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Calibrated Configurations for
Frenkel–Kontorova Type Models in Almost
Periodic Environments

Eduardo Garibaldi, Samuel Petite and Philippe Thieullen

Abstract. The Frenkel–Kontorova model describes how an infinite chain
of atoms minimizes the total energy of the system when the energy takes
into account the interaction of nearest neighbors as well as the interaction
with an exterior environment. An almost periodic environment leads to
consider a family of interaction energies which is stationary with respect
to a minimal topological dynamical system. We focus, in this context,
on the existence of calibrated configurations (a notion stronger than the
standard minimizing condition). In any dimension and for any contin-
uous superlinear interaction energies, we exhibit a set, called projected
Mather set, formed of environments that admit calibrated configurations.
In the one-dimensional setting, we then give sufficient conditions on the
family of interaction energies that guarantee the existence of calibrated
configurations for every environment. The main mathematical tools for
this study are developed in the frameworks of discrete weak KAM theory,
Aubry–Mather theory and spaces of Delone sets.

1. Introduction

The original Frenkel–Kontorova model [11–13] describes a one-dimensional
chain of classical coupled particles which are subjected to an environment
via an interaction energy E : R

d × R
d → R. Given a finite configuration

(xm, xm+1, . . . , xn) of points in R
d, define

E(xm, xm+1, . . . , xn) :=
n−1∑

k=m

E(xk, xk+1).
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A minimizing configuration (xk)k∈Z for the interaction energy E is an infi-
nite chain of points in R

d arranged so that the energy of each finite segment
(xm, xm+1, . . . , xn) cannot be lowered by changing the configuration inside
the segment while fixing the two boundary points, i.e., for all m < n, for all
ym, ym+1, . . . , yn ∈ R

d satisfying ym = xm and yn = xn, one has

E(xm, xm+1, . . . , xn) ≤ E(ym, ym+1, . . . , yn). (1)

In the periodic setting, that is, if the interaction energy is C0, coercive
and translation periodic,

lim
R→+∞

inf
‖y−x‖≥R

E(x, y) = +∞ and (2)

∀ t ∈ Z
d, ∀x, y ∈ R

d, E(x + t, y + t) = E(x, y), (3)

it is easy to show (see [2] for d = 1 and [15] for any dimension) that minimizing
configurations do exist. The proof in Aubry and Le Dearon [2] makes heavy
use of the fact that d = 1 and the assumption that E is C2 and twist in the
following strong sense

∂2E

∂x∂y
≤ −α < 0. (4)

We will relax slightly the twist condition allowing us anharmonic interactions,
by using, for example, E(x, y) = 1

4 |y − x − λ|4 + V (x) instead of the harmonic
interaction E(x, y) = 1

2 |y − x − λ|2 + V (x).
For environments which are aperiodic, namely when the energy E is not

translation periodic, few results are known (see, for instance, [8,14,27]). For
d = 1, Gambaudo, Guiraud and Petite [14] showed that minimizing configu-
rations do exist for a family of aperiodic C2 twist energies. They also proved
that every minimizing configuration has a rotation number and any nonnega-
tive real number is the rotation number of a minimizing configuration.

A notion stronger than the usual minimizing condition is provided by
the concept of calibration. A calibrated configuration (at the level c ∈ R) is a
sequence (xn)n∈Z such that, for every m < n,

E(xm, . . . , xn) − (n − m)c ≤ inf
�≥1

inf
y0=xm,...,y�=xn

[
E(y0, . . . , y�) − �c

]
. (5)

Notice that the number of sites on the right-hand side is arbitrary.
This paper mainly concerns the existence of calibrated configuration in

the aperiodic context. A calibrated configuration is obviously minimizing, but
the converse is false in general.

In the periodic setting and for d ≥ 1, an argument using the notion of
weak KAM solutions as in [10,15,16] shows that there exist calibrated config-
urations at a level Ē depending only on the energy E. Conversely, if d = 1 and
E is twist translation periodic, every minimizing configuration is calibrated
for some modified energy Eλ(x, y) = E(x, y) − λ(y − x), λ ∈ R, at a level Ēλ

(see [2]).
Even if d = 1, in the aperiodic context it is not known in general whether

calibrated configurations exist. In order to give conditions to ensure the exis-
tence of calibrated configurations, we will consider in this paper an interaction
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energy which is almost periodic in a sense that will include the periodic case.
This will lead to look at a family of interaction energies parameterized by a
minimal topological dynamical system (a weak form of homogeneity). Such
an approach is similar to studies for the Hamilton–Jacobi equation (see, for
instance, [5–7,17,18,22]), where a stationary ergodic setting has been taken
into account.

We will assume there exists a family of interaction energies {Eω}ω de-
pending on an environment ω. Let Ω denote the collection of all possible en-
vironments. We assume that every chain of atoms (xk + t)k∈Z, translated in
the direction t ∈ R

d and interacting with the environment ω, has the same
local energy that (xk)k∈Z interacting with the shifted environment τt(ω) for
some bijective transformation τt : Ω → Ω. More precisely, each environment ω
defines an interaction Eω(x, y) which is assumed to be topologically stationary
in the following sense

∀ω ∈ Ω, ∀ t ∈ R
d, ∀x, y ∈ R

d, Eω(x + t, y + t) = Eτt(ω)(x, y). (6)

In order to ensure the topological stationarity, the interaction energy will
be supposed to have a Lagrangian form. Formally, we will use the following
definition.

Definition 1. Let Ω be a compact metric space.

1. A minimal Rd-action is a couple
(
Ω, {τt}t∈Rd

)
, where {τt}t∈Rd is a family

of homeomorphisms τt : Ω → Ω satisfying
– τs ◦ τt = τs+t for all s, t ∈ R

d (the group property),
– τt(ω) is jointly continuous with respect to (t, ω),
– ∀ω ∈ Ω, {τt(ω)}t∈Rd is dense in Ω (the minimality property).

2. A family of interaction energies {Eω}ω∈Ω is said to derive from a La-
grangian if there exists a continuous function L : Ω × R

d → R such that

∀ω ∈ Ω, ∀x, y ∈ R
d, Eω(x, y) := L(τx(ω), y − x). (7)

3. An almost periodic interaction model is the set of data (Ω, {τt}t∈Rd , L),
where (Ω, {τt}t∈Rd) is a minimal Rd-action and L is a continuous function
on Ω × R

d.

Notice that the expression “almost periodic” shall not be understood in
the sense of H. Bohr. The almost periodicity according to Bohr is canonically
relied to the uniform convergence. See [3] for a discussion on the different
concepts of almost periodicity in conformity with the uniform topology or
with the compact open topology.

Because of the particular form (7) of Eω(x, y), these energies are trans-
lation bounded and translation uniformly continuous in the sense that for all
R > 0, sup‖y−x‖≤R Eω(x, y) < +∞ and Eω(x, y) is uniformly continuous in
‖y − x‖ ≤ R. We make precise the notions of coercivity and superlinearity for
the Lagrangian form.
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Definition 2. Let (Ω, {τt}t∈Rd , L) be an almost periodic interaction model.
1. L is said to be coercive if limR→+∞ infω∈Ω inf‖t‖≥R L(ω, t) = +∞.
2. L is said to be superlinear if limR→+∞ infω∈Ω inf‖t‖≥R

L(ω,t)
‖t‖ = +∞.

Let us illustrate our abstract notions by three typical examples.

Example 3. The one-dimensional periodic Frenkel–Kontorova model [11–13].
The interaction energies are given by Eω(x, y) = W (y − x) + Vω(x), with
ω ∈ R/Z, written in Lagrangian form as

L(ω, t) = W (t) + V (ω) =
1
2
|t − λ|2 +

K

(2π)2
(
1 − cos 2πω

)
, (8)

where λ and K are constants. Here Ω = R/Z and τt : R/Z → R/Z is given by
τt(ω) = ω + t. We observe that {τt}t is minimal.

Example 4. The one-dimensional almost crystalline model based on [14]. For
α ∈ (0, 1)\Q, consider the aperiodic subset of R defined by

ω(α) := {k ∈ Z : 
kα� − 
(k − 1)α� = 1},

where 
·� denotes the integer part. Represented as an ordered subset ω(α) =
{ωn}n∈Z possesses the property that the distance between two consecutive
points is either 
 1

α� or 
 1
α�+1. We choose two smooth functions U0, U1 : R → R

with supports, respectively, in (0, 
 1
α�) and (0, 
 1

α� + 1). We then construct a
potential Vω(α) : R → R and an interaction energy in the following way

∀ ωn ≤ x < ωn+1, Vω(α)(x) = Uωn+1−ωn−� 1
α 	(x − ωn),

∀ x, y ∈ R, Eω(α)(x, y) =
1
2
|x − y − λ|2 + Vω(α)(x).

More generally, one may similarly define a potential Vω(x) and an interaction
energy Eω(x, y) for any subset ω ∈ R having the property that the distance
between two consecutive points belongs to {
 1

α�, 
 1
α� + 1}. Let Ω′ be the set

of all such subsets ω. Then, for any x, t ∈ R, Vω(x + t) = Vω−t(x), where
ω − t := {p − t : p ∈ ω}. Let Ω ⊂ Ω′ be the hull of the ω(α) as explained
in Sect. 4. Then, Ω is compact, the group of translations τt(ω) := ω − t acts
minimally, and Eω(x, y) derives from the Lagrangian

L(ω, t) :=
1
2
|t − λ|2 + Vω(t). (9)

We will extend in Sect. 4 the construction given in Example 4 to any
quasicrystal ω of R. The associated almost periodic interaction model will be of
almost crystalline type as we will describe below. Our third example illustrates
an almost periodic interaction model on R which is not almost crystalline.

Example 5. The one-dimensional almost periodic Frenkel–Kontorova model.
The underlying minimal flow is given by the irrational flow τt(ω) = ω+t(1,

√
2)

acting on Ω = R
2/Z2. The family of interaction energies Eω derives from the

Lagrangian

L(ω, t) :=
1
2
|t − λ|2 +

K1

(2π)2
(
1 − cos 2πω1

)
+

K2

(2π)2
(
1 − cos 2πω2

)
, (10)
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where ω = (ω1, ω2) ∈ R
2/Z2.

We will consider calibrated configurations at a specific level.

Definition 6. We call ground energy of a family of interactions {Eω}ω∈Ω of
Lagrangian form L : Ω × R

d → R the quantity

Ē := lim
n→+∞ inf

ω∈Ω
inf

x0,...,xn∈Rd

1
n

Eω(x0, . . . , xn).

Since the sequence (infω∈Ω infx0,...,xn∈Rd Eω(x0, . . . , xn))n is superaddi-
tive, the above limit is actually a supremum by Fekete’s Lemma, which is
finite if L is assumed to be coercive. Besides, we clearly have a priori bounds

inf
ω∈Ω

inf
x,y∈Rd

Eω(x, y) ≤ Ē ≤ inf
ω∈Ω

inf
x∈Rd

Eω(x, x). (11)

In the same way, we may define the ground energy Ēω in the environment
ω as

Ēω := lim
n→+∞ inf

x0,...,xn∈Rd

1
n

Eω(x0, . . . , xn). (12)

The ground energy Ēω measures the lowest mean energy per site among all
infinite configurations in the environment ω. We will see (Proposition 13) that
the minimality of the group action {τt}t implies that Ē = Ēω for all ω ∈ Ω.

In this context, let us precise the definition of calibrated configuration.
For an environment ω, we say that a configuration (xk)k∈Z is calibrated for Eω

(at the level Ē) if, for all m < n,

Eω(xm, . . . , xn) − (n − m)Ē = inf
�≥1

inf
y0=xm,...,y�=xn

[
Eω(y0, . . . , y�) − �Ē

]
.

(13)
We show two results that give sufficient conditions for the existence of

calibrated configurations. The first one applies to almost periodic interaction
models in any dimension. We describe a set, called projected Mather set, con-
sisting of environments that allow the existence of calibrated configurations.
The second result is more restrictive and holds only for one-dimensional almost
crystalline interaction model. We then show that a calibrated configuration ex-
ists for every environment.

The following definition is basic in our analysis. The vocabulary is bor-
rowed from the weak KAM theory (see [9,10,23,24]).

Definition 7. Let (Ω, {τt}t∈Rd , L) be an almost periodic interaction model.
1. A measure μ on Ω ×R

d is said to be holonomic if it is a probability and

∀ f ∈ C0(Ω),
∫

f(ω)μ(dω, dt) =
∫

f(τt(ω))μ(dω, dt).

Let Mhol denote the set of holonomic measures.
2. A measure μ is said to be minimizing if it is holonomic and Ē =

∫
Ldμ.

3. We call Mather set of L the subset of Ω × R
d defined by

Mather(L) := ∪μ∈Mmin(L)supp(μ),

where Mmin(L) denotes the set of minimizing measures.
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The projected Mather set is the projection pr(Mather(L)) of the Mather set
into Ω by the canonical projection pr : Ω × R

d → Ω.

Holonomic measures have been defined in [23] in the context of La-
grangian flows on tangent spaces. The R

d-action introduced in Definition 1
plays the role in the case d = 1 of the projection of the Lagrangian flow on
position space.

Note that Mhol is nonempty as it contains δ(ω,0), ω ∈ Ω. It can be shown
that the Mather set is a nonempty compact set for any superlinear Lagrangian
(Proposition 13 and Lemma 21).

Our first result applies to an almost periodic interaction model in every
dimension and extends the classical periodic Aubry–Mather theory.

Theorem 8. Let (Ω, {τt}t∈Rd , L) be an almost periodic interaction model. As-
sume L is superlinear. Then, for all ω ∈ pr(Mather(L)), there exists a cal-
ibrated configuration (xk)k∈Z for Eω at the level Ē such that x0 = 0 and
supk∈Z

‖xk+1 − xk‖ < +∞.

Let us recall that, by the stationarity hypothesis (6), a configuration
(xk)k∈Z is calibrated for Eω if, and only if, for all t ∈ R

d, the configuration
(xk − t)k∈Z is calibrated for Eτt(ω). So, by Theorem 8, each environment in the
{τt}t∈Rd-orbit of the projected Mather set admits a calibrated configuration.

However, it may happen that the orbit of the projected Mather set is a
small set. Indeed, in the one-dimensional almost periodic Frenkel–Kontorova
model described in Example 5, for λ = 0, it is easy to check that Ē = 0, the
Mather set is reduced to the point (0T2 , 0R), and xk = 0, k ∈ Z, defines a
calibrated configuration. We conjecture that there does not exist a calibrated
configuration for ω �∈ {(t, t

√
2) : t ∈ R} when λ = 0. A similar case occurs

when there is no exact corrector for the homogenization problem in Hamilton–
Jacobi equations in the stationary ergodic setting [5,22].

Our second result applies to a specialized one-dimensional almost periodic
interaction model called almost crystalline.

Definition 9. Let (Ω, {τt}t∈R) be a minimal R-action.
1. An open set U ⊂ Ω is said to be a flow box of size R > 0 if there exists a

compact subset Ξ ⊂ Ω, called transverse section, such that
(a) the induced topology on Ξ admits a basis of closed and open subsets,

called clopen subsets,
(b) the map (t, ω) ∈ BR×Ξ �→ τ(t, ω) = τt(ω) ∈ Ω is a homeomorphism

onto U , where BR = B(0, R) denotes the open ball of radius R and
center 0.

2. Two flow boxes Ui = τ(BRi
× Ξi) and Uj = τ(BRj

× Ξj) are said to be
admissible if, whenever Ui ∩ Uj �= ∅, there exists ai,j ∈ R such that

τ−1
(j) ◦ τ(t, ω) = (t − ai,j , τai,j

(ω)), ∀ (t, ω) ∈ τ−1
(i) (Ui ∩ Uj),

where τ−1
(i) : Ui → BR × Ξ denotes the inverse map.

3. A flow box decomposition {Ui}i∈I is a cover of Ω by admissible flow
boxes.
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4. A flow box τ(BR × Ξ) is said to be compatible with respect to a flow
box decomposition {Ui}i∈I , where Ui = τ(BRi

×Ξi), if for every |t| < R,
there exist i ∈ I, |ti| < Ri and a clopen subset Ξ̃i of Ξi such that
τt(Ξ) = τti

(Ξ̃i).

Of course, the circle has a flow box decomposition. Less trivially, a typical
example is a suspension of a minimal homeomorphism on a Cantor set with a
locally constant ceiling function. But in general, a minimal R-action does not
possess a transverse section. We will describe in Sect. 4 how such a decompo-
sition is obtained for the hull of a quasicrystal (Example 4 is a prototype of
a quasicrystal). Yet, our notion is more general than this one because it also
includes, for instance, nonexpansive R actions. The next definition is central
in our second main result.

Definition 10. Let (Ω, {τt}t∈R, L) be an almost periodic interaction model ad-
mitting a flow box decomposition {Ui}i∈I . L is said to be locally transversally
constant with respect to {Ui}i∈I if, for every compatible flow box τ(BR × Ξ),

∀ω, ω′ ∈ Ξ, ∀ |x|, |y| < R, Eω′(x, y) = Eω(x, y).

We will show in Sect. 4 that the Lagrangians in Examples 3 and 4 are
locally transversally constant.

The standard one-dimensional Aubry–Mather theory assumes that the
interaction energy E(x, y) is strongly twist as in (4). An energy of the form
E(x, y) = 1

4 |t − λ|4 + V (x) is not strongly twist. We extend slightly this defi-
nition: E(x, y) is said to be weakly twist if E is a C2 function and satisfies

∀x, y ∈ R,
∂2E

∂x∂y
(x, ·) < 0 and

∂2E

∂x∂y
(·, y) < 0 a.e. (14)

Definition 11. Let (Ω, {τt}t∈R, L) be a one-dimensional almost periodic inter-
action model. The interaction model (Ω, {τt}t∈R, L) is said to be almost crys-
talline if

1. {τt}t∈R is uniquely ergodic(with unique invariant probability measure λ),
2. L is superlinear and weakly twist (for every ω ∈ Ω, Eω is weakly twist),
3. L is locally transversally constant with respect to a flow box decomposi-

tion.

Our second result states that calibrated configurations exist for every
environment of an almost crystalline interaction model.

Theorem 12. Let (Ω, {τt}t∈R, L) be an almost crystalline interaction model.
Then, for every ω ∈ Ω, there exists a configuration (xk,ω)k∈Z which is cali-
brated for Eω, with bounded jumps and at a bounded distance from the origin
uniformly in ω, i.e.,

sup
ω∈Ω

sup
k∈Z

|xk+1,ω − xk,ω| < +∞, sup
ω∈Ω

|x0,ω| < +∞.

Actually, to show this result it is enough, by Theorem 8, to prove that
the projected Mather set intersects every {τt}t∈R-orbit.
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The paper is organized as follows. Section 2 is dedicated to the Proof
of Theorem 8, whose strategy takes advantage of a fundamental characteri-
zation of the ground energy via a sup-inf formula. We give in “Appendix”
another proof of this formula. In Sect. 3, we improve classical results about
the rearranging of the atoms of a minimizing configuration for weakly twist
Lagrangians. We especially show that no coincidence may happen. In Sect.
4, by extending Example 4, we explain how to construct almost crystalline
interaction models using quasicrystals and strongly equivariant functions. In
particular, Corollary 32 describes an explicit family of almost crystalline in-
teraction models. Section 5 is devoted to the Proof of Theorem 12.

2. Almost Periodic Interaction Models

This section is devoted to the proof of the existence of calibrated configura-
tions for almost periodic interaction models in any dimension. In the periodic
setting, the proof is done using calibrated sub-actions as in [15]. We do not
know how to extend this tool in the aperiodic case. We use instead a new tool:
the Mañé subadditive cocycle. We start showing different ways of computing
the ground energy. The ground energy computed using the sup-inf formula
is fundamental for the construction of the Mañé subadditive cocycle. In the
second subsection, we use this cocycle to build a calibrated configuration when
the environment belongs to the projected Mather set. The Proof of Theorem
8 is given at the end of this section. In all these sections, we will consider an
almost periodic interaction model (Definition 1). Most of the results hold for
coercive Lagragians.

2.1. Ground Energy and Mather Set

Let ω ∈ Ω be a fixed environment. The ground energy Ēω (Eq. (12)) is com-
puted by taking the limit of the minimum 1

nEω(x0, . . . , xn) over all finite con-
figurations. We will identify this number with quantities defined globally on
the phase space Ω × R

d so that its computation will be interpreted in the
framework of ergodic optimization.

To roughly explain this relation, observe that

1
n

Eω(x0, . . . , xn) =
∫

L(ω, t)μn,ω(dω, dt),

where μn,ω := 1
n

∑n−1
k=0 δ(τxk

(ω), xk+1− xk). We then check that, for every f ∈
C0(Ω),
∫

f(ω)μn,ω(dω, dt) −
∫

f(τt(ω))μn,ω(dω, dt) =
1
n

(
f ◦ τxn

(ω) − f ◦ τx0(ω)
)
.

If (μn,ω)n≥1 where tight, we could extract a subsequence converging to a prob-
ability measure μ for the weak∗ topology which would be holonomic as in Def-
inition 7. But the tightness or the fact that |xk − xk−1| is uniformly bounded
whenever (xk)n

k=0 minimizes 1
nEω(x0, . . . , xn) is a priori unclear.
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We give several equivalent definitions of the ground energy in the next
proposition. Let us recall that Mhol and Mmin(L), respectively, denote the sets
of holonomic probabilities and of minimizing measures (see Definition 7).

Proposition 13. Let (Ω, {τt}t∈Rd , L) be an almost periodic interaction model.
Assume L is coercive. Then

1. (the ergodic formula)
Ē = inf

{ ∫
Ldμ : μ ∈ Mhol

}
, and Mmin(L) �= ∅,

2. (the sup-inf formula)
Ē = supu∈C0(Ω) inf

{
L(ω, t) + u(ω) − u ◦ τt(ω) : ω ∈ Ω, t ∈ R

d
}
,

3. (the ground energy per environment)
∀ω ∈ Ω, Ē = limn→+∞ infx0,...,xn∈Rd

1
nEω(x0, . . . , xn).

We remark that, in Aubry–Mather and weak KAM theories, the central
constant known as Mather’s minimal average action/energy or Mañé’s criti-
cal value is equal minus the corresponding ergodic formula. We prefer to use
the opposite sign because this convention allows us to match in harmony the
previous definitions.

We also remark that the ground energy per environment actually comes
from the minimality of the action. Observe the sup-inf and ergodic formulas
are dual to each other as in convex analysis. Although the supremum in the
sup-inf formula is achieved for periodic models, we are unable to prove it for
general almost periodic interaction models. We note temporarily

Ēω = lim
n→+∞ inf

x0,...,xn∈Rd

1
n

Eω(x0, . . . , xn), L̄ := inf
{∫

Ldμ : μ ∈ Mhol

}
,

and K̄ := sup
u∈C0(Ω)

inf
ω∈Ω, t∈Rd

[
L(ω, t) + u(ω) − u ◦ τt(ω)

]
.

We first prove the equality Ēω = Ē. We next show that Ē ≥ K̄ ≥ L̄ ≥ Ē.
We will use Birkhoff ergodic theorem for the Markov extension of a holonomic
measure. For the convenience of the reader, we recall this construction.

Let Ω̂ := Ω × (Rd)N. Let us recall that every probability measure μ on
Ω×R

d admits a unique disintegration along the first projection pr : Ω×R
d →

Ω,

μ(dω, dt) := pr∗(μ)(dω)P (ω, dt),

where {P (ω, dt)}ω∈Ω is a measurable family of probability measures on R
d.

Definition 14. We call Markov extension of μ the probability measure μ̂ defined
on Ω̂ by the Markov construction with initial distribution pr∗(μ) and transition
probabilities P (ω, dt),

μ̂(dω, dt) = pr∗(dω)P (ω, dt0)P (τt0(ω), dt1) · · · P (τt0+···+tn−1(ω), dtn).

The following lemma shows that the Markov extension of an holonomic
measure is invariant for a map. Since its proof is straightforward, we omit it.

Lemma 15. If μ is holonomic, then μ̂ is invariant with respect to the shift map

τ̂ : (ω, t0, t1, . . .) ∈ Ω̂ �→ (τt0(ω), t1, t2, . . .) ∈ Ω̂.
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Conversely, the projection of every τ̂ -invariant probability measure μ̃ on Ω×R
d

is holonomic. Moreover, if L̂(ω, t) := L(ω, t0) is the natural extension of L on
Ω̂, then L̄ = inf

{ ∫
L̂ dμ̃ : μ̃ is a τ̂ -invariant probability measure

}
.

Proof of Proposition 13. Step Ēω = Ē. By stationarity of Eω and minimality
of τt, we have

inf
x0,...,xn∈Rd

Eω(x0, . . . , xn) = inf
x0,...,xn∈Rd

inf
t∈Rd

Eω(x0 + t, . . . , xn + t)

= inf
x0,...,xn∈Rd

inf
t∈Rd

Eτt(ω)(x0, . . . , xn)

= inf
x0,...,xn∈Rd

inf
ω∈Ω

Eω(x0, . . . , xn),

which clearly yields Ēω = Ē for every ω ∈ Ω.

Step Ē ≥ K̄. Given c < K̄, there exists u ∈ C0(Rd) such that, for every ω ∈ Ω
and any t ∈ R

d, u(τt(ω)) − u(ω) ≤ L(ω, t) − c. Let uω(x) = u(τx(ω)). Then,

∀x, y ∈ R
d, uω(y) − uω(x) ≤ Eω(x, y) − c,

which implies Ē ≥ c for every c < K̄, and therefore, Ē ≥ K̄.

Step K̄ ≥ L̄. This part is the core of the proof of Ē = K̄. We give another
proof in “Appendix” A.

Let X := C0
b (Ω×R

d). A coboundary is a function f of the form f(ω, t) =
u ◦ τt(ω) − u(ω) for some u ∈ C0(Ω). Consider

A := {(f, s) ∈ X × R : f is a coboundary and s ≥ K̄} and
B := {(f, s) ∈ X × R : inf

ω∈Ω, t∈Rd
(L − f)(ω, t) > s}.

Then, A and B are nonempty convex subsets of X×R. They are disjoint by the
definition of K̄ and B is open because L is coercive. By Hahn–Banach theorem,
there exists a nonzero continuous linear form Λ on X × R which separates A
and B. The linear form Λ is given by λ⊗α, where λ is a continuous linear form
on X and α ∈ R. The linear form λ is, in particular, continuous on C0

0 (Ω×R
d)

and, by Riesz–Markov theorem,

∀ f ∈ C0
0 (Ω × R

d), λ(f) =
∫

f dμ,

for some signed measure μ. By separation, we have

λ(f) + αs ≤ λ(u − u ◦ τ) + αs′,

for u ∈ C0(Ω), f ∈ X and s, s′ ∈ R such that infΩ×Rd(L − f) > s and s′ ≥ K̄.
By multiplying u by an arbitrary constant, one obtains

∀u ∈ C0(Ω), λ(u − u ◦ τ) = 0.

The case α = 0 is not admissible, since otherwise λ(f) ≤ 0 for every f ∈ X
and λ would be the null form, which is not possible. The case α < 0 is not
admissible either, since otherwise one would obtain a contradiction by taking
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f = 0 and s → −∞. By dividing by α > 0 and changing λ/α to λ (as well as
μ/α to μ), one obtains

∀ f ∈ X, λ(f) + inf
Ω×Rd

(L − f) ≤ K̄.

By taking f = c1, one obtains c(λ(1)−1) ≤ K̄−infΩ×Rd L for every c ∈ R, and
thus, λ(1) = 1. By taking −f instead of f , one obtains λ(f) ≥ infΩ×Rd L − K̄
for every f ≥ 0, which (again arguing by contradiction) yields λ(f) ≥ 0. In
particular, μ is a probability measure. We claim that

∀u ∈ C0(Ω),
∫

(u − u ◦ τ) dμ = 0.

Indeed, given R > 0, consider a continuous function 0 ≤ φR ≤ 1, with compact
support on Ω × BR+1(0), such that φR ≡ 1 on Ω × BR(0). Then

u − u ◦ τ ≥ (u − u ◦ τ)φR + min
Ω×Rd

(u − u ◦ τ)(1 − φR).

Since λ and μ coincide on C0
0 (Ω × R

d) + R1, one obtains

0 = λ(u − u ◦ τ) ≥
∫

(u − u ◦ τ)φR dμ + min
Ω×Rd

(u − u ◦ τ)
∫

(1 − φR) dμ.

By letting R → +∞, it follows that
∫
(u−u◦τ) dμ ≤ 0 and the claim is proved

by changing u to −u. In particular, μ is holonomic. We claim that

∀ f ∈ X,

∫
f dμ + inf

Ω×Rd
(L − f) ≤ K̄.

Indeed, we first notice that the left-hand side does not change by adding a
constant to f . Moreover, if f ≥ 0 and 0 ≤ fR ≤ f is any continuous function
with compact support on Ω × BR+1(0) which is identical to f on Ω × BR(0),
the claim follows by letting R → +∞ in

∫
fR dμ + inf

Ω×Rd
(L − f) ≤ λ(fR) + inf

Ω×Rd
(L − fR) ≤ K̄.

We finally prove the inequality L̄ ≤ K̄. Given R > 0, denote LR = min(L,R).
Since L is coercive, LR ∈ X. Then L − LR ≥ 0 and

∫
LR dμ ≤ K̄. By letting

R → +∞, one obtains
∫

Ldμ ≤ K̄ for some holonomic measure μ.

Step L̄ ≥ Ē. We claim the infimum is attained in L̄ := inf{∫Ldμ : μ ∈ Mhol}.
Indeed, let

C := sup
ω∈Ω

L(ω, 0) ≥ L̄ and Mhol,C :=
{

μ ∈ Mhol :
∫

Ldμ ≤ C
}

.

We equip the set of probability measures on Ω × R
d with the weak topol-

ogy (convergence of sequence of measures by integration against compactly
supported continuous test functions). By coercivity, for every ε > 0 and
M > inf L such that ε > (C − inf L)/(M − inf L), there exists R(ε) > 0
with infω∈Ω,‖t‖≥R(ε) L(ω, t) ≥ M . By integrating L − inf L, we get

∀ μ ∈ Mhol,C , μ
(
Ω × {t : ‖t‖ ≥ R(ε)}) ≤

∫
L − inf L

M − inf L
dμ ≤ C − inf L

M − inf L
< ε.
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We have just proved that the set Mhol,C is tight. Let (μn)n≥0 ⊂ Mhol,C be
a sequence of holonomic measures such that

∫
Ldμn → L̄. By tightness, we

may assume that μn → μ∞ with respect to the strong topology (convergence
of sequence of measures by integration against bounded continuous test func-
tions). In particular, μ∞ is holonomic. Moreover, for every φ ∈ C0(Ω, [0, 1]),
with compact support,

0 ≤
∫

(L − L̄)φ dμ∞ = lim
n→+∞

∫
(L − L̄)φ dμn ≤ lim inf

n→+∞

∫
(L − L̄) dμn = 0.

Therefore, μ∞ is minimizing.
We now prove that L̄ ≥ Ē. Let μ be a minimizing holonomic measure

with Markov extension μ̂ (see Definition 14 and Lemma 15). If (ω, t) ∈ Ω̂,
then
n−1∑

k=0

L̂ ◦ τ̂k(ω, t) = Eω(x0, . . . , xn) with x0 = 0 and xk = t0 + · · · + tk−1,

and, by Birkhoff ergodic theorem,

Ē ≤
∫

lim
n→+∞

1
n

n−1∑

k=0

L̂ ◦ τ̂k dμ̂ =
∫

Ldμ = L̄.

�

2.2. Mañé Subadditive Cocycle

As in weak KAM theory, we will make use of the notion of Mañé potential.

Definition 16. We call Mañé potential in the environment ω the function on
R

d × R
d given by

Sω(x, y) := inf
n≥1

inf
x=x0,...,xn=y

[
Eω(x0, . . . , xn) − nĒ

]
.

Observe that a calibrated configuration (xk)k∈Z for Eω (Eq. (13)) satis-
fies, for all m < n,

Eω(xm, . . . , xn) − (n − m)Ē = Sω(xm, xn). (15)

We will see in this section that the Mañé potential is always finite and shares
the same properties as a pseudometric. A calibrated configuration may be seen
as a geodesic for an “algebraic distance” Eω(x, y) − Ē.

Since the interaction energy Eω(x, y) derives from a Lagrangian L(ω, t),
the Mañé potential Sω(x, y) can be lifted to Ω ×R

d to a function Φ(ω, t) that
we call Mañé subadditive cocycle.

Definition 17. Let (Ω, {τt}t∈Rd , L) be an almost periodic interaction model.
We call Mañé subadditive cocycle associated with L the function defined on
Ω × R

d by

Φ(ω, t) := inf
n≥1

inf
0=x0,x1,...,xn=t

n−1∑

k=0

[
L(τxk

(ω), xk+1 − xk) − Ē
]
.

Note that Sω(x, y) = Φ(τx(ω), y − x).
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A function U : Ω ×R
d → [−∞,+∞) is said to be a subadditive cocycle if

∀ω ∈ Ω, ∀ s, t ∈ R
d, U(ω, s + t) ≤ U(ω, s) + U(τs(ω), t). (16)

The very definitions of Φ and Ē show that Φ is a subadditive cocycle. In
addition, Φ does not take infinite values and satisfies, for every ω ∈ Ω and
s, t ∈ R

d,

0 ≤ Φ(ω, 0) and Ē − L(τt(ω),−t) ≤ Φ(ω, t) ≤ L(ω, t) − Ē. (17)

Inequality 0 ≤ Φ(ω, 0) is proved using the fact that, for a fixed ω, the sequence

Ēn(ω, 0) := inf
x1,...,xn−1

Eω(0, x1, . . . , xn−1, 0)

is subadditive in n and Ē ≤ limn→∞ 1
n Ēn(ω, 0) = infn≥1

1
n Ēn(ω, 0). The in-

equality Φ(ω, t) ≤ L(ω, t) − Ē comes from the definition of Φ. These two
inequalities together with the subadditivity lead to

0 ≤ Φ(ω, 0) ≤ Φ(ω, t) + Φ(τt(ω),−t) ≤ Φ(ω, t) + L(τt(ω),−t) − Ē,

showing the remaining inequality in (17).
Note that calibrated configurations are configurations realizing the infi-

mum in Definition 17. We first weaken the notion of calibration in the way
described below. As usual, L is supposed to be coercive.

Definition 18. A measurable subadditive cocycle U : Ω × R
d → [−∞,+∞) is

said to be calibrated (with respect to L) when
1. ∀ω ∈ Ω, ∀ s, t ∈ R

d, U(ω, t) ≤ L(ω, t) − L̄ and U(ω, 0) ≥ 0,
2. for every μ ∈ Mhol and μ̂ its Markov extension, if

∫
Ldμ < +∞, then,

for every n ≥ 1,
∫

U(ω,
∑n−1

k=0 tk) μ̂(dω, dt) ≥ 0.

The existence of a calibrated subadditive cocycle enables us to easily
construct calibrated configurations.

Lemma 19. If U is a calibrated subadditive cocycle U , then U grows sublinearly,
supω∈Ω,t∈Rd |U(ω, t)|/(1 + ‖t‖) < +∞, in particular it is finite everywhere.
Besides, for every μ ∈ Mmin(L) and μ̂ its Markov extension,

∀n ≥ 1, U

(
ω,

n−1∑

k=0

tk

)
=

n−1∑

k=0

[L̂ − L̄] ◦ τ̂k(ω, t), μ̂(dω, dt) a.e.

Proof. Part 1. We show that U is sublinear. Let K := supω∈Ω, ‖t‖≤1[L(ω, t) −
L̄]. Given t ∈ R

d, let n = 
‖t‖+1� and tk = k
n t for k = 0, . . . , n− 1. Then, the

subadditive cocycle property implies, on the one hand,

∀ω ∈ Ω, ∀ t ∈ R
d, U(ω, t) ≤

n−1∑

k=0

U(τtk
(ω), tk+1 − tk) ≤ nK ≤ (1 + ‖t‖)K.

On the other hand, thanks to the hypothesis U(ω, 0) ≥ 0, we obtain

∀ω ∈ Ω, ∀ t ∈ R
d, U(ω, t) ≥ U(ω, 0) − U(τt(ω),−t) ≥ −(1 + ‖t‖)K.
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Part 2. Suppose μ is minimizing. Since

∀ω ∈ Ω, ∀ t0, . . . , tn−1 ∈ R
d,

n−1∑

k=0

[
L̂ − L̄

] ◦ τ̂k(ω, t) ≥ U

(
ω,

n−1∑

k=0

tk

)
,

by integrating with respect to μ̂, the left-hand side has a null integral, whereas
the right-hand side has a nonnegative integral. The previous inequality is thus
an equality that holds almost everywhere. �

Proposition 20. Assume that L is coercive. Then, Φ is upper semi-continuous
and calibrated. More precisely, for every μ ∈ Mmin(L) and μ̂ its Markov ex-
tension, for every (ω, t) ∈ supp(μ̂), i < j, x0 = 0 and xk+1 = xk + tk, (xk)k≥0

is a one-sided calibrated configuration for Eω,

Φ
(
τxi

(ω), xj − xi

)
=

j−1∑

k=i

[
L − L̄

] ◦ τ̂k(ω, t) = Eω(xi, xi+1, . . . , xj)−(j − i)Ē.

Proof. Part 1. We first show the existence of a particular measurable calibrated
subadditive cocycle U(ω, t). From the sup-inf formula (Proposition 13), for
every p ≥ 1, there exists up ∈ C0(Ω) such that

∀ω ∈ Ω, ∀ t ∈ R
d, up ◦ τt(ω) − up(ω) ≤ L(ω, t) − L̄ + 1/p.

Let Up(ω, t) := up◦τt(ω)−up(ω) and U := lim supp→+∞ Up. Then, U is clearly
a subadditive cocycle and satisfies U(ω, 0) = 0. Besides, U is finite everywhere,
since 0 = U(ω, 0) ≤ U(ω, t) + U(τt(ω),−t) and U(ω, t) ≤ L(ω, t) − L̄. We
just check the second property in Definition 18. Let μ ∈ Mhol be such that∫

Ldμ < +∞. Define, for every n ≥ 1,

Ŝn,p(ω, t) :=
n−1∑

k=0

[
L̂ − L̄ +

1
p

]
◦ τ̂k(ω, t) − Up

(
ω,

n−1∑

k=0

tk

)
≥ 0.

Since

Up

(
ω,

n−1∑

k=0

tk

)
=

n−1∑

k=0

Ûp ◦ τ̂k(ω, t), Ûp(ω, t) := Up(ω, t0),

by integrating with respect to μ̂, we obtain

0 ≤
∫

inf
p≥q

Ŝn,p dμ̂ ≤ inf
p≥q

∫
Ŝn,p(ω, t) dμ̂ ≤ n

∫ [
L − L̄ +

1
q

]
dμ.

By Lebesgue’s monotone convergence theorem, as q → +∞, we have
∫ [

n(L̂ − L̄) − U

(
ω,

n−1∑

k=0

tk

)]
dμ̂ ≤

∫
n[L − L̄] dμ and

∫
U

(
ω,

n−1∑

k=0

tk

)
μ̂(dω, dt) ≥ 0.
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Part 2. We next show that Φ is calibrated. We have already noticed that Φ
satisfies the subadditive cocycle property, Φ ≤ L − L̄, Φ(ω, 0) ≥ 0, and Φ(ω, t)
is finite everywhere. Moreover, Φ(ω, t) ≥ U(ω, t) and the second property of
Definition 18 follows from part 1.

Part 3. We show that Φ is upper semi-continuous. Define

∀ ω ∈ Ω, ∀ n ≥ 1, Φn(ω, t) := inf{Eω(x0, . . . , xn) : x0 = 0, xn = t}.

Then, Φ = infn≥1(Φn − nĒ) is upper semi-continuous if we prove that Φn

is continuous. Let D > 0, c0 := infω,x,y Eω(x, y) and KD := supω∈Ω, ‖t‖≤D

Eω(0, . . . , 0, t). By coercivity, there exists RD > 0 such that

∀x, y ∈ R
d, ‖y − x‖ > RD ⇒ ∀ω ∈ Ω, Eω(x, y) > KD − (n − 1)c0.

Choose ω, x0, . . . , xn such that Eω(x0, . . . , xn) ≤ KD. Then, for every 0 ≤ k <
n,

KD ≥ Eω(x0, . . . , xn) ≥ (n − 1)c0 + Eω(xk, xk+1) ⇒ ‖xk+1 − xk‖ ≤ RD.

We have proved that the infimum in the definition of Φn(ω, t), when ω ∈ Ω
and ‖t‖ ≤ D, can be realized over ‖xk‖ ≤ kRD, ∀ 0 ≤ k ≤ n. By the uniform
continuity of Eω(x0, . . . , xn) on the product space Ω × Πk{‖xk‖ ≤ kR}, we
obtain that Φn is continuous on Ω × {‖t‖ ≤ D}.

Part 4. Let μ be a minimizing measure with Markov extension μ̂. We show
that every (ω, t) in the support of μ̂ is calibrated. Let

Σ̂ :=

{
(ω, t) ∈ Ω × (Rd)N : ∀n ≥ 1, Φ

(
ω,

n−1∑

k=0

tk

)
≥

n−1∑

k=0

[
L − L̄

] ◦ τ̂k(ω, t)

}
.

The set Σ̂ is closed, since Φ is upper semi-continuous. By Lemma 19, Σ̂
has full μ̂-measure and therefore contains supp(μ̂). Hence, the proposition is
proved thanks to the subadditive cocycle property of Φ and the τ̂ -invariance
of supp(μ̂). �

Lemma 21. Let (Ω, {τt}t∈Rd , L) be an almost periodic interaction model.
1. If L is coercive, then Mmin(L) �= ∅ and Mather(L) = supp(μ) for some

μ ∈ Mmin(L). In particular, the Mather set is closed.
2. If L is superlinear, the Mather set is compact.

Proof of Lemma 21. Item 1. The existence of minimizing measures is actually
part of item 1 of Proposition 13. Thus, let {Vi}i∈N be a countable basis of the
topology of Ω × R

d and let

I := {i ∈ N : Vi ∩ supp(ν) �= ∅ for some ν ∈ Mmin(L)}.

We reindex I = {i1, i2, . . .} and choose for every k ≥ 1 a minimizing measure μk

so that Vik
∩ supp(μk) �= ∅ or equivalently μk(Vik

) > 0. Let μ :=
∑

k≥1
1
2k μk.

Then, μ is minimizing. Suppose some Vi is disjoint from the support of μ.
Then, μ(Vi) = 0 and, for every k ≥ 1, μk(Vi) = 0. Suppose by contradiction
that Vi ∩ supp(ν) �= ∅ for some ν ∈ Mmin(L), then i = ik for some k ≥ 1
and, by the choice of μk, μk(Vi) > 0, which is not possible. Therefore, Vi is
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disjoint from the Mather set and we have just proved Mather(L) ⊆ supp(μ)
or Mather(L) = supp(μ).

Item 2. We now assume that L is superlinear. From Lemma 19, the Mañé
subadditive cocycle is sublinear. There exists R > 0 such that

∀ω ∈ Ω, ∀ t ∈ R
d, |Φ(ω, t)| ≤ R(1 + ‖t‖).

By superlinearity, there exists B > 0 such that

∀ω ∈ Ω, ∀ t ∈ R
d, L(ω, t) ≥ 2R‖t‖ − B.

Let μ be a minimizing measure. Since Φ = L−L̄ μ a.e. (Lemma 19), we obtain

‖t‖ ≤ (R + B + |L̄|)/R, μ(dω, dt) a.e.

We have proved that the support of every minimizing measure is compact. In
particular, the Mather set is compact. �

Proof of Theorem 8. We show that, for every environment ω in the projected
Mather set, there exists a calibrated configuration for Eω passing through the
origin. Let μ be a minimizing measure such that supp(μ) = Mather(L). Let μ̂
denote its Markov extension. For n ≥ 1, consider

Ω̂n :=

{
(ω, t) ∈ Ω × (Rd)N : Φ

(
ω,

2n−1∑

k=0

tk

)
≥

2n−1∑

k=0

[
L − L̄

] ◦ τ̂k(ω, t)

}
.

From Proposition 20, supp(μ̂) ⊆ Ω̂n. From the upper semi-continuity of Φ,
Ω̂n is closed. To simplify the notations, for every t, we define a configuration
(x0, x1, . . .) by

x0 = 0, xk+1 = xk + tk so that τ̂k(ω, t) = (τxk
(ω), (tk, tk+1, . . .)).

Notice that, if (ω, t) ∈ Ω̂n, thanks to the subadditive cocycle property of Φ
and the fact that Φ ≤ L− L̄, the finite configuration (x0, . . . , x2n) is calibrated
in the environment ω, that is,

∀ 0 ≤ i < j ≤ 2n, Φ

(
τxi

(ω),
j−1∑

k=i

tk

)
=

j−1∑

k=i

[
L − L̄

] ◦ τ̂k(ω, t),

or written using the family of interaction energies Eω,

∀ 0 ≤ i < j ≤ 2n, Sω(xi, xj) = Eω(xi, . . . , xj) − (j − i)Ē.

Thanks to the sublinearity of Sω, there exists a constant R > 0 such that,
uniformly in ω ∈ Ω and x, y ∈ R

d, we have |Sω(x, y)| ≤ R(1 + ‖y − x‖).
Besides, thanks to the superlinearity of Eω, there exists a constant B > 0 such
that Eω(x, y) ≥ 2R‖y − x‖ − B. Since Sω(xk, xk+1) = Eω(xk, xk+1) − Ē, we
thus obtain a uniform upper bound D := (R + B + |Ē|)/R on the jumps of
calibrated configurations:

∀ (ω, t) ∈ Ω̂n, ∀ 0 ≤ k < 2n, ‖xk+1 − xk‖ ≤ D.

Let Ω̂′
n = τ̂n(Ω̂n). Thanks to the uniform bounds on the jumps, Ω̂′

n is again
closed. Since μ̂(Ω̂n) = 1, μ̂(Ω̂′

n) = 1 by invariance of τ̂ . Let ν := pr∗(μ) be the
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projected measure on Ω. Then, supp(ν) = pr(Mather(L)). By the definition of
Ω̂′

n, we have

p̂r(Ω̂′
n) = {ω ∈ Ω : ∃ (x−n, . . . , xn) ∈ R

d s.t. x0 = 0 and
Sω(x−n, xn) ≥ Eω(x−n, . . . , xn) − 2nĒ}.

Again by the uniform boundness of the jumps, p̂r(Ω̂′
n) is closed and has full ν-

measure. Thus, p̂r(Ω̂′
n) ⊇ pr(Mather(L)). By a diagonal extraction procedure,

we obtain, for every ω ∈ Mather(L), a bi-infinite calibrated configuration with
uniformly bounded jumps passing through the origin. �

3. Aubry Theory for Weakly Twist Interactions

The one-dimensional Aubry theory is based of the strong form of the twist
condition (4). The main consequence of this condition is that the set of infinite
two-sided minimizing configurations is well ordered. The weak form of the
twist condition (14) allows us to use anharmonic interactions. We extend in
this section some proofs of the Aubry theory for weakly twist Lagrangians. We
show that minimizing finite configurations are strictly well ordered. The fact
that there is no superposition of atoms is new and more delicate to prove. We
will use these results for the Proof of Theorem 12.

From now on, we consider almost periodic interaction models where L
is supposed to be weakly twist. The following lemma extends Aubry cross-
ing lemma. It enables to give restrictions on the combinatorics of minimizing
configurations. In particular, we will obtain they are ordered.

Lemma 22 (Aubry crossing lemma). Given ω ∈ Ω, if x0, x1, y0, y1 ∈ R satisfy
(y0 − x0)(y1 − x1) < 0, then

[
Eω(x0, x1) + Eω(y0, y1)

]− [
Eω(x0, y1) + Eω(y0, x1)

]

= α(y0 − x0)(y1 − x1) > 0,

where α = 1
(y0−x0)(y1−x1)

∫ y0

x0

∫ y1

x1

∂2Eω

∂x∂y (x, y) dydx < 0.

The proof is similar to the standard Aubry crossing lemma [2] and is left
to the reader. We start showing that strictly monotone finite configurations
minimize the energy.

Lemma 23. Let ω ∈ Ω. For n ≥ 2, let x0, . . . , xn ∈ R be a nonmonotone
sequence (that is, a sequence which does not satisfy x0 ≤ . . . ≤ xn nor x0 ≥
. . . ≥ xn).

1. If x0 = xn, then Eω(x0, . . . , xn) >
∑n−1

i=0 Eω(xi, xi).
2. If x0 �= xn, then there exists a subset {i0, i1, . . . , ir} of {0, . . . , n}, with

i0 = 0 and ir = n, such that (xi0 , xi1 , . . . , xir
) is strictly monotone and

Eω(x0, . . . , xn) > Eω(xi0 , . . . , xir
) +

∑
i �∈ {i0, . . . , ir}Eω(xi, xi).

(Note that it may happen that xi = xj for i �∈ {i0, . . . , ir} and j ∈
{i0, . . . , ir}.)
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Proof. We prove the lemma by induction.
Let x0, x1, x2 ∈ R be a nonmonotone sequence. If x0 = x2, then

Eω(x0, x1, x2) > Eω(x0, x0) + Eω(x1, x1). If x0 �= x2, then x0, x1, x2 are three
distinct points. Thus, x0 < x1 implies x2 < x1 and x1 < x0 implies x1 < x2.
In both cases, Lemma 22 tells us that

Eω(x0, x1) + Eω(x1, x2) > Eω(x0, x2) + Eω(x1, x1).

Let (x0, . . . , xn+1) be a nonmonotone sequence. We have two cases: either
x0 ≤ xn or x0 ≥ xn. We shall only give the proof for the case x0 ≤ xn.

Case x0 = xn. Then, (x0, . . . , xn) is nonmonotone and by induction

Eω(x0, . . . , xn+1) > Eω(xn, xn+1) +
n−1∑

i=0

Eω(xi, xi)

= Eω(x0, xn+1) +
n∑

i=1

Eω(xi, xi).

The conclusion holds whether xn+1 = x0 or not.
Case x0 < xn. Whether (x0, . . . , xn) is monotone or not, we may choose

a subset of indices {i0, . . . , ir} such that i0 = 0, ir = n, xi0 < xi1 < . . . < xir

and

Eω(x0, . . . , xn+1) ≥
⎛

⎝Eω(xi0 , . . . , xir
) +

∑

i�∈{i0,...,ir}
Eω(xi, xi)

⎞

⎠+ Eω(xn, xn+1).

If xn ≤ xn+1, then (x0, . . . , xn) is necessarily nonmonotone and the pre-
vious inequality is strict. If xn = xn+1, the lemma is proved by modifying
ir = n + 1. If xn < xn+1, the lemma is proved by choosing r + 1 indices and
ir+1 = n + 1.

If xn+1 < xn = xir
, by applying Lemma 22, one obtains

Eω(xir−1 , xir
) + Eω(xn, xn+1) > Eω(xn, xir

) + Eω(xir−1 , xn+1),
Eω(x0, . . . , xn+1) > Eω(xi0 , . . . , xir−1 , xn+1)

+

⎡

⎣
∑

i�∈{i0,...,ir}
Eω(xi, xi)

⎤

⎦+ Eω(xn, xn).

If xir−1 < xn+1, the lemma is proved by changing ir = n to ir = n + 1. If
xir−1 = xn+1, the lemma is proved by choosing r − 1 indices and ir−1 = n+1.
If xn+1 < xir−1 , we apply again Lemma 22 until there exists a largest s ∈
{0, . . . , r} such that xs < xn+1 or xn+1 ≤ x0. In the former case, the lemma is
proved by choosing s + 1 indices and by modifying is+1 = n + 1. In the latter
case, namely, when xn+1 ≤ x0 < xn, we have

Eω(x0, . . . , xn+1) > Eω(x0, xn+1) +
n∑

i=1

Eω(xi, xi)

and the lemma is proved whether xn+1 = x0 or xn+1 < x0. �
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As a consequence, note that it is enough to minimize over strictly mono-
tone configurations, unless t = 0, in Definition 17 of the Mañé subadditive
cocycle Φ(ω, t).

Proposition 24. The Mañé subadditive cocycle Φ(ω, t) satisfies, for every ω ∈
Ω,

– if t = 0, Φ(ω, 0) = Eω(0, 0) − Ē,
– if t > 0, Φ(ω, t) = infn≥1 inf0=x0<x1<...<xn=t[Eω(x0, . . . , xn) − nĒ],
– if t < 0, Φ(ω, t) = infn≥1 inf0=x0>x1>...>xn=t[Eω(x0, . . . , xn) − nĒ].

Proof. Lemma 23 tells us that we can minimize the energy of Eω(x0, . . . , xn)−
nĒ by the sum of two terms:

– either xn = x0, then

Eω(x0, . . . , xn) − nĒ ≥ [
Eω(x0, x0) − Ē

]
+

∑

i/∈{0,n}

[
Eω(xi, xi) − Ē

]
;

– or xn �= x0, then for some (xi0 , . . . , xir
) strictly monotone, with i0 = 0

and ir = n,

Eω(x0, . . . , xn) − nĒ ≥ [
Eω(xi0 , . . . , xir

) − rĒ
]
+

∑

i�∈{i0,...,ir}

[
Eω(xi, xi) − Ē

]
.

We conclude the proof by noticing that Ē ≤ infx∈R Eω(x, x).
�

The next lemma shows that minimizing finite configurations are strictly
ordered.

Proposition 25. Let ω ∈ Ω. If (x0, . . . , xn) is a minimizing configuration for
Eω such that xi is strictly between x0 and xn for every 0 < i < n − 1, then
(x0, . . . , xn) is strictly monotone.

Proof. Let (x0, . . . , xn) be such a minimizing sequence. We show, in part 1, it
is monotone, and, in part 2, it is strictly monotone.

Part 1. Assume by contradiction that (x0, . . . , xn) is not monotone. According
to Lemma 23, one can find a subset of indices {i0, . . . , ir} of {0, . . . , n}, with
i0 = 0 and ir = n, such that (xi0 , . . . , xir

) is strictly monotone and

Eω(x0, . . . , xn) > Eω(xi0 , . . . , xir
) +

∑

i�∈{i0,...,ir}
Eω(xi, xi).

We choose the largest integer r with the above property. Since (x0, . . . , xn)
is not monotone, we have necessarily r < n. Since (x0, . . . , xn) is minimizing,
one can find i �∈ {i0, . . . , ir} such that xi �∈ {xi0 , . . . , xir

}. Let s be one of the
indices of {0, . . . , r} such that xi is between xis

and xis+1 . Then, by Lemma 22,

Eω(xis
, xis+1) + Eω(xi, xi) > Eω(xis

, xi) + Eω(xi, xis+1).

We have just contradicted the maximality of r. Therefore, (x0, . . . , xn) must
be monotone.
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Part 2. Assume by contradiction that (x0, . . . , xn) is not strictly monotone.
Then, (x0, . . . , xn) contains a subsequence of the form (xi−1, xi, . . . , xi+r,
xi+r+1) with r ≥ 1 and xi−1 �= xi = . . . = xi+r �= xi+r+1. To simplify the
proof, we assume xi−1 < xi+r+1. We want to built a configuration
(x′

i−1, x
′
i, . . . , x

′
i+r, x

′
i+r+1) so that x′

i−1 = xi−1, x′
i+r+1 = xi+r+1 and

Eω(xi−1, xi, . . . , xi+r, xi+r+1) > Eω(x′
i−1, x

′
i, . . . , x

′
i+r, x

′
i+r+1).

Indeed, since (xi−1, . . . , xi+r+1) is minimizing, we have

Eω(xi−1, . . . , xi+r+1)=Eω(xi−1, xi + ε, xi+1 − ε, . . . , xi+r − ε, xi+r+1) + o(ε2).

Let

α =
1

xi − xi−1

∫ xi

xi−1

∂2Eω

∂x∂y
(x, xi) dx < 0,

β =
1

xi+r+1 − xi+r

∫ xi+r+1

xi+r

∂2Eω

∂x∂y
(xi+r, y) dy < 0.

By Aubry crossing lemma,

Eω(xi−1, xi + ε) + Eω(xi + ε, xi+1 − ε)

= Eω(xi−1, xi+1 − ε) + Eω(xi + ε, xi + ε) − 2ε(xi − xi−1)α + o(ε).

Since xi = xi+r, obviously Eω(xi + ε, xi + ε) = Eω(xi+r + ε, xi+r + ε). Again
by Aubry crossing lemma,

Eω(xi+r + ε, xi+r + ε) + Eω(xi+r − ε, xi+r+1)
= Eω(xi+r − ε, xi+r + ε) + Eω(xi+r + ε, xi+r+1)

− 2ε(xi+r+1 − xi+r)β + o(ε).

Then, for ε small enough, we have

Eω(xi−1, . . . , xi+r+1) > Eω(xi−1, xi − ε, . . . , xi−r−1 − ε, xi+r + ε, xi+r+1),

which contradicts that (xi−1, . . . , xi+r+1) is minimizing. We have thus proved
that (x0, . . . , xn) is strictly monotone. �

4. Locally Constant Lagrangians and Quasicrystals

We present in the first subsection a general framework that includes Example 4
and naturally appears in the context of quasicrystals and strongly pattern
equivariant functions. In the second subsection, we recall the construction
of Kakutani–Rohlin towers, transverse measures, and homology matrices for
uniquely ergodic R-actions, which will be useful to prove Theorem 12.

4.1. One-Dimensional Quasicrystals

Our purpose in this section is to provide a rich variety of examples of almost
crystalline interaction models (Definition 11). The two main concepts are: the
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hull of a quasicrystal and a strongly equivariant function (see [4,20,21] for a
deeper understanding of these notions).

We first recall the definition of a quasicrystal (see [14]). Let ω ⊂ R be a
discrete subset of R. A ρ-patch, or a pattern for short, is a finite set P of the
form ω ∩Bρ(x) for some x ∈ ω and some constant ρ > 0, where Bρ(x) denotes
the open ball of radius ρ centered in x. We say that y ∈ ω is an occurrence of
P if ω ∩ Bρ(y) is equal to P up to a translation. A quasicrystal is a discrete set
ω ⊂ R satisfying

– finite local complexity: for any ρ > 0, ω has just a finite number of ρ-
patches up to translations;

– repetitivity: for all ρ > 0, there exists M(ρ) > 0 such that any closed ball
of radius M(ρ) contains at least one occurrence of every ρ-patch of ω;

– uniform pattern distribution: for any pattern P of ω, uniformly in x ∈ R,
the following positive limit exists

lim
r→+∞

#({y ∈ R : y is an occurrence of P} ∩ Br(x))
Leb(Br(x))

= ν(P) > 0.

We notice that the finite local complexity is equivalent to the fact that
the intersection of the difference set ω − ω with any bounded set is finite.
The set of quasicrystals can be equipped with an R-action: τt(ω) := ω − t, for
every t ∈ R, by translating every point in ω by t. A quasicrystal is said to be
aperiodic if τt(ω) = ω implies t = 0, and periodic otherwise. The lattice Z or
the Beatty sequence ω(α) = {k ∈ Z : 
kα� − 
(k − 1)α� = 1}, α ∈ (0, 1), is
basic examples of one-dimensional quasicrystals. When α is irrational (as in
Example 4), ω(α) is an aperiodic quasicrystal for which the repetitivity and
the uniform pattern distribution are obtained thanks to the minimality and
the unique ergodicity of an irrational rotation on the circle. For details, we
refer to [21].

The first nontrivial concept we need is given by the hull of a quasicrystal.
Given a quasicrystal ω∗ ⊂ R, we equip the set Ω̃(ω∗) := {τt(ω∗) : t ∈ R} of all
the translations of ω∗ with the Gromov–Hausdorff topology. Roughly speaking,
two quasicrystals in this set are close if and only if they have the same pattern,
up to a small translation, in a large neighborhood of the origin. More precisely,
we define a metric as follows (for details, see [4,19]): the distance between two
translations ω, ω ∈ Ω̃(ω∗) is the real number

dist(ω, ω) := inf
{

1
r + 1

: ∃ |t|, |t| <
1
r

s.t. (ω + t) ∩ Br(0)= (ω + t) ∩ Br(0)
}

.

The Gromov–Hausdorff topology is equivalent to the topology given by this
distance. We call hull Ω(ω∗) of the quasicrystal ω∗ the completion of Ω̃(ω∗).
The finite local complexity hypothesis implies that Ω(ω∗) is a compact metric
space. Each element ω ∈ Ω(ω∗) is a quasicrystal with the same patterns as
ω∗ up to translations. Each map τt : Ω(ω∗) → Ω(ω∗) is a homeomorphism.
The orbit of ω∗ is by definition dense in Ω(ω∗). The repetitivity hypothesis is
actually equivalent to the minimality of the R-action τt. The uniform pattern
distribution is equivalent to the unique ergodicity of τt (the R-action has a
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unique invariant probability measure). We refer to [4,20] for a more detailed
analysis. We summarize these facts in the following proposition.

Proposition 26 ([4,20]). Let ω∗ be a quasicrystal of R. Then, the dynamical
system (Ω(ω∗), {τt}t∈R) is minimal and uniquely ergodic.

We call canonical transversal Ξ0(ω∗) of the hull Ω(ω∗) the set of qua-
sicrystals ω in Ω(ω∗) such that the origin 0 belongs to ω. A basis of the
topology on Ξ0(ω∗) is given by cylinder sets Ξω,ρ with ω ∈ Ξ0(ω∗) and ρ > 0.
In general, that is, for every ω ∈ Ω(ω∗) and ρ > 0 such that ω ∩ Bρ(0) �= ∅, a
transverse cylinder set Ξω,ρ is defined by

Ξω,ρ := {ω ∈ Ω(ω∗) : ω ∩ Bρ(0) = ω ∩ Bρ(0)}.

If ω ∈ Ξ0(ω∗), then Ξω,ρ ⊂ Ξ0(ω∗).
The designation of transversal comes from the obvious fact that the set

Ξ0(ω∗) is transverse to the action: for any real t small enough, we have τt(ω) �∈
Ξ0(ω∗) for any ω ∈ Ξ0(ω∗). This gives a Poincaré section.

Proposition 27 ([20]). The canonical transversal Ξ0(ω∗) and the transverse
cylinder sets Ξω,ρ associated with an aperiodic quasicrystal ω∗ are Cantor sets.
If ω∗ is a periodic quasicrystal, these sets are finite.

This allows us to give a more dynamical description of the hull in one
dimension by considering the return time function Θ : Ξ0(ω∗) → R

+ defined
by

Θ(ω) := inf{t > 0 : τt(ω) ∈ Ξ0(ω∗)}, ∀ω ∈ Ξ0(ω∗).

The finite local complexity implies that this function is locally constant. The
first return map T : Ξ0(ω∗) → Ξ0(ω∗) is then given by

T (ω) := τΘ(ω)(ω), ∀ω ∈ Ξ0(ω∗).

Remark that the unique invariant probability measure on Ω(ω∗) induces a
finite measure on Ξ0(ω∗) that is T -invariant (see [14]).

It is straightforward to check that the dynamical system (Ω(ω∗), {τt}t∈R)
is conjugate to the suspension of the map T on the set Ξ0(ω∗) with the time
map given by the function Θ. Thus, when ω∗ is periodic, the hull Ω(ω∗) is
homeomorphic to a circle. Otherwise, Ω(ω∗) has a laminated structure: it is
locally the Cartesian product of a Cantor set by an interval.

Transverse cylinder sets are base construction pieces of the notion of flow
boxes introduced in Definition 9. In the aperiodic case, if ω ∈ Ω(ω∗), r > 0,
and ρ is large enough, the set

Uω,ρ,r := {ω − t : t ∈ Br(0), ω ∈ Ξω,ρ}
is open and homeomorphic to Br(0)×Ξω,ρ by the map (t, ω) → τt(ω) = ω − t.
Their collection forms a basis of the topology of Ω(ω∗). The set Uω,ρ,r is called
a flow box of basis Ξω,ρ. The following lemma shows that these flow boxes are
admissible and therefore form a flow box decomposition (Definition 9).
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Lemma 28 ([4]). Let ω∗ be an aperiodic quasicrystal. Let Ui := Uωi,ρi,ri
, i =

1, 2, be two flow boxes such that U1 ∩ U2 �= ∅. Then, there exists a real number
a ∈ R such that, for every ωi ∈ Ξωi,ρi

, for every |ti| < ri, i = 1, 2,

ω1 − t1 = ω2 − t2 =⇒ t2 = t1 − a.

The second nontrivial concept we need is the notion of strongly equivari-
ant function as introduced in [19]. Let ω∗ be a quasicrystal. We recall that a
potential Vω∗ : R → R is said to be strongly ω∗-equivariant if there exists a
constant R > 0 (called the interaction range) such that

Vω∗(x) = Vω∗(y), ∀ x, y ∈ R with (BR(x) ∩ ω∗) − x = (BR(y) ∩ ω∗) − y.

Of course any periodic potential is strongly equivariant with respect to a
discrete lattice of periods. In Example 4, the function Vω(α) is strongly ω(α)-
equivariant with range R = 
 1

α� + 1. Let us mention another example from
[19], which holds for any quasicrystal ω∗. Let δ :=

∑
x∈ω∗ δx be the Dirac

comb supported on the points of a quasicrystal ω∗ and let g : R → R be a
smooth function with compact support. Then, one may check that the con-
volution product δ ∗ g is a smooth strongly ω∗-equivariant function. Actually,
any strongly ω-equivariant function can be defined by a similar procedure [19].

We recall in the following lemma that a strongly ω∗-equivariant function
always arises from a global function defined on the space Ω(ω∗).

Lemma 29 ([14,19]). Let ω∗ be a quasicrystal and Vω∗ : R → R be a continuous
strongly ω∗-equivariant function with range R. Then, there exists a unique
continuous function V : Ω(ω∗) → R such that

Vω∗(x) = V ◦ τx(ω∗), ∀x ∈ R.

Besides, V is constant on transverse cylinder sets Ξω,R+S, with ω ∈ Ω(ω∗)
and S ≥ 0. If Vω∗ is C2, then V is C2 along the flow: x ∈ R �→ V (τx(ω)) is
C2, ∀ ω.

The global function given by Lemma 29 satisfies the locally transversally
constant property that is at the origin of Definition 10. We indeed observe on
each flow box Uω,R+S,S

V (τx(ω)) = V (τx(ω′)) , ∀ |x| < S, ∀ω, ω′ ∈ Ξω,R+S ,

thanks to the fact that τx(ω′) ∈ Ξτx(ω),R whenever ω, ω′ ∈ Ξω,R+S and |x| < S.
More generally, we introduce the following definition.

Definition 30. Let (Ω, {τt}t∈R, L) be an almost periodic interaction model. A
function V : Ω → R is said to be locally transversally constant with respect to
a flow box decomposition {Ui}i∈I , where Ui = τ(BRi

× Ξi), if

∀ i ∈ I, ∀ω, ω′ ∈ Ξi, ∀ |x| < Ri, V (τx(ω)) = V (τx(ω′)).

The Examples 3 and 4 are of the form

L(ω, t) = W (t) + V1(ω) + V2(τt(ω)) (18)

with locally transversally constant functions V1 and V2. The next lemma shows
that such a Lagrangian L is locally transversally constant as in Definition 10.
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Lemma 31. Let (Ω, {τt}t∈R, L) be an almost periodic interaction model admit-
ting a flow box decomposition. Let V1, V2 : Ω → R be two locally transversally
constant functions on the same flow box decomposition, and W = R → R be
any function. Define L(ω, t) = W (t) + V1(ω) + V2(τt(ω)). Then, L is locally
transversally constant.

Proof. Assume V1 and V2 are locally transversally constant on a flow box
decomposition {Ui}i∈I . Let τ(BR ×Ξ) be a flow box which is compatible with
respect to {Ui}i∈I . If |x|, |y| < R and ω, ω′ ∈ Ξ, then

Eω(x, y) = W (y − x) + V1,ω(x) + V2,ω(y).

There exist i ∈ I, |ti| < Ri and Ξ̃i a clopen subset of Ξi such that τx(Ξ) =
τti

(Ξ̃i). Then, τx(ω) = τti
(ωi) and τx(ω′) = τti

(ω′
i) for some ωi, ω

′
i ∈ Ξ̃i. We

have

V1,ω(x) = V1,ωi
(ti) = V1,ω′

i
(ti) = V1,ω′(x).

Similarly V2,ω(y) = V2,ω′(y). We have thus proved Eω′(x, y) = Eω(x, y). �

We conclude this section by describing a family of quasicrystalline inter-
action models (Ω, {τt}t∈R, L) for which the conclusions of Theorem 12 hold.
We say that a C2 function W : R → R is superlinear and weakly convex if

W ′′ > 0 a.e. and lim
|t|→+∞

|W ′(t)| = +∞. (19)

Corollary 32. Let ω∗ be a quasicrystal, V1∗, V2∗ : R → R be two C2 strongly
ω∗-equivariant functions, and W : R → R be a C2 superlinear, weakly convex
function. Let Ω(ω∗) be the hull of ω∗ and {τt}t∈R be the canonical R-action
on Ω(ω∗). Let V1, V2 : Ω(ω∗) → R be the extension of V1∗, V2∗ as explained in
Lemma 29. Define

L(ω, t) = W (t) + V1(ω) + V2(τt(ω)).

Then, (Ω, {τt}t∈R, L) is an almost crystalline interaction model.

4.2. Kakutani–Rohlin Tower Description

Flow boxes are open sets obtained by taking the union of every orbit of size R
starting from any point belonging to a closed transverse Poincaré section. The
restricted topology on a transverse section must be special: it must admit a
basis of clopen sets. We recall in Lemma 35 how to construct a suspension with
locally constant return maps called Kakutani–Rohlin tower. When the flow is
uniquely ergodic, we describe in the Lemmas 36 and 37 how this Kakutani–
Rohlin tower enables to characterize the unique transverse measure associated
with each transverse section.

We gather in the following lemma basic results about flow boxes that
are particular cases of tilable laminations (see [4]). We leave the proof of the
lemma to the reader (or see proofs in [4]).

Lemma 33. Let (Ω, {τt}t∈R) be a minimal R-action. Assume that the action is
not periodic (t ∈ R �→ τt(ω) ∈ Ω is injective for every ω ∈ Ω). Then,
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1. If τ(BR × Ξ) is a flow box, then there exists R′ ≥ R such that Ω =
τ(BR′ × Ξ).

2. If τ(BR × Ξ) is a flow box, then τ : R × Ξ → Ω is open and τ(BR × Ξ′)
is again a flow box for every clopen subset Ξ′ ⊂ Ξ.

3. If τ(BR ×Ξ) is a flow box, then, for every R′ > 0 and ω ∈ Ξ, there exists
a clopen set Ξ′ ⊂ Ξ containing ω such that τ(BR′ × Ξ′) is again a flow
box.

4. If τ(B2R+2R′ ×Ξ) and τ(B2R+2R′ ×Ξ′) are flow boxes, and U = τ(BR×Ξ)
and U ′ = τ(BR′ × Ξ′) are admissible flow boxes, then

U ∩ U ′ = τ(B̃ × Ξ̃) = τ(B̃′ × Ξ̃′)

for some clopen sets Ξ̃, Ξ̃′ and some open convex subsets B̃ ⊂ BR, B̃′ ⊂
BR′ .

5. If {Ui}i∈I is a flow box decomposition, then, for every ω ∈ Ω and R > 0,
there exits a flow box τ(BR × Ξ), with a transverse section Ξ containing
ω, that is compatible with respect to {Ui}i∈I .

The existence of a flow box decomposition enables us to build a global
transverse section of the flow with locally constant return times.

Definition 34. Let (Ω, {τt}t∈R) be a one-dimensional minimal R-action pos-
sessing a flow box decomposition {Ui}i∈I . We call Kakutani–Rohlin tower a
partition {Fα}α∈A of Ω of the form

Fα = τ
(
[0,Hα) × Σα

)
= ∪0≤t<Hα

τt(Σα)

for some height Hα > 0 and some transverse section Σα (closed set admitting
a basis of clopen subsets), where τ

(
(0,Hα) × Σα

)
is a flow box (open and

homeomorphic to (0,Hα)×Σα), and ∪α∈Aτ({Hα}×Σα) = ∪α∈Aτ({0}×Σα) =
∪α∈AΣα. Moreover, we say that a Kakutani–Rohlin tower is compatible with
respect to {Ui}i∈I if, for every α ∈ A, there exist i ∈ I, ti ∈ R and a clopen
subset Ξ̃i ⊂ Ξi such that Σα = τti

(Ξ̃i) and [ti, ti + Hα) ⊂ [−Ri, Ri).

The proof of the existence of a Kakutani–Rohlin tower for one-
dimensional minimal R-actions is similar to the construction given in [14] for
quasicrystals.

Lemma 35. Let (Ω, {τt}t∈R) be a one-dimensional minimal R-action possessing
a flow box decomposition {Ui}i∈I . Then, there exists a Kakutani–Rohlin tower
{Fα}α∈A which is compatible with respect to {Ui}i∈I .

The existence of a Kakutani–Rohlin tower enables us to build a global
transverse section ∪α∈AΣα with a return time constant on each Σα and equal
to Hα. The induction of the R-action on a particular section Σα0 gives a second
Kakutani–Rohlin tower with larger heights. We explain in the next paragraph
the notations that will be used for these successive towers.

If {F 0
α}α∈A0 is a Kakutani–Rohlin tower of order 0, denote

F 0
α := τ

(
[0,H0

α) × Σ0
α

)
. We say that Σ0 := ∪αΣ0

α is the basis of the tower. Let
ω∗ be a reference point of the base Σ0. Consider α0 such that ω∗ ∈ Σ0

α0
. The

construction of the tower of order 1 is done by inducing the flow on Σ1 := Σ0
α0

.
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We obtain a partition of Σ1 given by {Σ1
β}β∈A1 , where β = (α0, . . . , αp), p ≥ 1,

αp = α0, αi �= α0 for i = 1, . . . , p − 1,

Σ1
β = Σ0

α0
∩ τ−1

H0
α0

(Σ0
α1

) ∩ . . . ∩ τ−1
H0

α0
+...+H0

αp−1
(Σ0

αp
).

By minimality, there is a finite collection of such nonempty sets Σ1
β . Define

then

H1
β := H0

α0
+ . . . + H0

αp−1
,

F 1
β := τ

(
[0,H1

β) × Σ1
β

)
=
⋃p−1

i=0 τ
(
[ti, ti + H0

αi
) × Σ0

αi

)
, with ti =

∑i−1
j=0 H0

αj
.

(20)

We have just obtained a new Kakutani–Rohlin tower {F 1
β}β∈A1 of basis Σ0

α0
.

We induce again on the section Σ1
β0

that contains ω∗ and build the tower of
order 2. We shall write {F l

α}α∈Al for the successive towers that are built using
this procedure and F l

∗ for the tower of height H l
∗ whose basis Σl

∗ contains
ω∗. The preceding construction gives minα∈Al+1 H l+1

α ≥ H l
∗ and in particular

H l+1
∗ ≥ H l

∗. It may happen that H l
∗ = H l+1

∗ = H l+2
∗ = . . .. In that case, the

flow is a suspension over Σl
∗ of constant return time H l

∗ (and Ω is isomorphic
to Σl

∗ × S1). In order to exclude this situation, we split the basis Σl
α0

which
contains ω∗ into two disjoint clopen sets Σl

α0
= Σl

α′
0
∪ Σl

α′′
0
. We obtain again a

Kakutani–Rohlin tower, and we induce as before on the subset which contains
ω∗. If (Ω, {τt}t∈R) is not periodic, we may choose the splitting so that H l+1

∗ >
H l

∗ at each step of the construction.
We assume that the flow (Ω, {τt}t∈R) is uniquely ergodic. Let λ be the

unique ergodic invariant probability measure. The average frequency of return
times to a transverse section of a flow box measures the thickness of the section.
The next lemma gives a precise definition of a family of transverse measures
{νΞ}Ξ parameterized by every transverse section Ξ. The proof is standard, and
we leave it to the reader.

Lemma 36. Let (Ω, {τt}t∈R) be a minimal and uniquely ergodic R-action ad-
mitting a flow bx decomposition. For every transverse section Ξ, the set of
return times to Ξ is given by

RΞ(ω) := {t ∈ R : τt(ω) ∈ Ξ}, ∀ω ∈ Ω.

Then, for every nonempty clopen set Ξ′ ⊂ Ξ, the following limit exists uni-
formly with respect to ω ∈ Ω and is positive:

νΞ(Ξ′) := lim
T→+∞

#(RΞ′(ω) ∩ BT )
Leb(BT )

> 0.

Moreover, νΞ extends to a σ-finite measure on Ξ of finite mass, called trans-
verse measure to Ξ, and, for every flow box U = τ(BR × Ξ),

λ(τ(B′ × Ξ′)) = Leb(B′)νΞ(Ξ′), for all Borel sets B′ ⊂ BR, Ξ′ ⊂ Ξ.

Let {F l
α}α∈Al be a tower of order l and {F l+1

β }β∈Al+1 be the subsequent
tower as introduced in (20). The homology matrix explained in lemma 2.7 of
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[14] may be here similarly defined. Indeed, for every α ∈ Al and β ∈ Al+1,
β = (α0, . . . , αp), α0 = αp, αi �= α0 for i = 1, . . . , p − 1, we denote

M l
α,β := #{0 ≤ k ≤ p − 1 : αk = α}.

A flow box of order l + 1, τ
(
[0,H l+1

β ) × Σl+1
β

)
, is obtained as a disjoint union

of flow boxes of order l of the type τ
(
[ti, ti + H l

αi
) × Σl

αi

)
. The integer M l

α,β

counts the number of times a flow box of order l + 1 indexed by β cuts a flow
box of order l indexed by α. The main result that we shall need is given by
the following lemma.

Lemma 37. Let (Ω, {τt}t∈R) be a minimal and uniquely ergodic R-action. Let
{F l

α}α∈Al be a sequence of Kakutani–Rohlin towers built as in (20). Let νl

be the transverse measure associated with the transverse section ∪α∈AlΣl
α. If

νl
α := νl(Σl

α), then

νl
α =

∑

β∈Al+1

M l
α,βνl+1

β .

Proof. Let Ξ = ∪β∈Al+1Σl+1
β . For ω ∈ Ξ, let 0 = t0, t1, t2, . . . be its successive

return times to Ξ. We introduce as in Lemma 36 the set of return times to the
transverse section Σl

α, say, Rl
α(ω) := {t ∈ R : τt(ω) ∈ Σl

α}. The set Rl+1
β (ω)

is defined similarly. Since

#
(Rl

α(ω) ∩ [0, tn)
)

=
∑

β∈Al+1

M l
α,β #

(Rl+1
β (ω) ∩ [0, tn)

)
,

we divide by tn and apply Lemma 36 to conclude. �

5. Almost Crystalline Interaction Models

This section is devoted to the proof of the second main result of this paper,
Theorem 12. By recalling Definition 11, we consider a one-dimensional almost
crystalline interaction model (Ω, {τt}t∈R, L). By hypothesis, L is transversally
constant with respect to a flow box decomposition {Ui = τ(BRi

× Ξi)}i∈I .
If for some ω ∈ Ω and x ∈ R, Eω(x, x) = Ē, then δ(τx(ω),0) ∈ Mmin(L),

τx(ω) belongs to the projected Mather set, and the configuration xk,ω = x
fulfills the two items of Theorem 12. We thus assume from now on

∀ ω ∈ Ω, ∀x ∈ R, Eω(x, x) > Ē.

We first prove in Proposition 39 that a finite configuration (xn
0 , . . . , xn

n)
which realizes the minimum of the energy among all configurations of the same
length must be strictly monotone and must have bounded jumps, |xn

k −xn
k−1| ≤

R, uniformly in n. We next prove in Proposition 42 that lim infn→+∞ 1
n |xn

n −
xn

0 | > 0. We finally conclude this section with the proof of Theorem 12.

Lemma 38. There exists R > 0 such that, if ω ∈ Ω, if (x0, . . . , xn) ∈ R is
minimizing for Eω and |xn − x0| ≥ R, then (x0, . . . , xn) is strictly monotone.
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Proof. Since {Ui}i∈I is a finite cover, we may choose R large enough so that
every orbit of size R meets every box entirely: for every ω, for every |y−x| ≥ R,
for every i ∈ I, there exists ti ∈ R such that (ti − Ri, ti + Ri) ⊂ [x, y] and
τti

(ω) ∈ Ξi.
We first show that there cannot exist r ≥ 0 and 0 < k < n − r such that

xk < xk−1, xk = . . . = xk+r and xk < xk+r+1.

Otherwise, Aubry crossing lemma implies that

Eω(xk−1, xk) + Eω(xk, xk+r+1) > Eω(xk−1, xk+r+1) + Eω(xk, xk).

We rewrite the configuration (x0, . . . , xk−1, xk+r+1, . . . , xn) as
(y0, . . . , yn−r−1). Let Ui be a flow box containing τxk

(ω). There exists |s| < Ri

and ω′ ∈ Ξi such that τxk
(ω) = τs(ω′). By the choice of R, there exists t such

that (t − Ri, t + Ri) ⊂ [x0, xn] and τt(ω) ∈ Ξi. Let z0 = . . . = zr := t + s
and 1 ≤ l ≤ n − r − 1 be such that yl−1 < z0 ≤ yl. Using the fact that L is
transversally constant on Ui, we have

Eω(xk, xk) = Eω′(s, s) = Eτt(ω)(s, s) = Eω(z0, z0).

By applying again Aubry crossing lemma, we obtain

Eω(yl−1, yl) + Eω(z0, z0) ≥ Eω(yl−1, z0) + Eω(z0, yl),

(possibly with a strict inequality if z0 < yl). We have just obtained a new
configuration (y0, . . . , yl−1, z0, . . . , zr, yl, . . . , yn−r−1) of n points with a strictly
lower energy, which contradicts the fact that (x0, . . . , xn) is minimizing.

Similarly, there cannot exist r ≥ 0 and 0 < k < n − r such that

xk > xk−1, xk = . . . = xk+r and xk > xk+r+1.

There cannot exist either a sub-configuration (xk−1, xk, . . . , xk+r, xk+r+1), r ≥
1, of the form xk−1 �= xk+r+1 and xk = . . . = xk+r strictly between xk−1 and
xk+r+1 thanks to Proposition 25. We are thus left to a configuration of the
form

x0 = . . .= xr <. . .< xn−r′ = . . .= xn

or
x0 = . . .= xr >. . .> xn−r′ = . . .= xn

for some r, r′ ≥ 0.
Assume by contradiction that x0 = x1 (the case xn−1 = xn is done

similarly). Exactly as before, there exist Ui containing τx0(ω), |s| < Ri and ω′ ∈
Ξi such that τx0(ω) = τs(ω′), and there exists t ∈ R such that (t−Ri, t+Ri) ⊂
[min{x0, xn},max{x0, xn}] and τt(ω) ∈ Ξi. One can show in an analogous way
that, whenever z := t+s belongs to (min{xl−1, xl},max{xl−1, xl}] for 2 ≤ l ≤
n, Eω(x0, x1, . . . , xn) ≥ Eω(x1, . . . , xl−1, z, xl, . . . , xn), with strict inequality if
z < max{xl−1, xl}. Since (x0, x1, . . . , xn) is a minimizing configuration, this
implies that z = max{xl−1, xl} �∈ {x0, xn}, and
(x1, . . . , xl−1, z, xl, . . . , xn) is a minimizing configuration. The first part of this
proof shows that this cannot happen.

The proof that (x0, . . . , xn) is strictly monotone is complete. �
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Proposition 39. There exists R > 0 such that, for every ω ∈ Ω, n ≥ 2, and
(x0, . . . , xn) ∈ R, if

Eω(x0, . . . , xn) = min
(y0,...,yn)

Eω(y0, . . . , yn) and max
0≤k<l≤n

|xk − xl| ≥ R,

then (x0, . . . , xn) is strictly monotone and sup1≤k≤n |xk − xk−1| ≤ R.

Proof. Consider ω ∈ Ω, n ≥ 2, and (x0, . . . , xn) realizing the minimum of the
energy among all configurations of length n in the environment ω.

Part 1. We show there exists R′ > 0 (independent of ω and n) such that
|x1 − x0| ≤ R′ and |x2 − x1| ≤ R′. Indeed, we have

Eω(x0, x1) ≤ Eω(x1, x1) and Eω(x0, x1, x2) ≤ Eω(x2, x2, x2),

which implies

Eω(x0, x1) ≤ sup
x∈R

Eω(x, x)

and

Eω(x1, x2) ≤ 2 sup
x∈R

Eω(x, x) − inf
x,y∈R

Eω(x, y).

The existence of R′ follows then from the coercivity of L, which is uniform with
respect to ω. Similarly, we have |xn−1 − xn−2| ≤ R′ and |xn − xn−1| ≤ R′.

Part 2. We show there exists R′′ > 0 such that, if (x0, . . . , xm) is strictly
monotone, then |xi −xi−1| ≤ R′′ for every 1 ≤ i ≤ m. We can find a collection
of transverse sections {Ξ′

i}i∈I′ such that {U ′
i = τ(B2R′ ×Ξ′

i)}i∈I′ is a flow box
decomposition, {τ(BR′ × Ξ′

i)}i∈I′ is a covering of Ω, and L is transversally
constant with respect to {U ′

i}i∈I′ . We choose R′′ > 0 large enough so that
every orbit of length R′′ meets entirely each U ′

i .
Let τ(BR′ ×Ξ′

i) be a flow box containing τx1(ω): there exist |s1| < R′ and
ω′ ∈ Ξ′

i such that τx1(ω) = τs1(ω
′). From part 1, we deduce that U ′

i contains
{τx0(ω), τx1(ω), τx2(ω)}. Denote s0 := s1 + x0 − x1 and s2 := s1 + x2 − x1,
so that |s0|, |s2| < 2R′, τx0(ω) = τs0(ω

′) and τx2(ω) = τs2(ω
′). Assume by

contradiction |xi −xi−1| > R′′. Then, there exists t ∈ R such that (t−2R′, t+
2R′) ⊂ [min{xi−1, xi},max{xi−1, xi}] and τt(ω) ∈ Ξ′

i. Let z0 = t + s0, z1 =
t + s1 and z2 = t + s2. Notice that (xi−1, xi) and (z0, z1, z2) are ordered in the
same way. As L is transversally constant on U ′

i , we obtain

Eω(x0, x1, x2) = Eω′(s0, s1, s2) = Eτt(ω)(s0, s1, s2) = Eω(z0, z1, z2).

Aubry crossing lemma applied twice gives

Eω(xi−1, xi) + Eω(z0, z1, z2) > Eω(xi−1, z1) + Eω(z0, xi) + Eω(z1, z2),

> Eω(xi−1, z1, xi) + Eω(z0, z2).

As L is transversally constant, Eω(z0, z2) = Eω(x0, x2) and we obtain

Eω(xi−1, xi) + Eω(x0, x1, x2) > Eω(xi−1, z1, xi) + Eω(x0, x2).

The configuration (x0, x2, . . . , xi−1, z1, xi, . . . , xm) has a strictly lower energy,
which contradicts the fact that (x0, . . . , xm) is minimizing. We obtain similarly



E. Garibaldi et al. Ann. Henri Poincaré

that, if (xm, . . . , xn) is strictly monotone, then |xi−1 − xi| ≤ R′′ for every
m + 1 ≤ i ≤ n.

Part 3. Let R′′′ be the constant given by Lemma 38. Take R > 2R′′ + 4R′′′. If
|xn − x0| > R′′′, then (x0, . . . , xn) is strictly monotone by Lemma 38 and the
jumps |xi − xi−1| are uniformly bounded by R′′. The proof is finished.

Assume by contradiction that |xn − x0| ≤ R′′′. Let a = min0≤k≤n xk

and b = max0≤k≤n xk. Since diam({xk : 0 ≤ k ≤ n}) ≥ R, one of the two
inequalities |a − x0| > R/2 or |b − x0| > R/2 must be satisfied. Assume to
simplify |b − x0| > R/2 (the case |a − x0| > R/2 is done similarly). Hence, b =
xm for some 0 < m < n. Since (x0, . . . , xm) and (xm, . . . , xn) are minimizing
and satisfy |xm − x0| > R′′′ and |xm − xn| > R′′′, these two configurations
are strictly monotone. Then, part 2 tells us that the jumps |xi − xi−1| are
uniformly bounded by R′′. In particular, |xm+1 −xm| ≤ R′′. The configuration
(x0, . . . , xm+1) is minimizing and, since |xm − x0| > R′′ + 2R′′′, it satisfies
|xm+1 − x0| > R′′′. By Lemma 38, it must be strictly monotone, which is in
contradiction with the maximum xm.

Thus, |xn −x0| > R′′′, (x0, . . . , xn) is strictly monotone and |xi −xi−1| ≤
R′′. �

The proof of the fact that |xk −xk−1| is uniformly bounded uses the same
ideas as in Lemma 3.1 of [14]. The fact that L is transversally constant enables
us to translate sub-configurations without modifying the total energy. For a
minimizing and strictly monotone configuration, by minimality of the energy,
two consecutive points cannot enclose a translated sub-configuration of three
points. More precisely, we have the following lemma that extends Lemma 3.2
of [14].

Lemma 40. For R > 0, let τ(BR × Ξ) be a flow box compatible with respect to
{Ui}i∈I . Let (x0, . . . , xn) be a strictly monotone minimizing configuration for
some environment ω ∈ Ω. Let (a−R, a+R) and (b−R, b+R) be two disjoint
intervals such that τa(ω) ∈ Ξ and τb(ω) ∈ Ξ. Assume that (a − R, a + R) is a
subset of [x0, xn]. Let A be the number of sites 0 ≤ k ≤ n such that xk belongs
to (a−R, a+R) and let B be defined similarly. Then, B ≤ A+2. In particular,
if (b − R, b + R) ⊂ [x0, xn], then |A − B| ≤ 2.

Proof. To simplify we assume that (x0, . . . , xn) is strictly increasing. The proof
is done by contradiction by assuming B ≥ A + 3. Denote

{y1, . . . , yA} := {x0, . . . , xn} ∩ (a − R, a + R) and
{y′

1, . . . , y
′
B} := {x0, . . . , xn} ∩ (b − R, b + R).

Let y0 be the greatest xk ≤ a − R and yA+1 be the smallest xk ≥ a + R.
We write sk := y′

k − b and zk := a + sk for k = 1, . . . , B. The partition into
A + 1 disjoint intervals ∪A+1

k=1 (yk−1, yk] must contain A + 3 distinct points
{z1, . . . , zA+3}. We have therefore to consider two cases.
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Case 1. Either of some interval (yk−1, yk], 2 ≤ k ≤ A, contains three points
(zi−1, zi, zi+1). By Aubry crossing lemma,

Eω(yk−1, yk) + Eω(zi−1, zi) > Eω(yk−1, zi) + Eω(zi−1, yk),

Eω(zi−1, yk) + Eω(zi, zi+1) ≥ Eω(zi−1, zi+1) + Eω(zi, yk).

Since L is transversally constant on τ(BR × Ξ), we obtain

Eω(y′
i−1, y

′
i, y

′
i+1) + Eω(yk−1, yk) = Eω(zi−1, zi, zi+1) + Eω(yk−1, yk)

> Eω(zi−1, zi+1) + Eω(yk−1, zi, yk)

= Eω(y′
i−1, y

′
i+1) + Eω(yk−1, zi, yk).

We have obtained a configuration (if, for instance, b < a) of the form

(x0, . . . , y
′
i−1, y

′
i+1, . . . , y

′
B , . . . , y1, . . . , yk−1, zi, yk, . . . , xn)

with strictly lower energy, which contradicts the fact that (x0, . . . , xn) is min-
imizing.

Case 2. Or there exist two distinct intervals (yk−1, yk] and (yl−1, yl], with
2 ≤ k < l ≤ A, that contain each two points (zi−1, zi) and (zj−1, zj), re-
spectively. Notice that we may have yk = yl−1, but we must have zi <
zj−1, zi+1 ∈ (a − R, a + R), and possibly zi+1 = zj−1. We want to ob-
tain a contradiction by showing that one can decrease the sum of energies
Eω(y′

i−1, . . . , y
′
j) + Eω(yk−1, . . . , yl) while fixing the four boundary points.

In the case zi = yk, we perturb the point zi slightly by a small quan-
tity ε and allow an increase in the energy of order ε2. Since (zi−1, zi, zi+1) is
minimizing, we have

Eω(zi−1, zi, zi+1) = Eω(zi−1, zi − ε, zi+1) + o(ε2).

By Aubry crossing lemma, either zi < yk or the reminder in Lemma 22 takes
the form

reminder := (zi−1 − yk−1)(zi − yk)α > 0,

where α =
1

(zi−1 − yk−1)(zi − yk)

∫ zi−1

yk−1

∫ zi

yk

∂2Eω

∂x∂y
(x, y) dydx < 0,

(in that case, we define ε := 0), or zi = yk, and the reminder becomes

reminder := −ε(zi−1 − yk−1)α + o(ε) > o(ε2),

where α =
1

zi−1 − yk−1

∫ zi−1

yk−1

∂2Eω

∂x∂y
(x, yk) dx < 0.

In both cases,

Eω(yk−1, yk) + Eω(zi−1, zi − ε)
= Eω(yk−1, zi − ε) + Eω(zi−1, yk) + reminder,
Eω(yk−1, yk) + Eω(zi−1, zi, zi+1) > Eω(yk−1, zi − ε, zi+1) + Eω(zi−1, yk).

Again by Aubry crossing lemma,

Eω(yl−1, yl) + Eω(zj−1, zj) ≥ Eω(yl−1, zj) + Eω(zj−1, yl),
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with possibly equality if zj = yl. Since L is transversally constant, we obtain

Eω(y′
i−1, . . . , y

′
j)

+ Eω(yk−1, . . . , yl)

= Eω(zi−1, . . . , zj) + Eω(yk−1, . . . , yl)

> Eω(zi−1, yk, . . . , yl−1, zj) + Eω(yk−1, zi − ε, zi+1, . . . , zj−1, yl)

= Eω(y′
i−1, wk, . . . , wl−1, y

′
j) + Eω(yk−1, zi − ε, zi+1, . . . , zj−1, yl),

with tk := yk − a, wk := b + tk,. . . ,tl−1 := yl−1 − a, wl−1 := b + tl−1. Hence,
we have a configuration (. . . , y′

i−1, wk, . . . , wl−1, y
′
j , . . . , yk−1, zi − ε, zi+1, . . . ,

zj−1, yl, . . .) with strictly lower energy, which contradicts the fact that (x0, . . . ,
xn) is minimizing. �

We recall that we have assumed infω∈Ω, x∈R Eω(x, x) > Ē.

Lemma 41. Let ω ∈ Ω. For n ≥ 1, let (xn
0 , . . . , xn

n) be a configuration realizing
the minimum of Eω(x0, . . . , xn) over all (x0, . . . , xn). Then, limn→+∞ |xn

n −
xn

0 | = +∞.

Proof. The proof is done by contradiction. Let ω ∈ Ω and R > 0. Assume there
exist infinitely many n’s for which every configuration (xn

0 , . . . , xn
n) realizing

the minimum of Eω(x0, . . . , xn) satisfies |xn
n − xn

0 | ≤ R. If (xn
0 , . . . , xn

n) is not
monotone, thanks to Lemma 23, we can find distinct indices {i0, . . . , ir} of
{0, . . . , n} such that i0 = 0, ir = n, (xn

i0
, . . . , xn

ir
) is monotone (possibly not

strictly monotone) and

Eω(xn
0 , . . . , xn

n) ≥ Eω(xn
i0 , . . . , x

n
ir

) +
∑

i�∈{i0,...,ir}
Eω(xn

i , xn
i ).

Let ε > 0 be chosen so that Eω(x, y) ≥ Ē + ε for every |y − x| ≤ ε. Thus, if θn

denotes the number of indices 1 ≤ k ≤ r such that |xn
ik

− xn
ik−1

| > ε, it is clear
that θn ≤ R/ε. Since

nĒ ≥ Eω(xn
0 , . . . , xn

n) ≥ (n − θn)(Ē + ε) + θn inf
x,y∈R

Eω(x, y),

we obtain a contradiction by letting n → +∞. �

We show in the following proposition that a configuration (xn
0 , . . . , xn

n)
realizing the minimum of the energy Eω(x0, . . . , xn) among all configurations
of length n admits a rotation number from below in the sense that

lim inf
n→+∞

|xn
n − xn

0 |
n

> 0. (21)

This means that, for such a finite minimizing configuration, the average dis-
tance between consecutive atoms is bounded from below. The existence of
a rotation number for an infinite minimizing configuration (xk)k∈Z has been
established in [14]. The following proposition extends partially this result in
two directions: Firstly, the interaction model is more general, and secondly,
whereas in [14] the rotation number is obtained for an infinite configuration,
we get the rotation number from below for a sequence of finite configurations.



Calibrated Configurations for Frenkel–Kontorova

Proposition 42. Let (Ω, {τt}t∈R, L) be an almost crystalline interaction model
satisfying infω∈Ω, x∈R Eω(x, x) > Ē. Given ω ∈ Ω, for n ≥ 1, suppose
(xn

0 , . . . , xn
n) is a configuration realizing the minimum of Eω(x0, . . . , xn) over

all (x0, . . . , xn). Then,

1. Ē = limn→+∞ 1
nEω(xn

0 , . . . , xn
n) = supn≥1

1
nEω(xn

0 , . . . , xn
n),

2. for n sufficiently large, (xn
0 , . . . , xn

n) is strictly monotone,
3. there is R > 0 (independent of ω) such that supn≥1 sup1≤k≤n |xn

k −
xn

k−1| ≤ R,
4. lim infn→+∞ 1

n |xn
n − xn

0 | > 0.

Proof. To avoid trivialities, we assume that the flow (Ω, {τt}t∈R) is not peri-
odic.

Step 1. The first item has been proved in Proposition 13; the limit exists as a
supremum by superadditivity. Moreover, from Lemma 41, |xn

n − xn
0 | → +∞.

From Proposition 39, the configuration (xn
0 , . . . , xn

n) must be strictly monotone
and have uniformly bounded jumps R. We are left to prove the last item of
the proposition.

Step 2. By definition of an almost crystalline interaction model, L is transver-
sally constant with respect to some flow box decomposition {Ui}i∈I (Defini-
tions 9 and 10). Let {Fα}α∈A be a Kakutani–Rohlin tower that is compatible
with respect to {Ui}i∈I (Definition 34) and let Σ = ∪α∈AΣα be its basis. We
may assume that minα∈A Hα is as large as we want and, in particular, larger
than R (see the construction (20)). We also assume that n is sufficiently large
so that every tower Fα of basis Σα is completely cut by the trajectory τt(ω)
for t ∈ (min{xn

0 , xn
n},max{xn

0 , xn
n}). We consider ν the transverse measure to

Σ (as defined in Lemma 36) and we denote να := ν(Σα).

Step 3. Let Sn < Tn be the two return times to Σ (namely, τSn(ω) ∈ Σ
and τT n(ω) ∈ Σ) that are chosen so that [Sn, Tn) is the smallest interval
containing the sequence (xn

k )n
k=0. From the definition of a Kakutani–Rohlin

tower, [Sn, Tn) can be written as a disjoint union of intervals of type Iα,i :=
[tα,i, tα,i + Hα), where the list {tα,i}i, i = 1, . . . , Cn

α , denotes the successive
return times to Σα between Sn and Tn. We distinguish two exceptional inter-
vals among this list: the two intervals which contain xn

0 and xn
n. If xn

0 < xn
n,

then Nn
α,i denotes the number of points (xn

k )n
k=1 belonging to Iα,i and Nn

α

denotes the maximum of Nn
α,i. If xn

n < xn
0 , then Nn

α,i and Nn
α are defined

similarly by considering in this case (xn
k )n−1

k=0 . From Lemma 40, we obtain
Nn

α − 2 ≤ Nn
α,i ≤ Nn

α for every nonexceptional interval Iα,i. We show that
supn≥1 Nn

α < +∞ for every α ∈ A. The proof is done by contradiction.
Let En

α,i be the energy of the configuration localized in Iα,i. More pre-
cisely, assume first xn

0 < xn
n; index the part of (xn

k )n
k=1 in Iα,i by (xn

k,α,i)
N
k=1

with N = Nn
α,i; denote by xn

0,α,i the nearest point strictly smaller than xn
1,α,i

and define the partial energy En
α,i := Eω(xn

0,α,i, . . . , x
n
N,α,i). If xn

n < xn
0 , the

part of (xn
k )n−1

k=0 in Iα,i is indexed by (xn
k,α,i)

N−1
k=0 with N = Nn

α,i; denote by
xn

N,α,i the nearest point strictly larger than xn
N−1,α,i and define En

α,i similarly.
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Thanks to the hypothesis infx∈R Eω(x, x) > Ē, one can choose ε > 0
such that Eω(x, y) ≥ Ē + ε as soon as |y − x| ≤ ε. Let H̄ := maxα∈A Hα.
Then, if θn

α,i denotes the number of consecutive points xn
k,α,i in Iα,i satis-

fying |xn
k,α,i − xn

k−1,α,i| > ε, obviously θn
α,i ≤ H̄/ε. Thus, since n =

∑
α∈A∑

1≤i≤Cn
α

Nn
α,i, we have that

nĒ ≥ Eω(xn
0 , . . . , xn

n) =
∑

α∈A

∑

1≤i≤Cn
α

En
α,i

≥
∑

α∈A

∑

1≤i≤Cn
α

[
θn

α,i inf
x,y∈R

Eω(x, y) +
(
Nn

α,i − θn
α,i

)
(Ē + ε)

]

= n(Ē + ε) +
∑

α∈A

∑

1≤i≤Cn
α

θn
α,iE ≥ n(Ē + ε) +

∑

α∈A

Cn
α

H̄

ε
E, (22)

where E := (infx,y∈R Eω(x, y) − Ē − ε) < 0. For α fixed, among the intervals
(Iα,i)i, i = 1, . . . , Cn

α , at most two of them are exceptional and the other
intervals satisfy Nn

α,i ≥ Nn
α − 2. We thus get n ≥ ∑

α∈A(Cn
α − 2)(Nn

α − 2). For
n sufficiently large, we have

Cn
α

Tn − Sn
≤ (1 + ε)να,

Cn
α − 2

Tn − Sn
≥ (1 − ε)να and

1
n

∑

α∈A

Cn
α ≤ (1 + ε)

∑
α∈A να

(1 − ε)
∑

α∈A να(Nn
α − 2)

.

If Nn
α → +∞ for some α and a subsequence n → +∞, then 1

n

∑
α∈A Cn

α → 0
and we obtain a contradiction with the previous inequality (22).

Step 4. For every α, Iα,i ⊂ [xn
0 , xn

n] except maybe for at most two of them.
Then,

|xn
n − xn

0 |
n

≥
∑

α∈A(Cn
α − 2)Hα∑

α∈A Cn
αNn

α

.

Denote N̄α := lim supn→+∞ Nn
α . From step 3, we know that N̄α < +∞. By

dividing by (Tn − Sn) and by letting n → +∞, we obtain

lim inf
n→+∞

|xn
n − xn

0 |
n

≥
∑

α∈A ναHα∑
α∈A ναN̄α

=
1∑

α∈A ναN̄α
> 0.

�

Now we are able to prove Theorem 12. Thanks to Theorem 8 and the
above results, we only have to show that the intersection of each {τt}t-orbit
with the projected Mather set is a nonempty relatively dense subset of the
orbit.

Proof of Theorem 12. Let (Ω, {τt}t∈R, L) be an almost crystalline interaction
model. We discuss two cases.

Case 1. Either infω∈Ω infx∈R Eω(x, x) = Ē. Then, Eω∗(x∗, x∗) = Ē for some
ω∗ and x∗. By hypothesis, L is transversally constant with respect to a flow



Calibrated Configurations for Frenkel–Kontorova

box decomposition {Ui = τ(BRi
×Ξi)}i∈I . Let i ∈ I be such that τx∗(ω∗) ∈ Ui.

Let |ti| < Ri and ωi ∈ Ξi be such that τx∗(ω∗) = τti
(ωi). Then,

Ē = Eω∗(x∗, x∗) = Eωi
(ti, ti) = Eω(ti, ti), ∀ ω ∈ Ξi.

We have just proved that δ(τti
(ω),0) is a minimizing measure for every ω ∈ Ξi.

The projected Mather set contains τti
(Ξi). By minimality of the flow, we have

Ω = τ(BR ×Ξi), for some R > 0, thanks to item 1 of Lemma 33. The projected
Mather set thus meets every sufficiently long orbit of the flow.

Case 2. Or infω∈Ω infx∈R Eω(x, x) > Ē. Proposition 42 shows that, if ω∗ ∈ Ω
has been fixed, if for every n ≥ 1 a sequence (xn

k )0≤k<n of points of R realizing
the minimum Eω∗(xn

0 , . . . , xn
n) = minx0,...,xn

Eω∗(x0, . . . , xn) has been fixed,
then

– Ē = limn→+∞ 1
nEω∗(xn

0 , . . . , xn
n),

– (xn
k )0≤k<n is strictly monotone for n large enough,

– there is R > 0 (independent of ω∗) such that supn≥1 sup1≤k≤n |xn
k −

xn
k−1| < 2R,

– ρ := lim infn→+∞ 1
n |xn

n − xn
0 | > 0.

Let μn,ω∗ be the probability measure on Ω × R defined by

μn,ω∗ :=
1
n

n−1∑

k=0

δ(τxn
k

(ω∗), xn
k+1− xn

k ).

Notice that
∫

Ldμn,ω∗ = 1
nEω∗(xn

0 , . . . , xn
n). Since the consecutive jumps of

xn
k are uniformly bounded, the sequence of measures (μn,ω∗)n≥1 is tight. By

taking a subsequence, we may assume that μn,ω∗ → μ∞ with respect to the
weak topology. Moreover, μ∞ is holonomic and minimizing. Let Ξ ⊂ Ω be a
transverse section of a flow box τ(BR × Ξ). Let RΞ(ω∗) be the set of return
times to Ξ as defined in Lemma 36. Let pr1 : Ω×R → Ω be the first projection.
Then,

pr1
∗(μn,ω∗)(τ(BR × Ξ)) =

1
n

#
{
k : xn

k ∈ ∪t∈RΞ(ω∗)BR(t)
}

≥ 1
n

#(BTn
(cn) ∩ RΞ(ω∗)),

with Tn := 1
2 |xn

n − xn
0 | and cn := 1

2 (xn
0 + xn

n). The previous inequality comes
from the fact that the intervals BR(t) are disjoint and contain at least one xn

k .
Then,

pr1
∗(μn,ω∗)(τ(BR × Ξ)) ≥ 2Tn

n

#(BTn
(0) ∩ RΞ(τcn

(ω∗))
Leb(BTn

(0))
.

By taking the limit as n → +∞, one obtains pr1
∗(μ∞)(τ(BR × Ξ)) ≥ ρνΞ(Ξ)

> 0. Therefore, since Ξ is arbitrary, every orbit of the flow of length 2R meets
the projected Mather set. �
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Appendix A. The Ergodic and Sup-Inf Formulas

We give a second proof of the equality K̄ = L̄ in Proposition 13. We will
use basic properties of the Kantorovich–Rubinstein topology on the set of
probabilities measures on a Polish space (Z, d) and a version of the Topological
Minimax Theorem which is a generalization of Sion’s classical result [25]. For a
recent review on the last topic, see [26]. We state a particular case of theorem
5.7 there.

Theorem A.1 (Topological Minimax Theorem [26]). Let X and Y be Hausdorff
topological spaces. Let F (x, y) : X × Y → R be a real-valued function. Define
η := supy∈Y infx∈X F (x, y) and assume there exists a real number α∗ > η such
that

1. ∀α ∈ (η, α∗), for every finite set ∅ �= H ⊂ Y , ∩y∈H{x ∈ X : F (x, y) ≤ α}
is either empty or connected;

2. ∀α ∈ (η, α∗), for every set K ⊂ X, ∩x∈K{y ∈ Y : F (x, y) > α} is either
empty or connected;

3. for any y ∈ Y and x ∈ X, F (x, y) is lower semi-continuous in x and
upper semi-continuous in y;

4. there exists a finite set M ⊂ Y such that ∩y∈M{x ∈ X : F (x, y) ≤ α∗} is
compact and nonempty.

Then,

inf
x∈X

sup
y∈Y

F (x, y) = sup
y∈Y

inf
x∈X

F (x, y).

We recall basic facts on the Kantorovich–Rubinstein topology (see [28]
or [1]). Given a Polish space Z and a point z0 ∈ Z, let us consider the set of
probability measures on the Borel sets of Z that admit a finite first moment,
i.e.,

P1(Z) =
{

μ :
∫

Z

d(z0, z) dμ(z) < +∞
}

.

Notice that this set does not depend on the choice of the point z0. The Wasser-
stein distance or Kantorovitch–Rubinstein distance on P1(Z) is a distance
between two probabilities μ, ν ∈ P1(Z) defined by

W1(μ, ν) := inf
{∫

Z×Z

d(x, y) dγ(x, y) : γ ∈ Γ(μ, ν)
}

,

where Γ(μ, ν) denotes the set of all the probability measures γ on Z × Z with
marginals μ and ν on the first and second factors, respectively.

Recall that a continuous function L : Z → R is said to be superlinear
on a Polish space Z if the map defined by z ∈ Z �→ L(z)/

(
1 + d(z, z0)

) ∈ R

is proper. Notice that this definition is also independent of the choice of z0

and, by considering the distance d̂ := min(d, 1) on Z, any proper function is
superlinear for d̂. The following lemma is easy to prove and gives us a sufficient
condition for relative compactness in P1(Z) (see theorem 6.9 in [28] or [1] for
a more detailed discussion).
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Lemma A.2. Let Z be a Polish space, L : Z → R be a continuous function,
and X := {μ ∈ P1(Z) :

∫
Ldμ < +∞} be equipped with the Kantorovich–

Rubinstein distance. Then

1. the map μ ∈ X �→ ∫
Ldμ is lower semi-continuous;

2. if L is a superlinear, then, for every α ∈ R, the set {μ ∈ X :
∫

Ldμ ≤ α}
is compact (the map μ ∈ X �→ ∫

Ldμ is proper).

Second Proof of K̄ = L̄ in Proposition 13. Lemma A.2 applied to the C0 su-
perlinear Lagrangian L : Ω × R

d → R guarantees the existence of a minimiz-
ing probability for L. This minimizing measure is holonomic since the set of
holonomic measures is a closed subset of P1(Ω × R

d) for the Kantorovich–
Rubinstein distance. Notice that, for every u ∈ C0(Ω),

inf
ω∈Ω, t∈Rd

(L + u − u ◦ τ)(ω, t) = inf
ω∈Ω, t∈Rd

∫
(L + u − u ◦ τ) dδ(ω,t)

≥ inf
μ∈P1(Ω×Rd)

∫
(L + u − u ◦ τ) dμ

≥ inf
ω∈Ω, t∈Rd

(L + u − u ◦ τ)(ω, t).

Let X := {μ ∈ P1(Ω × R
d) :

∫
Ldμ < +∞} and Y := C0(Ω). Then

K̄ = sup
u∈Y

inf
μ∈X

∫
(L + u − u ◦ τ) dμ ≤ min

ω∈Ω
L(ω, 0).

Define α∗ := minω∈Ω L(ω, 0) + 1 > K̄ and

F : (μ, u) ∈ X × Y �→
∫

(L + u − u ◦ τ) dμ.

Since F is affine in both variables, it satisfies items 1 and 2 of Theorem A.1.
3 is also satisfied since F (μ, u) is lower semi-continuous in μ and continuous
in u. By taking M = {0}, the singleton set reduced to the null function in Y ,
the set ∩u∈M{μ ∈ X : F (μ, u) ≤ α∗} is compact and nonempty, so that item
4 is satisfied. The Topological Minimax Theorem therefore implies

K̄ = inf
μ∈X

sup
u∈Y

∫
(L + u − u ◦ τ) dμ. (A.1)

We show that every μ ∈ X such that supu∈Y

∫
(L + u − u ◦ τ) dμ < +∞ is

holonomic. If not, there would exist a function u ∈ C0(Ω) such that
∫

(u − u ◦
τ) dμ > 0. Multiplying (u − u ◦ τ) by a positive scalar λ and letting λ → +∞
would lead to a contradiction. Thus, the infimum in (“Appendix A.1”) may
be taken over holonomic measures with respect to which L is integrable. We
finally conclude that

K̄ = inf
μ∈X

sup
u∈Y

∫
(L + u − u ◦ τ) dμ = inf

μ∈Mhol

∫
Ldμ = L̄.

�
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