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Abstract

In this paper we construct and study discretizations of a nonlinear Zakharov-wave system oc-

curring in plasma physics. These systems are generalizations of the Zakharov system that can be

recovered by taking a singular limit. We introduce two numerical schemes that take into account

this singular limit process. One of the scheme is conservative but sensible to the polarization of the

initial data while the other one is able to handle ill-prepared initial data. We prove some convergence

results and we perform some numerical tests.
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1 Introduction

1.1 Setting of the problem and motivation

The strong Langmuir turbulence phenomenon is well-known problem in plasma physics [13]. The key
mechanism of this physical phenomenon is governed by the so-called Zakharov equations. These equations
describe the slowly varying motions of the complex-valued envelope of the Langmuir electric field E0 which
nonlinearly interacts with large-scale fluctuation n0 through the ponderomotrice force. They read in a
dimensionless scalar form







2i∂tE
0 + ∆E0 = n0E0,

(∂2
t − ∆)n0 = 2∆|E0|2.

(1.1)

This system can be derived from the Klein-Gordon-wave system [4] or directly from the Euler-Maxwell
system [15] using a small parameter ε = 1

ωpeT where ωpe is the electronic plasma pulsation and T a

characteristic time of the pulse. The size of ε governs the regime of evolution of the solution.
System (1.1) is only an approximation that can be sometimes not accurate enough to describe the full
physics corresponding to the large variety of plasmas created by laser pulses. In [2], an intermediate
system (between (1.1) and Euler-Maxwell in the hierarchy) has been introduced. It is less stiff than Euler-
Maxwell but more precise than (1.1). In particular, it takes into account more deeply the oscillations of
the electric field and allows “larger” values of ε. Its range of validity is expected to be wider than that of
Zakharov. It reads, in a dimensionless form :







ε∂2
t E − 2i∂tE − ∆E = −NE ,

∂2
t N − ∆N = 2∆|E|2

(1.2)
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endowed with the initial data

E(t = 0) = E0, ∂tE(t = 0) = E1,N (t = 0) = N0, ∂tN (t = 0) = N1. (1.3)

System (1.2) is intermediate between Zakharov system (1.1) and Klein-Gordon-waves system, namely






(∂2
t − 1

ε∆ + 1
ε2 )E = − 1

εnE,

(∂2
t − ∆)n = ∆|E|2.

(1.4)

Indeed, because of the presence of the parameter ε in (1.4), the electric field E is highly oscillatory
whereas n is low frequency. Mathematically, these oscillations can be described through the change of
function E(x, t) = E(x, t)e−

it
ε + c.c.. For the low frequency ion fluctuation we set n(x, t) = N (x, t).

By injecting (E, n) in system (1.4) and neglecting oscillatory terms in the nonlinear term of the second
equation, one obtains system (1.2). Moreover in [2], it is shown that for any initial value (E0, E1,N0,N1) ∈
Hs+2(Rd) × Hs(Rd) × Hs+1(Rd) × Hs(Rd) with s large enough and ε|E1| → 0 as ε → 0, there exists
an unique solution to (1.2) on a maximal existence time [0, T ε[ such that T ε > 0. Furthermore, if
(E0, n0) denotes the maximal solution of Zakharov equations (1.1) with initial value (E0,N0,N1) defined
on [0, T0[, then on one hand, limε→0 inf T ε ≥ T 0, and on the other hand, for any T < T0, (E ,N ) converges
to (E0, n0) on [0, T ] in C([0, T ];Hs+2(Rd) ×Hs+1(Rd)).

Remark 1.1. The convergence result is easier than the one established in [4]. Indeed the high frequency
term in the non-linear force ∆|E|2 have been filtered out.

In the non-compatible case (that is when E1 6= − i
2∆E0 + E1 + i

εN0E0), ∂tE oscillates, with a O(1)

amplitude, at frequency 2
ε around the value ∂tE

0. In the compatible case (that is when E1 = − i
2∆E0 +

E1+ i
εN0E0), the quantity E−E0 oscillates at frequency 2

ε and these oscillations are of order of magnitude
ε. In the last section, we will consider numerically larger initial data (cases where ∂tE = O(1/ε) and
show how to handle them. We can divide E into two components F and G involving the propagators
e

i
ε
(1∓

√
1−ε∆)t respectively. Analogously, we decompose N into H + I. The functions (F,G,H, I) are

solution of the split-system, namely


































































∂tF =
i

ε
(1 −

√
1 − ε∆)F +

1

2i
√

1 − ε∆
(H + I)(F +G),

∂tG =
i

ε
(1 +

√
1 − ε∆)G− 1

2i
√

1 − ε∆
(H + I)(F +G),

∂tH = i
√
−∆H +

1√
∆

∆|F +G|2,

∂tI = −i
√
−∆I − 1√

∆
∆|F +G|2.

(1.5)

The initial data for F,G,H, I are recovered from E0, E1,N0,N1 (see [2] for details). Note that this splitting
is exact. Finally, system (1.2) owns the two following invariants

∫

Rd

|E|2 − εIm
∫

Rd

Ē∂tE = const (1.6)

and
∫

Rd

(

ε|∂tE|2 + |∇E|2 + N|E|2 +
1

4
(∇ψ)2 +

1

4
N 2

)

= const (1.7)

where ψ is defined by ∂tN = ∆ψ.
• Setting of the problem : It is clear that (E ,N ) converges to (F,N ), as ε→ 0, while G is the oscillatory
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part of E . The period of these oscillations is πε while their amplitude is of order ε. It implies that the
more G oscillates, the more the contribution of G in E is negligible. From the numerical point of view,
it means that we need a small time step in order to compute G precisely while it is not necessary since
its contribution in E = F +G is small. However, for ε large enough it is essential to compute both the
average and the oscillatory parts of the solution in view of the error estimate established in [4].
• Motivation : The aim of this paper is to propose a numerical approach for solving problem (1.2)-(1.3).
In fact, we investigate a numerical scheme which is precise and not expensive for any ε. In particular we
study two schemes of Crank-Nicolson type for (1.2) using the splitting (1.5) for the associated discrete
operators. We show that the non-centered in time scheme (called S1) owns dissipative and polarization
properties contrary to the centered in time scheme (called S2). We will precise later what is polarization.
Moreover we numerically check the error estimate established in [4] and confirm that system (1.2) compute
precisely the propagation of short or ultra-short waves through a plasma. For a precise description of
short or ultra-short waves, one can see [1].

1.2 Numerical schemes

We recall that the Crank-Nicolson scheme for (1.1) has been introduced by Glassey [6]. It reads























2i
Em+1

j − Em
j

δt
+
(

D+D−
(Em+1 + Em

2

))

j
=

1

4
(nm+1

j + nm
j )(Em+1

j + Em
j ),

nm+1
j − 2nm

j + nm−1
j

δt2
−
(

D+D−
(nm+1 + nm−1

2

))

j
= 2(D+D−|Em|2)j

where Em
j ≈ E0(t = mδt, x = xj), n

m
j ≈ n0(t = mδt, x = xj) and D+, D− are the forward and backward

non-centered finite difference operators respectively. Several authors have studied numerical schemes for
the Zakharov system (see for example [3], [14] and recently [7]). Analogously, we introduce the two
following schemes for (1.2) :
⋆ the non-centered in time scheme











































ε

(Em+1 − 2Em + Em−1

δt2

)

− 2i

(Em+1 − Em

δt

)

−D+D−

(Em+1 + Em

2

)

= −Nm

(Em+1 + Em

2

)

,

Nm+1 − 2Nm + Nm−1

δt2
−D+D−

(Nm+1 + Nm−1

2

)

= 2D+D−|Em|2,

E0 = f,
E0 − E−1

δt
= g,N 0 = N0,

N 0 −N−1

δt
= N1,

⋆ the centered in time scheme











































ε

(Em+1 − 2Em + Em−1

δt2

)

− i

(Em+1 − Em−1

δt

)

−D+D−

(Em+1 + Em−1

2

)

= −Nm

(Em+1 + Em−1

2

)

,

Nm+1 − 2Nm + Nm−1

δt2
−D+D−

(Nm+1 + Nm−1

2

)

= 2D+D−|Em|2,

E0 + E−1

2
= f,

E0 − E−1

δt
= g,N 0 = N0,

N 0 −N−1

δt
= N1.

The aim of this paper is to provide some mathematical results for semi-discretized version of these
schemes, that is when D+D− is replaced by the Laplace operator ∆. The schemes then read :
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⋆ the non-centered in time scheme (S1)

(S1)











































ε

(Em+1 − 2Em + Em−1

δt2

)

− 2i

(Em+1 − Em

δt

)

− ∆

(Em+1 + Em

2

)

= −Nm

(Em+1 + Em

2

)

,

Nm+1 − 2Nm + Nm−1

δt2
− ∆

(Nm+1 + Nm−1

2

)

= 2∆|Em|2,

E0 = f,
E0 − E−1

δt
= g,N 0 = N0,

N 0 −N−1

δt
= N1,

⋆ the centered in time scheme (S2)

(S2)











































ε

(Em+1 − 2Em + Em−1

δt2

)

− i

(Em+1 − Em−1

δt

)

− ∆

(Em+1 + Em−1

2

)

= −Nm

(Em+1 + Em−1

2

)

,

Nm+1 − 2Nm + Nm−1

δt2
− ∆

(Nm+1 + Nm−1

2

)

= 2∆|Em|2,

E0 + E−1

2
= f,

E0 − E−1

δt
= g,N 0 = N0,

N 0 −N−1

δt
= N1.

We prove existence, uniqueness and convergence of the discrete sequences (Em,Nm) for both schemes
for fixed ε. We show that scheme (S2) is conservative while scheme (S1) is dissipative. Moreover scheme
(S1) polarizes the solution whatever the initial data we take. We will precise later on what we mean by
polarize.
The aim of this paper is to investigate the effect of the dissipation and the polarization phenomenon on
the discrete solution given by (S1).

The paper is organized as follows. In section 2, we state existence, uniqueness and convergence re-
sults of the discrete solution given by both schemes. We introduce the splitting of schemes (S1) and (S2).
Then we give some details of the proof of theorem 2.1, that is related to scheme (S1). For scheme (S2)
we just check the key points of theorem 2.2.
In section 3, we discuss the behavior of the discrete solution given by both schemes. We study dissipative
and polarization phenomenon of scheme (S1). We compare the solution of (1.2) given by both schemes
with the solution of Zakharov system (1.1). At the end we illustrate the transparency property [11] of
system (1.4) established in [4].
Our mathematical result mainly depend on the study of the linear part of the schemes. Therefore a lot of
technical tools are imported from [5]. The main difference between this paper and [5] is the well known
loss of derivative involve in the Zakharov system. This loss of derivative give rise to weaker convergence
and stability results than in [5].

2 Theoretical results

Following [2] in the continuous case, we introduce an exact splitting for our schemes. Using these splitting,
we prove existence, uniqueness and convergence results for the discrete solution for fixed ε.

2.1 Splitting of the schemes

We recall that in the continuous case, one divides E into two components F and G having the modes of
propagation e

i
ε
(1∓

√
1−ε∆)t respectively. Analogously, we write N = H + I. The functions (F,G,H, I) are
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solution of the split system (1.5). One can see that G contains all the oscillatory part of the solution and
the order of magnitude is of order |G(0)|. Moreover (F,N ) converges to the solution of (1.1) with the
suitable initial data. The aim of this section is to present a similar splitting for (S1) and (S2) which will
have the same behavior like the continuous case. In analogy with [5], we look for a splitting for (S1) and
(S2) of the form Em = Fm +Gm and Nm = Hm + Im such that







































































Fm+1 − Fm

δt
= iα1

Fm+1 + Fm

2
+
γ1

δt
(1 + i

α1δt

2
)fm+1,

Gm+1 −Gm

δt
= iα2

Gm+1 +Gm

2
+
γ2

δt
(1 + i

α2δt

2
)fm+1,

Hm+1 −Hm

δt
= iβ1

Hm+1 +Hm

2
+
ν1
δt

(1 + i
β1δt

2
)hm,

Im+1 − Im

δt
= iβ2

Im+1 + Im

2
+
ν2
δt

(1 + i
β2δt

2
)hm

(2.1)

where fm+1, hm denote the right-hand side of (S1) or (S2). For the initial data of (2.1) we refer to

[5]. The operators αj , βj are given by αj =
2i(1−Xj)
δt(1+Xj) , βj =

2i(1−Yj)
δt(1+Yj)

where Xj, Yj are the roots of the

characteristic equations of (S1) and (S2) for j = 1, 2. The nature of the operators αj and βj give us some
information on the behavior of the schemes. We investigate the properties of each scheme separately.

• Splitting for (S1) : One gets the following result (see [5] for details) :

Proposition 2.1. It is equivalent to solve (S1) with E0, E1,N0,N1 given or to solve







































Fm+1 = X1F
m + γX1f

m+1,

Gm+1 = X2G
m − γX2f

m+1,

Hm+1 = Y1H
m + νY1h

m,

Im+1 = Y2I
m − νY2h

m

(2.2)

with Em = Fm +Gm,Nm = Hm + Im, fm+1 = −(Hm + Im)(F m+1+Gm+1+F m+Gm

2 ), hm = 2|Fm +
Gm|2 and the suitable initial values. Operators (X1, X2, Y1, Y2) are solution of the characteristic
equations

X2
( ε

δt2
− 2i

δt
− ∆

2

)

+X
(

− 2ε

δt2
+

2i

δt
− ∆

2

)

+
ε

δt2
= 0,

Y 2
( 1

δt2
− ∆

2

)

+ Y
(

− 2

δt2

)

+
( 1

δt2
− ∆

2

)

= 0.

They are given by

X1,2 =

(

−
(

− 2ε

δt2
+

2i

δt
−∆

2

)

±
(

√

√

√

√
λ+

√

λ2 + 4∆2

δt2

2
+i

√

√

√

√
−λ+

√

λ2 + 4∆2

δt2

2

))(

2

(

ε

δt2
−2i

δt
−∆

2

)

)−1

where

λ =
4ε∆

δt2
− 4

δt2
+

∆2

4
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and

Y1,2 =

(

1 ± i

√

∆2δt4

4
− ∆δt2

)(

1 − ∆δt2

2

)−1

.

Finally operators γ and ν are given by

γ =
( ε

δt2
− 2i

δt
− ∆

2

)−1
(X1 −X2)

−1 and ν =
( 1

δt2
− ∆

2

)−1
(Y1 − Y2)

−1∆.

The proof is the same than the one of proposition 4.1. in [5]. We omit it. Moreover it is clear that
the Crank-Nicolson scheme (S1) satisfies the two following approximate conservation laws :

∫

|Em+1|2 − εIm
∫

(

Em+1
(Em+1 − Em

δt

))

− εδt

2
Im

∫ m
∑

k=0

(Ek+1 − Ek

δt

)(Ek − Ek−1

δt

)

=

∫

|E0|2 − εIm
∫

(

E0
(E0 − E−1

δt

))

(2.3)

and

ε

∫

∣

∣

∣

Em+1 − Em

δt

∣

∣

∣

2

+

∫

|∇Em+1|2+δt
∫ m
∑

k=0

|Ek|2
(N k+1 −N k−1

2δt

)

+δt

∫ m
∑

k=0

N k
( |Ek+1|2 − |Ek|2

δt

)

+
1

4

∫

(∇ψm+ 1
2 )2 +

1

8

∫

((Nm+1)2 + (Nm)2) + εδt2
∫ m
∑

k=0

∣

∣

∣

Ek+1 − 2Ek + Ek−1

δt2

∣

∣

∣

2

= ε

∫

∣

∣

∣

E0 − E−1

δt

∣

∣

∣

2

+

∫

|∇E0|2 +
1

4

∫

(∇ψ− 1
2 )2 +

1

8

∫

((N 0)2 + (N−1)2) (2.4)

where ∆ψm+ 1
2 =

Nm+1 −Nm

δt
for m ≥ 0.

• Splitting for (S2) : We have a similar result for (S2). The function fm+1 becomes fm+1 = −(Hm +

Im)(F m+1+Gm+1+F m−1+Gm−1

2 ). However, the operators (X1, X2), which are solution of the following
characteristic equation

X2
( ε

δt2
− i

δt
− ∆

2

)

+X
(

− 2ε

δt2

)

+
( ε

δt2
+

i

δt
− ∆

2

)

= 0,

are different from the previous scheme. They read

X1,2 =

(

ε∓ i

√

∆2δt4

4
− ε∆δt2 + δt2

)(

ε− ∆δt2

2
− iδt

)−1

.

The discrete conservative quantities corresponding to (1.6) and (1.7) read

1

2

∫

(|Em+1|2 + |Em|2) − ε

∫

Im
(

Em+1
(Em+1 − Em

δt

))

=
1

2

∫

(|E0|2 + |E−1|2) − ε

∫

Im
(

E0
(E0 − E−1

δt

))

(2.5)
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and

ε

∫

∣

∣

∣

Em+1 − Em

δt

∣

∣

∣

2

+
1

2

∫

(|∇Em+1|2 + |∇Em|2) +
1

2

∫

(Nm|Em+1|2 + |Em|2Nm+1)

+
1

4

∫

(∇ψm+ 1
2 )2 +

1

8

∫

((Nm+1)2 + (Nm)2)

= ε

∫

∣

∣

∣

E0 − E−1

δt

∣

∣

∣

2

+
1

2

∫

(|∇E0|2 + |∇E−1|2) +
1

2

∫

(|E0|2N−1 + N 0|E−1|2)

+
1

4

∫

(∇ψ− 1
2 )2 +

1

8

∫

((N 0)2 + (N−1)2). (2.6)

Remark 2.2. Operators X1 and X2 are unitary. It implies that iα1 and iα2 are skew-adjoint and
generate unitary groups on any Hs. Of course, it is not the case for (S1).

We are now able to state the main theoretical results of this paper.

2.2 Existence and convergence

We give the two following results related to (S1) and (S2) respectively.
For (S1) one gets :

Theorem 2.1. • Let (F 0, G0, H0, I0) ∈ (Hs(Rd))2 × (Hs−1(Rd))2(s > d
2 +1) and ε fixed in ]0, 1[. There

exists δt1 > 0 depending on initial data and ε such that for any δt ≤ δt1 there exists T > 0 and a unique
solution (Em,Nm) of (S1) belonging to l∞({0..M};Hs(Rd) ×Hs−1(Rd)), where T = Mδt.
• Let (F δt, Gδt, Hδt, Iδt) be the piecewise constant functions which value at time t ∈ [mδt, (m + 1)δt[
is (Fm, Gm, Hm, Im)and (F,G,H, I) be the solution of (1.5) with the initial data F (0) = F 0, G(0) =
G0, H(0) = H0, I(0) = I0 and T∞ its existence time, then for ε fixed in ]0, 1[ and for all T < T∞ (with
T = Mδt),

(F δt, Gδt, Hδt, Iδt) → (F,G,H, I) in L∞([0, T ]; (Hs(Rd))2 × (Hs−1(Rd))2) when δt → 0.

For (S2), one gets :

Theorem 2.2. • Let (F 0, G0, H0, I0) ∈ (Hs(Rd))2 × (Hs−1(Rd))2(s > d
2 + 1). There exists δt2 > 0

depending on the initial data such that for any δt ≤ δt2 and ε > 0 there exists an unique solution
(Em,Nm) of (S2) belonging to l∞([0, T ];Hs(Rd) ×Hs−1(Rd)) with T = Mδt.
• Let (F,G,H, I) be the solution of (1.5) with the initial conditions F (0) = F 0, G(0) = G0, H(0) =
H0, I(0) = I0 and T∞ its existence time. For ε fixed in ]0, 1[, one gets for all T < T∞,

(F δt, Gδt, Hδt, Iδt) → (F,G,H, I) in L∞([0, T ]; (Hs(Rd))2 × (Hs−1(Rd))2) when δt→ 0

where (F δt, Gδt, Hδt, Iδt) are the piecewise constant functions which value at time t ∈ [mδt, (m+ 1)δt[ is
(Fm, Gm, Hm, Im).

Remark 2.3. Note that these results are not “uniform” with respect to ε. This means that one can not
perform a priori both limit ε→ 0, δt→ 0 contrary to the result of [5]. This is certainly linked to the fact
that, using the same kind of method in [2], the authors where not able to perform the limit ω → ∞ and
c→ ∞ in the Klein-Gordon-Wave system, namely







( 1
ω2 ∂

2
t − 2i∂t − ∆)E = nE,

( 1
c2 ∂

2
t − ∆)n = ∆(|E|2).

Note that this problem has been solved in [12] using transparency type properties also used in [4]. The
transposition of such kind of properties in a semi-discrete framework is out of the scope of this paper.
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2.3 Proof of theorems 2.1 and 2.2

We will give some details for the proof of theorem 2.1 related to (S1). For theorem 2.2, we will just check
the main steps.

Proof. of theorem 2.1. • We first prove existence and uniqueness of the discrete solution given by (S1).
We will use a fixed point procedure as in the continuous case. We write a Duhamel formula (2.8)-(2.9)
with the four groups Uδt

0 ,Uδt
1 ,Vδt

0 ,Vδt
1 generated by the discrete equivalent of − i

ε(1∓
√

1 − ε∆),∓i
√
−∆

and defined below. The main point is to obtain uniform estimates with respect to δt.

We denote by (Uδt
0 (t),Uδt

1 (t), Vδt
0 (t),Vδt

1 (t)) the piecewise constant operator value functions which value
on [mδt, (m + 1)δt[ is (Xm

1 , X
m
2 , Y

m
1 , Y m

2 ) and (Eδt(t),N δt(t)) the piecewise constant functions which
value on [mδt, (m+ 1)δt[ is (Em,Nm). One has

Xm+1
1 = X1S

δt
0 (mδt) − 1 −X1

δt
Sδt

1 (mδt) and Xm+1
2 = X2S

δt
0 (mδt) − 1 −X2

δt
Sδt

1 (mδt) (2.7)

where Sδt
0 (mδt)f is the solution of

(Sf
1 )



















ε

(Em+1 − 2Em + Em−1

δt2

)

− 2i

(Em+1 − Em

δt

)

− ∆

(Em+1 + Em

2

)

= 0,

E0 = f,
E0 − E−1

δt
= 0

and Sδt
1 (mδt)g the one of

(Sg
1 )



















ε

(Em+1 − 2Em + Em−1

δt2

)

− 2i

(Em+1 − Em

δt

)

− ∆

(Em+1 + Em

2

)

= 0,

E0 = 0,
E0 − E−1

δt
= g.

The equivalent of (2.7) is

Y m+1
1 = Y1T

δt
0 (mδt) − 1 − Y1

δt
T δt

1 (mδt) and Y m+1
2 = Y2T

δt
0 (mδt) − 1 − Y2

δt
T δt

1 (mδt)

where T δt
0 (mδt)p is the solution of



















Nm+1 − 2Nm + Nm−1

δt2
− ∆

(Nm+1 + Nm−1

2

)

= 0,

N 0 = p,
N 0 −N−1

δt
= 0

and T δt
1 (mδt)q the one of



















Nm+1 − 2Nm + Nm−1

δt2
− ∆

(Nm+1 + Nm−1

2

)

= 0,

N 0 = 0,
N 0 −N−1

δt
= q.
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In view of these notations, the discrete Duhamel formulation for (S1) reads

Eδt((m+1)δt) = Uδt
0 ((m+1)δt)F 0 +Uδt

1 ((m+1)δt)G0 + δt
m
∑

k=0

[Uδt
0 ((k+1)δt)−Uδt

1 ((k+1)δt)]
γ1

δt
fm+1−k,

(2.8)

N δt((m+1)δt) = Vδt
0 ((m+1)δt)+Vδt

1 ((m+1)δt)I0+δt

m
∑

k=0

[Vδt
0 ((k+1)δt)−Vδt

1 ((k+1)δt)]
ν1
δt
hm−k (2.9)

with fm+1−k = −Nm−k Em+1−k + Em−k

2
and hm−k = 2|Em−k|2.

We introduce the spaces XT = l∞({0..M};Hs(Rd)), YT = l∞({0..M};Hs−1(Rd)) and BR the ball of
radius R in XT × YT defined by :

BR = {(u, v) ∈ XT × YT /|(u, v)|XT ×YT
:= (|u|2XT

+ |v|2YT
)

1
2 ≤ R}

with R = (6c(K)(|F 0|2Hs + |G0|2Hs)+6(|H0|2Hs−1 + |I0|2Hs−1))
1
2 where c(K) is a constant to be determined

later on. The time T is given by T = Mδt, so that for fixed T , δt → 0 is equivalent to M → +∞. For
(Em+1)0≤m≤M−1 and (Nm+1)0≤m≤M−1 we construct the two following series (T (Em+1,Nm+1))0≤m≤M−1

and (S(Em+1,Nm+1))0≤m≤M−1, namely

T (Em+1,Nm+1) = Xm+1
1 F 0 +Xm+1

2 G0 + δt

m
∑

k=0

(Xk+1
1 −Xk+1

2 )
γ1

δt
fm+1−k,

S(Em+1,Nm+1) = Y m+1
1 H0 + Y m+1

2 I0 + δt

m
∑

k=0

(Y k+1
1 − Y k+1

2 )
ν1
δt
hm−k.

Finally we define the application

H : Hs(Rd) ×Hs−1(Rd) → Hs(Rd) ×Hs−1(Rd)
(E ,N ) 7−→ (T (E ,N ),S(E ,N )).

In view of the fixed point theorem, we will show that H is a contraction on BR.
In order to perform these estimate, we need to control the norm of the following operators :
•Xm+1

1 and Xm+1
2 : see propositions 2.4, 2.5;

•Y m+1
1 and Y m+1

2 : see proposition 2.7;
•γ1(X

m+1
1 −Xm+1

2 ) and ν1(Y
m+1
1 − Y m+1

2 ) : see lemma 2.1.
The first steps are recalled from [5] :

Proposition 2.4. Operators X1, X2 are bounded uniformly with respect to ε and δt in Hs(Rd).

Proposition 2.5. Let K such that δt
1
2 ε−1 ≤ K. There exists a constant c(K) such that

|Xm+1
1 | + |Xm+1

2 | ≤ c(K).

Remark 2.6. If Sδt
0 (mδt)f is a solution of (Sf

1 ), it implies that for all α and any regular function f ,

∂|α|Sδt
0 (mδt)f is a solution of (Sf

1 ) too.

For operators Y m+1
1 and Y m+1

2 we have the following result :

Proposition 2.7. Operators Y1 et Y2 are unitary in Hs−1(Rd).

Proof.: We recall that operators Y1 and Y2 are given by

Y1,2 =

(

1 ± i

√

∆2δt4

4
− ∆δt2

)(

1 − ∆δt2

2

)−1

.
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Computation of |Ŷ1,2|2 leads to the result of proposition 2.7.
For operators γ1(X

m+1
1 −Xm+1

2 ) and ν1(Y
m+1
1 − Y m+1

2 ) corresponding to the nonlinear terms of (2.8)-
(2.9), one gets :

Lemma 2.1. Let f ∈ Hs−1(Rd) and g ∈ Hs(Rd). One has

i) ∀ε > 0 ∃c(ε) such that |γ1(X
m+1
1 −Xm+1

2 )f |Hs(Rd) ≤ c(ε)δt|f |Hs−1(Rd),

ii) |ν1(Y m+1
1 − Y m+1

2 )g|Hs−1(Rd) ≤ δt|g|Hs(Rd).

Proof.

i) We recall that the operator γ1(X
m
1 −Xm

2 ) is given in the Fourier space by

γ̂1(X̂
m+1
1 − X̂m+1

2 ) =
(

ε
δt2

− 2i
δt + |ξ|2

2

)−1

(X̂1 − X̂2)
−1(X̂m+1

1 − X̂m+1
2 )

=
(

ε
δt2

− 2i
δt + |ξ|2

2

)−1

F(Sδt
0 (mδt)) +

(

ε
δt − 2i+ |ξ|2δt

2

)−1

F(Sδt
1 (mδt))

:= P +Q

thanks to relation (2.7).
• Estimate of P : We get

|P |2 = |F(Sδt
0 (mδt))|2(( ε

δt2
+

|ξ|2
2

)2 +
4

δt2
)−1 ≤ δt2|F(Sδt

0 (mδt))|2(1 + ε|ξ|2)−1

≤ 2δt2((1 + ε|ξ|2)−2 + (1 + ε|ξ|2)−1)

≤ 4δt2(1 +
1

ε2
)(1 + |ξ|2)−2 + 2δt2(1 +

1

ε
)(1 + |ξ|2)−1

and so |Pf |Hs ≤ 2(1 + 1
ε )δt|f |Hs−2 +

√
2(1 + 1√

ε
)δt|f |Hs−1 .

• Estimate of Q : One has

|Q|2 = |F(Sδt
1 (mδt))|2(( ε

δt
+

|ξ|2δt
2

)2 + 4)−1 ≤ δt2|F(Sδt
1 (mδt))|2ε−2

≤ δt2(1 + ε|ξ|2)−1

≤ δt2(1 + 1
ε )(1 + |ξ|2)−1

and therefore |Qf |Hs ≤ δt
(

1 +
1√
ε

)

|f |Hs−1 .

By getting c(ε) = 2(1 +
1

ε
) + (1 +

√
2)(1 +

1√
ε
) we establish the result i) of lemma 2.1.

ii) We first give the relationship between Y m+1
1 et Y m+1

2 and Y1, Y2, T
δt
0 , T

δt
1 where T δt

0 (mδt)p and
T δt

1 (mδt)q are the groups corresponding to H + I introduced in section 1. As above, one gets

Y m+1
1 = Y1T

δt
0 (mδt) − 1 − Y1

δt
T δt

1 (mδt) and Y m+1
2 = Y2T

δt
0 (mδt) − 1 − Y2

δt
T δt

1 (mδt).

In view of these previous formulas, operator ν̂1(Ŷ
m+1
1 − Ŷ m+1

2 ) is given by

ν̂1(Ŷ
m+1
1 − Ŷ m+1

2 ) = −|ξ|2F(T δt
0 (mδt))(

1

δt2
+

|ξ|2
2

)−1 − |ξ|2F(T δt
1 (mδt))(

1

δt
+

|ξ|2δt
2

)−1.
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So we get

|ν̂1(Ŷ m+1
1 − Ŷ m+1

2 )| ≤ |ξ|2|F(T δt
0 (mδt))|δt2(1 +

|ξ|2δt2
2

)−1 + |ξ|2|F(T δt
1 (mδt))|δt(1 +

|ξ|2δt2
2

)−1

≤ |ξ|2δt2(1 +
|ξ|2δt2

2
)−1 + |ξ|δt(1 +

|ξ|2δt2
2

)−1

≤ |ξ|δt( 1√
2

+ 1)

thanks to the expression of F(T δt
0 (mδt)) and F(T δt

1 (mδt)). This leads to result ii) of lemma 2.1.

In view of the fixed point procedure and the previous estimates of the operators that occur in
the Duhamel formulation (2.8)-(2.9), the local existence of the solution of (S1) in BR is straight-
forward. Note the well-known loss of derivative encountered in the Zakharov system is handled by
i) of lemma 2.1. The consequence is a loss of uniformity with respect to ε.

For the convergence of the solution of (S1) towards the continuous solution of (1.2)-(1.3), we write
the Duhamel formula for (E(t),N (t)) solution of (1.2)-(1.3) between 0 and (m+ 1)δt :

E((m+ 1)δt) = U0((m+ 1)δt)F 0 + U1((m+ 1)δt)G0

−
∫ (m+1)δt

0

[U0((m+ 1)δt− τ) − U1((m+ 1)δt− τ)]

2i
√

1 − ε∆
N (τ)E(τ)dτ (2.10)

and

N ((m+ 1)δt) = V0((m+ 1)δt)H0 + V1((m+ 1)δt)I0

+ 2

∫ (m+1)δt

0

[V0((m+ 1)δt− τ) − V1((m+ 1)δt− τ)]

2i
√
−∆

∆|E(τ)|2dτ. (2.11)

Substracting these identities from (2.8)-(2.9) respectively and taking the Hs and Hs−1 norms leads
to

|E((m+ 1)δt) − Eδt((m+ 1)δt)|Hs ≤ |[U0((m+ 1)δt) − Uδt
0 ((m+ 1)δt)]F 0|Hs

+ |[U1((m+ 1)δt) − Uδt
1 ((m+ 1)δt)]G0|Hs

+

m
∑

k=0

∣

∣

∣

∣

∫ (k+1)δt

kδt

U0((m+ 1)δt− τ) − U1((m+ 1)δt− τ)

2i
√

1 − ε∆
N (τ)E(τ)dτ

−
∫ (k+1)δt

kδt

[

Uδt
0 ((m+ 1)δt− kδt) − Uδt

1 ((m+ 1)δt− kδt)
]γ1

δt
N δt(kδt)

× Eδt((k + 1)δt) + Eδt(kδt)

2
dτ

∣

∣

∣

∣

Hs

(2.12)
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and

|N ((m+ 1)δt) − N δt((m+ 1)δt)|Hs−1 ≤ |[V0((m+ 1)δt) − Vδt
0 ((m+ 1)δt)]H0|Hs−1

+ |[V1((m+ 1)δt) − Vδt
1 ((m+ 1)δt)]I0|Hs−1

+ 2

m
∑

k=0

∣

∣

∣

∣

∫ (k+1)δt

kδt

V0((m+ 1)δt− τ) − V1((m+ 1)δt− τ)

2i
√
−∆

∆|E(τ)|2dτ

−
∫ (k+1)δt

kδt

[Vδt
0 ((m+ 1)δt− kδt) − Vδt

1 ((m+ 1)δt− kδt)]
ν1
δt

|Eδt(kδt)|2dτ
∣

∣

∣

∣

Hs−1

.

(2.13)

In order to control the r.h.s. of (2.12), we decompose the integral into three terms, namely

∣

∣

∣

∣

∫ (k+1)δt

kδt

(U0((m+ 1)δt− kδt) − U1((m+ 1)δt− kδt)

2i
√

1 − ε∆

−(Uδt
0 ((m+ 1)δt− kδt) − Uδt

1 ((m+ 1)δt− kδt))
γ1

δt

)

N δt(kδt)
Eδt((k + 1)δt) + Eδt(kδt)

2
dτ

∣

∣

∣

∣

Hs

+

∣

∣

∣

∣

∫ (k+1)δt

kδt

(U0((m+ 1)δt− τ) − U1((m+ 1)δt− τ)

2i
√

1 − ε∆

−U0((m+ 1)δt− kδt) − U1((m+ 1)δt− kδt)

2i
√

1 − ε∆

)

N (τ)E(τ)dτ

∣

∣

∣

∣

Hs

+

∣

∣

∣

∣

∫ (k+1)δt

kδt

U0((m+ 1)δt− kδt) − U1((m+ 1)δt− kδt)

2i
√

1 − ε∆

(

N (τ)E(τ)

−N δt(kδt)
Eδt((k + 1)δt) + Eδt(kδt)

2

)

dτ

∣

∣

∣

∣

Hs

:= Ik,m
1 + Ik,m

2 + Ik,m
3 .
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We decompose the integral term of (2.13) into three similar terms as

∣

∣

∣

∣

∫ (k+1)δt

kδt

(V0((m+ 1)δt− kδt) − V1((m+ 1)δt− kδt)

2i
√
−∆

∆

−(Vδt
0 ((m+ 1)δt− kδt) − Vδt

1 ((m+ 1)δt− kδt))
ν1
δt

)

|Eδt(kδt)|2dτ
∣

∣

∣

∣

Hs−1

+

∣

∣

∣

∣

∫ (k+1)δt

kδt

(V0((m+ 1)δt− τ) − V1((m+ 1)δt− τ)

2i
√
−∆

−V0((m+ 1)δt− kδt) − V1((m+ 1)δt− kδt)

2i
√
−∆

)

∆|E(τ)|2dτ
∣

∣

∣

∣

Hs−1

+

∣

∣

∣

∣

∫ (k+1)δt

kδt

V0((m+ 1)δt− kδt) − V1((m+ 1)δt− kδt)

2i
√
−∆

∆

(

|E(τ)|2 − |Eδt(kδt)|2
)

dτ

∣

∣

∣

∣

Hs−1

:= Jk,m
1 + Jk,m

2 + Jk,m
3 .

In view of these previous notations, inequalities (2.12) and (2.13) are bounded by

|E − Eδt|XT
≤ |(U0 − Uδt

0 )F 0|XT
+ |(U1 − Uδt

1 )G0|XT
+ sup

m∈{0..M−1}

m
∑

k=0

Ik,m
1 + Ik,m

2 + Ik,m
3 (2.14)

and

|N −N δt|YT
≤ |(V0 −Vδt

0 )H0|YT
+ |(V1 −Vδt

1 )I0|YT
+ 2 sup

m∈{0..M−1}

m
∑

k=0

Jk,m
1 + Jk,m

2 + Jk,m
3 . (2.15)

Since Uδt
0,1 → U0,1 and Vδt

0,1 → V0,1, one has

lim
δt→0

|(U0 − Uδt
0 )F 0|XT

= 0, lim
δt→0

|(U1 − Uδt
1 )G0|XT

= 0 as δt→ 0 (2.16)

and
lim

δt→0
|(V0 − Vδt

0 )H0|YT
= 0, lim

δt→0
|(V1 − Vδt

1 )I0|YT
= 0 as δt→ 0. (2.17)

In the same way, as
γ1

δt
→ 1

2i
√

1 − ε∆
and

ν1
δt

→ ∆

2i
√
−∆

, one gets

sup
m∈{0..M−1}

m
∑

k=0

Ik,m
1 → 0 and sup

m∈{0..M−1}

m
∑

k=0

Jk,m
1 → 0 as δt→ 0. (2.18)

On the other hand, as the groups U0,1 and V0,1 are strongly continuous,

sup
m∈{0..M−1}

m
∑

k=0

Ik,m
2 → 0 and sup

m∈{0..M−1}

m
∑

k=0

Jk,m
2 → 0 as δt→ 0. (2.19)

For Ik,m
3 , Jk,m

3 , let

N (τ)E(τ) = N (kδt)
E((k + 1)δt) + E(kδt)

2
+R1,k(τ),

|E(τ)|2 = |E(kδt)|2 +R2,k(τ)
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so that

Ik,m
3 ≤

(

1 +
1

ε

)

δt

∣

∣

∣

∣

N (kδt)
E((k + 1)δt) + E(kδt)

2
−N δt(kδt)

Eδt((k + 1)δt) + Eδt(kδt)

2

∣

∣

∣

∣

Hs−1

+
(

1 +
1

ε

)

δt
M−1
∑

k=0

sup
τ∈[kδt,(k+1)δt]

|R1,k(τ)|Hs−1 , (2.20)

Jk,m
3 ≤ δt

∣

∣

∣|E(kδt)|2 − |Eδt(kδt)|2
∣

∣

∣

Hs
+ δt

M−1
∑

k=0

sup
τ∈[kδt,(k+1)δt]

|R2,k(τ)|Hs . (2.21)

Moreover, (E ,N ) lies in C([0, T ];Hs(Rd)) × C([0, T ];Hs−1(Rd)) for s >
d

2
+ 1, therefore

(

1 +
1

ε

)

δt

M−1
∑

k=0

sup
τ∈[kδt,(k+1)δt]

|R1,k(τ)|Hs−1 → 0 and δt

M−1
∑

k=0

sup
τ∈[kδt,(k+1)δt]

|R2,k(τ)|Hs → 0 as δt→ 0.

For the first terms in the r.h.s. of (2.20) and (2.21), we write
∣

∣

∣

∣

N (kδt)E((k+1)δt)+E(kδt)
2 −N δt(kδt)E

δt((k+1)δt)+Eδt(kδt)
2

∣

∣

∣

∣

Hs−1

=
∣

∣

∣(N (kδt) −N δt(kδt))E((k+1)δt)+E(kδt)
2

+N δt(kδt)(
E((k + 1)δt) + E(kδt)

2
− Eδt((k + 1)δt) + Eδt(kδt)

2
)
∣

∣

∣

Hs−1

and
∣

∣

∣|E(kδt)|2 − |Eδt(kδt)|2
∣

∣

∣

Hs
=
∣

∣

∣(E(kδt) − Eδt(kδt))E(kδt) + Eδt(kδt)(E(kδt) − Eδt(kδt))
∣

∣

∣

Hs
.

We recall that Hs−1(Rd) and Hs(Rd) are algebras for s >
d

2
+ 1. Now according to the uniform

estimates of (E , Eδt) and (N ,N δt) on [0,Mδt], one has

Ik,m
3 ≤

(

1 + 1
ε

)

Cδt|N −N δt|YT
+
(

1 + 1
ε

)

Cδt|E − Eδt|XT
+ o(1),

Jk,m
3 ≤ 2MδtC|E − Eδt|XT

+ o(1) .

Finally, inequalities (2.14)-(2.15) lead to

|E − Eδt|XT
+ |N −N δt|YT

≤ o(1) + C(ε)Mδt(|E − Eδt|XT
+ |N −N δt|YT

)

with C(ε) = 2
(

1 +
1

ε

)

C. Taking 0 ≤ δt2 < (C(ε)M)−1 leads to

|E − Eδt|XT
+ |N −N δt|YT

≤ o(1).

It is clear that (Eδt,N δt) belong to L∞([0, T ];Hs(Rd))×L∞([0, T ];Hs−1(Rd)) with T = Mδt. This
finish the proof of theorem 2.1.

For scheme (S2), in view of the previous results, the proof of the first point of theorem 2.2 is based on
the following proposition :

Proposition 2.8. Operators X1 and X2 corresponding to scheme (S2) are unitary on Hs(Rd).

Proof. Thanks to the formulas of X1 and X2, it is clear that the groups X
T
δt

1 and X
T
δt

2 are bounded
uniformly with respect to δt and ε.

For the convergence result of theorem 2.2, one has X
T
δt

1,2 → e
iT
ε

(1∓
√

1−ε∆) and γ1

δt → − 1
2i
√

1−ε∆
as δt→ 0.

The same arguments than the ones used for theorem 2.1 conclude the proof.
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3 Numerical results and comments

3.1 Diffusion and oscillations

The aim of this part is to investigate numerically the behavior for the Zakharov-wave system. We study
the behavior of the solution of each scheme (S1) and (S2) when ε is small enough. Let us first recall the
splitting for the continuous problem (1.5) (we do not rewrite the two last equations which do not depend
on ε) :



















∂tF =
i

ε
(1 −

√
1 − ε∆)F +

1

2i
√

1 − ε∆
(H + I)(F +G),

∂tG =
i

ε
(1 +

√
1 − ε∆)G− 1

2i
√

1 − ε∆
(H + I)(F +G).

It is clear that

e
i
ε
(1−

√
1−ε∆)t −→ ei∆t

2 , e
i
ε
(1+

√
1−ε∆)t − e

2it
ε e−i∆t

2 −→ 0 when ε→ 0.

It implies that (F,H + I) converge to the solution of Zakharov system (1.1) whereas G is an oscillatory
part of E , solution of (1.2). Moreover the amplitude of these oscillations are of order |G(0)|Hs while the
frequency is 2

ε . The question is : how the discrete solution of each scheme behaves? To answer this
question, we recall the discrete splitting of each scheme (2.1) (we rewrite only the two first equations)



















Fm+1 − Fm

δt
= iα1

Fm+1 + Fm

2
+
γ1

δt
(1 + i

α1δt

2
)fm+1,

Gm+1 −Gm

δt
= iα2

Gm+1 +Gm

2
+
γ2

δt
(1 + i

α2δt

2
)fm+1

(3.1)

where αj =
2i(1−Xj)
δt(1+Xj) for j = 1, 2.We do the asymptotic expansion of operatorsX1 andX2. We investigate

the discrete solution given by (S1) for two values of ε. If δt is small enough with respect to ε, for example
ε = δt1/2, one gets at the first order, when δt → 0,

X1 = 1 +O(δt) and X2 = 1 + 2i
√
δt− 4δt− i∆

2
δt+O(δt2).

It follows that the leading part of Gm can be written as GM = e
2iT

ε e−
i∆T

ε e−4TG(0) at time T = Mδt. It
means that Gm oscillates at frequency 2

ε and the amplitude of these oscillations damped exponentially
in time for regular initial data G(0).
On the other hand, if δt is "large" with respect to ε, for example when ε = δt, one has

X1 = 1 +O(δt) and X2 =
1 + 2i

5
+O(δt).

The leading part of Gm becomes GM =
√

5
−T

ε ei arctan(2) T
ε G(0) at time T = Mδt. The amplitude of

oscillations of Gm are damped in exponentially in time even if their frequency is not the good one. In
summary, when ε→ 0, the discrete solution of (S1) behaves like the continuous one.

For scheme (S2), one has estimates for the linear part that are independent of ε see [5]. If we take as in

the preceding case ε = δt, one gets 1−X̂1,2, 1+X̂1,2 as δt→ 0 with X̂1,2 = (1∓i
√

1 + |ξ|2δt+ |ξ|4δt2

4 )(1−
i+ |ξ|2δt

2 )−1 and so

α1 ∼ −|ξ|2
2
, α2 ∼ 2

ε
,
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this means that the solution behaves like the continuous case. In other words, (F,H + I) converge to
the solution of Zakharov system (1.1) whereas G oscillates at frequency 2

ε . Moreover its amplitude is of
order |G(0)|Hs which is taken small.

We do some numerical experiments in order to illustrate the previous comments. We compute solu-
tion to (S1) and (S2) in 1D and we set in the periodic case. We use a finite difference discretization
of −∆. We compute on the space-time interval [−5, 5] × [0, 2.10−3] with 1024 points in space. We take

f = 4e−20x2

,N0 = 0,N1 = 0 and ε = 10−5. For g we choose two different values :

• the first one, compared to the compatible case (that is ∂tE(0) = i
2 (∆E(0) − N (0)E(0))), induces

g = 40f(40x2 − 1).

• for the second one, we choose an arbitrary value independent of ε, for example g = e−20x2

.

In the two following figures, we represent the L2 norm of Eδt according to time given by

• scheme (S1) for two values of δt that are large with respect to ε (figure 1);

• scheme (S2), in the compatible case (left curve) and in the non-compatible case (right curve) for
δt = 10−6 (figure 2).
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2.9947

2.9948

2.9948

(a) (b)

Figure 1: scheme (S1), ε = 10−5. (a)|Eδt|L2(t) for δt = 10−6; (b)|Eδt|L2(t) for δt = 10−5.

In figure 1, we notice that the oscillations are damped when the time step increases : this is the dissipative
phenomenon described above. In figure 2, the only difference between the two curves concerns the
amplitude of the oscillations. Indeed, in the non compatible case, the amplitude is of order ε contrary to
the compatible case where they are much smaller.

3.2 Polarization

In this part, we are going to show that scheme (S1) is able to project the numerical solution on a
polarized functions space. More precisely, we will compute the solution of the Cauchy problem (1.2) with
“ill-prepared” initial data. Then we will show that these solutions converge, as ε tends to zero, to the
solution of the Cauchy problem (1.2) with polarized initial data (which is asymptotically the same than
the one of Zakharov system (1.1)). For a precise description of this type of initial data, see below.
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Figure 2: scheme (S2), ε = 10−5, δt = 10−6. (a)|Eδt|L2(t) : non-compatible case; (b)|Eδt|L2(t) : compatible
case.

3.2.1 The Klein-Gordon-Wave system

We use several notions introduced in [8], [9], [10]. Let us first recall Klein-Gordon-wave system (1.4) in
1D :























∂2
tE − 1

ε∂
2
xE + 1

ε2E = − 1
εnE,

(∂2
t − ∂2

x)n = ∂2
x|E|2,

E(t = 0) = E0, ∂tE(t = 0) = E1, n(t = 0) = n0, ∂tn(t = 0) = n1.

(3.2)

Introducing ϕ = ε∂tE,ψ =
√
ε∂xE and U = (E,ϕ, ψ) such that (U, n) be a solution of the Cauchy

problem for the following system :























∂tU + 1√
ε
A0(∂x)U + L0

ε U = F (n,U),

(∂2
t − ∂2

x)n = ∂2
xG(U,U),

U(t = 0) = U0, n(t = 0) = n0, ∂tn(t = 0) = n1

(3.3)

with

A0 =





0 0 0
0 0 −1
0 −1 0



 , L0 =





0 −1 0
1 0 0
0 0 0



 , F (n,U) = (nE, 0, 0) and G(U,U) = |E|2.

Then we expand U(t, x) under the form

U(t, x) = (U0(t, x) + ε
1
2U1(t, x) +O(ε

1
2 ))eiθ + c.c. (3.4)

with θ = − t
ε and where c.c. denotes the complex conjugate. The quantity n is unchanged.

Remark 3.1. The justification of these expansion has been established in [4].

Then using (3.4) in (3.3), we obtain the following relation at order ε−1

−iU0 + L0U0 = 0. (3.5)
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The three eigenvalues of L0 are λ0 = 0 and λ± = ±i. The associated eigenvectors are generated by
e0 = (0, 0, 1), e± = (1,∓i, 0). Moreover we denote by Π0,Π± the spectral projectors corresponding

to the eigenvalues λ0, λ± respectively. They are given by Π0 = (L0 + i)(L0 − i),Π± = −L0(L0±i)
2 .

The non-trivial solutions of (3.5) satisfy the polarization condition U0 = Π+U0. If the polarization
condition is satisfied at t = 0, the initial condition U0 of (3.3) is called “polarized initial condition” and
satisfies U0(x) = Π+U0(t = 0, x) + c.c.. On the contrary, when U0(x) 6= Π+U0(t = 0, x) + c.c., the
initial condition is called “ill-prepared initial condition” or “non polarized initial condition”. For example,
U0(x) = α+e+ + α−e− + c.c. with (α+, α−) ∈ C2 such that |α−| 6= 0 is an ill-prepared initial condition.
The question is : how can we express the polarization condition on system (3.6), namely























ε∂2
t E − 2i∂tE − ∂2

xE = −NE ,

∂2
t N − ∂2

xN = 2∂2
x|E|2,

E(t = 0) = f, ∂tE(t = 0) = g,N (t = 0) = N0, ∂tN (t = 0) = N1.

(3.6)

We recall that system (3.6) is obtained from (3.2) by getting E(t, x) = E(t, x)e−i t
ε + c.c. and n(t, x) =

N (t, x) (for a rigorous justification, one can see [4]). Therefore letting

U = (E,ϕ, ψ) = (E, ε∂tE,
√
ε∂xE)

= (E , ε∂tE − iE ,√ε∂xE)e−i t
ε + c.c.

and
U0 = (f, εg − if,

√
ε∂xf) + c.c.

• Case of polarized initial data : one has U0 = α+e+ + c.c. with α+ ∈ C. It implies that, at the first
order,

α+ = f, εg = 0,
√
ε∂xf = 0.

In summary, any initial data which read

E(t = 0) = f, ∂tE(t = 0) = g,N (t = 0) = N0, ∂tN (t = 0) = N1

with g bounded uniformly with respect to ε such that lim
ε→0

εg = 0 are polarized. The associated

initial condition of Zakharov system (1.1) reads

E0(t = 0) = f, n0(t = 0) = N0, ∂tn
0(t = 0) = N1.

Remark 3.2. Due to the expressions of G(0) one has |G(0)|Hs = O(ε).

• Case of ill-prepared initial data : we choose U0 = α+e+ + α−e− + c.c. with (α+, α−) ∈ C
2 such

that |α−| 6= 0. It implies that

α+ = f + i
ε

2
g and α− = −i ε

2
g.

In opposition with the previous case, we can impose that lim
ε→0

εg 6= 0 and in this case, the initial

data is not bounded with respect to ε. It induces that |G(0)|Hs(R) = O(1). In summary, any initial
data which read

E(t = 0) = f, ∂tE(t = 0) = g,N (t = 0) = N0, ∂tN (t = 0) = N1

with g = O(1
ε ) are ill prepared. We take for example g = i f

ε so U0(x) = f
2 (e+ + e−) + c.c.. The

associated initial condition of Zakharov system is

E0(t = 0) =
f

2
, n0(t = 0) = N0, ∂tn

0(t = 0) = N1.

It is recovered from U0(x) = f
2 (e+ + e−) + c.c. by getting |e−| = 0.
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We investigate the convergence of the solution of each scheme when ε→ 0 for polarized and ill prepared
initial data.

3.2.2 Numerical experiments

We perform the computation on the space-time domain [−5, 5]× [0, 1] with 2048 points in space and for
δt = 2, 5.10−6. We get some values of ε for which Zakharov model is available, that is for ε small enough.
We will use the following errors involving the L2 norm

eL2(tm) :=

(

J
∑

j=0

δx|Em
j − Em

j |2) 1
2

(
J
∑

j=0

δx|Em
j |2) 1

2

and epola
L2 (tm) :=

(

J
∑

j=0

δx|Fm
j − Em

j |2) 1
2

(
J
∑

j=0

δx|Em
j |2) 1

2

where Fm is the mean value in time of Em. Therefore eL2(tm) computes the error between the solution

of each scheme (S1) or (S2) and the one of the Zakharov system whereas epola
L2 (tm) computes the error

between the mean value in time of the solution of each scheme (S1) or (S2) and the one of the Zakharov

system. For the four following figures, we represent eL2(t) with solid lines and epola
L2 (t) with dotted lines.

• Case of polarized initial data : we take f = 0, 5e−5x2

, g = 5i(10x2 − 1)f,N0 = 0,N1 = 0. The

left curves represent the errors eL2(t), epola
L2

(t) given by scheme (S1) for ε = 10−4 (figure 3) and

ε = 10−6 (figure 4). The right curves represent the same quantities given by scheme (S2).
We remark that the solution of each scheme converges to the one of Zakharov system as ε → 0.
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(a) (b)

Figure 3: ε = 10−4, errors eL2(t) (solid line), epola
L2

(t) (dotted line); (a) scheme (S1) ; (b) scheme (S2).

This is the result established in [2] and recalled in section 1.

• Case of ill prepared initial data : we take f = 0.5e−5x2

, g =
i

ε
f,N0 = 0,N1 = 0. We choose δt > ε2.

In figures 5, 6, we represent eL2(t) (solid line) and epola
L2 (t) (dotted line) obtained by scheme (S1)

(left curves) and scheme (S2) (right curves). We get ε = 10−4 for figure 5 and ε = 10−6 for figure
6. We start with two different initial conditions E(t = 0) and E0(t = 0). However solid and
dotted lines of figures 5 (a) and 6 (a) are superposed. It means that the solution of scheme (S1)
converges to the discrete solution of Zakharov system 1.1 whatever initial data we take. This is
the polarization phenomenon. On the contrary only the part of F of the solution of scheme (S2)
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Figure 4: ε = 10−6, errors eL2(t) (solid line), epola
L2

(t) (dotted line); (a) scheme (S1) ; (b) scheme (S2).
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Figure 5: ε = 10−4; eL2(t) (solid line) and epola
L2 (t) (dotted line); (a) scheme (S1); (b) scheme (S2).
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Figure 6: ε = 10−6; eL2(t) (solid line) and epola
L2 (t) (dotted line); (a) scheme (S1); (b) scheme (S2).

converges to the solution of Zakharov system 1.1. We conclude that only scheme (S1) exhibits the
polarization property.
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3.2.3 Large spectrum or short waves

The aim of this section is to show that system (1.2) models the propagation of short or ultra short
waves [1] through a plasma contrary to Zakharov system (1.1). Moreover we illustrate the error estimate
established in [4]. In order to solve system (1.4) we use a finite difference method in 1D. The numerical
scheme reads

ε

(

Em+1
j − 2Em

j + Em−1
j

δt2

)

−
(

D+D−

(

Em+1 + Em−1

2

))

j

+
1

ε

(

Em+1
j + Em−1

j

2

)

= −nm

(

Em+1
j + Em−1

j

2

)

,

nm+1
j − 2nm

j + nm−1
j

δt2
−
(

D+D−

(

nm+1 + nm−1

2

))

j

=

(

D+D−|Em|2
)

j

(3.7)

endowed with the initial conditions

E(t = 0) = E0, ∂tE(t = 0) = E1, n(t = 0) = n0, ∂tn(t = 0) = n1.

Operators D+ and D− have been introduced in section 1. We introduce the errors in L2 norm, namely

enew(t) =
|E(t, .) − (E(t, .)e−i t

ε + c.c.)|2
max(|E(t, .)|2, |E(t, .)e−i t

ε + c.c.|2)
, nnew(t) =

|n(t, .) −N (t, .)|2
max(|n(t, .)|2, |N (t, .)||2)

,

ezak(t) =
|E(t, .) − (E0(t, .)e−i t

ε + c.c.)|2
max(|E(t, .)|2, |E0(t, .)e−i t

ε + c.c.|2)
, nzak(t) =

|n(t, .) − n0(t, .)|2
max(|n(t, .)|2, |n0(t, .)|2)

.

We compute on the space-time interval [−5, 5] × [0, 1] with 2048 points in space and δt = 2, 5.10−6. We

take f = 0, 5e−5x2

, g = 0, 5e−5x2

,N0 = 0,N1 = 0 so E0 = 2f,E1 = 2g, n0 = 0, n1 = 0, E0(t = 0) =
f, n0(t = 0) = 0, ∂tn

0(t = 0) = 0. The following figures represent errors enew, nnew (left curves) and
ezak, nzak (right curves) for ε = 10−1 (figure 7), ε = 10−2 (figure 8) and ε = 10−3 (figure 9).

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

(a) (b)

Figure 7: ε = 10−1. (a)enew(t) (solid line), nnew(t) (dotted line); (b)ezak(t) (solid line), nzak(t) (dotted
line).

These results show that the Zakharov system (1.1) is not a suitable system for modeling the propa-
gation of a short or ultra short wave in a plasma. Moreover curves of figures 7 (b), 8 (b), 9 (b) validate
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Figure 8: ε = 10−2. (a)enew(t) (solid line), nnew(t) (dotted line); (b)ezak(t) (solid line), nzak(t) (dotted
line).
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Figure 9: ε = 10−3. (a)enew(t) (solid line), nnew(t) (dotted line); (b)ezak(t) (solid line), nzak(t) (dotted
line).

the error estimate established in [4]. In particular, with figure 9 (b), we check the convergence result
established in [4] related to Klein-Gordon-wave system and Zakharov system when ε is small enough.
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