∂x) = T ′(∂t, ∂x), then GT W = W . In any other case GT W = 0.

The first two properties mean that when we apply GT to the linear terms of the
equations, it leaves only those transported by T (∂t, ∂x) and eliminates the rest. The
third property allows us to get rid of the correctors in the equations as it was the
motivation in the construction of these operators. And the important last property
allows us to eliminate all the product terms where the factors are transported by
different operators. And as we said earlier, it is thanks to this last property that we
will reduce dramatically the nonlinear terms and thus uncouple the system (2.22)-
(2.23) in order to derive a pair of independent KdV equations for the evolution of
each component of u0.

2.4 Consequence for the profile equations

Obtaining the uncoupled system. As we are looking for solvability condition on
the system (2.22)-(2.23), let us apply the operator GT1 on (2.22) and GT2 on (2.23),
which gives thanks to the properties of these operators,

∂t1Π1(0)u0 + GT1(T1(∂t, ∂x)u2)︸ ︷︷ ︸
=0property iii)

+
1

2λ′(0)
Π1(0)AQ0AΠ2(0)AQ0AΠ1(0)∂3

xu0

−Π1(0)AQ0AQ0AΠ1(0)∂3
xu0 − λ′(0)Π1(0)AQ2

0AΠ1(0)∂3
xu0

−Π1(0)AQ0AQ0AGT1 (Π2(0)∂3
xu0)︸ ︷︷ ︸

=0property ii)

+λ′(0)Π1(0)AQ2
0AGT1 (Π2(0)∂3

xu0)︸ ︷︷ ︸
=0property ii)

−Π1(0)AQ0AGT1(Π2(0)∂2
xv1)︸ ︷︷ ︸

=0property ii)

= GT1(Π1(0)B(Π0u0)∂xΠ0u0)

(2.26)

In the nonlinear terms, only the terms polarized in the direction of Π1(0) remain
thanks to Property iv), and therefore one has that, GT1(Π1(0)B(Π0u0)∂xΠ0u0) =
Π1(0)B(Π1(0)u0)∂xΠ1(0)u0). Each component of u0 being either transported by T1

or T2, some remain unchanged and other disappear thanks to Property i) and ii).

We obtain similarly an analog equation governing Π2(0)u0. Our system (2.22)-(2.23),
reduces to the following system for u0,
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




∂t1Π1(0)u0 + ( 1

2λ′(0)
Π1(0)AQ0AΠ2(0)AQ0AΠ1(0)

−Π1(0)AQ0AQ0AΠ1(0) − λ′(0)Π1(0)AQ2
0AΠ1(0)) ∂3

xΠ1(0)u0

= Π1(0)B(Π1(0)u0)∂xΠ1(0)u0

∂t1Π2(0)u0 + (− 1

2λ′(0)
Π2(0)AQ0AΠ1(0)AQ0AΠ2(0)

−Π2(0)AQ0AQ0AΠ2(0) + λ′(0)Π2(0)AQ2
0AΠ2(0)) ∂3

xΠ2(0)u0

= Π2(0)B(Π2(0)u0)∂xΠ2(0)u0

(2.27)

This system (2.27) is indeed uncoupled and corresponds to a pair of independent
KdV equations governing each component of u0 moving in opposite directions and u2

whose supposed to be a corrector verifies,






T1(∂t, ∂x)Π1(0)u2 = Π1(0)B(Π0(u0))∂xΠ0u0 − Π1(0)B(Π1(0)u0)∂xΠ1u0

−
(
Π1(0)AQ0AQ0AΠ2(0) + λ′(0)Π1(0)AQ2

0AΠ2(0)
)
∂3

xu0

T2(∂t, ∂x)Π2(0)u2 = Π2(0)B(Π0(u0))∂xΠ0u0 − Π2(0)B(Π2(0)u0)∂xΠ2u0

−
(
Π2(0)AQ0AQ0AΠ1(0) + λ′(0)Π2(0)AQ2

0AΠ1(0)
)
∂3

xu0

(2.28)

Remark 2.2 One can set v1 = 0 (the initial condition as we solved (2.5)) with no
loss of generality since it appears in the equation (2.22) polarized such as it ends up
in the equation describing the corrector term u2 (4.16).

2.5 Main Algebraic lemma

The system (2.27) will read as KdV type system in a more obvious way, thanks to the
following algebraic lemma, regarding the operators of order 3, namely the dispersive
terms, that gives,

Lemma 2.3 (Main Lemma) One has the following relations,

1

2λ′(0)
Π1(0)AQ0AΠ2(0)AQ0AΠ1(0) − Π1(0)AQ0AQ0AΠ1(0)

−λ′(0)Π1(0)AQ2
0AΠ1(0) =

λ′′′(0)

6
Π1(0)

(2.29)
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and likewise,

− 1

2λ′(0)
Π2(0)AQ0AΠ1(0)AQ0AΠ2(0) − Π2(0)AQ0AQ0AΠ2(0)

+λ′(0)Π2(0)AQ2
0AΠ2(0) = −λ′′′(0)

6
Π2(0)

(2.30)

Proof of the Main Lemma
Let us start by proving the first relation. Use will be made in this proof of the previous
lemmas and in particular we start by a proposition concerning the behavior of the
operators Q1(ξ) and Q2(ξ) as ξ tends to 0. Note that these two operators are defined
as expected as Q1(ξ) = Q(λ(ξ), ξ) and Q2(ξ) = Q(−λ(ξ), ξ) and are meromorph with
respect to the variable ξ as a straightforward consequence of the analycity of the
projector operators.

Proposition 2.4 Q1 and Q2 admit the following expansion around 0 with respect to
ξ,

Q1(ξ) = Q0 +
1

2λ(ξ)
Π2(ξ) + O(λ(ξ)) (2.31)

Q2(ξ) = Q0 −
1

2λ(ξ)
Π1(ξ) + O(λ(ξ)) (2.32)

Proof of Proposition 2.4
From our original hypothesis laid out in the set up of the problem, one has that Aξ+ E

i
is symmetric and real for any ξ in IR. Therefore, there exists P (ξ) an orthogonal N×N
matrix such that,

Aξ +
E

i
= P−1(ξ)




−λ(ξ)
λ(ξ)

. . .

λN (ξ)


P (ξ) (2.33)

where the first two eigenvalues are those of interest in this paper and the matrix P (ξ)
is analytical with respect to ξ. Thereafter, L(ξ) namely L(±λ(ξ), ξ) reads as, on the
same basis,

L(ξ) = λ(ξ) + Aξ +
E

i
=

P−1(ξ)




0
2λ(ξ)

λ3(ξ) + λ(ξ)
. . .

λN (ξ) + λ(ξ)




P (ξ)

and consequently,
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Q1(ξ) = P−1(ξ) Diag

[
0,

1

2λ(ξ)
,

1

λ3(ξ) + λ(ξ)
, . . . ,

1

λN (ξ) + λ(ξ)

]
P (ξ)

and similarly one has that,

Q2(ξ) = P−1(ξ) Diag

[
− 1

2λ(ξ)
, 0,

1

λ3(ξ) − λ(ξ)
, . . . ,

1

λN (ξ) − λ(ξ)

]
P (ξ)

whereas Q0 which is the partial inverse of 1
i E reads in a very straightforward manner

from (2.33) and Assumption 2.1, as

Q0 = P−1(0)




0
0

1
λ3(0)

. . .
1

λN (0)




P (0)

As we have expressed explicitly all the operators involved in Proposition 2.4, it is a
straightforward task to finish the proof.

�

We denote by I, II and III the three terms in the left hand-side of (2.29).

• From (2.13) in Lemma 2.2, the first term I gives immediately, using the alge-
brical relations (2.18), that

I =
1

2λ′(0)
Π1(0)AQ0AΠ2(0)AQ0AΠ1(0) = 2λ′(0)Π1(0)Π′2

2 (0)Π1(0) (2.34)

• For the second term II, one needs to compute the value of the operators of order
2 and order 3 at a regular point of the characteristic variety. For that matter,
we state the following proposition,

Proposition 2.5 If (λ(ξ), ξ) is a regular point of the characteristic variety Char L,
which in our case means that ξ 6= 0 in a ball near 0, then,

Π1(ξ)AQ1(ξ)AΠ1(ξ) =
λ′′(ξ)

2
Π1(ξ) (2.35)

Π1(ξ)AQ1(ξ)AQ1(ξ)AΠ1(ξ) = −λ′′′(ξ)

6
Π1(ξ) − λ′(ξ)Π1(ξ)Π

′2
1 (ξ)Π1(ξ) (2.36)

and likewise for the second branch of the characteristic relatively to the projector
Π2(ξ).
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Proof of Proposition 2.5
The first relation is not difficult to establish and its complete proof can be found in
[14]. Briefly, one differentiates the relation,

I − Π1(ξ) = Q1(ξ)(λ(ξ) + Aξ +
E

i
) (2.37)

and apply Π1(ξ) on the right hand side to obtain Π′
1(ξ)Π(ξ) = −Q1(ξ)AΠ1(ξ) and

likewise Π1(ξ)Π
′
1(ξ) = −Π1(ξ)AQ1(ξ). Then differentiating the first order relation,

one gets

Π1(ξ)AΠ1(ξ) = −λ′(ξ)Π1(ξ),

which gives the first relation displayed in Proposition 2.5.

Let us turn now to the third order operator and prove the second relation in Proposi-
tion 2.5. We start by differentiating the first relation which gives, at all regular point
ξ,

λ′′′

2
Π1 +

λ′′

2
Π′

1 = Π′

1AQ1AΠ1 + Π1AQ′

1AΠ1 + Π1AQ1AΠ′

1.

We apply Π1(ξ) both on the left and right side of the relation, which yields,

−2Π1AQ1AQ1AΠ1 + Π1AQ′

1AΠ1 =
λ′′′

2
Π1 +

λ′′

2
Π1Π

′

1Π1︸ ︷︷ ︸
=0

In order to evaluate Q′
1(ξ), we differentiate the relation (2.37) and apply Q1(ξ) in

order to obtain:

Q′

1(ξ) = −Π′

1(ξ)Q1(ξ) + Q′

1(ξ)Π1(ξ) − λ′(ξ)Q2
1(ξ) − Q1(ξ)AQ1(ξ).

Thereafter, using the fact that Q′
1Π1 + Q1Π

′
1 = 0, one has that

Π1AQ′

1AΠ1 = −Π1AΠ′

1Q1AΠ1 + Π1AQ′

1Π1AΠ1 − λ′Π1AQ2
1AΠ1

−Π1AQ1AQ1AΠ1,

and using Π′
1(ξ)Π(ξ) = −Q1(ξ)AΠ1(ξ) and Π1(ξ)Π

′
1(ξ) = −Π1(ξ)AQ1(ξ), we obtain

Π1AQ′

1AΠ1 = Π1AΠ′2
1 Π1 + Π1Π

′2
1 AΠ1 − λ′Π1Π

′2
1 Π1 − Π1AQ1AQ1AΠ1

Now thanks to the algebraic relations (2.18) and Lemma 2.2, we get

Π1AΠ′2
1 Π1 = −λ′Π1Π

′2
1 Π1

as well as,

Π1Π
′2
1 AΠ1 = −λ′Π1Π

′2
1 Π1.

Gathering all the terms together gives the second relation of Proposition 2.5 and
finishes the proof.
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We go back to the computation of II. Our strategy is to evaluate the third order
operator Π1(ξ)AQ1(ξ)AQ1(ξ)AΠ1(ξ) at 0 by using Proposition 2.4 and letting ξ tend
to 0. Hence one has that,

Π1(ξ)AQ1(ξ)AQ1(ξ)AΠ1(ξ) =

Π1(ξ)A

[
Q0 +

1

2λ(ξ)
Π2(ξ) + O(λ)

]
A

[
Q0 +

1

2λ(ξ)
Π2(ξ) + O(λ)

]
AΠ1(ξ)

As we develop the quantity in the right hand-side, nine terms appear, most of which
tend to 0 as ξ tends to 0. Indeed, the five terms that contain O(λ), in the development
can be crossed out since everything else is bounded and the singularity 1

2λ(ξ) as ξ

tends to 0 is controlled by either Π1(ξ)AΠ2(ξ) = 2λ(ξ)Π1(ξ)Π
′
2(ξ) or Π2(ξ)AΠ1(ξ) =

−2λ(ξ)Π2(ξ)Π
′
1(ξ), in each of these terms,

Thus, after developing, we are left with the following four terms,

lim
ξ→0

Π1(ξ)AQ1(ξ)AQ1(ξ)AΠ1(ξ) =

lim
ξ→0





Π1(ξ)AQ0AQ0AΠ1(ξ)︸ ︷︷ ︸

[1]

+
1

2λ(ξ)
Π1(ξ)AQ0AΠ2(ξ)AΠ1(ξ)

︸ ︷︷ ︸
[2]

+
1

2λ(ξ)
Π1(ξ)AΠ2(ξ)AQ0AΠ1(ξ)

︸ ︷︷ ︸
[3]

+
1

4λ2(ξ)
Π1(ξ)AΠ2(ξ)AΠ2(ξ)AΠ1(ξ)

︸ ︷︷ ︸
[4]





.

As ξ tends to 0, thanks to Lemma 2.3 along with the projectors properties (2.18) and
the two previous relations for the crossed products Π1(ξ)AΠ2(ξ) and Π2(ξ)AΠ1(ξ),
each of the four above limit reads as,

lim
ξ→0

[1] = −II ; lim
ξ→0

[2] = −2λ′(0)Π1(0)Π′2
2 (0)Π1(0)

lim
ξ→0

[3] = −2λ′(0)Π1(0)Π′2
2 (0)Π1(0) ; lim

ξ→0
[4] = λ′(0)Π1(0)Π′2

2 (0)Π1(0)

Now that we have the limit of the third order operator, we identify it with the second
relation of Proposition 2.5 at ξ = 0 and obtain,

−λ′′′(0)

6
Π1 − λ′(0)Π1(0)Π′2

1 (0)Π1(0) = −II− 3λ′(0)Π1(0)Π′2
2 (0)Π1(0)
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which yields,

II =
λ′′′(0)

6
Π1 + λ′(0)Π1(0)Π′2

1 (0)Π1(0) − 3λ′(0)Π1(0)Π′2
2 (0)Π1(0). (2.38)

• We are left now with III. As for II, we use Proposition 2.4 to compute the limit
as ξ tends to 0 of the operator Π1(ξ)AQ2

1(ξ)AΠ1(ξ).

We develop the latter operator as suggested by Proposition 2.4, which gives,

lim
ξ→0

Π1(ξ)A

[
Q0 +

1

2λ(ξ)
Π2(ξ) + O(λ)

]
AΠ1 =

lim
ξ→0

[
Π1(ξ)AQ2

0AΠ1(ξ) +
1

4λ2(ξ)
Π1(ξ)AΠ2(ξ)AΠ1(ξ)

]

The other terms in the development cancel out as ξ tends to 0 either because of the
presence of O(λ) or because of the projectors Π1(0) and Π2(0) applied to Q0.
On the other hand, one has that Π1(ξ)AQ2

1(ξ)AΠ1(ξ) = Π1(ξ)Π
′2
1 (ξ)Π1(ξ) and there-

fore identifying the two limit as ξ tends to 0 gives,

Π1(0)Π′2
1 (0)Π1(0) = Π1(0)AQ2

0AΠ1(0) + Π1(0)Π′2
2 (0)Π1(0)

which gives,

III = −λ′(0)Π1(0)Π′2
1 (0)Π1(0) + λ′(0)Π1(0)Π′2

2 (0)Π1(0) (2.39)

and finally as we sum I + II + III, (2.29) holds. The proof of (2.30) is exactly the
same.

�

Thanks to the previous lemmas, the uncoupled system derived earlier (2.27) read in
a much simpler way, as an obvious KdV type system:






∂t1Π1(0)u0 +
λ′′′(0)

6
∂3

xΠ1(0)u0 = Π1(0)B(Π1(0)u0)∂xΠ1(0)u0

∂t1Π2(0)u0 −
λ′′′(0)

6
∂3

xΠ2(0)u0 = Π2(0)B(Π2(0)u0)∂xΠ2(0)u0

(2.40)

3 Convergence in the uncoupled case

In the preceeding section, we have obtained a set of necessary conditions on u0, u1, u2

and u3 in order that Uǫ given by (1.2) is an approximate solution of (1.1). The aim
of this section is to show that one can solve simultaneously equations (2.12), (2.40)
and (2.28) and that there exists a solution to (1.1) which is indeed asymptotic to the
approximate solution thus constructed. One of the key argument will be that the
correctors u2 and u3 given (2.28) and (2.7) satisfy the sub-squareroot condition (1.3).

In order to be able to state our theorem, one needs to prove the following proposition
regarding the existence for large times of order O( 1

ǫ2 ) of the exact solution of (1.1).
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Proposition 3.1 For any s > 3
2 and for any ut=0 = ǫ2uin such that uin ∈ Hs(IR),

there exists T > 0 such that there is a unique solution u of (1.1) lying in the space
C([0, T

ǫ2 ], Hs) ∩ C1([0, T
ǫ2 ], Hs−1).

Proof of Proposition 3.1
The proof relies mainly on the fact that B(u) is symmetric and follows the existence
proof for quasilinear symmetric systems [1]. The only non trivial thing here that
needs to be proved is that the Hs-norm of u(t) remains bounded for large time scales
of order O( 1

ǫ2 ). Let us briefly sketch the proof: as we multiply the equation (1.1) by
∂2su and integrate with respect to the space variable, one obtains that,

1

2

d

dt

∫

IR
|∂su|2 dx =

∫

IR
∂2suB(u)∂u dx

As usual, we manage to estimate the right hand-side as follows,

∣∣∣∣
∫

IR
∂2suB(u)∂u dx

∣∣∣∣ ≤ c‖u‖3
s

and we conclude by applying Gronwall’s lemma, that gives,

‖u‖s ≤ ‖ut=0‖s

2 − ctǫ2‖uin‖s
≤ ‖ut=0‖s for t ≤ c

T

ǫ2

Therefore our Hs-bound does not blow up for times of order O( 1
ǫ2 ) and the natural

local existence theorem for (1.1) as a hyperbolic system extends itself to the interval
[0, T

ǫ2 ], which finishes the proof.

�

Thanks to Proposition 3.1, let us introduce uǫ, for any f lying in Hs with s strictly
greater than 3

2 , solution of






(
∂t + A(∂x) +

E

ǫ

)
uǫ = B(uǫ)∂xuǫ

uǫ(x, 0) = ǫ2f(x)

(3.1)

defined on [0, T1

ǫ2 ] for T1 > 0.

Our result reads as follows.

Theorem 3.1 Let s > 3
2 and f ∈ Hσ (σ sufficiently large) such that Π0f = f . Under

Assumption 2.1, there exists T1 > 0 and a unique uǫ(x, t) in L∞([0, T1

ǫ2 ], Hs) solution
of (3.1) as well as T2 > 0 and u01(X1, t1) and u02(X2, t1) solutions of






∂t1u01 +
λ′′′(0)

6
∂3

X1
u01 = Π1(0)B(u01)∂X1u01

u01(X1, 0) = Π1(0)f(X1)

(3.2)
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and






∂t1u02 −
λ′′′(0)

6
∂3

X2
u02 = Π2(0)B(u02)∂X2u02

u02(X2, 0) = Π2(0)f(X2)

(3.3)

both lying in L∞([0, T2], H
s).

Morevover there exists T0 > 0 (s.t. T0 ≤ min(T1, T2)) such that

∥∥∥∥
uǫ(x, t)

ǫ2
−
[
u01(x + λ′(0)t, ǫ2t) + u02(x − λ′(0)t, ǫ2t)

]∥∥∥∥
L∞([0,

T0
ǫ2

];Hs)

= o(1)

as ǫ tends to 0

The strategy to prove this theorem relies on three points. We start by introducing,

Uǫ(t, x) = ǫ2
[
u01(x + λ′(0)t, ǫ2t) + u02(x − λ′(0)t, ǫ2t)

]

+ǫ3uǫ
1(x, t) + ǫ4uǫ

2(x, t) + ǫ5uǫ
3(x, t)

(3.4)

Then we prove the following three points,

1. The equations for u01, u02 as well as those determining uǫ
1, uǫ

2 and uǫ
3 are

well posed and all these terms exist for time scales of order O( 1
ǫ2 ) and lie in

L∞([0, T2

ǫ2 ]; Hs).

2. In the expression of Uǫ(t, x), ǫ3uǫ
1 + ǫ4uǫ

2 + ǫ5uǫ
3 is indeed a corrector of the

principal term that is

‖ǫ3uǫ
1 + ǫ4uǫ

2 + ǫ5uǫ
3‖L∞([0, T

ǫ2
];Hs) = O(ǫ3)

3. We obtain an estimate of the residues rj for j ≥ 5 and we finish the proof by
performing a standard energy estimate on uǫ

ǫ2 − U
ǫ

ǫ2 .

3.1 Properties of the approximate solution

One first has to solve the following set of equations:

{
(∂t − λ′(0)∂x)u01 = 0
(∂t + λ′(0)∂x)u02 = 0

and an uncoupled system of KdV equations for the long time evolution,






∂t1u01 +
λ′′′(0)

6
∂3

xu01 = Π1(0)B(u01)∂xu01

∂t1u02 −
λ′′′(0)

6
∂3

xu02 = Π1(0)B(u02)∂xu02

with u01 = Π1(0)f and u02 = Π2(0)f .
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For each component we have a global existence theorem in L∞(IR, Hσ(IR)) (with
σ ≥ 0) for f in Hs, since the long time evolution is governed by a classical KdV
whose Cauchy problem in Hs is well known (see [20] for example) and the short time
evolution is compatible with the long time KdV. Note that if the initial condition is
polarized by the projectors Π1(0) and Π2(0), the solution remains likewise.

As u0 is uniquely determined, it is an easy task to find the remaining terms of the
expansion (1.2) from the solvability conditions that are all satisfied in the uncoupled
case. Indeed, one recalls from (2.20)-(2.21) that for Π0u

ǫ
1, we have that,






Π1(0)uǫ
1 =

i

2λ′(0)
Π1AQ0AΠ2∂xu0

Π2(0)uǫ
1 = − i

2λ′(0)
Π2AQ0AΠ1∂xu0

if we choose to set v1 equal to 0. As for the remaining component of u0 (e.g (I−Π0)u0),
it is given by (2.3).

We turn now to uǫ
2, whose components on Π0 are given by (2.28). These equations for

Π1(0)uǫ
2 and Π2(0)uǫ

2 are very important in order to determine the growth of uǫ
2 with

respect to time. The more terms we put at the right hand side of these equations, the
more it affects the final result of convergence. These hyperbolic equations for each
component of Π0u

ǫ
2 can be solved and thus determine Π0u

ǫ
2. As for the remaining

component (I − Π0)u
ǫ
2, it is given by (2.5) as we already found uǫ

1.

We are left with uǫ
3 that we set as equal to (I − Π0)u

ǫ
3 which is given by (2.7) as we

already know u0 and uǫ
2.

Moreover since all the operators involved in the description of uǫ
1, uǫ

2 and uǫ
3 from u0

are bounded, one concludes that theses terms are not only determined from u0 but
lie also in L∞(IR, Hσ) as u0 and T2 can be chosen as large as we want (recall that σ
is large enough). The existence of T1 is clear from Proposition 3.1.

3.2 Correctors

To construct our approximate solution, we have assumed as we have set up our ansatz
that the term ǫ3uǫ

1 + ǫ4uǫ
2 + ǫ5uǫ

3 was a corrector of the leading order term, which in
other words means that we control the growth in time of uǫ

1, uǫ
2 and uǫ

3.

Let us check each term separately. For uǫ
1, since u0 is bounded in Hσ for σ sufficiently

large, both Π0u
ǫ
1 and (I − Π0)u

ǫ
1 are bounded in Hσ−1 from the previous relations

that we used to determine uǫ
1.

Again uǫ
2 decomposes itself in two parts. The component (I − Π0)u

ǫ
2 is bounded in

Hσ−2 since uǫ
1 is bounded in Hσ−1 thanks to (2.5). For Π0u

ǫ
2, the general results of

[22] give that uǫ
2 has a sublinear growth in time. This is not enough in our case since

this gives ǫ4uǫ
2 = o(ǫ2) on [0, T

ǫ2 ]. We give below more precise results.
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Proposition 3.2 Let f(x, t) be a sufficiently smooth function such that

T1(∂t, ∂x)f = ∂xg

where T2(∂t, ∂x)g = 0 and g ∈ L∞(IR; L2) then f ∈ L∞(IR; L2).

Proposition 3.3 Let u(x, t) be a sufficiently smooth function such that

T1(∂t, ∂x)u = gh

where g and h are such that T1(∂t, ∂x)h = 0 and T2(∂t, ∂x)g = 0 with g, h ∈ L∞(IR; L2)
then u respects sub-square root growth condition as defined in (1.3) that is

lim
t→0

1√
t
‖f‖2 = 0

Proof of Proposition 3.2
Since g is transported by T2, one can write the relation in Proposition 3.2, as

T1(∂t, ∂x)f(x, t) = ∂xg(x − λ′(0)t)

which leads to

T1(∂t, ∂x)f(x, t) =

∫

IR
eixξiξe−iλ′(0)tξĝ(ξ) dξ.

Then,

f̂(ξ, t) = eiλ′(0)ξtĝ(ξ, 0) +

∫ t

0

eiλ′(0)(t−s)ξe−λ′(0)sξiξĝ(ξ) ds.

Therefore,

f̂(ξ, t) = eiλ′(0)ξtĝ(ξ, 0) + iξĝ(ξ)eiλ′(0)tξ
∫ t

0
e−2iλ′(0)sξ ds

= eiλ′(0)ξtĝ(ξ, 0) + iĝ(ξ)eiλ′(0)tξ

[
1 − e−2iλ′(0)ξt

2iλ′(0)

]

It follows that,

‖f̂‖2(t) ≤ 2‖ĝ‖2.

�

Remark 3.1 The crucial point in the previous proof is the presence of the ∂x in the
right hand side.
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Proof of Proposition 3.3
Since g and h are transported, the relation in Proposition 3.3 can be written as follows,

(∂t − λ′(0)∂x)u = g(x − λ′(0)t)h(x + λ′(0)t)

We perform the change of function u(x, t) = v(x + λ′(0)t, t) and set X = x + λ′(0)t,
the equation becomes,

∂tv(X, t) = h(X)g(X − 2λ′(0)t) (3.5)

and therefore

v(X, t) = v0(X) + h(X)

∫ t

0

g(X − 2λ′(0)s) ds

Cauchy-Schwartz inequality gives

|v(X, t)| ≤ |v0| + t1/2|h(X)|‖g‖2

which leads to

‖u(t)‖2

t1/2
≤ ‖u0‖2

t1/2
+ ‖h‖2‖g‖2. (3.6)

Introduce, as in [17], the dense subset A of L2 given by,

A =
{

f ∈ L2 / f̂ ∈ C∞

0 (IR − {0})
}

Then let un be a sequence in A be such that un tends to u in L2 and such that for
each n,

(∂t − λ′(0)∂x)un(x, t) = gn(x − λ′(0)t)hn(x + λ′(0)t)

and where hn and gn belonging to A tend respectively to h and g in L2. un is given
by,

ûn(ξ, t) = eiλ′(0)ξtûn0(ξ) + eiλ′(0)ξt

∫

IR
ĥn(η)ĝn(ξ − η)

1 − e2iλ′(0)ηt

2iλ′(0)η
dη

Since the denominator is bounded away from 0 on the support of fn and gn, it follows
that,

lim
t→0

1√
t
‖un‖2 = 0 (3.7)

Then, one has that,

1√
t
‖u‖2 ≤ 1√

t
‖un − u‖2(t) +

1√
t
‖un‖2(t)

Applying the inequality (3.6) to un − u that verifies
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∂t(un − u) = (gn − g)fn + (fn − f)g

gives for n sufficiently large such that ‖fn − f‖2 ≤ ǫ and ‖gn − g‖ ≤ ǫ, that

1√
t
‖u‖2 ≤ ǫ +

1√
t
‖un‖2(t) +

‖u0‖2√
t

and now taking the limit in t as it tends to ∞ gives the desired result thanks to (3.7).

�

Proposition 3.4 The solutions Π1(0)uǫ
2 and Π2(0)uǫ

2 to (2.28) satisfy a sub-square
root growth condition (1.3) that is

lim
t→0

1√
t
‖Π1(0)uǫ

2‖Hs = 0

and likewise for Π2(0)uǫ
2.

Proof
We first write equations (2.28) in a simplified way. Indeed, since we have that
T1(∂t, ∂x)Π1u0 = 0 and T2(∂t, ∂x)Π2u0 = 0, the two components of u0 read as
Π1(0)u0(x+λ′(0)t) and Π2(0)u0(x−λ′(0)t) with the variable t1 taken as a parameter.
Thereafter, we simply write the first equation above with the right hand side being
the sum of two generic terms, such as,

(∂t − λ′(0)∂x)u = ∂xf(x − λ′(0)t) + g(x − λ′(0)t)h(x + λ′(0)t)

where f , g and h are L2-bounded functions and u any function of x and t sufficiently
smooth. We have from Proposition 3.2 that the first term in the right hand side gives
in u a bounded contribution in time, and from Proposition 3.3, that the second term
implies that u respects a sub-squareroot growth in time. This holds exactly the same
for the second component and one has, as claimed, that Π0u

ǫ
2 respects the growth

condition (1.3).

�

Finally for uǫ
3 we deduce the same growth control in time as for uǫ

2 from the solvability
condition (2.7). These two conditions give then that ‖ǫ4uǫ

2‖2 = o(ǫ3) and ‖ǫ5uǫ
3‖2 =

o(ǫ4) and we can state the following proposition.

Proposition 3.5 The corrector term ǫ3uǫ
1 + ǫ4uǫ

2 + ǫ5uǫ
3 is indeed a corrector in (3.4)

and one has that
‖ǫ3uǫ

1 + ǫ4uǫ
2 + ǫ5uǫ

3‖L∞([0, T

ǫ2
];Hs) = O(ǫ3)
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3.3 Estimate for the residue and end of the proof

Before proving the convergence result, we first estimate the residue. Since one has
rj = 0 for j = 1 to j = 4, the residue reads as the remaining terms:

Res(x, t, t1, ǫ) = ǫ5r5 + ǫ6r6 + ǫ7r7 + ǫ8r8 + ǫ9r9 + ǫ10r10

Only the first two summands of this residue play a role. To estimate the Hs-norm
L2 of this residue, we use the fact that uǫ

1 is Hs-bounded and that uǫ
2 and uǫ

3 are
controlled in time as proved from Proposition 3.2 and Proposition 3.3.

The first term for instance is estimated as follows, using the Sobolev embeddings
where Hs →֒ L∞ and Hs−1 →֒ L∞ for s > 3

2 . And we have,

‖ǫ5r5‖2 ≤
√

tǫ5
(

1√
t
‖∂t1u

ǫ
3‖2 + bounded terms

)

We have then

Proposition 3.6 The residue can be estimated as follows in the norm L∞([0, T
ǫ2 ]; L2):

‖Res‖L∞([0, T

ǫ2
];L2) = o(ǫ4)

.

Remark 3.2 If uǫ
2 verifies only a sub-linear growth condition, we would have con-

cluded using the same arguments that ‖Res‖2 = o(ǫ3) which would not had been
enough to establish our theorem.

As we have estimated the residue, we have that our approximate solution Uǫ satisfies,

∂tUǫ + A(∂x)Uǫ +
EUǫ

ǫ
− B(Uǫ)∂xUǫ = o(ǫ4) (3.8)

where o(ǫ4) is in L∞([0, T
ǫ2 ]; Hs) norm.

Let us turn to the final proof of our convergence result that can be compared to the
stability results displayed in [14], [22]. We denote by uǫ the exact solution of (1.1)
and Uǫ both lying in C([0, T

ǫ2 ]; Hs), for some T > 0.

We denote by ũ the difference

ũ = Uǫ − uǫ with ũ(x, 0) = 0

Thus the equation satisfied by ũ reads as,

∂tũ + A∂xũ +
Eũ

ǫ
− B(u)∂xu + B(Uǫ)∂xUǫ = o(ǫ4)

which can be written

∂tũ + A∂xũ +
Eũ

ǫ
+ B(ũ)∂xu + B(Uǫ)ũx = o(ǫ4)
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Multiplying by ∂2sũ and integrating with respect to the space variable gives,

(−1)s 1

2

d

dt

∫

IR
|∂sũ|22 dx +

∫

IR
∂2sũB(ũ)ux dx

︸ ︷︷ ︸
A

+

∫

IR
∂2sũB(Uǫ)ũx dx

︸ ︷︷ ︸
B

= o(ǫ4)

As in the proof of Proposition 3.1, if s is strictly greater than 3
2 , one can bound the

two terms A and B, such as,

A ≤ ‖Uǫ‖s‖ũ‖2
s

B ≤ ‖u‖s‖ũ‖2
s

which finally gives that,

d

dt
‖ũ‖2

s ≤ C (‖Uǫ‖s + ‖u‖s) ‖ũ‖2
s + o(ǫ4)

and Gronwall’s lemma gives with ‖ũ‖s(0) = 0,

‖ũ‖2
s ≤ (ecǫ2t − 1)o(ǫ2) for t ≤ T

ǫ2

and it is thus straightforward to conclude the proof of Theorem 3.1.

3.4 Higher order terms

A natural question that arises at this point is to push further the formal expansion
and check if a new term in the expansion provides a better precision. In the previous
expansion, we have set the ansatz to be Uǫ as described in (3.4). In the expression
(3.4), u3 was set as equal to its component (I − Π0)u3 and we verified that the
corrector terms were indeed correcting the leading order term. Let us start off now
with the following ansatz that has one more term,

Uǫ(t, x) = ǫ2
[
u01(x + λ′(0)t, ǫ2t) + u02(x − λ′(0)t, ǫ2t)

]

+ǫ3u1(x, t, ǫ2t) + ǫ4u2(x, t, ǫ2t) + ǫ5u3(x, t, ǫ2t) + ǫ6u4(x, t, ǫ2t)
(3.9)

Again, we plug this ansatz (3.9) in (1.1) and obtain the same profile equations
(1.5),(1.6), (1.7) and (1.8) as in the first section up to the order 4 (rj = 0). At
the order 5, annihilating r5 gives

∂t1u1 + ∂tu3 + A(∂x)u3 + Eu4 = B(u0)∂xu1 + B(u1)∂xu0 (3.10)

From the above equation and thanks to Lemma (2.1), we deduce the following solv-
ability conditions,






∂t1Π0u1 + Π0L1u3 = Π0B(u0)∂xu1 + Π0B(u1)∂xu0

(I − Π0)u4 = i∂t1Q0u1 + iQ0L1u3 − iQ0B(u0)∂xu1 − iQ0B(u1)∂xu0

(3.11)
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Now thanks to (2.5) and (2.6), we deduce the following long time evolution equation
for the corrector u1, where Π0u3 is not null anymore.

∂t1Π0u1 + Π0L1Π0u3 + iΠ0L1Q0L1Π0u2

−Π0L1Q0L1Q0L1Π0u1 − iΠ0L1Q0L1Q0L1Q0L1Π0u0

= Π0L1Q0B(u0)∂xu0 + Π0B(u0)∂xu1 + Π0B(u1)∂xu0

(3.12)

From this equation (3.12), as earlier, we apply successively the projectors Π1(0) and
Π2(0). Then by using the average operators, GT1 and GT2 , we deduce the equation
governing the corrector Π0u3 that appeared in this new formal expansion. It reads,

T1(∂t, ∂x)Π1(0)u3 = −iΠ1(0)L1Q0L1Π2(0)u2 + F (u1, u0)

T2(∂t, ∂x)Π2(0)u3 = −iΠ2(0)L1Q0L1Π1(0)u2 + G(u1, u0)
(3.13)

where F and G are some bounded functions depending only on u0 and u1. We
have proved previously that the corrector u1 was bounded in L∞(IR, L2) and that
u2 respected a sub-squareroot growth condition (1.3) along with (I − Π0)u3. As
one solves (3.13) by integrating the right hand side term, one realises that the two
components of Π0u3 cannot respect any more a sub-squareroot growth (1.3) but in
fact verify at the most a sublinear growth condition (5.30), which implies that the
term ǫ5Π0u3 is not a corrector of the term ǫ4u2 in the expansion (3.9). Indeed one
has that ‖ǫ4u2‖2 = o(ǫ3) and at the most ‖ǫ5u3‖2 = o(ǫ3) for large times of order
O( 1

ǫ2 ).

It is thereafter clear that we cannot push the expansion any further as it does not
provide us with terms that improve the accuracy. Nevertheless, with some manipu-
lations in the previous expansion, we derive in the next section, coupled KdV type
systems for which we obtain a better error estimate.

4 The coupled system: derivation and convergence

4.1 Derivation of the system and statement of the result

The way we derive the coupled system of KdV type relies on the following remark.
The convergence result in the previous section shows that the error between the
approximate solution and the exact solution of (1.1) is o(1) rather than O(ǫ) as one
could expect. This is mainly due to the fact that when we constructed uǫ

2, the
contribution of the coupled nonlinear terms in (2.28) yields a sub-square root growth
in time. In order to avoid this fact, one can impose to conserve all the nonlinear
terms in the equations satisfied by Π1(0)u0 and Π2(0)u0 in the previous analysis,
which gives,

30








∂t1Π1(0)u0 + ( 1

2λ′(0)
Π1(0)AQ0AΠ2(0)AQ0AΠ1(0)

−Π1(0)AQ0AQ0AΠ1(0) − λ′(0)Π1(0)AQ2
0AΠ1(0)) ∂3

xΠ1(0)u0

= Π1(0)B(Π0(0)u0)∂xΠ0(0)u0

∂t1Π2(0)u0 + ( − 1

2λ′(0)
Π2(0)AQ0AΠ1(0)AQ0AΠ2(0)

−Π2(0)AQ0AQ0AΠ2(0) + λ′(0)Π2(0)AQ2
0AΠ2(0)) ∂3

xΠ2(0)u0

= Π2(0)B(Π0(0)u0)∂xΠ0(0)u0

(4.14)

Thanks to the main Lemma 2.3, the above system reduce to






∂t1Π1(0)u0 +
λ′′′(0)

6
∂3

xΠ1(0)u0 = Π1(0)B(Π0u0)∂xΠ0u0,

∂t1Π2(0)u0 −
λ′′′(0)

6
∂3

xΠ2(0)u0 = Π2(0)B(Π0u0)∂xΠ0u0.

(4.15)

Then uǫ
2 is given by,

T1(∂t, ∂x)Π1(0)uǫ
2 =

−Π1(0)AQ0AQ0AΠ2(0)∂3
xu0 − λ′(0)Π1(0)AQ2

0AΠ2(0)∂3
xu0

T2(∂t, ∂x)Π2(0)uǫ
2 =

−Π2(0)AQ0AQ0AΠ1(0)∂3
xu0 − λ′(0)Π2(0)AQ2

0AΠ1(0)∂3
xu0

(4.16)

We have to keep in mind that Π1(0)u0 and Π2(0)u0 have also to satisfy the equations
of transport (2.12). Obviously this last set of equations (2.12) is not compatible with
(4.15).

In order to overcome this difficulty, the crucial point is to modify the ansatz (1.2): we
do not consider any more functions depending on two scales in time but only functions
under the form,

Uǫ(t, x) = ǫ2[uǫ
01(x, t) + uǫ

02(x, t)] + ǫ3uǫ
1(t, x) + ǫ4uǫ

2(t, x) + ǫ5uǫ
3(t, x) (4.17)
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We impose that (uǫ
01, u

ǫ
02) satisfies,






∂tu
ǫ
01 − λ′(0)∂xuǫ

01 + ǫ2
[
λ′′′(0)

6
∂3

xuǫ
01 − Π1(0)B(uǫ

01 + uǫ
02)∂x(uǫ

01 + uǫ
02)

]
= 0,

∂tu
ǫ
02 + λ′(0)∂xuǫ

02 − ǫ2
[
λ′′′(0)

6
∂3

xuǫ
02 + Π2(0)B(uǫ

01 + uǫ
02)∂x(uǫ

01 + uǫ
02)

]
= 0.

(4.18)
Again this system is not compatible with the set of transport equations (2.12) which
is satisfied only at the order O(ǫ2),






(∂t − λ′(0)∂x)uǫ
01 = O(ǫ2)

(∂t + λ′(0)∂x)uǫ
02 = O(ǫ2)

(4.19)

Remark 4.1 If we look at the system (4.18) as non homogeneous linear system, we
have that u01 and u02 remain polarized with respect to Π1(0) and Π2(0) as long as
they do respect this polarization condition at t = 0. This is easily deduced from the
presence of Π1(0) and Π2(0) in front of the non linear terms.

We still define uǫ
1 by






Π1(0)uǫ
1(x, t) =

i

2λ′(0)
Π1(0)AQ0AΠ2(0)∂xuǫ

02

Π2(0)uǫ
1(x, t) = − i

2λ′(0)
Π2(0)AQ0AΠ1(0)∂xuǫ

01

(4.20)

and for the remaining part (I −Π0)u
ǫ
1 we maintain the second equation in (2.3). For

uǫ
2 we set,






T1(∂t, ∂x)Π1(0)uǫ
2 = −Π1(0)AQ0(∂t + A∂x)Q0AΠ2(0)∂2

xuǫ
02

T2(∂t, ∂x)Π2(0)uǫ
2 = −Π2(0)AQ0(∂t + A∂x)Q0AΠ1(0)∂2

xuǫ
01

(4.21)

and again for the remaining part (I − Π0)u
ǫ
2, we maintain the solvability condition

in (2.5). To finish our set of conditions for our ansatz, we set Π0u
ǫ
3 = 0 and the

remaining part differs from (2.7) as we have eliminated in our ansatz the variable t1,
as is

(I − Π0)u
ǫ
3 = iQ0L1(∂t, ∂x)uǫ

2 − iQ0B(uǫ
0)∂xuǫ

0 (4.22)

Our result reads as follows,

Theorem 4.1 (Coupled system) Let s > 3
2 and f in Hσ (σ large enough) be such

that Π0f = f . Under Assumption 2.1, there exists T1 > 0 and a unique solution
uǫ(x, t) of (3.1) bounded in L∞([0, T1

ǫ2 ]; Hs) as well as T2 > 0 such a unique couple

(uǫ
01(x, t), uǫ

02(x, t)) bounded (with respect to ǫ) in L∞([0, T2

ǫ2 ]; Hs) solution of
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




∂tu
ǫ
01 − λ′(0)∂xuǫ

01 + ǫ2
λ′′′(0)

6
∂3

xuǫ
01 = ǫ2Π1(0)B(uǫ

01 + uǫ
02)∂x(uǫ

01 + uǫ
02)

∂tu
ǫ
02 + λ′(0)∂xuǫ

02 − ǫ2
λ′′′(0)

6
∂3

xuǫ
02 = ǫ2Π2(0)B(uǫ

01 + uǫ
02)∂x(uǫ

01 + uǫ
02)

(4.23)
with uǫ

01(x, 0) = Π1(0)f and uǫ
02(x, 0) = Π2(0)f . Moreover, there exists T0 > 0

(T0 ≤ min(T1, T2)) such that

∥∥∥∥
uǫ(x, t)

ǫ2
− [uǫ

01(x, t) + uǫ
02(x, t)]

∥∥∥∥
L∞([0,

T0
ǫ2

];Hs)

= O(ǫ)

The strategy for proving this theorem is the same that for the previous one. However,
the proofs are slightly different.

4.2 Properties of the approximate solution

We have a local existence theorem for this coupled system (see [3]) that can be viewed
as a dispersive perturbation of a symmetric hyperbolic system. The solution is defined
on [0, T

ǫ2 ] thanks to the presence of ǫ2 in front of the nonlinear terms (as in Proposition
3.1). Therefore all the terms of the ansatz are well defined and uǫ

01 and uǫ
02 are

bounded in L∞([0, T
ǫ2 ]; Hs). The crucial point is now to prove that uǫ

1, u
ǫ
2 and uǫ

3 are
bounded.

Furthermore, as we have remarked in Remark 4.1, uǫ
01 and uǫ

02 remain polarized
respectively to Π1(0) and Π2(0) for all times as it is the case at t = 0.

4.3 Properties of the corrector

uǫ
0 and uǫ

1 are indeed bounded as in the previous proof. For uǫ
2 we improve the previous

results and those displayed in [14], [17] in similar cases. We prove that uǫ
2 is bounded

in time on [0, T
ǫ2 ]. Let us recall the equations defining uǫ

2,






T1(∂t, ∂x)Π1(0)uǫ
2 = −Π1(0)AQ0(∂t + A∂x)Q0AΠ2(0)∂2

xuǫ
02

T2(∂t, ∂x)Π2(0)uǫ
2 = −Π2(0)AQ0(∂t + A∂x)Q0AΠ1(0)∂2

xuǫ
01

(4.24)

Recall that uǫ
01 and uǫ

02 satisfy,






(∂t − λ′(0)∂x)uǫ
01 = O(ǫ2)

(∂t + λ′(0)∂x)uǫ
02 = O(ǫ2)

(4.25)

We prove the following proposition.

Proposition 4.1 uǫ
2 is bounded independently of ǫ in L∞([0, T

ǫ2 ]; Hs).
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Proof of Proposition 4.1
We prove the result for the first component Π1(0)uǫ

2 of uǫ
2. The proof is similar for

Π2(0)uǫ
2. Let us rewrite the first equation in (4.24) in a simplified way:

T1(∂t, ∂x)Π1(0)uǫ
2 = M∂2

xuǫ
02

where M is a N × N matrix and uǫ
02 lies in L∞([0, T

ǫ2 ]; Hs). Then, one has,

Π̂1(0)uǫ
2(ξ, t) = eiλ′(0)ξtM ûǫ

2(ξ, 0)︸ ︷︷ ︸
=0

+ξ2eiλ′(0)tξ

∫ t

0

e−iλ′(0)sξMûǫ
02(ξ, s)

︸ ︷︷ ︸
A

ds

We integrate by parts A, which gives,

A =

[
− 1

iλ′(0)ξ
e−iλ′(0)sξMûǫ

02

]t

0

+

∫ t

0

1

iλ′(0)ξ
e−iλ′(0)sξM∂sûǫ

02 ds

and now from (4.25), we have that ∂sûǫ
02 = −iλ′(0)ξûǫ

02 + O(ǫ2), which gives,

2Π̂1(0)uǫ
2(ξ, t) = Mξ

(
− ûǫ

02

iλ′(0)
+

eiλ′(0)tξ

iλ′(0)
ûǫ

02

)
+ O(1)

for times of order O( 1
ǫ2 ), which gives that Π1(0)uǫ

2 is bounded in Hs on [0, T
ǫ2 ] and

since (I − Π0)u
ǫ
2 is bounded from (2.5), we conclude the proof.

�

The fact that uǫ
3 is also bounded is easily deduced from (4.22) and the fact that uǫ

2 is
bounded. We therefore have proved,

Proposition 4.2 The corrector term ǫ3uǫ
1+ǫ4uǫ

2+ǫ5uǫ
3 is indeed a corrector in (4.17)

and one has that
‖ǫ3uǫ

1 + ǫ4uǫ
2 + ǫ5uǫ

3‖L∞([0, T

ǫ2
];Hs) = O(ǫ3)

4.4 Estimate for the residue and end of the proof

As earlier, we start by estimating the residue. It is more complicated than in the
previous proof since the conditions we have chosen on the terms of the ansatz (3.4)
do not imply rǫ

i = 0 for i = 1, 2, 3, 4. For the moment, we can only write the residue
as,

Res(x, t, t1, ǫ) =

10∑

i=1

ǫirǫ
i

and perform the asymptotic expansion with respect to ǫ. Note here that the ansatz
is expressed only in the variable t and x and therefore the values of rǫ

i displayed at
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the beginning of this section do not hold anymore, in particular, the variable t1 is not
used anymore. Therefore, one has that

rǫ
1 = Euǫ

0 with uǫ
0 = uǫ

01 + uǫ
02; rǫ

2 = ∂tu
ǫ
0 + A(∂x)uǫ

0 + Euǫ
1

rǫ
3 = ∂tu

ǫ
1 + A(∂x)uǫ

1 + Euǫ
3; rǫ

4 = ∂tu
ǫ
2 + A(∂x)uǫ

2 + Euǫ
3 − B(uǫ

0)∂xuǫ
0

From the conditions imposed on each term of the ansatz at the end of section 1.2 for
the coupled system, we deduce, as part of the ansatz is constructed for that matter,
that,

- rǫ
1 = 0 since uǫ

0 = Π0u
ǫ
0

- (I − Π0)r
ǫ
2 = 0 from the second equation in (2.3).

- Π0r
ǫ
3 = 0 from the expressions of Π0u

ǫ
1 in (4.20) and (I − Π0)r

ǫ
3 = 0 from the

expression of (I − Π0)u
ǫ
2 in (2.5).

- (I − Π0)r
ǫ
4 = 0 from the expression of (I − Π0)u

ǫ
3 in (4.22).

Up to the order 5, we are a priori, only left with ǫ2Π0r
ǫ
2 + ǫ4Π0r

ǫ
4 which reduces to,

for its first component,

Π1(0)rǫ
2 + ǫ2Π1(0)rǫ

4 = ∂tu
ǫ
01 − λ′(0)∂xuǫ

01 + ǫ2(T1(∂t, ∂x)Π1(0)uǫ
2

+
1

2λ′(0)
Π1(0)AQ0AΠ2(0)AQ0AΠ1(0)∂3

xuǫ
01

− Π1(0)AQ0(∂t + A∂x)Q0A(Π1(0) + Π2(0))∂2
xuǫ

0

− Π1(0)B(uǫ
01 + uǫ

02)∂x(uǫ
01 + uǫ

02))
Now from the system (4.18) verified by uǫ

01 and uǫ
02, and the main algebraic lemma

2.3, one has that the previous equation reduces to, using also the condition verified
by uǫ

2, namely (4.21),

Π1(0)rǫ
2 + ǫ2Π1(0)rǫ

4 = ǫ2(∂t − λ′(0)∂x)Π1(0)AQ2
0AΠ1(0)∂2

xuǫ
01

and from (4.25), the term ǫ2Π0r
ǫ
2 + ǫ4Π0r

ǫ
4 is nothing else but a residue at the order

6. Then it is obvious to deduce the following proposition since all the terms u1, uǫ
2

and u3 are bounded.

Proposition 4.3 We have that ‖Res‖L∞([0, T

ǫ2
];L2) = O(ǫ5).

Thus our approximate solution solves (1.1) such as,

∂tUǫ + A(∂x)Uǫ +
EUǫ

ǫ
− B(Uǫ)∂xUǫ = O(ǫ5) (4.26)
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Following then the argument laid out earlier, we obtain in the same manner, the
following estimation on the norm Hs of the difference ũ between the exact solution
and our approximate solution, that reads,

‖ũ‖2
s ≤ (ecǫ2t − 1)O(ǫ3) for t ≤ T

ǫ2

which finishes the proof of theorem 4.1.

5 Comparison between both models

The two convergence theorems presented in this paper rise a few questions. As the
error estimate between the approximate solution and the exact solution is improved
in the second theorem, one ought to think that the second approximation is more
accurate. It is in fact not clear as we do not exhibit a lower bound estimate of the
error between the exact solution and the approximate solution in both cases.

Nevertheless, we want in this section to establish a link between the two models
that partially enlight their comparison. Indeed, our purpose here is to show that, in
large time scales, the solution of the coupled system converges to the solution of an
uncoupled pair of KdV type equations.
We rewrite both systems (4.23) and (3.2)-(3.3) in the variable (t, x). The relevant
small parameter reads as ǫ (we replace ǫ2 by ǫ in this section). This gives:

{
∂tu + ∂xu + ǫ∂3

xu + ǫ∂x∂uP (u, v) = 0
∂tv − ∂xv − ǫ∂3

xv + ǫ∂x∂vP (u, v) = 0
(5.27)

for the coupled system and

{
∂tu + ∂xu + ǫ∂3

xu + ǫ∂x∂uP (u, 0) = 0
∂tv − ∂xv − ǫ∂3

xv + ǫ∂x∂vP (0, v) = 0
(5.28)

for the uncoupled system, where P (u, v) is an homogeneous polynomial of degree 3.
We intend to prove in this section the following theorem:

Theorem 5.1 Let s > 3
2 . There exists Tmax > 0 (independent of ǫ) such that there

exists (uǫ, vǫ) ∈ C([0, Tmax

ǫ ], Hs) solution of (5.27) and (Uǫ,Vǫ) ∈ C([0, Tmax

ǫ ], Hs)
solution of (5.28) with Uǫ(x, 0) = u(x, 0) and Vǫ(x, 0) = v(x, 0). Moreover

‖Uǫ − uǫ‖L∞([0, Tmax
ǫ

];Hs) −→ 0

‖Vǫ − vǫ‖L∞([0, Tmax
ǫ

];Hs) −→ 0

∣∣∣∣∣∣∣
as ǫ → 0.

Proof
As it is proved in proposition (3.1), we have a local existence theorem for (uǫ, vǫ)
solution of (5.27), valid for times of order O(T

ǫ ). We remind the reader that the proof
of this proposition relies on the fact that (5.27) is a symmetric hyperbolic system with
regards to the nonlinear terms.
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The local existence for (Uǫ,Vǫ) is obvious from the global existence theorem available
for the Korteweg-de Vries equation.

The idea to prove the convergence result is to seek approximate solution of the system
(5.27) as an asymptotic expansion with respect to ǫ. This approximation reads as the
following ansatz:

Uǫ(x, t) = u0(x, t, ǫt) + ǫu1(x, t, ǫt)

Vǫ(xt) = v0(x, t, ǫt) + ǫv1(x, t, ǫt)
(5.29)

and we denote by τ = ǫt. These expansions are a priori valid for times of order O(1
ǫ )

which is consistence with the existence in time of the exact solution (uǫ, vǫ) of (5.27).
u0 and v0 correspond to the leading order terms in the expansion where u1 and v1 are
meant to be correctors. The same formal expansion as in the previous section leads
to a proof of Theorem 5.1.

We introduce as in [17], [22] a sublinear growth condition that ought to be satisfied
by (u1,v1) in order to be correctors. This sublinear growth condition is weaker than
the sub-squareroot condition introduced earlier (1.3) but is enough for this proof.

Sublinear growth condition.
For w sufficiently smooth,

lim
t→∞

1

t
‖∂α

t,x,τw(x, t, τ)‖2 = 0 for all α ∈ IN3. (5.30)

Plugging our anstaz (5.29) in (5.28) gives






(∂x + ∂t)Uǫ + ǫ
(
∂3

xUǫ + ∂x∂uP (Uǫ,Vǫ)
)

=

3∑

i=0

ǫjrj

(∂x − ∂t)Vǫ − ǫ
(
∂3

xVǫ − ∂x∂vP (Uǫ,Vǫ)
)

=

3∑

i=0

ǫjsj

(5.31)

We solve simultaneously (ri = 0,si = 0) for i = 0, 1, which gives the following set of
necessary equations,






(∂t + ∂x)u0 = 0

(∂t − ∂x)v0 = 0
and






∂τu0 + ∂tu1 + ∂xu1 + ∂3
xu0 + ∂x∂uP (u0, v0) = 0

∂τv0 + ∂tv1 − ∂xv1 − ∂3
xv0 + ∂x∂vP (u0, v0) = 0

For (Uǫ,Vǫ) to be an approximate solution of (5.28), the two above systems constitute
a set of necessary solvability conditions.
In a analog manner as in the second section, we denote by T+ and T− the two
transport operators T+(∂t, ∂x) = ∂t − ∂x and T−(∂t, ∂x) = ∂t + ∂x. We introduce the
corresponding average operators GT+ and GT−

as defined in section 2.3. We apply
these operators to the long time profile equations. Note that Property iii) (Proposition
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2.3) holds with a sublinear growth condition (5.30). Then applying GT−
for example

gives,

GT−
(∂tu1 + ∂xu1) = GT−

(T−u1) = 0

GT−
(∂τu0 + ∂3

xu0) = ∂τu0 + ∂3
xu0

GT−
(∂x∂uP (u0, v0)) = ∂x∂uP (u0, 0)

Note that P (u0, 0) gathers the only terms in P (u0, v0) that are polarized with respect
to T−(∂t, ∂x) and that are left unchanged by the action of GT−

. Analog actions of
GT+ on the other equation hold likewise.

We obtain the new solvability conditions for u0 and v0.






(∂t + ∂x)u0 = 0

(∂t − ∂x)v0 = 0
and






∂τu0 + ∂3
xu0 + ∂x∂uP (u0, 0) = 0

∂τv0 − ∂3
xv0 + ∂x∂vP (u0, 0) = 0

and for the correctors, one has






(∂t + ∂x)u1 = ∂x∂uP (u0, 0) − ∂x∂uP (u0, v0)

(∂t − ∂x)v1 = ∂x∂vP (0, v0) − ∂x∂vP (u0, v0)
(5.32)

From Proposition (3.3), we easily deduce that u1 and v1 verify a sublinear growth
condition (5.30).
At this point u0 and v0 are completely determined by the above solvability conditions
and therefore lie in C(IR, Hs) together with the correctors whose growth is correctly
controlled. Thereafter Uǫ and Vǫ lie in C([0, T

ǫ ]; Hs) as uǫ and vǫ.

Our proof of Theorem (5.1) ends with a stability result for which we ought to esti-

mate the residue in (5.31). The latter reads as

∣∣∣∣
ǫ2r2 + ǫ3r3

ǫ2s2 + ǫ3s3
, and one has from the

sublinear growth condition verified by u1 and v1 along with the boundedness of u0

and v0 in C([0, T
ǫ ]; Hs) that






(∂x + ∂t)Uǫ + ǫ
(
∂3

xUǫ + ∂x∂uP (Uǫ,Vǫ)
)

= o(ǫ)

(∂x − ∂t)Vǫ − ǫ
(
∂3

xVǫ − ∂x∂vP (Uǫ,Vǫ)
)

= o(ǫ)
(5.33)

It is afterwords easy as in section 3.3 to finish the proof by estimating ‖Uǫ −uǫ‖s and
‖Vǫ − vǫ‖s and thus conclude.

�

Remark 5.1 One must be careful if we try to interpret this result. It is indeed a
decoupling result that enables us to compare the two models but we have to keep in
mind that the Hs norms ‖Uǫ−uǫ‖s and ‖Vǫ−vǫ‖s are only of order o(1) and not O(ǫ).
This means that for relatively large ǫ (physically ǫ = 10−1 is relevant in the water
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waves context), the discrepancy between the two models can be large. For instance, in
the case of interactions of solitary waves, the interaction is definitely nonlinear and
the coupled system is a better model as it is clear in the simulations conducted in [4],
[6].

6 Examples

In this section, we present the derivation of KdV coupled systems in two physical
cases. We recall that our convergence results do not apply in these cases.

6.1 The Euler Poisson equations

In this section, we investigate the Euler-Poisson equations that occur in the context of
ion acoustic waves. Consider a plasma of electrons and ions, where the inertia of the
electrons can be neglected unlike the electrostatic effects of the electron charges. The
electrons are modelized as a gas. Expressing the Boltzmann equation of state along
with the conservation of mass, with φ being the electrostatic potential, η the density
of electrons and v their velocity, one obtains the simplified dimensionless equations,
namely the Euler Poisson system, that reads as,






ηt + (ηv)x = 0
vt + vvx = −φx

φxx = eφ − η
(6.1)

We refer to Dodd [13] for a detailed derivation of (6.1).

We will apply the second section, in this particular physical context, that is starting
from (6.1), we give a derivation of KdV type systems as an asymptotical equation
describing (6.1) for long waves and small amplitudes.

If one linearizes this system, we obtain describing the potential, the following equation
in φ,

∂2
x∂2

t φ + ∂2
xφ − ∂2

t φ = 0

which gives the relation of dispersion w2 = k2(1 + k2)−1 whose shape near 0 (long
wave approximation) meets the requirements of the preceding general study as in
figure 1. As we set up our ansatz, we derive necessary conditions on the approximate
solution and obtain KdV systems. The system (6.1) if obviously not of the form (1.1).
However, we will show that the second section applies in this case. We first make the
following remark.

Remark 6.1 If uǫ(t, x) is a solution of (1.1) then vǫ(t, x) = uǫ(ǫt, ǫx) is a solution
to

∂tv
ǫ + A∂xvǫ + Evǫ = B(vǫ)∂xvǫ (6.2)

Then the ansatz that has to be used for (6.2) is
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Uǫ =

3∑

j=0

ǫj+2uj(ǫx, ǫt, ǫ3t) (6.3)

in order to pursue the same analysis as in the second section.

System (6.1) can be seen as belonging to a class of pseudo-differential systems that
generalize (6.2). We therefore use the same ansatz.

The ansatz. We seek approximate solutions for (6.1) of the form,






ηǫ = 1 + ǫ2η0(ǫx, ǫt, ǫ3t) + ǫ3η1 + ǫ4η2

φǫ = ǫ2φ0(ǫx, ǫt, ǫ3t) + ǫ3φ1 + ǫ4φ2

vǫ = ǫ2v0(ǫx, ǫt, ǫ3t) + ǫ3v1 + ǫ4v2

(6.4)

Plugging the ansatz (6.4) into (6.1), one obtains the following expansion with respect
to ǫ,






ηǫ
t + (ηǫvǫ)x =

2∑

i=0

riǫ
i+3 + O(ǫ6)

vǫ
t + φǫ

x + vǫvǫ
x =

2∑

i=0

siǫ
i+3 + O(ǫ6)

φǫ
xx − eφǫ

+ ηǫ =

2∑

i=0

qiǫ
i+2 + O(ǫ5)

Since we intend to solve this system up to the order ǫ5, we obtain the following set
of equations,

• for the first equation,






∂t1η0 + ∂xv0 = 0 (r0 = 0)

∂t1η1 + ∂xv1 = 0 (r1 = 0)

∂t2η0 + ∂t1η2 + ∂xv2 + ∂x(v0η0) = 0 (r2 = 0)

(6.5)

• for the second equation,






∂t1v0 + ∂xφ0 = 0 (s0 = 0)

∂t1v1 + ∂xϕ1 = 0 (s1 = 0)

∂t2v0 + ∂t1v2 + ∂xφ2 + v0∂xv0 = 0 (s2 = 0)

(6.6)
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• and for the last equation, we have






η0 − φ0 = 0 (q0 = 0)

η1 − ϕ1 = 0 (q1 = 0)

∂2
xφ0 − φ2 + η2 −

(φ0)
2

2
= 0 (q2 = 0)

(6.7)

Since from (6.7), η0 = φ0, both these variables solve a classical wave equation (∂2
t −

∂2
x)u = 0 and read as the sum of two functions moving at the speed ±1. Let us then

define the two transport operators as previously such as T1(∂t, ∂x) = ∂t1 − ∂x and
T2(∂t, ∂x) = ∂t1 + ∂x and the associated average operators GT1 and GT2 that are in
this context nothing else but the projectors on the kernels of respectively Π1(0) and
Π2(0) and that we will denote from now on, P1 and P2. With these notations, we
deduce that η0 and v0 read as follows,

η0 = P1η0 + P2η0

and
v0 = P1v0 + P2v0

and from the wave equation in η0 and v0, one has that P1η0 = −P1v0 and P2η0 = P2v0.
Hence applying both projectors P1 and P2 on every equations will lead to the desired
results. Let us point out beforehand that these two average projectors can be applied
on each terms of the equations. For η0 and v0, it is clear since they are transported
by the scalar operators T1 and T2 and for the other terms in the expansions indexed
by 2 (the ones indexed by 1 do not play any role - see below -), we assume that their
growth in time is controlled and is at least sub-linear and Property iii) of the average
operators allows us to conclude. Naturally, this hypothesis needs to be verified once
we have derived necessary conditions on the corrector terms.

Now the equations satisfied by η1, v1 and ϕ1 are the same than those satisfied by
η0, v0 and ϕ0 and are solved in the same way. Moreover, since the unknowns η1, v1

and ϕ1 do not appear in the equations r2 = 0, s2 = 0 and q2 = 0, we can set them to
zero.

In order to obtain the profile equations for η0, v0 and ϕ0, we start by applying P2 on
the equations (6.5) and (6.6) and look at the evolution of the profile moving in the
right direction,

∂t2P2η0 + (P2∂t1η2 + P2∂xv2) + 2P2η0∂xP2η0 = 0 (6.8)

and

∂t2P2η0 + (P2∂xφ2 + P2∂t1v2) + P2η0∂xP2η0 − P2η0∂xP1η0 = 0 (6.9)

Now summing (6.8) and (6.9) and differentiate the second equation in (6.7) in order
to replace ∂xP2φ2 in the equation, gives,

41



∂t2P2η0 + P2η0∂xP2η0︸ ︷︷ ︸
nonlinear term

− P2η0∂xP1η0︸ ︷︷ ︸
nonlinear coupled term

+
1

2
∂3

xP2η0

︸ ︷︷ ︸
dispersive term

+ P2(∂t1 + ∂x)v2︸ ︷︷ ︸
corrector term

+ P2(∂t1 + ∂x)η2︸ ︷︷ ︸
corrector term

= 0
(6.10)

We obtain in a analog manner the second equation governing the long time evolution
of P1η0,

∂t2P1η0 −
1

2
∂3

xP1η0 −
3

2
P1η0∂xP1η0 −

1

2
P2η2∂xP2η2

−1

2
∂x(P1η0P2η2) − P1(∂t1 − ∂x)v2 + P1(∂t1 − ∂x)η2 = 0

(6.11)

as we set now the corrector in the equation to be such that,

∣∣∣∣∣∣

P2(∂t1 + ∂x)(v2 + η2) = 0

P1(∂t1 − ∂x)(η2 − v2) = 0
(6.12)

we obtain the following coupled KdV system as an asymptotic limit to our problem
that reads for the long time evolution, with u = P2η0 and v = P1η0,






∂t2u +
1

2
∂3

xu + u∂xu − u∂xv = 0

∂t2v − 1

2
∂3

xv − 3

2
v∂xv − 1

2
u∂xu − ∂x(uv) = 0

(6.13)

Since we kept coupled terms, we recall from the previous general discussion that
(6.13) is not compatible with the 1-dimensional wave equation solved by η0 and v1.
Therefore as for the derivation of the coupled system laid out earlier, we consider u
and v, back in the variable (x, t) solutions of,






∂tu + ∂xu + ǫ

[
1

2
∂3

xu + u∂xu − u∂xv

]
= 0

∂tv − ∂xv + ǫ

[
−1

2
∂3

xv − 3

2
v∂xv − 1

2
u∂xu − ∂x(uv)

]
= 0

(6.14)

Note that we actually obtain a whole class of limit systems, since we can eliminate or
add nonlinear term in the equation as long as they can be compensated by the same
terms in the correctors with a contribution that must remain bounded in order not to
affect the convergence result. For instance we add or subtract terms of the form v∂xv
in the first equation and terms of the form u∂xu in the second equation. Any of these
terms thanks to Proposition 3.2, implies a bounded contribution in the correctors and
therefore does not affect the convergence. We can for instance set up a combination
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of such terms in order to obtain a limit system with a symmetric nonlinearity. This
operation could very well be baptized as a “symmetrization” process. The motivation
for applying such a process is double: first of all it assures that the limit system has
at least an L2 invariant, which is physically important and secondly that the limit is
well posed and has a solution that exists for large time scales of order O(1

ǫ ), which is
crucial in the scope of a convergence theorem.

In this case, the “symmetrisation” process gives that we need to add v∂xv in the first
equation and − 1

2u∂xu in the second and modify consequently the expression for the
correctors. We then obtain, for the correctors,

∣∣∣∣∣∣∣

P2(∂t1 + ∂x)(v2 + η2) = −v∂xv

P1(∂t1 − ∂x)(η2 − v2) =
1

2
u∂xu

(6.15)

which from Proposition 3.2 remain bounded. The Proposition can be applied here,
thanks to Remark 6.1, as we used the proper ansatz for which the previous general
theory stands and as u2 and v2 are indeed L2-bounded since u and v lie in the proper
Hs (for s > 1

2 ). The final limit system for the Euler Poisson problem read in its
vectorial form as,

∂tU +

(
1 0
0 −1

)
∂xU + ǫ

(
1 0
0 −1

)
∂3

xU + ǫM(U)∂xU = 0

where U is now the vector

∣∣∣∣
u
v

and M(U) the symmetric matrix,

M(U) =

(
−u v − u
v − u u − 3

2v

)

We do not go further into the analysis of this model as we do not intend to prove in
the scope of this paper, a convergence result for this example. This convergence result
may be obtained using technics of Cordier-Grenier [10]. We postpone this study for
a further work.

6.2 Water waves

The Korteweg-de Vries equation was first derived in the context of surface water waves
after Russel’s observation of a soliton. From Bona-Chen’s derivation displayed in [5],
[6]; one can derive a large class of KdV type systems modeling counter-propagating
water waves.

Indeed, starting from the Euler equation for an irrotational and incompressible flow,
associated to the appropriate boundary conditions at the bottom and no surface ten-
sion at the surface lead to the Laplace equation in the flow domain. Then designating
by φ(x, y, t) the velocity potential where x is the horizontal variable and y the ver-
tical variable, η(x, t) being the water elevation lead to the Euler equation with free
boundary conditions, that read in its classical dimensionless form as,
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




βφxx + φyy = 0 0 < y < 1 + αη
φy = 0 y = 0

ηt + αφxηx − 1

β
φy = 0

η + φt +
1

2
αφ2

x +
1

2

α

β
φ2

y = 0





y = 1 + αη

(6.16)

where α = amplitude
depth and β =

(
depth

wavelength

)2

that we suppose to be the small pa-

rameters of the system, e.g we place ourselves in the framework of large wavelength
with small amplitude. Furthermore, one assumes that α ∼ β. We will not recall in
detail their derivation. Let us just say that it relies on an expansion of the potential
of velocity with respect to the vertical variable in order to derive the shallow water
system. Taking w as the horizontal velocity at a certain water level θ, one obtains a
class of systems as it formulated in [6], [7],






ηt + wx + α(wη)x + β

(
θ2

2
− 1

6

)
(λwxxx − (1 − λ)ηxxt) = O(α2, β2)

wt + ηx + αwwx − β

(
1

2
− θ2

2

)
(−µηxxx + (1 − µ)wxxt) = O(α2, β2)

(6.17)

Depending on the choice of (λ, µ) ∈ IR2, the system above describes a class of systems
that are all equivalent to each other and the crucial point in their derivation holds in
the system written at the first order such as,

{
ηt = −wx + O(α, β)
wt = −ηx + O(α, β)

(6.18)

which means for these authors that a derivative with respect to t, ∂t can be replaced
by a derivative with respect to x, ∂x as long as w is replaced by η with no loss of
precision.

Out of that large class of systems thus defined, two of them stand out as the KdV
type system and the BBM type system,

KdV type






ηt + wx + α(wn)x +
β

6
wxxx = 0

wt + ηx + αwwx +
β

6
ηxxx = 0

BBM type






ηt + wx + α(wn)x − β

6
ηxxt = 0

wt + ηx + αwwx − β

6
wxxt = 0

There exists numerous discussions regarding the comparison between these two mod-
els especially for the single KdV equation compared to the BBM equation. The most
fruitful and detailed one can be found in [2], where the authors explain how the regu-
larized model fits better with regards to the various drawbacks of the KdV equation.
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However, these two systems nor any of the systems that can be derived from the class
described above, are satisfactory from our point of view, as in all cases the nonlinearity
is not symmetric unlike in the original system.

In this section, we propose a more satisfactory and “rigorous” derivation of KdV
systems in the context of water waves which gives a new class of such equivalent
system including symmetric systems of KdV type that do a priori hold the same
approximation properties. Besides, in our derivation, the small parameter appear to
be unique and the arguments used are no different from those used in the general
theory displayed in this chapter. Let us rewrite the Euler system with free boundary
conditions, with a unique small parameter ǫ,






ǫφxx + φyy = 0 0 < y < 1 + ǫη
φy = 0 y = 0

ηt + ǫφxηx − 1

ǫ
φy = 0

η + φt +
1

2
ǫφ2

x +
1

2
φ2

y = 0





y = 1 + ǫη

(6.19)

Before setting up our ansatz and plugging it in (6.19), let us expand φ(x, y, t) with
respect to the second variable around y = 1 such as,

φ(x, y, t)|y=1+ǫη = φ(x, y, t)|y=1 + ǫη∂yφ(x, y, t)|y=1

+
1

2
ǫ2η2∂2

yφ(x, y, t)|y=1 + O(ǫ3)

(6.20)

We set ϕ(x, t) = φ(x, 1, t) the profile at the undisturbed water level, and from the
following system,






ǫφxx + φyy = 0 0 < y < 1 + ǫη
φy = 0 at y = 0
φ(x, 1, t) = ϕ(x, t)

(6.21)

we solve φ in the y variable with respect to the other variables, using Fourier trans-
forms,

φ̂(ξ, y, t) =
ϕ̂(ξ, t)

ch(
√

ǫξ)
ch(

√
ǫξy)

and thereafter one has that,

∣∣∣∣∣∣

∂yφ̂(ξ, y, t)|y=1 =
√

ǫξϕ̂(ξ, t)th(
√

ǫξ)

∂2
y φ̂(ξ, y, t)|y=1 = ǫξ2ϕ̂(ξ, t)

which gives the first terms of the expansion of these quantities with respect to ǫ,

∣∣∣∣∣∣∣

∂yφ(x, y, t)|y=1 = −ǫ∂2
xϕ(x, t) − ǫ2

3
∂4

xϕ(x, t) + O(ǫ3)

∂2
yφ(x, y, t)|y=1 = −ǫ∂2

xϕ(x, t)

(6.22)
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Now plugging the expansion of φ(x, y, t) in the last two equations of (6.19) at y = 1+ǫη
gives, using (6.22):






ηt + ∂2
xϕ + ǫηx∂xϕ + ǫη∂2

xϕ +
ǫ

3
∂4

xϕ − ǫ2η∂3
xϕ = 0(ǫ3)

∂tϕ + η +
ǫ

2
(∂xϕ)2 +

ǫ2

2
∂2

xϕ − ǫ2η∂t∂
2
xϕ +

ǫ2

2
η2ϕ = 0(ǫ3)

(6.23)

In order to use the same ansatz as in the general theory, we change ǫ by ǫ2 in the
above system and make the following change of unknowns η̃ = η

ǫ2 and ϕ̃ = ϕ
ǫ2 . System

(6.23) gives omitting the ,̃






ηt + ∂2
xϕ + ηx∂xϕ + η∂2

xϕ +
ǫ2

3
∂4

xϕ − ǫ2η∂3
xϕ = 0(ǫ5)

∂tϕ + η +
1

2
(∂xϕ)2 +

ǫ4

2
∂2

xϕ − ǫ2η∂t∂
2
xϕ +

ǫ2

2
η2ϕ = 0(ǫ5)

(6.24)

We seek now an ansatz as follows,






η(x, t) = ǫ2η0(x, t, ǫ2t) + ǫ3η1(x, t, ǫ2t) + ǫ4η2(x, t, ǫ2t)

ϕ(x, t) = ǫ2ϕ0(x, t, ǫ2t) + ǫ3ϕ1(x, t, ǫ2t) + ǫ4ϕ2(x, t, ǫ2t)
(6.25)

We now plug (6.25) in (6.24). It gives as we identify the terms at each order of ǫ,

At the order O(ǫ2).






∂tη0 + ∂2
xϕ0 = 0

∂tϕ0 + η0 = 0
(6.26)

At the order O(ǫ3).






∂tη1 + ∂2
xϕ1 = 0

∂tϕ1 + η1 = 0
(6.27)

At the order O(ǫ4).






∂t1η0 + ∂tη2 + ∂xη0∂xϕ0 + ∂2
xϕ2 +

1

3
∂4

xϕ0 + η0∂
2
xϕ0 = 0

∂t1ϕ0 + ∂tϕ2 + η2 +
1

2
(∂xϕ0)

2 = 0

(6.28)

First of all, note that the equations satisfied by ϕ1 and η1 are the same as those satis-
fied by η0 and ϕ0 in (6.26). Besides η1 and ϕ1 do not appear in the long time evolution
equations (6.28). One can therefore set them to zero with no loss of generality.

These sets of equations suggest us to consider g = ∂xϕ as an auxiliary unknown.
Then, as in the first example, solving (6.26) gives that,
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{
η0(x, t) = η01(x − t) + η02(x + t)
g0(x, t) = g01(x − t) + g02(x + t)

and naturally from the wave equation (6.26), one has that, η01 = g01 and η02 = −g02.
Thereafter, if we set u = η01 and v = η02, and rewrite the system (6.28) as follows,
one obtains,






∂t1η0 + ∂tη2 + ∂x(g0η0) + ∂xg2 +
1

3
∂3

xg0 = 0,

∂t1g0 + ∂tg2 + ∂xη2 + g0∂xg0 = 0.

(6.29)

Now summing and subtracting the above equations gives the following system,






2∂t1u +
1

3
∂3

x(u − v) + 3u∂xu − v∂xv − ∂x(uv) + (∂t + ∂x)η2 + (∂t + ∂x)g2 = 0,

2∂t1v +
1

3
∂3

x(u − v) + u∂xu − 3v∂xv + ∂x(uv) + (∂t − ∂x)η1 − (∂t − ∂x)g1 = 0.

(6.30)
We know from the previous general theory described in the previous sections, that
we need to get rid of the corrector terms along with terms whose contributions in the
corrector terms will keep them bounded. In that case and only in that case, we do
not affect the convergence result. For that matter, we set the corrector terms to be
such that the nonlinearity in the final system is symmetric. One needs afterwards to
verify, that the corrector terms remain bounded. This gives, as a necessary condition
that,

∣∣∣∣∣∣∣∣∣∣∣∣

T1(∂t, ∂x)(η2 + g2) = −1

3
∂3

xv − 2v∂xv︸ ︷︷ ︸
added term

T2(∂t, ∂x)(η2 − g2) =
1

3
∂3

xu + 2u∂xu︸ ︷︷ ︸
added term

(6.31)

and the final system read then as a KdV type system whose nonlinearity derives from
a gradient. Indeed one has,






∂t1u +
1

6
∂3

xu +
1

2
∂x

[
3u2

2
+

v2

2
− uv

]

︸ ︷︷ ︸
∂V (u,v)

∂u

= 0

∂t1v − 1

6
∂3

xv +
1

2
∂x

[
−3v2

2
− u2

2
+ uv

]

︸ ︷︷ ︸
∂V (u,v)

∂v

= 0

(6.32)
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with V (u, v) = u3

2 − v3

2 + v2u
2 − u2v

2 . The crucial point now is to verify that our
correctors are indeed bounded from (6.31), which is a straightforward task as it is
already established in Proposition 3.2, that holds since u and v lie in Hs (for s > 1

2 ).

As for the Euler-Poisson example earlier and as for the coupled KdV system derived
in the general case, the above system (6.32) is not compatible with the wave equation
verified by η0 and g0. Then, as usual, we come back to the (x, t) variable, and consider
our approximate (uǫ, vǫ) solution to solve






∂tu
ǫ + ∂xuǫ + ǫ

1

6
∂3

xuǫ + ǫ
1

2
∂x

∂V (uǫ, vǫ)

∂uǫ
= 0

∂tv
ǫ − ∂xvǫ − ǫ

1

6
∂3

xvǫ + ǫ
1

2
∂x

∂V (uǫ, vǫ)

∂vǫ
= 0

(6.33)

along with the condition (6.31) on the correctors.

Finally we have at hand asymptotic systems of KdV type with a non linearity deriving
from a gradient that compete as models for the propagation of counter-propagating
hydrodynamic surface waves, exactly at the same level of approximation as those dis-
played in the literature. For comparison purposes, let us rewrite the system with the
physical unknows η0 and g0 being respectively the water elevation and the horizontal
velocity. This gives,






∂tη0 + ∂xg0 + ǫ
6∂3

xg0 + 1
2ǫ∂x(η0g0) = 0

∂tg0 − ∂xg0 + ǫ
6∂3

xη0 + 1
4ǫ∂x(η2

0 + 3g2
0) = 0

(6.34)

Again our intention, is not in the scope of this paper to prove a convergence theorem
as it is anyhow a difficult task. The purpose of this example was only meant to
convince the reader of the relevance of such models in the context of water waves
and show as well how the methods deriving from geometrical optics provides a rather
rigorous framework for our problem.
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Bordeaux I, N. 99001, 1999.

[13] DODD R.K., J.C EILBECK, J.D. GIBBON & H.C. MORRIS, Solitons and
nonlinear wave equations. Academic Press, 1982.

[14] DONNAT P., J.L. JOLY, G. METIVIER and J. RAUCH, Diffractive nonlinear
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