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Abstract
The aim of this paper is to present a Boltzmann type model that describes a collective
behavior of a large group of individuals. The model considers a mechanism where as two
individuals collide, they adopt after the collision the same post-collisional velocity according
to a distribution centered at the mid pre-collisional velocity. We show in this paper that
the solutions of a spatially homogeneous model on R

d converge exponentially towards the
equilibrium state for the Wasserstein metric. The convergence of the solutions in the strong-
norm L1 is also proved for initial conditions satisfying a stronger regularity property. In a
last part, these results are illustrated numerically.

Keywords Collision operator · Equilibrium states · Collective dynamics

1 Introduction

We consider a group of individuals subject to a social interaction. For this, we consider a
Boltzmann type model introduced by Bertin, Droz, Gregoire [2, 3]. In the BDG model, each
individual (bird, fish, rod,…) moves independently from the others outside the collisions
and are indistinguishable. At the time of the collision if two individuals are close enough,
then they will line up in velocity. For each t ≥ 0, the evolution of the collective behavior is
represented by a probability distribution ft = f (t, x, v) where x denotes the position, and v

denotes the velocity of the individuals. The two post-collisional velocities v, v� adopted by
the two individuals are equal after the collision v = v�, and randomly distributed according

to a probability K ( · , v′, v′
�) centered at the mid pre-collisional velocity v′+v′

�

2 . In general,
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the collision rate is represented by a function β(v′ − v′
�) taking its values close to 1 if the

two individuals are almost aligned before the collision and taking its values close to 0 in the
case of grazing collisions. The model may also take into account a velocity confinement as in
[5]. In [12] Raoul studies a similar model. The population of the individuals is structured by
a continuous one-dimensional trait. At the time two individuals meet, they interact sexually
and the trait of the offspring is distributed according to a Gaussian measure centered at the
mid trait of the parents.

The present paper deals with a simplified version of the BDG model: the density f is
independent of the position of the individuals, the velocity is d-dimensional, and the collision
rate β is constant equal to 1, the so-called Maxwellian case. In [2–4], the dimension d of
the space of velocities is equal to 1, in [8], the space of velocities may be a manifold of
any dimension d ≥ 1, but the probability K (dv, v′, v′

�) = δ(v′+v′
�)/2(dv) must be a Dirac

mass at the mid velocity. Our results are more general in the sense that they are valid in any
dimension and for any distribution K (dv, v′, v′

�). However the technique of proofs we use
assume that the space of velocities is euclidean. A model where the velocity is constrained
to be of norm 1 as in [8] is out of reached by our methods.

For general collision rate, the unknown probability distribution f satisfies the following
Boltzmann like equation in the sense of distributions:

∂ f

∂t
= Q( f , f ) = Q+( f , f ) − Q−( f , f ), (1.1)

where Q( f , f ) is the collision operator which is decomposed into a gain term Q+( f , f )
and a loss term Q−( f , f ). For any test function ϕ ∈ C∞(R × R

d) with compact support,

〈Q+( f , f ), ϕ〉 :=
∫ +∞

0

∫
Rd

∫
Rd

∫
Rd

ϕ(t, v)K (dv, v′, v′
�)β(v′ − v′

�) f (t, dv′) f (t, dv′
�)dt

(1.2)

and

〈Q−( f , f ), ϕ〉 :=
∫ +∞

0

∫
Rd

∫
Rd

ϕ(t, v)β(v − v′) f (t, dv) f (t, dv′)dt . (1.3)

In Ref. [8], the model (1.1) is studied when β = 1 and K ( · , v′, v′
�) = δ(v′+v′

�)/2. This model
is called the discrete midpoint model. In Ref. [2–4], the dimension of the velocity is d = 1,
the direction taken after the collision is chosen according to a density probability distribution
centered at the mean (v′ + v′

�)/2. This model is called the continuous midpoint model. In
a probabilistic framework, in both cases, the velocity after the collision is written under the
form v = (v′ + v′

�)/2 + X where X is a random variable of law g, considered discrete or
continuous.

We choose from now on any probability g(dv)with zero mean onR
d , for example g = δ0

in Ref. [8], or g(v)dv, a density with respect to the Lebesgue measure as in Ref. [4]. The
model considered in this paper is given by the following kernel K and collision rate β,

K (dv, v′, v′
�) :=

(
τ

[
v′ + v′

�

2

]
#g

)
(dv) and β(v) = 1.

We have denoted by τ [u] : v �−→ v + u the translation by u, by τ [u]#g the push forward of
the measure g by τ [u], that is, for any bounded mesurable function ϕ,∫

ϕ(v)(τ [u]#g)(dv) :=
∫

ϕ ◦ τ [u](v)g(dv).
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For every α > 0, let Pα(Rd) be the set of probability measures on R
d admitting a finite

moment of orderα.We recall the notionof amoment of orderα > 0of ameasureμ ∈ Pα(Rd)

Mα(μ) :=
∫
Rd

|v|αdμ(v).

For α > 1 and m ∈ R
d , let Pm

α (Rd) be the set of measures μ ∈ Pα(Rd) such that
∫
Rd

vdμ(v) = m.

Let g ∈ P0
2 (Rd) and f0 ∈ Pm

2 (Rd). The evolution equation (1.1) becomes
⎧⎪⎪⎨
⎪⎪⎩

∂ f

∂t
=
∫∫

Rd×Rd

(
τ

[
v′ + v′

�

2

]
#g

)
f (t, dv′) f (t, dv′

�) − f (t, · )
∫
Rd

f (t, dv′)

f (0, · ) = f0.

(1.4)

For μ, ν ∈ P2(R
d), we define the Wasserstein metric W2 by

W2(μ, ν) :=
√

inf
π∈�

∫∫
Rd×Rd

|x − y|2dπ(x, y)

where � denotes the set of couplings of (μ, ν). Recall that a sequence of measures (μn)n in
P2(R

d) converges to a measure μ ∈ P2(R
d) for the distance W2 if and only if

(μn)n
weak∗→ μ and lim

n→+∞

∫
Rd

|x |2dμn(x) =
∫
Rd

|x |2dμ(x).

Therefore,W2 metrizes the weak topology on P2(R
d) and makes that space complete (Defi-

nition 6.8, Theorems 6.9 and 6.18 in Ref. [15]). This will allow us to etablish the existence of
solutions for the equation (1.4). We define a solution in the sense of distributions as follows

Definition 1.1 Let f ∈ C0(R+,P2(R
d)) and f0 ∈ P2(R

d). For any test functionϕ ∈ C∞(R×
R
d) with compact support, we define

〈 f , ϕ〉 :=
∫ +∞

0

∫
Rd

ϕ(t, v) f (t, dv)dt .

A solution of the equation (1.4) in the sense of distributions is a measured-valued function
f ∈ C0(R+,P2(R

d)) satisfying for every test function ϕ ∈ C∞(R × R
d) with compact

support

−
〈
f ,

∂ϕ

∂t

〉
=
∫
Rd

ϕ(0, v) f0(dv) + 〈Q+( f , f ), ϕ〉 − 〈Q−( f , f ), ϕ〉. (1.5)

We define a second notion of mild solution as follows.

Definition 1.2 A mild solution of the equation (1.4) is a function f ∈ C0(R+,P2(R
d))

taking values in the space of probability measures equipped with the Wasserstein metric W2

satisfying for all t ≥ 0

f (t, · ) = e−t f0 +
∫ t

0

∫
Rd

∫
Rd

e−(t−s)
(

τ

[
v′ + v′

�

2

]
#g

)
f (s, dv′) f (s, dv′

�)ds. (1.6)

123



   28 Page 4 of 22 V. Ayot et al.

The notion of mild solution is stronger than the notion of solution in the sense of distri-
bution. We will prove the existence as well as the uniqueness of mild solutions by using a
fixed point type argument.

We consider next the equilibrium states of the collision operator Q corresponding to
probability measures f satisfying Q( f , f ) = 0. We will mainly focus on the convergence
to the unique equilibrium state of the equation (1.4) that is defined as follows.

Definition 1.3 An equilibrium state of the equation (1.4) is a probability distribution f ∈
P2(R

d) satisfying the fixed point equation

f =
∫∫

Rd×Rd

(
τ

[
v′ + v′

�

2

]
#g

)
f (dv′) f (dv′

�). (1.7)

We will show the existence and uniqueness of the equilibrium state by using a fixed
point type argument. The main result of this paper concerns the exponential convergence
of the solution of (1.4) towards the equilibrium state for the Wasserstein metric W2 and for
the strong-norm L1. We will also make the link with the convergence result of the discrete
midpoint model in Ref. [8].

Theorem 1.1 Let m ∈ R
d , f0 ∈ Pm

2 (Rd) and g ∈ P0
2 (Rd).

(1) There exists a unique mild solution f ∈ C0(R+,P2(R
d)) to the equation (1.4) with

f (0, · ) = f0. Moreover, we have for all t ≥ 0∫
Rd

v f (t, dv) =
∫
Rd

v f0(dv) := m.

(2) There exists a unique equilibrium state f ∞
m ∈ Pm

2 (Rd), that is a probability measure
f ∞
m satisfying

Q( f ∞
m , f ∞

m ) = 0.

(3) For all t ≥ 0

W2
(
f (t, · ), f ∞

m

) ≤ e−t/4W2
(
f0, f ∞

m

)
. (1.8)

(4) If f0 ∈ Hs(Rd) ∩ Pm
2 (Rd) and g ∈ Hs(Rd) ∩ P0

2 (Rd) are densities with s > 2 + d/2,
then there exists a constant C > 0 explicitly computable such that for all t ≥ 0

‖ f (t, · ) − f ∞
m ‖L1(Rd ) ≤ Ce−t/(d+4). (1.9)

Results close to item (2) are present in Ref. [4] and in Lemma 2.2 in Ref. [12] (the model
is different and g is Gaussian). Item (3) is similar to step two of the proof of Lemma 2.1 in
Ref. [12]. The author shows a perturbation result about the a Gaussian solution; we show an
exponential convergence to an equilibrium state which may be non Gaussian. Our result is
also valid in any dimension.

To prove (4) of Theorem 1.1, we control the strong-norm L1 by the Fourier–Toscani-based
distance d2 introduced in Carrillo, Toscani [7] and Toscani, Villani [13]. Then we show that
the solution converges exponentially towards the equilibrium state of Q( f , f ) defined in
Eq. (1.7), for the distance d2. To bound the L1 norm by the distance d2, an estimate on the
Sobolev norm ‖ · ‖Hs (Rd ) is needed for s ≥ 0.

This model is new and interesting because it is located at the interface between collective
dynamics and kinetic theory. The transport equation has no forcing or diffusion term in veloc-
ity, the change of velocity is computed as in Boltzmann framework. As the collisions are not
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micro-reversible, it is not obvious to find an entropy functional. In the Boltzmann equations,
micro-reversibility is a crucial element for obtaining the H Theorem. Consequently, the clas-
sical tools for dealing with the problems of returns to equilibrium, such as for example the
Csiszàr–Kullback–Pinsker inequality [9], are inoperative. In our case, we have instead a phe-
nomenon of contraction in the collision process which does not take place for the Boltzmann
operator but drives the density towards an equilibrium state.

The plan of this paper is the following. We start by establishing the existence of a mild
solution of the equation (1.4). We show item (1) of Theorem 1.1 in Sect. 2. We show the
existence of the equilibrium state, item (2), and the proof of convergence, item (3) of Theorem
1.1 in Sect. 3. We also make the link with the midpoint model in this same section. Then,
we show the exponential convergence of the solution towards the equilibrium state for the
distance d2 in Sect. 4, which will imply the convergence in L1, item (4) of Theorem 1.1 in
Sect. 5. The last section is devoted to numerical simulations in dimension 1.

2 Existence

For all t ≥ 0, we denote by ρ(t), u(t) and 
 f (t) the mass, bulk velocity and covariance
matrix at the instant t of the solution f . Note that the equation (1.4) can be written equivently
as

∂ f

∂t
= g ∗ (U# f (t, · )) ∗ (U# f (t, · )) − ρ(t) f (t, · ) (2.1)

with

U : v ∈ R
d �−→ v

2
∈ R

d . (2.2)

Indeed by definition of the convolution productwe have for any test functionϕ ∈ C∞
c (R×R

d)

〈g ∗ (U# f ) ∗ (U# f ), ϕ〉
=
∫ +∞

0

∫
Rd

ϕ(t, v)g ∗ (U# f (t, · )) ∗ (U# f (t, · ))(dv)dt

=
∫ +∞

0

∫∫∫
Rd×Rd×Rd

ϕ(t, v + v′ + v′
�)g(dv)(U# f (t, · ))(dv′)(U# f (t, · ))(dv′

�)dt

=
∫ +∞

0

∫∫∫
Rd×Rd×Rd

ϕ

(
t, v + v′ + v′

�

2

)
g(dv) f (t, dv′) f (t, dv′

�)dt

=
∫ +∞

0

∫∫∫
Rd×Rd×Rd

ϕ(t, v)(τ(v′+v′
�)/2#g)(dv) f (t, dv′) f (t, dv′

�)dt

= 〈Q+( f , f ), ϕ〉.
By direct computation, we have (with the notations v tv = (viv j )1≤i, j≤d )

∫
Rd

⎡
⎣ 1

v

v tv

⎤
⎦ g ∗ (U# f (t, · )) ∗ (U# f (t, · ))(dv)

=
⎡
⎣ ρ(t)2

ρ(t)u(t)
ρ(t)2(
g + u(t) t u(t)) + 
 f (t)/(2ρ(t)).

⎤
⎦ . (2.3)

123
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The previous computation shows that the mass and the mean velocity are preserved, but not
the energy. Note that the gain term Q+( f , f ) is a density if g is a density (even if f is a
probability measure).

We start by proving item (1) of Theorem 1.1. Some properties on W2 are needed first.

Proposition 2.1 (Properties of W2)

(1) Convexity Given μ1, μ2, ν1 and ν2 in P2(R
d) and α ∈ [0, 1], then

W2(αμ1 + (1 − α)μ2, αν1 + (1 − α)ν2)
2 ≤ αW2(μ1, ν1)

2 + (1 − α)W2(μ2, ν2)
2.

(2.4)

(2) Convexity with respect to transition kernel Let P1 : v ∈ R
d �−→ P1(v, · ) ∈ P2(R

d) and
P2 : v ∈ R

d �−→ P2(v, · ) ∈ P2(R
d) be two transition kernels (that is Borel maps in

(P2(R
d),W2)) and μ be a probability measure, then

W2

(∫
Rd

P1(v, · )dμ(v),

∫
Rd

P2(v, · )dμ(v)

)2
≤
∫
Rd

W2(P1(v, · ), P2(v, · ))2dμ(v).

(2.5)

(3) Sub-additivity with respect to convolution Givenμ1, ν1 ∈ Pm
2 (Rd) andμ2, ν2 ∈ P2(R

d),
then

W2(μ1 ∗ μ2, ν1 ∗ ν2)
2 ≤ W2(μ1, ν1)

2 + W2(μ2, ν2)
2. (2.6)

(Notice that μ1 and ν1 must have the same mean value.)
(4) Transfert Given μ, ν ∈ P2(R

d) and f : R
d −→ R

d a Borel map, then for all coupling
π of (μ, ν),

W2( f #μ, f #ν)2 ≤
∫∫

Rd×Rd
| f (x) − f (y)|2dπ(x, y). (2.7)

For the sake of completeness we give the proof of the previous proposition in Appendix
A.

Remark 2.1 If ϕ ∈ C0([0, T ]) is a function such that
∫ T
0 ϕ(t)dt = 1 and if f1, f2 ∈

C0(R+,P2(R
d)), then we obtain by (2.5)

W2

(∫ T

0
ϕ(t) f1(t, · )dt,

∫ T

0
ϕ(t) f2(t, · )dt

)2
≤
∫ T

0
ϕ(t)W2( f1(t, · ), f2(t, · ))2dt .

(2.8)

Remark 2.2 By taking μ1 = ν1 in (2.6), we have

W2(μ1 ∗ μ2, μ1 ∗ ν2)
2 ≤ W2(μ1, μ1)

2 + W2(μ2, ν2)
2 = W2(μ2, ν2)

2.

And so we obtain for μ1, μ2, ν ∈ P2(R
d)

W2(ν ∗ μ1, ν ∗ μ2) ≤ W2(μ1, μ2). (2.9)

Note that it is not necessary that μ1, μ2 and ν have the same mean.

Remark 2.3 Inequality (2.7) gives with U defined in equation (2.2),

W2(U#μ,U#ν)2 ≤ 1

4

∫∫
Rd×Rd

|x − y|2dπ(x, y)

123
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for all coupling π of (μ, ν). Therefore by taking the infimum over π , we obtain

W2(U#μ,U#ν) ≤ 1

2
W2(μ, ν). (2.10)

The following Lemma is the key step for the fixed point theorem of Theorem 1.1.

Lemma 2.1 For μ, ν ∈ Pm
2 (Rd), we have

W2(g ∗ (U#μ) ∗ (U#μ), g ∗ (U#ν) ∗ (U#ν)) ≤ 1√
2
W2(μ, ν). (2.11)

Proof It is enough to apply successively (2.9), (2.6) and (2.10). We have

W2(g ∗ (U#μ) ∗ (U#μ), g ∗ (U#ν) ∗ (U#ν)) ≤ W2((U#μ) ∗ (U#μ), (U#ν) ∗ (U#ν))

≤ √
2W2(U#μ,U#ν)

≤ 1√
2
W2(μ, ν)

��
This result is already present in Theorem 4.1 in Ref. [11]. The proof presented here is

different. We recall the following elementary fact that we prove in Appendix A.

Lemma 2.2 The space Pm
2 (Rd) is a complete metric space for W2.

The following Lemma shows that a mild solution can be seen as a fixed point of some
contracting non-linear operator.

Lemma 2.3 Let m ∈ R
d , f0 ∈ Pm

2 (Rd) and g ∈ P0
2 (Rd). Define E f0 = C0(R+,Pm

2 (Rd))

with f (0, .) = f0 equipped with the uniform norm. For f ∈ E f0 , we define the map � :
E f0 −→ E f0 by

�[ f ](t, · ) := e−t f (0, · ) +
∫ t

0
e−(t−s)g ∗ (U# f (s, · )) ∗ (U# f (s, · ))ds. (2.12)

Then for all f 10 , f
2
0 ∈ Pm

2 (Rd) and for f 1 ∈ E f 10
, f 2 ∈ E f 20

, it holds for every t ≥ 0

W2(�[ f 1](t, · ),�[ f 2](t, · ))2 ≤ e−tW2( f
1
0 , f 20 )2

+1

2

∫ t

0
e−(t−s)W2( f

1(s, · ), f 2(s, · ))2ds. (2.13)

Proof Let f ∈ E f0 . It is clear that �[ f ](0, · ) = f0. Since for all t ≥ 0, f (t, · ) ∈ Pm
2 (Rd),

ρ(t) = 1 and u(t) = m. So, by (2.3), �[ f ](t, · ) ∈ Pm
2 (Rd) for all t ≥ 0. By writing

�[ f ](t, · ) = e−t f0 + (1 − e−t )

∫ t

0

e−(t−s)

1 − e−t
g ∗ (U# f (s, · )) ∗ (U# f (s, · ))ds,

the convexity of W2 (2.4) gives that for all f 1 ∈ E f 10
, f 2 ∈ E f 20

,

W2(�[ f 1](t, · ),�[ f 2](t, · ))2 ≤ e−tW2( f
1
0 , f 20 )2

+ (1 − e−t )W2

(∫ t

0

e−(t−s)

1 − e−t
g ∗ (U# f 1s ) ∗ (U# f 1s )ds,

∫ t

0

e−(t−s)

1 − e−t
g ∗ (U# f 2s ) ∗ (U# f 2s )ds

)2
.

123
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And using (2.8), it holds that

W2(�[ f 1](t, · ),�[ f 2](t, · ))2

≤
∫ t

0
e−(t−s)W2(g ∗ (U# f 1s ) ∗ (U# f 1s ), g ∗ (U# f 2s ) ∗ (U# f 2s ))2ds

+ e−tW2( f
1
0 , f 20 )2.

And by (2.11), we obtain (2.13). ��
To prove Lemma 2.3, we used arguments that are used several times in Ref. [12].

Proof of item (1) in Theorem 1.1 Let f0 ∈ Pm
2 (Rd) and g ∈ P0

2 (Rd). Consider the map �

defined by (2.12). Hence for f1, f2 ∈ E f0 , (2.13) leads to

W2(�[ f1](t, · ),�[ f2](t, · ))2 ≤ 1

2

∫ t

0
e−(t−s)W2( f1(s, · ), f2(s, · ))2ds.

By considering the supremum in time,

W2(�[ f1](t, · ),�[ f2](t, · ))2 ≤ 1 − e−t

2
sup
t∈R+

W2( f1(t, · ), f2(t, · ))2.

So

sup
t∈R+

W2(�[ f1](t, · ),�[ f2](t, · )) ≤ 1√
2

sup
t∈R+

W2( f1(t, · ), f2(t, · )). (2.14)

Hence� preserves the space E f0 and is a contraction. AsPm
2 (Rd) is a complete metric space

for W2, E f0 is complete. Hence there exists a unique mild solution of the equation (1.4)
belonging to E f0 . ��
Proposition 2.2 (Properties of mild solutions) Let m ∈ R

d , f ∈ C0(R+,Pm
2 (Rd)) be the

mild solution of equation (1.4) with f (0, · ) = f0. Then we have the following properties.

(1) f is a solution of equation (1.4) in the sense of distributions (see Definition 1.1).
(2) If f0 and g are probability densities, then f (t, · ) is a probability density for all t ≥ 0.
(3) For all t ≥ 0, denoting 
 f (t) := ∫

Rd (v − m) t (v − m) f (t, dv),


 f (t) = e−t/2
 f (0) + 2
(
1 − e−t/2)
g. (2.15)

(4) For every mild solution f1, f2 ∈ C0(R+,Pm
2 (Rd)), we have for all t ≥ 0

W2( f1(t, · ), f2(t, · )) ≤ e−t/4W2( f1(0, · ), f2(0, · )). (2.16)

Proof Item (1). By direct computation

−
〈
f ,

∂ϕ

∂t

〉
=
∫
Rd

ϕ(0, v) f0(dv) −
∫ +∞
0

∫
Rd

e−tϕ(t, v) f0(dv)dt

−
∫ +∞
0

∫
Rd

es
(∫ +∞

s
e−t ∂ϕ

∂t
(t, v)dt

)
g ∗ (U# f (s, · )) ∗ (U# f (s, · ))(dv)ds

=
∫
Rd

ϕ(0, v) f0(dv) −
∫ +∞
0

∫
Rd

e−tϕ(t, v) f0(dv)dt

+
∫ +∞
0

∫
Rd

ϕ(s, v)g ∗ (U# f (s, · )) ∗ (U# f (s, · ))(dv)ds

123
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−
∫ +∞
0

∫
Rd

∫ +∞
s

ϕ(t, v)e−(t−s)g ∗ (U# f (s, · )) ∗ (U# f (s, · ))(dv)dtds

=
∫
Rd

ϕ(0, v) f0(dv) + 〈Q+( f , f ), ϕ〉 −
∫ +∞
0

∫
Rd

ϕ(t, v) f (t, dv)dt .

Since for any t ≥ 0, f (t, · ) is a probability measure, we have
∫ +∞

0

∫
Rd

ϕ(t, v) f (t, dv)dt =
∫ +∞

0

∫
Rd

∫
Rd

ϕ(t, v) f (t, dv) f (t, dv�)dt = 〈Q−( f , f ), ϕ〉.

Item (2). This is obvious because if g is a density, then g ∗ (U# f (t, · )) ∗ (U# f (t, · )) is a
density for all t ≥ 0. By (1.6), we obtain that f (t, · ) is a density for all t since f0 is a density
by hypothesis.
Item (3). According to (1.6) and (2.3), it holds that∫

Rd
v tv f (t, dv) = e−t

∫
Rd

v tv f0(dv)

+
∫ t

0
e−(t−s)

(∫
Rd

v tvg ∗ (U# f (s, · )) ∗ (U# f (s, · ))(dv)

)
ds

= e−t
∫
Rd

v tv f0(dv) +
∫ t

0
e−(t−s)

(

g + m tm + 
 f (s)

2

)
ds.

So we have

et
 f (t) = 
 f (0) + (1 − e−t )
g +
∫ t

0

es

2

 f (s)ds.

The case of equality in Gronwall’s lemma leads to

et
 f (t) = 
 f (0) + (1 − e−t )
g +
∫ t

0


 f (0) + (1 − e−s)
g

2
e(t−s)/2ds

= 
 f (0) + (1 − e−t )
g + (et/2 − 1
)

 f (0) + (et + 1 + 2et/2

)

g.

Which implies formula (2.15).

Item (4). Let f1 ∈ C0(R+,Pm
2 (Rd)) be themild solution with initial condition f 10 ∈ Pm

2 (Rd)

and let f2 ∈ C0(R+,Pm
2 (Rd)) be the mild solution with initial condition f 20 ∈ Pm

2 (Rd). By
(2.13), it comes that

W2( f1(t, · ), f2(t, · ))2 ≤ e−tW2
(
f 10 , f 20

)2 + 1

2

∫ t

0
e−(t−s)W2( f1(s, · ), f2(s, · ))2ds.

Gronwall’s Lemma leads to

etW2( f1(t, · ), f2(t, · ))2 ≤ et/2W2( f
1
0 , f 20 )2

and (2.16) follows. ��

3 Equilibrium State

This section is devoted to the determination of the equilibrium state of the collision operator
of equation (1.4). For f ∈ C0(R+,P2(R

d)), we set

f̂ (t, ξ) :=
∫
Rd

e−i〈v,ξ〉 f (t, dv).
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So if f ∈ C0(R+,Pm
2 (Rd)) is the mild solution of equation (1.4) (see Definition 1.2) with

initial condition f (0, · ) = f0, then f̂ is solution of the fixed point equation

f̂ (t, ξ) = e−t f̂ (0, ξ) +
∫ t

0
e−(t−s)ĝ(ξ) f̂

(
s,

ξ

2

)2
ds. (3.1)

Note that the changeover in Fourier variable can be performed because β is constant. By
differentiation of (3.1), it comes that⎧⎪⎪⎨

⎪⎪⎩

∂ f̂

∂t
= ĝ(ξ) f̂

(
t,

ξ

2

)2
− f̂ (t, ξ)

f̂ (0, ξ) = f̂0(ξ).

(3.2)

We notice that equation (1.7) can be written equivalently as

f = g ∗ (U# f ) ∗ (U# f )

where U is defined in (2.2). Thus, equation (1.7) is equivalent to

f̂ (ξ) = ĝ(ξ) f̂

(
ξ

2

)2
. (3.3)

Item (2) of Theorem 1.1 is a consequence of the following proposition. Theorem 1 of Ref.
[4] is improved by choosing a probability measure g(dv) instead of a density g(v)dv and by
proving the uniqueness of the equilibrium state in this general setting. Moreover we do not
use Levi’s Theorem to recognize a Fourier transform of a probability measure.

Proposition 3.1 (Theorem 1 in Ref. [4]) Let g ∈ P0
2 (Rd). For all m ∈ R

d , there exists a
unique f ∈ Pm

2 (Rd) solution of (1.7). In addition we have

f̂ (ξ) = e−i〈m,ξ〉
+∞∏
n=0

ĝ

(
ξ

2n

)2n
. (3.4)

Proof For f ∈ Pm
2 (Rd), we define the map � : P2(R

d) −→ P2(R
d) by

�[ f ] := g ∗ (U# f ) ∗ (U# f ).

By (2.3), we check that � maps Pm
2 (Rd) into itself and is a contraction from (2.11). So there

exists a unique f ∈ Pm
2 (Rd) such that �[ f ] = f . Let us now show that f̂ satisfies (3.4). By

iterating the equation (3.3), a Taylor expansion leads to

f̂ (ξ) =
[
n−1∏
k=0

ĝ

(
ξ

2k

)2k]
f̂

(
ξ

2n

)2n

=
[
n−1∏
k=0

ĝ

(
ξ

2k

)2k](
1 + 1

2n

(
−i〈m, ξ 〉 −

tξ(
 f + m tm)ξ

2n+1 + o

( |ξ |2
2n

)))2n
.

The second factor on the right-hand side converges to e−i〈m,ξ〉 when n tends to infinity. Since
if (xn)n converges to x , then (1 + xn/n)n converges to ex . We thus obtain (3.4) by letting n
tend to infinity. ��

We denotes by f ∞
m (which is a density if g is a density) the unique solution of (1.7) in

Pm
2 (Rd). In particular, f̂ ∞

m satisfies (3.4).
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Remark 3.1 Let m = 0. By calculating the Hessian matrix H f̂ ∞
0

(0), we notice that if f ∈
C0(R+,Pm

2 (Rd)) is the mild solution of equation (1.4), then by (2.15), 
 f (t) converges to
2
g when t goes to infinity. Which corresponds well to the covariance matrix of f ∞

0 .
Indeed, by differentiating the function ξ �−→ log( f̂ ∞

0 (ξ)), we have since f̂ ∞
0 satisfies

(3.4) than

∇ f̂ ∞
0 (ξ) = f̂ ∞

0 (ξ)

+∞∑
n=0

∇ ĝ(ξ/2n)

ĝ(ξ/2n)
.

By differentiating the previous formula, we have

H f̂ ∞
0

(ξ) = f̂ ∞
0 (ξ)

+∞∑
n=0

ĝ(ξ/2n)Hĝ(ξ/2n) − ∇ ĝ(ξ/2n) t∇ ĝ(ξ/2n)

2n(ĝ(ξ/2n))2

+∇ f̂ ∞
m (ξ)

t(+∞∑
n=0

∇ ĝ(ξ/2n)

ĝ(ξ/2n)

)
.

We obtain the covariance matrix of f ∞
0 by calculating this expression above at ξ = 0 since

for a centered probability measure μ, μ̂(0) = 1, i∇μ̂(0) = 0, and −Hμ̂(0) = ∫ v tvdμ(v).

Remark 3.2 In the particular case where g ∈ P0
2 (Rd) is a Gaussian (centered of covariance

matrix 
g), then ĝ(ξ) = exp(−(tξ
gξ)/2) and by (3.4),

f̂ ∞
m (ξ) = e−i〈m,ξ〉

+∞∏
n=0

exp

(
−

tξ
gv

2n+1

)

= exp

(
−i〈m, ξ 〉 −

tξ
gξ

2

+∞∑
n=0

1

2n

)
= exp

(−i〈m, ξ 〉 − tξ
gξ
)
.

So by the Fourier inverse transform, f ∞
m is also aGaussianwithmean vectorm and covariance

matrix 2
g .

Proof of items (2) and (3) in Theorem 1.1 Item (2) Readily follows form Proposition 3.1.
Item (3). Let f ∈ C0(R+,Pm

2 (Rd)) be the mild solution of equation (1.4) with initial
condition f0 ∈ Pm

2 (Rd) and let f ∞
m ∈ Pm

2 (Rd) be the equilibrium state of equation (1.4).
Note that

∀t ≥ 0, f ∞
m = e−t f ∞

m +
∫ t

0
e−(t−s)g ∗ (U# f ∞

m ) ∗ (U# f ∞
m )ds.

By taking the map � defined in (2.12), we have by (2.13)

W2( f (t, · ), f ∞
m )2 = W2(�[ f ](t, · ),�[ f ∞

m ])2

≤ e−tW2( f0, f ∞
m )2 + 1

2

∫ t

0
e−(t−s)W2( f (s, · ), f ∞

m )2ds.

By Gronwall’s Lemma, we have

etW2( f (t, · ), f ∞
m )2 ≤ et/2W2( f0, f ∞

m )2

and (1.8) follows. ��
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We now make the link with the result obtained in Ref. [8] for the discrete midpoint model
corresponding to the equation (1.4) with g = δ0.

Proposition 3.2 (Proposition 2.3 in Ref. [8]) We consider equation (1.4) with g = δ0. For
f0 ∈ Pm

2 (Rd), there exists a unique mild solution of equation (1.4) in C0(R+,Pm
2 (Rd)) with

initial condition f0. Moreover, we have the estimate

W2( f (t, · ), δm) ≤ e−t/4W2( f0, δm). (3.5)

Proof Existence and uniqueness of the solution follow from the item (1) in Theorem 1.1.
By items (2) and (3) in Theorem 1.1, there exists a unique equilibrium state f ∞

m ∈ Pm
2 (Rd)

such that

W2( f (t, · ), f ∞
m ) ≤ e−t/4W2( f0, f ∞

m ).

Since g = δ0, we have ĝ(ξ) = 1 for all ξ . And so by (3.4), we have

f̂ ∞
m (ξ) = e−i〈m,ξ〉.

We recognize the Fourier transform of δm , so f ∞
m = δm and (3.5) follows. ��

Asmentioned inRef. [8], the conservationof the center ofmassm has played a fundamental
role in the functional spacePm

2 (Rd). It would be muchmore difficult to prove these estimates
on the sphere S

d−1 because the center of mass is no longer conserved.

4 Convergence for d2

We introduce in this section the Fourier–Toscani-based distance betweenμ and ν ∈ Pm
2 (Rd)

having the same mean value by

d2(μ, ν) := sup
ξ∈Rd

|μ̂(ξ) − ν̂(ξ)|
|ξ |2 .

A Taylor expansion shows that this metric is well-defined for μ, ν ∈ Pm
2 (Rd) and metrizes

the weak topology on Pm
2 (Rd) (see Ref. [13]). We proved in the previous section that f ∞

m ∈
Pm
2 (Rd). So d2( f (t, · ), f ∞

m ) is well defined for all t ≥ 0. The following result gives the
exponential convergence of f (t, · ) to f ∞

m for the d2 metric.

Proposition 4.1 (Exponential convergence for d2) Let f0 ∈ Pm
2 (Rd) and g ∈ P0

2 (Rd). If
f ∈ C0(R+,Pm

2 (Rd)) is the mild solution of equation (1.4) with f (0, · ) = f0 and if
f ∞
m ∈ Pm

2 (Rd) is the equilibrium state of (1.4) with mean velocity m, then it holds that for
all t ≥ 0

d2( f (t, · ), f ∞
m ) ≤ M2( f0) + 2M2(g) + |m|2

2
e−t/2. (4.1)

Proof For f ∈ C0(R+,Pm
2 (Rd)), mild solution of (1.4), we set for any t ≥ 0 and ξ ∈ R,

H(t, ξ) := f̂ (t, ξ) − f̂ ∞
m (ξ)

|ξ |2 .

A Taylor expansion gives that

e−i〈v,ξ〉 = 1 − i〈v, ξ 〉 − 〈v, ξ 〉2
∫ 1

0
(1 − s)e−is〈v,ξ〉ds.
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So

|H(t, ξ)| =
∣∣∣∣
∫
Rd

∫ 1

0

〈v, ξ 〉2
|ξ |2 (1 − s)e−is〈v,ξ〉 f (t, v)dsdv

−
∫
Rd

∫ 1

0

〈v, ξ 〉2
|ξ |2 (1 − s)e−is〈v,ξ〉 f ∞

m (v)dsdv

∣∣∣∣
≤
∫
Rd

∫ 1

0

∣∣∣∣ 〈v, ξ 〉2
|ξ |2 (1 − s)e−is〈v,ξ〉( f (t, v) − f ∞

m (v))

∣∣∣∣ dsdv.

Hence the previous inequality taken at t = 0 and Cauchy–Schwarz inequality leads to

|H(0, ξ)| ≤ M2( f0) + 2M2(g) + |m|2
2

. (4.2)

We define now G by

G(t, ξ) := ĝ(ξ)

4

(
f̂

(
t,

ξ

2

)
+ f̂ ∞

m

(
ξ

2

))
.

Using (3.2) and (3.3), it holds that

G(t, ξ)H

(
t,

ξ

2

)
− H(t, ξ) = ĝ(ξ)

|ξ |2 f̂

(
t,

ξ

2

)2
− f̂ (t, ξ)

|ξ |2 −
(
ĝ(ξ)

|ξ |2 f̂ ∞
m

(
ξ

2

)
− f ∞

m (ξ)

|ξ |2
)

= 1

|ξ |2
∂ f̂

∂t
.

So H satisfies

∂H

∂t
= G(t, ξ)H

(
t,

ξ

2

)
− H(t, ξ)

and by Duhamel’s formula, we get

H(t, ξ) = e−t H(0, ξ) +
∫ t

0
e−(t−s)G(s, ξ)H

(
s,

ξ

2

)
ds.

For R > 0, we set

y(t) := et sup
|ξ |≤R

|H(t, ξ)|

since the map ξ �−→ ξ/2 maps {ξ, |ξ | ≤ R} into {ξ, |ξ | ≤ R/2}. Since G(t, ξ) ≤ 1/2,
Gronwall’s Lemma applied to inequality

y(t) ≤ y(0) + 1

2

∫ t

0
y(s)ds

gives that for all R ≥ 0

sup
|ξ |≤R

|H(t, ξ)| ≤ |H(0, ξ)|e−t/2.

So, by using the estimate (4.2) we get formula (4.1). ��
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5 Convergence L1

This section is devoted to the proof of item (4) in Theorem 1.1. The initial condition f (0, · )
is assumed to be a regular function and we prove the exponential convergence in L1 of
f (t, · ) to the equilibrium state determined in Sect. 3. The regularity of the initial condition
is measured in term of the Sobolev norm. For s ≥ 0 and for d ∈ N

∗, the Sobolev norm in R
d

of regularity s is given by

‖ f ‖Hs (Rd ) :=
√∫

Rd
(1 + |ξ |2)s | f̂ (ξ)|2dξ .

Lemma 5.1 Let s ≥ 0 and f0, g ∈ Hs(Rd) ∩P2(R
d). Let f ∈ C0(R+,P2(R

d)) be the mild
solution (1.4) with initial condition f0. Then for every t ≥ 0, f (t, · ) ∈ Hs(Rd) and

‖ f (t, · )‖Hs (Rd ) ≤ e−t‖ f0‖Hs (Rd ) + (1 − e−t ) ‖g‖Hs (Rd ). (5.1)

Proof Let R > 0. Define

ZR(t) :=
∫

|ξ |<R

(
1 + |ξ |2)s | f̂ (t, ξ)|2dξ.

Using (3.2) and the inequality |μ̂(ξ)| ≤ 1 forμ a probability measure, it comes that ∂t f̂ (t, ξ)

is uniformly bounded by 2. By differentiation, it holds that

d

dt
ZR(t) = 2

∫
|ξ |<R

(
1 + |ξ |2)s �

(
f̂ (t, ξ)

∂ f̂

∂t
(t, ξ)

)
dξ

≤ 2
∫

|ξ |<R

(
1 + |ξ |2)s |ĝ(ξ)| · | f̂ (t, ξ)|dξ − 2ZR(t).

Cauchy–Schwarz inequality applied to the right-hand side gives that

d

dt
ZR(t) ≤ 2‖g‖Hs (Rd )

√
ZR(t) − 2ZR(t).

Since ZR(t) never vanishes,

d

dt

√
ZR(t) ≤ ‖g‖Hs (Rd ) −√ZR(t).

And by Gronwall’s Lemma,√
ZR(t) ≤ e−t

√
ZR(0) + (1 − e−t ) ‖g‖Hs (Rd ).

We conclude the proof by letting R to infinity. ��
Since g is a probability density, ‖ĝ‖∞ ≤ 1, using the explicit definition f̂ ∞

m in (3.4), we
obtain | f ∞

m | ≤ |ĝ| and the following result.

Lemma 5.2 For all s ≥ 0, we have

‖ f ∞
m ‖Hs (Rd ) ≤ ‖g‖Hs (Rd ). (5.2)

We also need the following two interpolation inequalities (Theorems 4.1 and 4.2 in Ref.
[6]) that we prove for the reader convenience. We recall the notion of a moment of order
α > 0 of a density f ∈ Pα(Rd)

Mα( f ) :=
∫
Rd

|v|α f (v)dv.
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Lemma 5.3 Let α > 0 and d ≥ 1 be an integer. Then there exists a constant C(α, d) > 0
such that for every function f ∈ L2(Rd) ∩ Pα(Rd)

‖ f ‖L1(Rd ) ≤ C(α, d)‖ f ‖α′
L2(Rd )

Mα( f )1−α′
, (5.3)

with α′ := 2α/(2α + d).

Proof For every R > 0, it holds that∫
R

| f (v)|dv ≤
∫

|v|≤R
| f (v)|dv + 1

Rα

∫
Rd

|v|α| f (v)|dv

≤ Rd/2
√
Vol(Bd)‖ f ‖L2(Rd ) + 1

Rα
Mα( f ) (5.4)

where Vol(Bd) is the euclidian volume of the unit ball of R
d . R is chosen such as

Rd/2
√
Vol(Bd)‖ f ‖L2(Rd ) = 1

Rα
Mα( f ).

This defines R as

R =
(

Mα( f )√
Vol(Bd)‖ f ‖L2(Rd )

)2/(2α+d)

. (5.5)

By taking R as in (5.5) in (5.4), we obtain (5.3) for C(α, d) = 2Vol(Bd)
α/(2α+d). ��

Lemma 5.4 Let s ≥ 0 and d ≥ 1 be an integer. For every s′ > d/2 + 2s + 2 there exists
a constant C(s, s′, d) > 0 such that for every f1, f2 ∈ Hs′(Rd) ∩ P2(R

d) satisfying∫
Rd v f1(v)dv = ∫

Rd v f2(v)dv

‖ f1 − f2‖Hs (Rd ) ≤ C(s, s′, d)
√
d2( f1, f2)

√
‖ f1 − f2‖Hs′ (Rd )

. (5.6)

Proof For s′ > d/2 + 2s + 2, we have∫
Rd

(
1 + |ξ |2)s | f̂1(ξ) − f̂2(ξ)|2dξ

≤
∫
Rd

| f̂1(ξ) − f̂2(ξ)|
|ξ |2

(
1 + |ξ |2)s+1

(
1 + |ξ |2)s′/2

(
1 + |ξ |2)s′/2 | f̂1(ξ) − f̂2(ξ)|dξ.

By Cauchy–Schwarz inequality, it holds that

∫
Rd

(
1 + |ξ |2

)s | f̂1(ξ) − f̂2(ξ)|2dξ ≤ d2( f1, f2)

(∫
Rd

dξ(
1 + |ξ |2)s′−2s−2

)1/2
‖ f1 − f2‖Hs′ (Rd )

.

The assumption on s′ implies that the integral in the right-hand side is finite. ��
Proof of item (4) in Theorem 1.1 Applying (5.3) with v �−→ | f (t, v) − f ∞

m (v)| and with α =
2, leads to

‖ f (t, · ) − f ∞
m ‖L1(Rd ) ≤ C(2, d)‖ f (t, · ) − f ∞

m ‖4/(d+4)
L2(Rd )

M2(| f (t, · ) − f ∞
m |)d/(d+4)

≤ C(2, d)‖ f (t, · ) − f ∞
m ‖4/(d+4)

L2(Rd )
(M2( f (t, .))

+ 2M2(g) + |m|2)d/(d+4).
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By (2.15), M2( f (t, .)) ≤ M2( f0) + 2M2(g) for all t ≥ 0. So

‖ f (t, · ) − f ∞
m ‖L1(Rd ) ≤ C1‖ f (t, · ) − f ∞

m ‖4/(d+4)
L2(Rd )

(
M2( f0) + M2(g) + |m|2)1/5 (5.7)

with C1 = 4d/(d+4)C(2, d). Then by (5.6) with s = 0, and s′ > 2 + d/2, it comes that

‖ f (t, · ) − f ∞
m ‖2L2(Rd )

≤ C(0, s′, d)2d2( f (t, · ), f ∞
m )‖ f (t, · ) − f ∞

m ‖Hs′ (Rd )

≤ C(0, s′, d)2d2( f (t, · ), f ∞
m )
(
‖ f (t, · )‖Hs′ (Rd )

+ ‖ f ∞
m ‖Hs′ (Rd )

)
.

By (5.1) and (5.2), we have ‖ f (t, · )‖Hs′ (Rd )
+ ‖ f ∞

m ‖Hs′ (Rd )
≤ ‖ f0‖Hs′ (Rd )

+ 2‖g‖Hs′ (Rd )
.

So

‖ f (t, · ) − f ∞
m ‖4/(d+4)

L2(Rd )
≤ C2d2( f (t, · ), f ∞

m )2/(d+4)
(
‖ f0‖Hs′ (Rd )

+ ‖g‖Hs′ (Rd )

)2/(d+4)
(5.8)

with C2 = 22/(d+4)C(0, s′, d)4/(d+4). Substituting (5.8) in (5.7), leads to

‖ f (t, · ) − f ∞
m ‖L1(Rd ) ≤ C1C2

(
‖ f0‖Hs′ (Rd )

+ ‖g‖Hs′ (Rd )

)2/(d+4)

(
M2( f0) + M2(g) + |m|2)d/(d+4)

d2
(
f (t, · ), f ∞

m

)2/(d+4)
.

And then by (4.1),

d2( f (t, · ), f ∞
m )2/(d+4) ≤

(
M2( f0) + 2M2(g) + |m|2

2

)2/(d+4)

e−t/(d+4)

≤ (M2( f0) + M2(g) + |m|2)2/(d+4)
e− t

(d+4) .

Thus, we obtain (1.9) with a constant

C = C1C2

(
‖ f0‖Hs′ (Rd )

+ ‖g‖Hs′ (Rd )

)2/(d+4) (
σ 2
f (0) + σ 2

g + m2
)(d+2)/(d+4)

.

And consequently the exponential convergence of f (t, · ) towards f ∞
m is obtained since

f0 ∈ Hs′(Rd) ∩ Pm
2 (Rd) and g ∈ Hs′(Rd) ∩ P0

2 (Rd) with s′ > 2 + d/2. ��

6 Numerical Results

This section is devoted to the numerical resolution of (1.4) in dimension d = 1. We will
present six tests cases for two different initial conditions f0 and with three different values of
g, where g is a density. For each test case, the solution f is depicted for different values of t
and compared with the equilibrium state f ∞

m theoretically found in order to characterize the
exponential rate of convergence for the strong-norm L1. To represent the solution of (1.4)
numerically, we use an Euler scheme in time for �t = 0.015 followed by a Simpson rule on
the interval [−10, 10]with a uniform step�x = 0.1.Wewill therefore represent numerically
the solutions of the equation

⎧⎪⎪⎨
⎪⎪⎩

∂ f

∂t
=
∫∫

R×R

g

(
v − v′ + v′

�

2

)
f (t, dv′) f (t, dv′

�) − f (t, · )
∫
R

f (t, dv′)

f (0, · ) = f0.

(6.1)
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In the first case, g is a centered Gaussian of variance σ 2
g = 1,

g(v) = 1√
2π

exp

(
−v2

2

)
. (6.2)

In the second case where g is an indicator function

g(v) = 1

2
�[−1,1](v). (6.3)

In the third case, g writes

g(v) = 1

n

n∑
i=1

1√
2πσ 2

i

exp

(
− (v − mi )

2

2σ 2
i

)
, (6.4)

with
∑n

i=1 mi = 0 since g is zero mean.We take in (6.4), n = 3,m1 = 3,m2 = m3 = −3/2,
σ 2
1 = 1, σ 2

2 = 2 and σ 2
3 = 4. In other words, g is a normalized sum of three Gaussians.

For each g, we consider two different initial conditions f0 defined as follows

• The first the initial condition f0 is a normalized Gaussian of mean 2 given by

f0(v) = 1√
2π

exp

(
− (v − 2)2

2

)
. (6.5)

• The second initial condition f0 is equal to g defined by (6.4), with n = 3, m1 = 3,
m2 = m3 = −3/2, σ 2

1 = 1, σ 2
2 = 2 and σ 2

3 = 4 (Fig. 1).

Test Case 1

For the first test case, g is a normalized centered Gaussian (6.2). Since g is a Gaussian,
Proposition 3.1 gives an explicit formula for the equilibrium state. In that case, f ∞

m is a
Gaussian of variance 2σ 2

g = 2 with the same mean as the initial condition f0. Hence for f0
defined by (6.5), f ∞

m writes

f ∞
m (v) = 1√

4π
exp

(
− (v − 2)2

4

)
. (6.6)

From f0 defined by (6.4), f ∞
m writes

f ∞
m (v) = 1√

4π
exp

(
−v2

4

)
(6.7)

Since we have shown that f (t, .) converges exponentially to f ∞
m for the strong-norm L1,

then the function t �−→ log ‖ f (t, .) − f ∞
m ‖L1 must be bounded by an affine function. This

is the case in Fig. 2 but with a ratio 1/2 and not 1/5 theoretically found.

Test Case 2

For the second test case, g defined by (6.3). Since g is not a Gaussian, the expression of
the equilibrium state f ∞

m is not explicit. Then f ∞
m is approached by f (t, · ) at time t = 35

corresponding to a converged result.
Fig 3 shows that f (t, ·) goes towards the same asymptotic limit for the two different

initial conditions. This numerical result is consistent with Proposition 3.1 claiming that the
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Fig. 1 Distribution function of the solution of (6.1) with g defined by (6.2). On the left, solution for initial
condition (6.5) at times t = 0, t = 30 and on the right, solution for initial condition (6.4) at times t = 0,
t = 30. Equilibrium state given in (3.4) (in circle)

Fig. 2 Function t �−→ log ‖ f (t, · ) − f ∞
m ‖L1 where f is the solution of (6.1) with g defined by (6.2). On

the left, f (t, · ) for initial condition (6.5) and f ∞
m given by (6.6). On the right, f (t, · ) for condition (6.4) and

f ∞
m is given by (6.7)

Fig. 3 Distribution function of the solution of (6.1) with g defined by (6.3). On the left, solutions for initial
condition (6.5) at times t = 0, t = 20, t = 30 and on the right, solutions for initial condition (6.4) at times
t = 0, t = 20, t = 30

equilibrium state depends only on g. In Fig. 4, the curve on the right is not rectilinear
because there are two phenomenons. First of all, the distribution goes towards a Maxwellian
distribution and next to the right one. However Fig. 4 shows that the convergence remains
with an exponential rate.

123



A Velocity Alignment Collision Model… Page 19 of 22    28 

Fig. 4 Function t �−→ log ‖ f (t, · ) − f ∞
m ‖L1 for f the solution of (6.1) with g defined by (6.3). On the left,

f (t, · ) for initial condition (6.5) and f ∞
m is replaced by a converged solution f (t, · ) at time t = 35. On the

right, f (t, · ) for initial condition (6.4) and f ∞
m replaced by a converged solution f (t, · ) at time t = 35

Fig. 5 Distribution function of the solution of (6.1) with g defined by (6.4). On the left, solutions with initial
condition (6.5) at times t = 0, t = 20, t = 30 and on the right, solutions with initial condition (6.4) at times
t = 0, t = 20, t = 30

Test Case 3

The third test case is devoted to g defined by (6.4). Since g is not a Gaussian, no explicit
formula are again available for the equilibrium state f ∞

m . Hence f ∞
m is again approached

by converged solution obtained at time t = 35 as for test case 2. The two different initial
conditions lead to the same asymptotic state that theoretically only depends on the distribution
g (Figs. 5, 6).

Conclusion

We have shown in this paper the existence of a unique mild solution of the equation (1.4)
and the exponential convergence toward the equilibrium state for the W2 metric and for the
strong-norm L1, in the case β = 1. The result elaborated in Ref. [8] has been extended to the
cases g ∈ P0

2 (R). The extension of these results for a non-constant β and the inhomogeneous
case is postponed to a following paper.

Acknowledgements The authors would like to thank J. A. Carrillo for suggesting the study of such a model
during his visit in Bordeaux in 2019.
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Fig. 6 Function t �−→ log ‖ f (t, · ) − f ∞
m ‖L1 where f : t �−→ f (t, · ) is the solution of (6.1) with g defined

by (6.4) and f ∞
m the equilibrium state. On the left, f (t, · ) with initial condition (6.5) and f ∞

m is represent
by the converged solution f (t, · ) at time t = 35. On the right, f (t, · ) for initial condition (6.4) and f ∞

m is
replaced by the converged solution f (t, · ) at time t = 35

Appendix

A Complement on theWasserstein Metric

Proof of Proposition 2.1 (1) Let π1 be an optimal coupling of (μ1, ν1) and π2 be an optimal
coupling of (μ2, ν2). For α ∈ [0, 1], we set π = απ1 + (1− α)π2. It is easy to check that π
is a coupling of (αμ1 + (1 − α)μ2, αν1 + (1 − α)ν2) and therefore

W2(αμ1 + (1 − α)μ2, αν1 + (1 − α)ν2)
2 ≤
∫∫

Rd×Rd
|x − y|2dπ(x, y)

= α

∫∫
Rd×Rd

|x − y|2dπ1(x, y)

+ (1 − α)

∫∫
Rd×Rd

|x − y|2dπ2(x, y)

= αW2(μ1, ν1)
2 + (1 − α)W2(μ2, ν2)

2.

(2) For v ∈ R
d , we consider an optimal coupling πv of (P1(v, · ), P2(v, · )) such that the

map v �−→ πv is measurable. We set π as the coupling defined for any measurable function
ϕ by

∫∫
Rd×Rd

ϕ(x, y)dπ(x, y) =
∫∫∫

Rd×Rd×Rd
ϕ(x, y)dπv(x, y)dμ(v).

It is easy to check that π is a coupling of
(∫

Rd P1(v, · )dμ(v),
∫
Rd P2(v, · )dμ(v)

)
and

therefore

W2

(∫
Rd

P1(v, · )dμ(v),

∫
Rd

P2(v, · )dμ(v)

)2
≤
∫∫

Rd×Rd
|x − y|2dπ(x, y)

=
∫∫∫

Rd×Rd×Rd
|x − y|2dπv(x, y)dμ(v)

=
∫
Rd

W2(P1(v, · ), P2(v, · ))2dμ(v).
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(3) Let π1 be an optimal coupling of (μ1, ν1) and π2 be an optimal coupling of (μ2, ν2). We
set π = π1 ∗ π2. It is easy to check that π is a coupling of (μ1 ∗ μ2, ν1 ∗ ν2) and therefore

W2(μ1 ∗ μ2, ν1 ∗ ν2)
2 ≤
∫∫

Rd×Rd
|x − y|2dπ(x, y)

=
∫∫∫∫

Rd×Rd×Rd×Rd
|x + u − y − v|2dπ1(x, y)dπ2(u, v).

Using the classical equality |x + y|2 = |x |2 + |y|2 + 2〈x, y〉, it holds that
W2(μ1 ∗ μ2, ν1 ∗ ν2)

2

≤ W2(μ1, ν1)
2 + W2(μ2, ν2)

2 + 2
∫∫∫∫

Rd×Rd×Rd×Rd
〈x − y, u − v〉dπ1(x, y)dπ2(u, v)

= W2(μ1, ν1)
2 + W2(μ2, ν2)

2

+ 2

〈∫∫
Rd×Rd

(x − y)dπ1(x, y),
∫∫

Rd×Rd
(u − v)dπ2(u, v)

〉

= W2(μ1, ν1)
2 + W2(μ2, ν2)

2.

(4) Let π be a coupling of (μ, ν). By setting π0 = f #π , π0 is a coupling of ( f #μ, f #ν).
Thus

W2( f #μ, f #ν)2 ≤
∫∫

Rd×Rd
|x − y|2dπ0(x, y) =

∫∫
Rd×Rd

| f (x) − f (y)|2dπ(x, y).

��
Proof of Lemma 2.2 Define the map T by

T : μ ∈ P2(R
d) �−→

∫
Rd

vdμ(v).

Let π be a coupling of (μ, ν) with μ, ν ∈ P2(R
d). So

|T (μ) − T (ν)| =
∣∣∣∣
∫∫

Rd×Rd
(v − u)dπ(u, v)

∣∣∣∣ ≤
∫∫

Rd×Rd
|v − u|dπ(u, v).

By taking the infimumoverπ , we obtain |T (μ)−T (ν)| ≤ W1(μ, ν) and theHölder inequality
gives W1(μ, ν) ≤ W2(μ, ν). Therefore T is continuous. Let us now show that the space
Pm
2 (Rd) is closed in P2(R

d). Let (μn)n be a sequence in Pm
2 (Rd) converging to μ for W2.

μ ∈ P2(R
d) by completeness and the continuity of T gives that T (μn) converges to T (μ).

So T (μ) = m and μ ∈ Pm
2 (Rd). ��
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