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Abstract. We consider the Hamiltonian H of a 3D spinless non-relativistic quantum
particle subject to parallel constant magnetic and non-constant electric field. The
operator H has infinitely many eigenvalues of infinite multiplicity embedded in its
continuous spectrum. We perturb H by appropriate scalar potentials V and investigate
the transformation of these embedded eigenvalues into resonances. First, we assume
that the electric potentials are dilation-analytic with respect to the variable along the
magnetic field, and obtain an asymptotic expansion of the resonances as the coupling
constant κ of the perturbation tends to zero. Further, under the assumption that
the Fermi Golden Rule holds true, we deduce estimates for the time evolution of the
resonance states with and without analyticity assumptions; in the second case we
obtain these results as a corollary of suitable Mourre estimates and a recent article of
Cattaneo, Graf and Hunziker [11]. Next, we describe sets of perturbations V for which
the Fermi Golden Rule is valid at each embedded eigenvalue of H ; these sets turn
out to be dense in various suitable topologies. Finally, we assume that V decays fast
enough at infinity and is of definite sign, introduce the Krein spectral shift function for
the operator pair (H +V, H), and study its singularities at the energies which coincide
with eigenvalues of infinite multiplicity of the unperturbed operator H .
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1. Introduction

In the present article we consider a magnetic Schrödinger operator H which, from a
physics point of view, is the quantum Hamiltonian of a 3D non-relativistic spinless
quantum particle subject to an electromagnetic field (E,B) with electric component
E = −(0, 0, v′0) where v0 is a scalar potential depending only on the variable x3, and
magnetic component B = (0, 0, b) where b is a positive constant. From a mathematical
point of view this operator is remarkable because of the generic presence of infinitely
many eigenvalues of infinite multiplicity, embedded in the continuous spectrum of H .
These eigenvalues have the form 2bq + λ, q ∈ Z+ := {0, 1, 2, . . .}, where 2bq, q ∈ Z+,
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are the Landau levels, i.e. the infinite-multiplicity eigenvalues of the (shifted) Landau

Hamiltonian, and λ is a simple eigenvalue of the 1D operator − d2

dx2 +v0(x). We introduce
the perturbed operator H + κV where V is a H-compact multiplier by a real function,
and κ ∈ R is a coupling constant, and study the transition of the eigenvalues 2bq + λ,
q ∈ Z+, into a “cloud” of resonances which converge to 2bq + λ as κ → 0.
In order to perform this analysis, we assume that V is axisymmetric so that the operator
H + κV commutes with the x3-component of the angular-momentum operator L. In
this case H+κV is unitarily equivalent to the orthogonal sum ⊕m∈Z(H(m) +κV ) where
H(m) is unitarily equivalent to the restriction of H onto Ker (L − m), m ∈ Z. This
allows us to reduce the analysis to a perturbation of a simple eigenvalue 2bq + λ of the
operator H(m) with fixed magnetic quantum number m.
We apply two different approaches to the definition of resonances. First, we suppose
that v0 and V are analytic in x3, and following the classical approach of Aguilar and
Combes [2], define the resonances as the eigenvalues of the dilated non-self-adjoint op-
erator H(θ) + κVθ. We obtain an asymptotic expansion as κ → 0 of each of these
resonances in the spirit of the Fermi Golden Rule (see e.g. [34, Section XII.6]), and
estimate the time decay of the resonance states. A similar relation between the small-
coupling-constant asymptotics of the resonance, and the exponential time decay of the
resonance state has been established by Herbst [19] in the case of the Stark Hamiltonian,
and later by other authors in the case of various quantum Hamiltonians (see e.g. [36],
[17], [3]).
Our other approach is close to the time dependent methods developed in [35] and [12],
and, above all, to the recent article by Cattaneo, Graf and Hunziker [11], where the dy-
namic estimates of the resonance states are based on appropriate Mourre estimates [25].
We prove Mourre type estimates for the operators H(m), which might be of independent
interest, and formulate a theorem on the dynamics of the resonance states which can be
regarded as an application of the general abstract result of [11].
Both our approaches are united by the requirement that the perturbation V satisfies
the Fermi Golden Rule for all embedded eigenvalues for the operators H(m), m ∈ Z.
We establish several results which show that the set of such perturbations is dense in
various topologies compatible with the assumptions of our theorems on the resonances
of H + κV .
Further, we cancel the restriction that V is axisymmetric but suppose that it decays fast
enough at infinity, and has a definite sign, introduce the Krein spectral shift function
(SSF) for the operator pair (H+V,H), and study its singularity at each energy 2bq+λ,
q ∈ Z+, which, as before, is an eigenvalue of infinite multiplicity of the unperturbed
operator H . We show that the leading term of this singularity can be expressed via the
eigenvalue counting function for compact Berezin-Toeplitz operators. Using the well-
known results on the spectral asymptotics for such operators (see [29], [32]), we obtain
explicitly the main asymptotic term of the SSF as the energy approaches the fixed point
2bq + λ for several classes of perturbations with prescribed decay rate with respect to
the variables on the plane perpendicular to the magnetic field.
It is natural to associate these singularities of the SSF to the accumulation of resonances
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to these points because it is conjectured that the resonances are the poles of the SSF.
This conjecture is justified by the Breit-Wigner approximation which is mathematically
proved in other cases (see for instance [26], [27], [10], [7]).
The article is organized as follows. In Section 2 we summarize some well-known spectral
properties of the operators H and H(m) and their perturbations, which are systemati-
cally exploited in the sequel. Section 3 is devoted to our approach based on the dilation
analyticity, while Section 4 contains our results obtained as corollaries of appropriate
Mourre estimates. In Section 5 we discuss the density in suitable topologies of the sets
of perturbations V for which the Fermi Golden Rule holds true for every embedded
eigenvalue 2bq + λ of the operator H(m), m ∈ Z. Finally, the asymptotic analysis of the
SSF near the points 2bq + λ can be found in Section 6.
We dedicate the article to Vesselin Petkov with genuine admiration for his most signifi-
cant contributions to the spectral and scattering theory for partial differential operators.
In particular, we would like to mention his keystone results on the distribution of res-
onances, and the Breit-Wigner approximation of the spectral shift function for various
quantum Hamiltonians (see [26], [27], [10]), and, especially, his recent works on magnetic
Stark operators (see [13], [14]). These articles as well as many other works of Vesselin
have strongly influenced and stimulated our own research.

2. Preliminaries

2.1. In this subsection we summarize some well-known facts on the spectral properties of
the 3D Schrödinger operator with constant magnetic field B = (0, 0, b), b = const. > 0.
More details could be found, for example, in [4] or [9, Section 9].
Let

H0 := H0,⊥ ⊗ I‖ + I⊥ ⊗H0,‖

where I‖ and I⊥ are the identity operators in L2(Rx3) and L2(R2
x1,x2

) respectively,

H0,⊥ :=

(

i
∂

∂x1
− bx2

2

)2

+

(

i
∂

∂x2
+
bx1

2

)2

− b, (x1, x2) ∈ R
2,

is the Landau Hamiltonian shifted by the constant b, and

H0,‖ := − d2

dx2
3

, x3 ∈ R.

The operatorH0,⊥ is self-adjoint in L2(R2), the operatorH0,‖ is self-adjoint in L2(R), and
hence the operatorH0 is self-adjoint in L2(R3). Moreover, we have σ(H0,⊥) = ∪∞

q=0{2bq},
and every eigenvalue 2bq of H0,⊥ has infinite multiplicity (see e.g. [4]). Denote by pq the
orthogonal projection onto Ker (H0,⊥ − 2bq), q ∈ Z+. Since σ(H0,‖) = [0,∞), we have
σ(H0) = ∪∞

q=0[2bq,∞) = [0,∞).

Let now m ∈ Z, ̺ = (x2
1 + x2

2)
1/2. Put

H
(m)
0,⊥ := −1

̺

∂

∂̺
̺
∂

∂̺
+

(

m

̺
− b̺

2

)2

− b.
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The operator H
(m)
0,⊥ is self-adjoint in L2(R+; ̺d̺), and we have σ(H

(m)
0,⊥ ) = ∪∞

q=m−
{2bq}

where m− = max{0,−m} (see e.g. [4]). In contrast to the operator H0,⊥, every eigen-

value 2bq of H
(m)
0,⊥ is simple. Denote by p̃q,m the orthogonal projection onto Ker (H

(m)
0,⊥ −

2bq), q ∈ Z+, q ≥ m−. Put
(2.1)

ϕq,m(̺) :=

√

q!

π(q +m)!

(

b

2

)m+1

̺mL(m)
q

(

b̺2/2
)

e−b̺2/4, ̺ ∈ R+, q ∈ Z, q ≥ m−,

where

(2.2) L(m)
q (s) :=

q
∑

l=m−

(q +m)!

(m+ l)!(q − l)!

(−s)l

l!
, s ∈ R,

are the generalized Laguerre polynomials. Then we have

H
(m)
0,⊥ϕq,m = 2bqϕq,m,

‖ϕq,m‖L2(R+;̺d̺) = 1, and ϕq,m = ϕq,m (see e.g. [9, Section 9]). Moreover, p̃q,m =
|ϕq,m〉〈ϕq,m|.
Set

H
(m)
0 := H

(m)
0,⊥ ⊗ I‖ + Ĩ⊥ ⊗H0,‖

where Ĩ⊥ is the identity operator in L2(R+; ̺d̺). Evidently, σ(H
(m)
0 ) = [2m−b,∞).

Let (̺, φ, x3) be the cylindrical coordinates in R3. The operatorH
(m)
0 , m ∈ Z, is unitarily

equivalent to the restriction of H0 onto Ker (L−m) where

L := −i
(

x1
∂

∂x2
− x2

∂

∂x1

)

= −i ∂
∂φ

is the x3-component of the angular-momentum operator, which commutes with H0.

Moreover, the operator H0 is unitarily equivalent to the orthogonal sum ⊕m∈ZH
(m)
0 .

More precisely, if we pass to cylindrical coordinates, and decompose u ∈ Dom(H0) into
a Fourier series with respect to φ, i.e. if we write

u(̺ cosφ, ̺ sinφ, x3) =
∑

m∈Z

eimφum(̺, x3),

we have

(H0u)(̺ cosφ, ̺ sinφ, x3) =
∑

m∈Z

eimφ(H
(m)
0 um)(̺, x3).

2.2. In this subsection we perturb the operators H
(m)
0 and H0 by a scalar potential v0

which depends only on the variable x3.
Let v0 : R → R be a measurable function. Throughout the paper we assume that the
multiplier by v0 is H0,‖-compact, which is ensured, for instance, by v0 ∈ L2(R)+L∞

ε (R).
Set

H‖ := H0,‖ + v0.
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Then we have
σess(H‖) = σess(H0,‖) = [0,∞).

For simplicity, throughout the article we suppose also that

(2.3) inf σ(H‖) > −2b.

Evidently, (2.3) holds true if the negative part v0,− of the function v0 is bounded, and
we have ‖v0,−‖L∞(R) < 2b.
Assume now that the discrete spectrum of H‖ is not empty; this would follow, for
example, from the additional conditions v0 ∈ L1(R) and

∫

R
v0(x)dx < 0 (see e.g. [34,

Theorem XIII.110]). Occasionally, we will impose also the assumption that the discrete
spectrum of H‖ consists of a unique eigenvalue; this would be implied, for instance, by
the inequality

∫

R
|x|v0,−(x)dx < 1 (see e.g. [5, Chaper II, Theorem 5.1]).

Let λ be a discrete eigenvalue of the operator H‖ which necessarily is simple. Then
λ ∈ (−2b, 0) by (2.3). Let ψ be an eigenfunction satisfying

(2.4) H‖ψ = λψ, ‖ψ‖L2(R) = 1, ψ = ψ.

Denote by p‖ = p‖(λ) the spectral projection onto Ker(H‖ − λ). We have p‖ = |ψ〉〈ψ|.
Suppose now that v0 satisfies

(2.5) |v0(x)| = O
(

〈x〉−m0
)

, x ∈ R, m0 > 1,

where 〈x〉 := (1+|x|2) 1
2 . Then the multiplier by v0 is a relatively trace-class perturbation

of H0,‖, and by the Birman-Kuroda theorem (see e.g. [33, Theorem XI.9]) we have

σac(H‖) = σac(H0,‖) = [0,∞).

Moreover, by the Kato theorem (see e.g. [34, Theorem XIII.58]) the operator H‖ has no
strictly positive eigenvalues. In fact, for all E > 0 and s > 1/2 the operator-norm limit

(2.6) 〈x〉−s(H‖ − E)−1〈x〉−s := lim
δ↓0

〈x〉−s(H‖ −E − iδ)−1〈x〉−s,

exists in L(L2(R)), and for each compact subset J of R+ = (0,∞) and each s > 1/2
there exists a constant CJ,s such that for each E ∈ J we have

(2.7) ‖〈x〉−s(H‖ −E)−1〈x〉−s‖ ≤ CJ,s

(see [1]).
Suppose again that (2.5) holds true, and let us consider the differential equation

(2.8) −y′′ + v0y = k2y, k ∈ R.

It is well-known that (2.8) admits the so-called Jost solutions y1(x; k) and y2(x; k) which
obey

y1(x; k) = eikx(1 + o(1)), x→ ∞,

y2(x; k) = e−ikx(1 + o(1)), x→ −∞,

uniformly with respect to k ∈ R (see e.g. [5, Chapter II, Section 6] or [37]). The pairs
{yl(·; k), yl(·;−k)}, k ∈ R, l = 1, 2, form fundamental sets of solutions of (2.8). Define
the transition coefficient T (k) and the reflection coefficient R(k), k ∈ R, k 6= 0, by

y2(x; k) = T (k)y1(x;−k) + R(k)y1(x; k), x ∈ R.
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It is well known that T (k) 6= 0, k ∈ R \ {0}. On the other hand, the Wronskian of
the solutions y1(·; k) and y2(·; k) is equal to −2ikT (k), and hence these solutions are
linearly independent for k ∈ R \ {0}. For E > 0 set

Ψl(x;E) :=
1

√

4π
√
ET (

√
E)
yl(x;

√
E), l = 1, 2.

Evidently, Ψl(·;E) ∈ C1(R) ∩ L∞(R), E > 0, l = 1, 2. Moreover, the real and the
imaginary part of both functions Ψl(·;E), l = 1, 2 with E > 0 do not vanish identically.
Further, Im 〈x〉−s(H‖ −E)−1〈x〉−s with E > 0 and s > 1/2 is a rank-two operator with
an integral kernel

K(x, x′) = π
∑

l=1,2

〈x〉−sΨl(x;E)Ψl(x
′;E)〈x′〉−s, x, x′ ∈ R.

2.3. Fix now m ∈ Z, and set

H(m) := H
(m)
0 + Ĩ⊥ ⊗ v0.

Since v0 is H0,‖-compact and the spectrum of H
(m)
0,⊥ is discrete, the operator Ĩ⊥ ⊗ v0

is H
(m)
0 -compact. Therefore, the operator H(m) is well-defined on Dom(H

(m)
0 ), and we

have
σess(H

(m)) = σess(H
(m)
0 ) = [2bm−,∞).

Further, if λ is a discrete eigenvalue of H‖, then 2bq + λ is a simple eigenvalue of H(m)

for each integer q ≥ m−. If q = m−, then this eigenvalue is isolated, but if q > m−,
then due to (2.3), it is embedded in the essential spectrum of H(m). Moreover,

(2.9) H(m)Φq,m = (2bq + λ)Φq,m, q ≥ m−,

Φq,m = ϕq,m ⊗ ψ, ϕq,m being defined in (2.1), and ψ in (2.4). Set

(2.10) Pq,m := p̃q,m ⊗ p‖.

Then we have Pq,m = |Φq,m〉〈Φq,m|.
Finally, introduce the operator

H := H0 + I⊥ ⊗ v0.

Even though the operator I⊥ ⊗ v0 is not H0-compact (unless v0 = 0), it is H0-bounded
with zero relative bound so that the operator H is well-defined on Dom(H0). Evidently,
the operator H is unitarily equivalent to the orthogonal sum ⊕m∈ZH

(m). Up to the
additive constant b, the operator H is the Hamiltonian of a quantum non-relativistic
spinless particle in an electromagnetic field (E,B) with parallel electric component
E = −(0, 0, v′0(x3)), and magnetic component B = (0, 0, b).
Note that if λ is a discrete eigenvalue of H‖, then 2bq + λ, q ∈ Z+ is an eigenvalue of
infinite multiplicity of H . If q = 0, this eigenvalue is isolated, and if q ≥ 1, it lies on
the interval [0,∞) which constitutes a part of the essential spectrum of H . Moreover,
if (2.5) holds, then σac(H) = [0,∞), so that in this case 2bq + λ, q ∈ Z+, is embedded
in the absolutely continuous spectrum of H .
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2.4. In this subsection we introduce appropriate perturbations of the operators H and
H(m), m ∈ Z+.
Let V : R3 → R be a measurable function. Assume that V is H0-bounded with zero
relative bound. By the diamagnetic inequality (see e.g. [4]) this would follow, for
instance, from V ∈ L2(R3) + L∞(R3). On Dom(H) = Dom(H0) define the operator
H + κV , κ ∈ R.
Remark: We impose the condition that the relative H0-bound is zero just for the sake of
simplicity. If V is H0-bounded with arbitrary finite relative bound, then we could again
define H + κV but only for sufficiently small |κ|.
Occasionally, we will impose the more restrictive assumption that V is H0-compact; this
would follow from V ∈ L2(R3) + L∞

ε (R3). In particular, V is H0-compact if it satisfies
the estimate

(2.11) |V (x)| = O
(

〈X⊥〉−m⊥〈x3〉−m3
)

, x = (X⊥, x3), m⊥ > 0, m3 > 0.

Further, assume that V is axisymmetric, i.e. V depends only on the variables (̺, x3).

Fix m ∈ Z and assume that the multiplier by V is H
(m)
0 -bounded with zero relative

bound. Then the operator H(m) + V is well defined on Dom(H(m)) = Dom(H
(m)
0 ).

Define the operator H(m) + κV , κ ∈ R.
For z ∈ C+ := {ζ ∈ C | Im ζ > 0}, m ∈ Z, q ≥ m−, introduce the quantity

Fq,m(z) := 〈(H(m) − z)−1(I − Pq,m)VΦq,m, VΦq,m〉
where 〈·, ·〉 denotes the scalar product in L2(R+ × R; ̺d̺dx3), which we define to be
linear with respect to the first factor. If λ is a discrete eigenvalue of H‖ we will say that
the Fermi Golden Rule Fq,m,λ is valid if the limit

(2.12) Fq,m(2bq + λ) = lim
δ↓0

Fq,m(2bq + λ+ iδ),

exists and is finite, and

(2.13) ImFq,m(2bq + λ) > 0.

3. Resonances via dilation analyticity

3.1. In this subsection we will perturb H
(m)
0 by an axisymmetric potential V (̺, x3)

so that the simple eigenvalue 2bq + λ of H
(m)
0 becomes a resonance of the perturbed

operator. In order to use complex scaling, we impose an analyticity assumption. We
assume that the potential v0 extends to an analytic function in the sector

Sθ0 = {z ∈ C | |Argz| ≤ θ0, or |z| ≤ r0}
with θ0 ∈ (0, π/2), which satisfies (2.5). As already used in similar situations (see e.g.
[4], [38]) we introduce complex deformation in the longitudinal variable, (U(θ)f)(̺, x3) =
eθ/2f(̺, eθx3), f ∈ L2(R+ × R; ̺d̺dx3), θ ∈ R. For θ ∈ R we have

H(m)(θ) = U(θ)H(m)U−1(θ) = H
(m)
0 ⊗ I + I ⊗H‖(θ),
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with H‖(θ) = −e−2θ d2

dx2
3

+ v0,θ(x3), and v0,θ(x3) := v0(e
θ x3). By assumption, the family

of operators {H‖(θ), |Im θ| < θ0}, form a type (A) analytic family of m-sectorial
operators in the sense of Kato (see for instance [20, Section 15.4], [2]). Then the discrete
spectrum of H0,‖(θ) is independent of θ and we have

σ(H(m)(θ)) =
⋃

q≥m−

{2bq + σ(H‖(θ))},

σ(H‖(θ)) = e−2θ
R+ ∪ σdisc(H‖) ∪ {z1, z2, ....}

where σdisc(H‖) denotes the discrete spectrum of H‖, and z1, z2, .... are (complex) eigen-
values of H‖(θ) in {0 > Arg z > −2Im θ}, Im θ > 0. In the sequel, we assume that
σdisc(H‖) = {λ}.
Further, we assume that V is axisymmetric, and admits an analytic extension with

respect to x3 ∈ Sθ0, which is H
(m)
0 -compact (see e.g. [34, Chapter XII]). Let

Vθ(̺, x3) := V (̺, eθx3).

Then the family of operators {H(m)(θ) + κVθ, |Im θ| < θ0, |κ| ≤ 1}, form also an
analytic family of type (A) for sufficiently small κ.
By definition, the resonances of H(m) + κV in

Sm−
(θ) :=

⋃

q≥m−

{z ∈ C; 2bq < Rez < 2b(q + 1), −2Imθ < Arg(z − 2bq) ≤ 0}

are the eigenvalues of H(m)(θ) + κVθ, Imθ > 0.
For V axisymmetric and H0-compact, we define the set of the resonances Res(H +
κV,S0(θ)) of the operator H + κV in S0(θ) by

Res(H + κV,S0(θ)) :=
⋃

m∈Z

{eigenvalues of H(m)(θ) + κVθ} ∩ S0(θ).

In other words, the set of resonances of H + κV is the union with respect to m ∈ Z of
the resonances of H(m) + κV . This definition is correct since the restriction of H + κV
onto Ker(L − m) is unitarily equivalent to H(m) + κV . Moreover using a standard
deformation argument (see, for instance, [20, Chapter 16]), we can prove that these
resonances coincide with singularities of the function z 7→ 〈(H + κV − z)−1 f, f〉, for f
in a dense subset of L2(R3).

Theorem 3.1. Fix m ∈ Z, q > m−. Assume that:

• v0 admits an analytic extension in Sθ0 which satisfies (2.5);
• inequality (2.3) holds true, and H‖ has a unique discrete eigenvalue λ;
• V is axisymmetric, and admits an analytic extension with respect to x3 in Sθ0

which is H
(m)
0 -compact.

Then for sufficiently small |κ|, the operator H(m) + κV has a resonance wq,m(κ) which
obeys the asymptotics

(3.1) wq,m(κ) = 2bq + λ+ κ〈V Φq,m,Φq,m〉 − κ
2 Fq,m(2bq + λ) +Oq,m,V (κ3), κ → 0,
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the eigenfunction Φq,m being defined in (2.9), and the quantity Fq,m(2bq+λ) being defined
in (2.12).

Proof. Fix θ such that θ0 > Im θ ≥ 0 and assume that z ∈ C is in the resolvent set of
the operator H(m)(θ) + κVθ. Put

R
(m)
κ,θ (z) := (H(m)(θ) + κVθ − z)−1.

By the resolvent identity, we have

(3.2) R
(m)
κ,θ (z) = R

(m)
0,θ (z)−κ R

(m)
0,θ (z)VθR

(m)
0,θ (z)+κ

2 R
(m)
0,θ (z)VθR

(m)
0,θ (z)VθR

(m)
0,θ (z)+O(κ3),

as κ → 0, uniformly with respect to z in a compact subset of the resolvent sets of
H(m)(θ) + κV and H(m)(θ).
Now note that the simple embedded eigenvalue 2bq + λ of H(m) is a simple isolated
eigenvalue of H(m)(θ). According to the Kato perturbation theory (see [22, Section
VIII.2]), for sufficiently small κ there exists a simple eigenvalue wq,m(κ) ofH(m)(θ)+κVθ

such that limκ→0wq,m(κ) = wq,m(0) = 2bq + λ. For |κ| sufficiently small, define the
eigenprojector

(3.3) Pκ(θ) = Pκ,q,m(θ) :=
−1

2iπ

∫

Γ

R
(m)
κ,θ (z)dz

where Γ is a small positively oriented circle centered at 2bq + λ. Evidently, for u ∈
RanPκ(θ) we have (H(m)(θ) + κVθ)u = wq,m(κ)u; in particular, if u ∈ RanP0(θ), then
H(m)(θ)u = (2bq + λ)u. Since wq,m(κ) is a simple eigenvalue, we have

(3.4) wq,m(κ) = Tr

(−1

2iπ

∫

Γ

zR
(m)
κ,θ (z)dz

)

for Γ and κ as above. Inserting (3.2) into (3.4), we get

wq,m(κ) =

(3.5)

2bq+ λ+ κ Tr(P0(θ)Vθ P0(θ))−
κ2

2iπ
Tr

(
∫

Γ

zR
(m)
0,θ (z)Vθ R

(m)
0,θ (z)Vθ R

(m)
0,θ (z) dz

)

+O(κ3)

as κ → 0. Next, we have

(3.6) Tr(P0(θ)Vθ P0(θ)) = Tr(Pq,m V Pq,m) = 〈V Φq,m,Φq,m〉L2(R+×R;̺d̺dx3),

the orthogonal projection Pq,m being defined in (2.10). For θ ∈ R the relation is
obvious since the operators P0,q,m(θ)Vθ P0,q,m(θ) and Pq,m V Pq,m are unitarily equiv-
alent. For general complex θ identity (3.6) follows from the fact the function θ 7→
Tr(P0,q,m(θ)Vθ P0,q,m(θ)) is analytic.
Set

Q0(θ) := I −P0(θ), H̃(m)(θ) := H(m)(θ)Q0(θ).

By the cyclicity of the trace, we have

(3.7) Tr

(
∫

Γ

zR
(m)
0,θ (z)Vθ R

(m)
0,θ (z)Vθ R

(m)
0,θ (z)dz

)

= T1 + T2 + T3 + T4
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where

T1 :=

∫

Γ

z(2bq + λ− z)−3 Tr (P0(θ)Vθ P0(θ)Vθ P0(θ)) dz,

T2 :=

∫

Γ

z(2bq + λ− z)−2 Tr
(

P0(θ)Vθ (H̃(m)(θ) − z)−1 Q0(θ)Vθ P0(θ)
)

dz,

T3 := Tr

(
∫

Γ

z(H̃(m)(θ) − z)−1Q0(θ)Vθ(H̃
(m)(θ) − z)−1Q0(θ)Vθ(H̃

(m)(θ) − z)−1Q0(θ)dz

)

,

T4 :=

∫

Γ

z (2bq + λ− z)−1 Tr
(

P0(θ)Vθ(H̃
(m)(θ) − z)−2 Q0(θ)Vθ P0(θ)

)

dz.

Since
∫

Γ
z(2bq+λ− z)−3dz = 0, and the function z 7→ (H̃(m)(θ)− z)−1 is analytic inside

Γ, we have

(3.8) T1 = T3 = 0.

Further, using the identity

(2bq + λ− z)−2P0(θ)Vθ (H̃(m)(θ) − z)−1 Q0(θ)Vθ P0(θ)+

(2bq + λ− z)−1P0(θ)Vθ (H̃(m)(θ) − z)−2 Q0(θ)Vθ P0(θ) =

∂

∂z

(

(2bq + λ− z)−1P0(θ)Vθ (H̃(m)(θ) − z)−1 Q0(θ)Vθ P0(θ)
)

,

integrating by parts, and applying the Cauchy theorem, we obtain

(3.9) T2 + T4 = 2iπTr
(

P0(θ)Vθ (H̃(m)(θ) − 2bq − λ)−1 (I −P0(θ))Vθ P0(θ)
)

.

Arguing as in the proof of (3.6), we get
(3.10)

Tr
(

P0(θ)Vθ (H̃(m)(θ) − 2bq − λ− iδ)−1 Q0(θ)Vθ P0(θ)
)

= Fq,m(2bq + λ+ iδ), δ > 0.

For θ fixed such that Im θ > 0, the point 2bq + λ is not in the spectrum of H̃(m)(θ).
Taking the limit δ ↓ 0 in (3.10), we find that (3.9) implies

(3.11) T2 + T4 = 2iπ Fq,m(2bq + λ).

Putting together (3.5) – (3.8) and (3.11), we deduce (3.1). �

Remarks: (i) We will see in Section 4 that generically ImFq,m(2bq+λ) > 0 for all m ∈ Z,
and q > m−.
(ii) Taking into account the above remark, we find that Theorem 3.1 implies that generi-
cally near 2bq+λ, q ≥ 1, there are infinitely many resonances of H+κV with sufficiently
small κ, namely the resonances of the operators H(m) + κV with m > −q.

3.2. In this subsection we consider the dynamical aspect of resonances. We prove the
following proposition which will be extended to non-analytic perturbations in Section 4.
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Proposition 3.1. Under the assumptions of Theorem 3.1 there exists a function g ∈
C∞

0 (R; R) such that g = 1 near 2bq + λ, and

(3.12) 〈e−i(H(m)+κV )tg(H(m) + κV )Φq,m,Φq,m〉 = a(κ)e−iwq,m(κ)t + b(κ, t), t ≥ 0,

with a and b satisfying the asymptotic estimates

|a(κ) − 1| = O(κ2),

|b(κ, t)| = O(κ2(1 + t)−n), ∀n ∈ Z+,

as κ → 0 uniformly with respect to t ≥ 0.

In order to prove the proposition, we will need the following

Lemma 3.1. Set

Qκ(θ) := I −Pκ(θ), R̃
(m)
κ,θ (z) :=

(

(H(m)(θ) + κVθ)Qκ(θ) − z
)−1

Qκ(θ),

the projection Pκ(θ) being defined in (3.3). Then for |κ| small enough, there exists a

finite-rank operator F (m)
κ,θ , uniformly bounded with respect to κ, such that

(3.13) P0(θ) = Pκ(θ)+κ

(

R̃
(m)
κ,θ (wq,m(κ))VθPκ(θ)+Pκ(θ)VθR̃

(m)
κ,θ (wq,m(κ))

)

+κ
2F (m)

κ,θ .

Proof. By the resolvent identity, we have

(3.14) R
(m)
0,θ (ν) = R

(m)
κ,θ (ν) + κR

(m)
κ,θ (ν)VθR

(m)
κ,θ (ν) + κ

2 R
(m)
κ,θ (ν)VθR

(m)
κ,θ (ν)VθR

(m)
0,θ (ν).

Moreover by definition of R̃
(m)
κ,θ and of H̃(m) := H(m) Q0, we have:

(3.15) R
(m)
κ,θ (ν) = (wq,m(κ) − ν)−1Pκ(θ) + R̃

(m)
κ,θ (ν),

R
(m)
0,θ (ν) = (2bq + λ− ν)−1P0(θ) + (H̃(m)(θ) − ν)−1Q0(θ),

where ν 7→ R̃
(m)
κ,θ (ν) and ν 7→ (H̃(m)(θ) − ν)−1Q0(θ) are analytic near 2bq + λ. Then,

from the Cauchy formula, the integration of (3.14) on a small positively oriented circle

centered at 2bq+λ, yields (3.13) with F (m)
κ,θ a linear combination of finite-rank operators

of the form P1 Vθ P2 Vθ P3, where {P0(θ), Pκ(θ)} ∩ {Pj, j = 1, 2, 3} 6= ∅, and

Pj ∈ {P0(θ), Pκ(θ), R̃
(m)
κ,θ (ν), (H̃(m)(θ)−ν)−1Q0(θ), with ν = wq,m(κ) or ν = 2bq+λ}.

Since these operators are uniformly bounded in κ with |κ| small enough, F (m)
κ,θ is a

finite-rank operator which also is uniformly bounded in κ with |κ| small enough. �

Proof of Proposition 3.1: Pick at first any g ∈ C∞
0 (R; R) such that g = 1 near 2bq + λ.

We have

〈e−i(H(m)+κV )tg(H(m) + κV )Φq,m,Φq,m〉 = Tr (e−i(H(m)+κV )tg(H(m) + κV )Pq,m).

By the Helffer-Sjöstrand formula,

(3.16) e−i(H(m)+κV )t g(H(m)+κV )Pq,m =
1

π

∫

R2

∂g̃

∂z̄
(z) e−izt (H(m)+κV −z)−1 Pq,mdxdy
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where z = x+ iy, z̄ = x− iy, g̃ is a compactly supported, quasi-analytic extension of g,
and the convergence of the integral is understood in the operator-norm sense (see e.g.
[15, Chapter 8]).
Consider the functions

σ±(z) := Tr ((H(m) + κV − z)−1 Pq,m), ±Imz > 0.

Following the arguments of the previous subsection, we find that

(3.17) σ+(z) = Tr (R
(m)
κ,θ (z)P0,q,m(θ)), Im z > 0, θ0 > Im θ > 0.

Inserting (3.13) into (3.17), and using the cyclicity of the trace, and the elementary
identities

Pκ(θ)R
(m)
κ,θ (z) R̃

(m)
κ,θ (wq,m(κ)) = 0 = R̃

(m)
κ,θ (wq,m(κ))Pκ(θ)R

(m)
κ,θ (z),

we get

σ+(z) = Tr (R
(m)
κ,θ (z)Pκ(θ)) + κ

2Tr (R
(m)
κ,θ (z)F (m)

κ,θ ).

Applying (3.15), we obtain

(3.18) σ+(z) =
(

1 + κ
2r(κ)

)

(wq,m(κ) − z)−1 + κ
2G+(κ, z),

where r(κ) := Tr (Pκ(θ)F (m)
κ,θ ), and G+(κ, z) is analytic near 2bq + λ and uniformly

bounded with respect to |κ| small enough. Similarly,

(3.19) σ−(z) =
(

1 + κ
2r(κ)

)

(wq,m(κ) − z)−1 + κ
2G−(κ, z),

where G−(κ, z) is analytic near 2bq+λ and uniformly bounded with respect to |κ| small
enough. Now, assume that the support of g is such that we can choose g̃ supported on a
neighborhood of 2bq+λ where the functions z 7→ G±(κ, z) are holomorphic. Combining
(3.16) with the Green formula, we get

(3.20) Tr (e−i(H(m)+κV )t g(H(m) + κV )Pq,m) =
1

2iπ

∫

R

g(µ) e−iµt (σ+(µ) − σ−(µ))dµ.

Making use of (3.18) – (3.19), we get

1

2iπ

∫

R

g(µ) e−iµt (σ+(µ) − σ−(µ))dµ =
κ2

2iπ

∫

R

g(µ) e−iµt (G+(κ, µ) −G−(κ, µ))dµ

+
1 + κ2r(κ)

2iπ

∫

R

g(µ) e−iµt (wq,m(κ) − µ)−1dµ

−1 + κ2r(κ)

2iπ

∫

R

g(µ) e−iµt (wq,m(κ) − µ)−1dµ.

Pick ε > 0 so small that g(µ) = 1 for µ ∈ [2bq + λ− 2ε, 2bq + λ+ 2ε]. Set

Cε := (−∞, 2bq + λ− ε] ∪ {2bq + λ+ εeit, t ∈ [−π, 0]} ∪ [2bq + λ+ ε,+∞),

g(µ) := 1, µ ∈ Cε \ R.
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Taking into account (3.20), bearing in mind that Imwq,m(κ) < 0, and applying the
Cauchy theorem, we easily find that

(3.21) Tr (e−i(H(m)+κV )t g(H(m)+κV )Pq,m) = (1+κ
2r(κ))e−iwq,m(κ)t+κ

2
∑

j=1,2,3

Ij(t; κ)

where

I1(t; κ) :=
1

2iπ

∫

R

g(µ) e−iµt (G+(κ, µ) −G−(κ, µ))dµ,

I2(t; κ) :=
1

2iπ

∫

Cε

g(µ) e−iµt(r(κ)(wq,m(κ) − µ)−1 − r(κ)(wq,m(κ) − µ)−1)dµ,

I3(t; κ) := −Imwq,m(κ)

κ2π

∫

Cε

g(µ) e−iµt(wq,m(κ) − µ)−1(wq,m(κ) − µ)−1 dµ.

Integrating by parts, we find that

(3.22) |Ij(t; κ)| = O((1 + t)−n), t > 0, j = 1, 2, 3, ∀n ∈ Z+,

uniformly with respect to κ, provided that |κ| is small enough; in the estimate of I3(t; κ)
we have taken into account that by Theorem 3.1 we have |Im(wq,m(κ))| = O(κ2).
Putting together (3.21) and (3.22), we get (3.12).

4. Mourre estimates and dynamical resonances

In this section we obtain Mourre estimates for the operator H(m) and apply them com-
bined with a recent result of Cattaneo, Graf, and Hunziker (see [11]) in order to in-
vestigate the dynamics of the resonance states of the operator H(m) without analytic
assumptions.

4.1. Let v0 : R → R. Set

(4.1) vj(x3) := xj
3v

(j)
0 (x3), j ∈ Z+,

provided that the corresponding derivative v
(j)
0 of v0 is well-defined.

Let

A := − i

2

(

x3
d

dx3
+

d

dx3
x3

)

be the self-adjoint operator defined initially on C∞
0 (R) and then closed in L2(R). Set

A := Ĩ⊥ ⊗ A. Let T be an operator self-adjoint in L2(R+ × R; ̺d̺dx3) such that
eisAD(T ) ⊆ D(T ), s ∈ R. Define the commutator [T, iA] in the sense of [21] and [11],

and set ad
(1)
A (T ) := −i[T, iA]. Define recursively

ad
(k+1)
A (T ) = −i[ad

(k)
A (T ), iA], k ≥ 1,

provided that the higher order commutators are well-defined. Evidently, for each m ∈ Z

we have

(4.2) ikad
(k)
A (H(m)) = 2kĨ⊥ ⊗H0,‖ +

k
∑

j=1

ck,jvj , k ∈ Z+,
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with some constants ck,j independent of m; in particular, ck,k = (−1)k. Therefore the
H0,‖-boundedness of the multipliers vj , j = 1, . . . , k, guarantees the H(m)-boundedness

of all the operators ad
(j)
A (H(m)) , j = 1, . . . , k.

Let J ⊂ R be a Borel set, and T be a self-adjoint operator. Denote by PJ(T ) the spectral
projection of the operator T associated with J .

Proposition 4.1. Fix m ∈ Z. Let λ ∈ (−2b, 0), q ∈ Z, q > m−. Put

(4.3) J = (2bq + λ− δ, 2bq + λ+ δ)

where δ > 0, δ < −λ/2, and δ < (2b+ λ)/2. Assume that the operators vj(H0,‖ + 1)−1,
j = 0, 1, are compact. Then there exist a positive constant C > 0 and a compact operator
K such that

(4.4) PJ(H(m))[H(m), iA]PJ(H(m)) ≥ CPJ(H(m)) +K.

Proof. Let χ ∈ C∞
0 (R; R) be such that supp χ = [2bq+λ−2δ, 2bq+λ+2δ], χ(t) ∈ [0, 1],

∀t ∈ R, χ(t) = 1, ∀t ∈ J . In order to prove (4.4), it suffices to show that

(4.5) χ(H(m))[H(m), iA]χ(H(m)) ≥ Cχ(H(m))2 + K̃

with a compact operator K̃. Indeed, if inequality (4.5) holds true, we can multi-
ply it from the left and from the right by PJ(H(m)) obtaining thus (4.4) with K =
PJ(H(m))K̃PJ(H(m)).
Next (4.2) yields

[H(m), iA] = 2Ĩ⊥ ⊗H0,‖ − v1.

Therefore,

χ(H(m))[H(m), iA]χ(H(m)) = 2χ(H(m))
(

Ĩ⊥ ⊗H0,‖

)

χ(H(m)) − χ(H(m))v1χ(H(m)) =

(4.6) 2χ(H
(m)
0 )

(

Ĩ⊥ ⊗H0,‖

)

χ(H
(m)
0 ) + 2K1 −K2

where

K1 := χ(H(m))
(

Ĩ⊥ ⊗H0,‖

)

χ(H(m)) − χ(H
(m)
0 )

(

Ĩ⊥ ⊗H0,‖

)

χ(H
(m)
0 ),

K2 := χ(H(m))v1χ(H(m)).

Since the operator v1(H
(m)
0 + 1)−1 is compact, the operators v1(H

(m) + 1)−1, v1χ(H(m)),
and K2 are compact as well. Let us show that K1 is also compact. We have

K1 = (χ(H(m)) − χ(H
(m)
0 ))

(

Ĩ⊥ ⊗H0,‖

)

χ(H(m))+

(4.7) χ(H
(m)
0 )

(

Ĩ⊥ ⊗H0,‖

)

(χ(H(m)) − χ(H
(m)
0 )).

By the Helffer-Sjöstrand formula and the resolvent identity,

χ(H(m)) − χ(H
(m)
0 ) = −1

π

∫

R2

∂χ̃

∂z̄
(z)(H(m) − z)−1v0(H

(m)
0 − z)−1dxdy.
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Since the support of χ̃ is compact in R
2, and the operator ∂χ̃

∂z̄
(H(m)−z)−1v0(H

(m)
0 −z)−1

is compact for every (x, y) ∈ R2 with y 6= 0, and is uniformly norm-bounded for every

(x, y) ∈ R2, we find that the operator χ(H(m)) − χ(H
(m)
0 ) is compact. On the other

hand, it is easy to see that the operators
(

Ĩ⊥ ⊗H0,‖

)

χ(H(m)) =
(

Ĩ⊥ ⊗H0,‖

)

(H(m) + 1)−1(H(m) + 1)χ(H(m)) =

(

Ĩ⊥ ⊗H0,‖

)

(H
(m)
0 + 1)−1(I − v0(H

(m) + 1)−1)(H(m) + 1)χ(H(m))

and

χ(H
(m)
0 )

(

Ĩ⊥ ⊗H0,‖

)

= χ(H
(m)
0 )(H

(m)
0 + 1)(H

(m)
0 + 1)−1

(

Ĩ⊥ ⊗H0,‖

)

are bounded. Taking into account (4.7), and bearing in mind the compactness of the

operator χ(H(m))−χ(H
(m)
0 ), and the boundedness of the operators

(

Ĩ⊥ ⊗H0,‖

)

χ(H(m))

and χ(H
(m)
0 )

(

Ĩ⊥ ⊗H0,‖

)

, we conclude that the operator K1 is compact.

Further, since δ < −λ/2, and hence 2bj > 2bq + λ+ 2δ for all j ≥ q, we have

χ(H0,‖ + 2bj) = 0, j ≥ q.

Therefore,

χ(H
(m)
0 ) =

∞
∑

j=m−

p̃j,m ⊗ χ(H0,‖ + 2bj) =

q−1
∑

j=m−

p̃j,m ⊗ χ(H0,‖ + 2bj),

and

(4.8) χ(H
(m)
0 )

(

Ĩ⊥ ⊗H0,‖

)

χ(H
(m)
0 ) =

q−1
∑

j=m−

p̃j,m ⊗
(

χ(H0,‖ + 2bj)2H0,‖

)

.

By the spectral theorem,

q−1
∑

j=m−

p̃j,m ⊗
(

χ(H0,‖ + 2bj)2H0,‖

)

≥
q−1
∑

j=m−

(2b(q − j) + λ− 2δ)p̃j,m ⊗ χ(H0,‖ + 2bj)2 ≥

(4.9) (2b+ λ− 2δ)

q−1
∑

j=m−

p̃j,m ⊗ χ(H0,‖ + 2bj)2 = C1χ(H
(m)
0 )2

with C1 := 2b+ λ− 2δ > 0. Combining (4.6), (4.8), and (4.9), we get

(4.10) χ(H(m))[H(m), iA]χ(H(m)) ≥ 2C1χ(H(m))2 + 2C1K3 + 2K1 −K2

where K3 := χ(H
(m)
0 )2 − χ(H(m))2 is a compact operator by the Helffer-Sjöstrand

formula. Now we find that (4.10) is equivalent to (4.5) with C = 2C1 and K̃ =
2C1K3 + 2K1 −K2. �
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Remark: Mourre estimates for various magnetic quantum Hamiltonians can be found in
[18, Chapter 3].

4.2. By analogy with (4.1) set

Vj(̺, x3) = xj
3

∂jV (̺, x3)

∂xj
3

, j ∈ Z+.

We have

ikad
(k)
A (V ) =

k
∑

j=1

ck,jVj

with the same constants ck,j as in (4.2).
We will say that the condition Oν , ν ∈ Z+, holds true if the multipliers by vj , j = 0, 1,
are H0,‖-compact, and the multipliers by vj, j ≤ ν, are H0,‖-bounded. Also, for a fixed
m ∈ Z we will say that the condition Cν,m, ν ∈ Z+, holds true if the condition Oν is

valid, the multiplier by V is H
(m)
0 -bounded with zero relative bound, and the multipliers

by Vj, j = 1, . . . , ν, are H
(m)
0 -bounded.

By Proposition 4.1 and [11, Lemma 3.1], the validity of condition Cν,m with ν ≥ 5 and
a given m ∈ Z guarantees the existence of a finite limit Fq,m(2bq + λ) with q > m− in
(2.12), provided that (2.3) holds true, and λ is a discrete eigenvalue of H0,‖ + v0.
Combining the results of Proposition 4.1 and [11, Theorem 1.2], we obtain the following

Theorem 4.1. Fix m ∈ Z, n ∈ Z+. Assume that:

• the condition Cν,m holds with ν ≥ n + 5;
• inequality (2.3) holds true, and λ is a discrete eigenvalue of H‖;
• inequality (2.13) holds true, and hence the Fermi Golden Rule Fq,m,λ is valid.

Then there exists a function g ∈ C∞
0 (R; R) such that supp g = J (see (4.3)), g = 1 near

2bq + λ, and

(4.11) 〈e−i(H(m)+κV )tg(H(m) + κV )Φq,m,Φq,m〉 = a(κ)e−iλq,m(κ)t + b(κ, t), t ≥ 0,

where

(4.12) λq,m(κ) = 2bq + λ + κ〈VΦq,m,Φq,m〉 − κ
2Fq,m(2bq + λ) + oq,m,V (κ2), κ → 0.

In particular, we have Imλq,m(κ) < 0 for |κ| small enough. Moreover, a and b satisfy
the asymptotic estimates

|a(κ) − 1| = O(κ2),

|b(κ, t)| = O(κ2| ln |κ||(1 + t)−n),

|b(κ, t)| = O(κ2(1 + t)−n+1),

as κ → 0 uniformly with respect to t ≥ 0.

We will say that the condition Cν , ν ∈ Z+, holds true if the condition Oν is valid,
the multiplier by V is H0-bounded with zero relative bound, and the multipliers by Vj ,
j = 1, . . . , ν, are H0-bounded.
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For m ∈ Z and q ≥ m− denote by Φ̃q,m : R3 → C the function written in cylindrical

coordinates (̺, φ, x3) as Φ̃q,m(̺, φ, x3) = (2π)−
1
2 eimφΦq,m(̺, x3).

Corollary 4.1. Fix n ∈ Z+. Assume that:

• the condition Cν holds with ν ≥ n+ 5;
• inequality (2.3) is fulfilled, and λ is a discrete eigenvalue of H0,‖ + v0;
• for each m ∈ Z, q > m−, inequality (2.13) holds true, and hence the Fermi

Golden Rule Fq,m,λ is valid.

Then for every fixed q ∈ Z+, and each m ∈ {−q+1, . . . , 0}∪N with N := {1, 2, . . .}, we
have

〈e−i(H+κV )tg(H + κV )Φ̃q,m, Φ̃q,m〉L2(R3) = a(κ)e−iλq,m(κ)t + b(κ, t), t ≥ 0,

where g, λq,m(κ), a, and b are the same as in Theorem 4.1.

Remarks: (i) If q ≥ 1, then Corollary 4.1 tells us that typically the eigenvalue 2bq+λ of
the operator H , which has an infinite multiplicity, generates under the perturbation κV
infinitely many resonances with non-zero imaginary part. Note however that 2bq+λ is a
discrete simple eigenvalue of the operator H(−q), and therefore the operator H(−q) +κV
has a simple discrete eigenvalue provided that |κ| is small enough. Generically, this
eigenvalue is an embedded eigenvalue for the operator H + κV .
(ii) If q = 0, then λ is an isolated eigenvalue of infinite multiplicity for H . By Theorem
6.1 below, in this case there exists an infinite series of discrete eigenvalues of the operator
H + V which accumulate at λ, provided that the perturbation V has a definite sign.

5. Sufficient conditions for the validity of the Fermi Golden Rule

In this section we describe certain classes of perturbations V compatible with the hy-
potheses of Theorems 3.1 - 4.1, for which the Fermi Golden rule Fq,m,λ is valid for every
m ∈ Z and q > m−. The results included are of two different types. Those of Subsection
5.1 are less general but they offer a constructive approximation of V by potentials for
which the Fermi Golden Rule holds. On the other hand, the results of Subsection 5.2
are more general, but they are more abstract and less constructive.

5.1. Assume that v0 ∈ C∞(R) satisfies the estimates

(5.1) |v(j)
0 (x)| = Oj

(

〈x〉−m0−j
)

, x ∈ R, j ∈ Z+, m0 > 1.

Then condition Oν is valid for every ν ∈ Z+. Moreover, in this case the eigenfunction
ψ (see (2.4)) is in the Schwartz class S(R), while the Jost solutions yj(·; k), j = 1, 2,
belong to C∞(R) ∩ L∞(R).
Suppose that (2.3) holds true, and the discrete spectrum of the operator H‖ consists of
a unique eigenvalue λ. Fix m ∈ Z, and q ∈ Z+ such that q > m−. Then it is easy to
check that we have

ImFq,m(2bq + λ) =
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(5.2) π
∑

l=1,2

q−1
∑

j=m−

∣

∣

∣

∣

∫ ∞

0

∫

R

ϕj,m(̺)ϕq,m(̺)ψ(x3)Ψl(x3; 2b(q − j) + λ)V (̺, x3)dx3̺d̺

∣

∣

∣

∣

2

.

In what follows we denote by L2
Re(R+; ̺d̺) the set of real functions W ∈ L2(R+; ̺d̺).

Lemma 5.1. The set of functions W ∈ L2
Re(R+; ̺d̺) for which

(5.3)

∫ ∞

0

ϕq−1,m(̺)ϕq,m(̺)W (̺)̺d̺ 6= 0

for every m ∈ Z, q > m−, is dense in L2
Re(R+; ̺d̺).

Proof. Since the Laguerre polynomials L
(0)
q , q ∈ Z+, (see (2.2)) form an orthogonal

basis in L2(R+; e−sds), the set of polynomials is dense in L2(R+; e−sds). Pick W ∈
L2

Re(R+; ̺d̺). Set w(s) := W (
√

2s/b)es/2, s > 0. Evidently, w = w ∈ L2(R+; e−sds).
Pick ε > 0 and find a non-zero polynomial P with real coefficients such that

∫ ∞

0

e−s (P(s) − w(s))2 ds <
bε2

4
.

Note that the coefficients of P could be chosen real since the coefficients of the Laguerre
polynomials are real. Changing the variable s = b̺2/2, we get

(5.4)

∫ ∞

0

(

P(b̺2/2)e−b̺2/4 −W (̺)
)2

̺d̺ <
ε2

4
.

Now set Wα(̺) := P(b̺2/2)e−αb̺2/2, ̺ ∈ R+, α ∈ (0,∞), where the real polynomial P
is fixed and satisfies (5.4). We will show that the set

(5.5) A :=

{

α ∈ (0,∞) |
∫ ∞

0

ϕq−1,m(̺)ϕq,m(̺)Wα(̺)̺d̺ 6= 0, ∀m ∈ Z, ∀q > m−

}

is dense in (0,∞). Actually, for fixed m ∈ Z and q > m−, we have
∫ ∞

0

ϕq−1,m(̺)ϕq,m(̺)Wα(̺)̺d̺ = Πq,m(γ(α))

where Πq,m is a real polynomial of degree 2q + m + 1 + degP, and γ(α) := (1 + α)−1.
Note that γ : (0,∞) → (0, 1) is a bijection. Denote by Nq,m the set of the zeros of Πq,m

lying on the interval (0, 1). Set

N :=
⋃

m∈Z

∞
⋃

q=m−+1

Nq,m.

Evidently, the sets N and γ−1(N ) are countable, and A = (0,∞) \ γ−1(N ). Therefore,
A is dense in (0,∞). Now, pick α0 ∈ A so close to 1/2 that

(5.6)

∫ ∞

0

P(b̺2/2)2
(

e−b̺2/4 − e−α0b̺2/2
)2

̺d̺ <
ε2

4
.

Assembling (5.4) and (5.6), we obtain

(5.7) ‖W −Wα0‖L2(R+;̺d̺) < ε.
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�

Denote by K(R) the class of real-valued continuous functions u : [0,∞) → R such that
lims→∞ u(s) = 0. Set ‖u‖K(R) := maxs∈[0,∞) |u(s)|.
Lemma 5.2. The set of functions W ∈ K(R) for which (5.3) holds true for every
m ∈ Z, q > m−, is dense in K(R).

Proof. By the Stone-Weierstrass theorem for locally compact spaces, we find that the
set of functions e−αsP(s), s > 0 where α ∈ (0,∞), and P is a polynomial, is dense in
K(R).

Let W ∈ K(R); then we have u ∈ K(R) where u(s) := W (
√

2s/b), s > 0. Pick ε > 0
and find α ∈ (0,∞) and a polynomial P such that ‖W−Wα‖K(R) < ε/2 where, as in the

proof of Lemma 5.1, Wα(̺) = e−αb̺2/2P(b̺2/2). Next pick α0 ∈ A (see (5.5)) such that
‖Wα −Wα0‖K(R) ≤ ε/2. Therefore, similarly to (5.7) we have ‖W −Wα0‖K(R) ≤ ε. �

Fix ν ∈ Z+. We will write V ∈ Dν if

‖V ‖2
Dν

:=
ν

∑

j=0

∫ ∞

0

∫

R

(

xj
3

∂jV (̺, x3)

∂xj
3

)2

dx3̺d̺ <∞.

Note that if Oν holds, and V ∈ Dν , then Cν is valid.

Theorem 5.1. Assume that:

• v0 ∈ C∞(R) satisfies (5.1);
• inequality (2.3) holds true;
• we have σdisc(H‖) = {λ}.

Fix ν ∈ Z+. Then the set of real perturbations V : R+ × R → R for which the Fermi
Golden Rule Fq,m,λ is valid for each m ∈ Z and q > m−, is dense in Dν.

Proof. We will prove that the set of perturbations V for which the integral

(5.8) Iq,m,λ(V ) := Re

∫ ∞

0

∫

R

ϕq−1,m(̺)ϕq,m(̺)ψ(x3)Ψ1(x3; 2b+ λ)V (̺, x3)dx3̺d̺

does not vanish for each m ∈ Z and q > m−, is dense in Dν . By (5.2) this will imply
the claim of the theorem. Set

ω(x) := ψ(x)Re Ψ1(x; 2b+ λ), x ∈ R.

Note that 0 6= ω = ω ∈ S(R). Set

V⊥(̺) =

∫

R

ω(x3)V (̺, x3)dx3, ̺ ∈ R+.

Evidently, V⊥ ∈ L2
Re(R+; ̺d̺). Fix ε > 0. Applying Lemma 5.1, we find Ṽ⊥ ∈

L2
Re(R+; ̺d̺) such that

(5.9)

∫ ∞

0

ϕq−1,m(̺)ϕq,m(̺)Ṽ⊥(̺)̺d̺ 6= 0
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for every m ∈ Z, q > m−, and

(5.10) ‖V⊥ − Ṽ⊥‖L2(R+;̺d̺) < ε.

Set

(5.11) Ṽ (̺, x3) :=
Ṽ⊥(̺)ω(x3)

‖ω‖2
L2(R)

+ V (̺, x3) −
V⊥(̺)ω(x3)

‖ω‖2
L2(R)

, ̺ ∈ R+, x3 ∈ R.

We have

Iq,m,λ(Ṽ ) =

∫ ∞

0

ϕq−1,m(̺)ϕq,m(̺)Ṽ⊥(̺)̺d̺ 6= 0

for every m ∈ Z, q > m−. On the other hand, (5.10) and (5.11) imply

‖V − Ṽ ‖2
Dν

≤ ε2

∑ν
j=0

∫

R
x2jω(j)(x)2dx

‖ω‖2
L2(R)

.

�

Fix again ν ∈ Z+. We will write V ∈ Eν if V : R+ → R is continuous and tends to zero

at infinity, and the functions xj
3

∂jV (̺,x3)

∂xj
3

, j = 1, . . . , ν, are bounded. If Oν holds, and

V ∈ Eν , then Cν holds true. For V ∈ Eν define the norm

‖V ‖Eν :=
ν

∑

j=0

sup
(̺,x3)∈R+×R

∣

∣

∣

∣

xj
3

∂jV (̺, x3)

∂xj
3

∣

∣

∣

∣

.

Arguing as in the proof of Theorem 5.1, from Lemma 5.2 we obtain the following

Theorem 5.2. Assume that v0 satisfies the hypotheses of Theorem 5.1. Fix ν ∈ Z+.
Then the set of perturbations V : R+ × R → R for which the Fermi Golden Rule Fq,m,λ

is valid for each m ∈ Z and q > m−, is dense in Eν.

5.2. For H a subspace of Lr(R), let us introduce the space

(5.12) H† := {ω ∈ S(R) | ∀χ ∈ H,
∫

R

ω(x)χ(x)dx = 0}.

Clearly, if C∞
b (R) ⊂ H then H† = {0}. This property holds yet if H∞(Sθ) ⊂ H where

H∞(Sθ) is the set of smooth bounded functions on R admitting analytic extension on
Sθ. It is enough to note that if ω(x0) 6= 0 then for C sufficiently large, the function

χ(x3) := e−C(x3−x0)2 is in H∞(Sθ) and satisfies
∫

R
ω(x)χ(x)dx 6= 0.

Theorem 5.3. Assume that v0 satisfies the hypotheses of Theorem 5.1. Let p ≥ 1,
r ≥ 1, δ ∈ R.
Let H be a Banach space contained in Lr(R) such that the injection H →֒ Lr(R) is
continuous, and H† = {0}.
Then the set of real perturbations V : R+ × R → R, for which the Fermi Golden Rule
Fq,m,λ is valid for each m ∈ Z and q > m−, is dense in Lp(R+, 〈̺〉δ̺d̺;H).
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Proof. As in the case of Theorems 5.1 – 5.2, we will prove that the set of perturbations
V for which the integral (5.8) does not vanish for each m ∈ Z and q > m−, is dense in
Lp(R+, 〈̺〉δ̺d̺;H).
Let

Mq,m,λ := {V ∈ Lp(R+, 〈̺〉δ̺d̺;H); Iq,m,λ(V ) 6= 0}.
Since for 1/p′ + 1/p = 1 and 1/r′ + 1/r = 1 we have

|Iq,m,λ(V )| ≤ ‖ϕq−1,mϕq,m‖Lp′(R+,〈̺〉−δ̺d̺;R) ‖ω‖Lr′(R) ‖V ‖Lp(R+,〈̺〉δ̺d̺;Lr(R)),

the continuity of the injection H →֒ Lr(R) implies that Mq,m,λ is an open subset of the
Banach space Lp(R+, 〈̺〉δ̺d̺;H). Then according to the Baire lemma, we have only to
check that each Mq,m,λ is dense in Lp(R+, 〈̺〉δ̺d̺;H). Let V ∈ Lp(R+, 〈̺〉δ̺d̺;H) \
Mq,m,λ.
Since 0 6= ω = ω ∈ S(R), the assumptions on H imply the existence of a Φ ∈ H such
that

∫

R

ω(x3)Φ(x3)dx3 6= 0.

Moreover, ̺ 7→ ϕq−1,m(̺)ϕq,m(̺)̺ is a product of polynomial and exponential functions.
Then there exists ̺0 ∈ R+ such that ϕq−1,m(̺0)ϕq,m(̺0)̺0 6= 0, and for χ0 supported
near ̺0, we have

∫ ∞

0

ϕq−1,m(̺)ϕq,m(̺)χ0(̺)̺d̺ 6= 0.

Consequently,
{

V (̺, x3) + 1
n
χ0(̺)Φ(x3)

}

n∈N
is a sequence of functions in Mq,m,λ tending

to V in Lp(R+, 〈̺〉δ̺d̺;H). �

6. Singularities of the spectral shift function

6.1. Suppose that v0 satisfies (2.5). Assume moreover that the perturbation V : R3 → R

satisfies (2.11) with m⊥ > 2 and m3 = m0 > 1. Then the multiplier by V is a relatively
trace-class perturbation of H . Hence, the spectral shift function (SSF) ξ(·;H + V,H)
satisfying the Lifshits-Krein trace formula

Tr(f(H + V ) − f(H)) =

∫

R

f ′(E)ξ(E;H + V,H)dE, f ∈ C∞
0 (R),

and normalized by the condition ξ(E;H + V,H) = 0 for E < inf σ(H + V ), is well-
defined as an element of L1(R; 〈E〉−2dE) (see [24], [23]).
If E < inf σ(H), then the spectrum of H + V below E could be at most discrete, and
for almost every E < inf σ(H) we have

ξ(E;H + V,H) = −rank P(−∞,E)(H + V ).

On the other hand, for almost every E ∈ σac(H) = [0,∞), the SSF ξ(E;H + V,H) is
related to the scattering determinant det S(E;H +V,H) for the pair (H +V,H) by the
Birman-Krein formula

det S(E;H + V,H) = e−2πiξ(E;H+V,H)
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(see [6]).
Set

Z := {E ∈ R|E = 2bq + µ, q ∈ Z+, µ ∈ σdisc(H‖) or µ = 0}.
Arguing as in the proof of [9, Proposition 2.5], we can easily check the validity of the
following

Proposition 6.1. Let v0 and V satisfy (2.5), and (2.11) with m⊥ > 2 and m0 = m3 > 1.
Then the SSF ξ(·;H + V,H) is bounded on every compact subset of R \ Z, and is
continuous on R \ (Z ∪σp(H + V )), where σp(H + V ) denotes the set of the eigenvalues
of the operator H + V .

In what follows we will assume in addition that

(6.1) 0 ≤ V (x), x ∈ R
3,

and will consider the operators H ± V which are sign-definite perturbations of the
operator H . The goal of this section is to investigate the asymptotic behaviour of the
SSF ξ(·;H ± V,H) near the energies which are eigenvalues of H of infinite multiplicity.
More precisely, if (2.3) holds true, and λ ∈ σdisc(H‖), we will study the asymptotics as
η → 0 of ξ(2bq + λ+ η;H ± V,H), q ∈ Z+, being fixed.
Let T be a compact self-adjoint operator. For s > 0 denote

n±(s;T ) := rank P(s,∞)(±T ), n∗(s;T ) := n+(s;T ) + n−(s;T ).

Put

U(X⊥) :=

∫

R

V (X⊥, x3)ψ(x3)
2dx3, X⊥ ∈ R

2,

the eigenfunction ψ being defined in (2.4).

Theorem 6.1. Let v0 and V satisfy (2.5), (2.11) with m⊥ > 2 and m0 = m3 > 1, and
(6.1). Assume that (2.3) holds true, and λ ∈ σdisc(H‖). Fix q ∈ Z+. Then for each
ε ∈ (0, 1) we have
(6.2)
n+((1 + ε)η; pqUpq) +O(1) ≤ ±ξ(2bq + λ± η;H ± V,H) ≤ n+((1− ε)η; pqUpq) +O(1),

(6.3) ξ(2bq + λ∓ η;H ± V,H) = O(1),

as η ↓ 0.

Applying the well known results on the spectral asymptotics for compact Berezin-
Toeplitz operators pqUpq (see [29], [32]), we obtain the following

Corollary 6.1. Assume the hypotheses of Theorem 6.1.
(i) Suppose that U ∈ C1(R2), and

U(X⊥) = u0(X⊥/|X⊥|)|X⊥|−α(1 + o(1)), |X⊥| → ∞,

|∇U(X⊥)| ≤ C1〈X⊥〉−α−1, X⊥ ∈ R
2,
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where α > 2, and u0 is a continuous function on S1 which is non-negative and does not
vanish identically. Then we have

ξ(2bq + λ± η;H ± V,H) = ± b

2π

∣

∣

{

X⊥ ∈ R
2|U(X⊥) > η

}
∣

∣ (1 + o(1)) =

±η−2/α b

4π

∫

S1

u0(s)
2/αds (1 + o(1)), η ↓ 0,

where |.| denotes the Lebesgue measure.
(ii) Let U ∈ L∞(R2). Assume that

lnU(X⊥) = −µ|X⊥|2β(1 + o(1)), |X⊥| → ∞,

for some β ∈ (0,∞), µ ∈ (0,∞). Then we have

ξ(2bq + λ± η;H ± V,H) = ±ϕβ(η) (1 + o(1)), η ↓ 0, β ∈ (0,∞),

where

ϕβ(η) :=











b
2µ1/β | ln η|1/β if 0 < β < 1,

1
ln (1+2µ/b)

| ln η| if β = 1,
β

β−1
(ln | ln η|)−1| ln η| if 1 < β <∞,

η ∈ (0, e−1).

(iii) Let U ∈ L∞(R2). Assume that the support of U is compact, and that there exists a
constant C > 0 such that U ≥ C on an open non-empty subset of R2. Then we have

ξ(2bq + λ± η;H ± V,H) = ±(ln | ln η|)−1| ln η|(1 + o(1)), η ↓ 0.

Remarks: (i) The threshold behaviour of the SSF for various magnetic quantum Hamil-
tonians has been studied in [16] (see also [30], [31]), and recently in [8]. The singularities
of the SSF described in Theorem 6.1 and Corollary 6.1 are of somewhat different nature
since 2bq+λ is an infinite-multiplicity eigenvalue, and not a threshold in the continuous
spectrum of the unperturbed operator.
(ii) By the strict mathematical version of the Breit-Wigner representation for the SSF
(see [26], [27]), the resonances for various quantum Hamiltonians could be interpreted
as the poles of the SSF. In [7] a Breit-Wigner approximation of the SSF near the Lan-
dau level was obtained for the 3D Schrödinger operator with constant magnetic field,
perturbed by a scalar potential satisfying (2.11) with m⊥ > 2 and m3 > 1. Moreover,
it was shown in [7] that typically the resonances accumulate at the Landau levels. It
is conjectured that the singularities of the SSF ξ(·;H ± V,H) at the points 2bq + λ,
q ∈ Z+, are due to accumulation of resonances to these points. One simple motiva-
tion for this conjecture is the fact that if V is axisymmetric, then the eigenvalues of
the operators pqUpq, q ∈ Z+, appearing in (6.2) are equal exactly to the quantities
〈VΦq,m,Φq,m〉L2(R+×R;̺d̺dx3), m ≥ −q, occurring in (3.1) and (4.12). We leave for a
future work the detailed analysis of the relation between the singularities of the SSF at
the points 2bq + λ and the eventual accumulation of resonances at these points. Hope-
fully, in this future work we will also extend our results of Sections 3 – 5 to the case of
non-axisymmetric perturbations V .
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(iii) As mentioned above, if λ ∈ σdisc(H‖), then λ is an isolated eigenvalue of H of infinite
multiplicity. Set

λ− :=

{

sup{µ ∈ σ(H), µ < λ} if λ > inf σ(H),
−∞ if λ = inf σ(H),

λ+ := inf{µ ∈ σ(H), µ > λ}.
By Pushnitski’s representation of the SSF (see [28]), and the Birman-Schwinger principle
for discrete eigenvalues in gaps of the essential spectrum, we have

ξ(λ− η;H − V ;H) = −n+(1;V 1/2(H − λ+ η)−1V 1/2) =

−rank P(λ−,λ−η)(H − V ) +O(1), η ↓ 0,

ξ(λ+ η;H + V ;H) = n−(1;V 1/2(H − λ− η)−1V 1/2) =

rank P(λ+η,λ+)(H + V ) +O(1), η ↓ 0.

Then Theorem 6.1 and Corollary 6.1 imply that the perturbed operator H − V (resp.,
H + V ) has an infinite sequence of discrete eigenvalues accumulating to λ from the left
(resp., from the right).

6.2. This subsection contains some preliminary results needed for the proof of Theorem
6.1.
In what follows we denote by S1 the trace class, and by S2 the Hilbert-Schmidt class of
compact operators, and by ‖ · ‖j the norm in Sj , j = 1, 2.
Suppose that η ∈ R satisfies

(6.4) 0 < |η| < min

{

2b+ λ,
1

2
dist

(

λ, σ(H‖) \ {λ}
)

}

.

Note that inequalities (6.4) combined with (2.3), imply

λ + η ∈ (−2b, 0), λ+ η 6∈ σ(H‖), dist (λ+ η, σ(H‖)) = |η|.
Set Pj = pj ⊗ I‖, j ∈ Z+. For z ∈ C+ := {ζ ∈ C|Im ζ > 0}, j ∈ Z+, and W := V 1/2, put

Tj(z) := WPj(H − z)−1W.

Proposition 6.2. Assume the hypotheses of Theorem 6.1. Suppose that (6.4) holds
true. Fix q ∈ Z+. Let j ∈ Z+, j ≤ q. Then the operator-norm limit

(6.5) Tj(2bq + λ+ η) = lim
δ↓0

Tj(2bq + λ+ η + iδ)

exists in L(L2(R3)). Moreover, if j < q, we have Tj(2bq + λ+ η) ∈ S1, and

(6.6) ‖Tj(2bq + λ+ η)‖1 = O(1), η → 0.

Proof. We have

(6.7) Tj(z) = M(t⊥,j ⊗ t‖(z − 2bj))M, z ∈ C+,

where
M := W (X⊥, x3)〈X⊥〉m⊥/2〈x3〉m3/2,

t⊥,l := 〈X⊥〉−m⊥/2pl〈X⊥〉−m⊥/2, l ∈ Z+,
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t‖(ζ) := 〈x3〉−m3/2(H‖ − ζ)−1〈x3〉−m3/2, ζ ∈ C+.

Since the operators M and t⊥ are bounded, in order to prove that the limit (6.5) exists
in L(L2(R3)), it suffices to show that the operator-norm limit

(6.8) lim
δ↓0

t‖(2b(q − j) + λ+ η + iδ)

exists in L(L2(R)). If j < q, the limit in (6.8) exists due to the existence of the limit in
(2.6). If j = q, the limit in (6.8) exists just because λ+ η 6∈ σ(H‖).
Further, set

t‖,0(ζ) := 〈x3〉−m3/2(H0,‖ − ζ)−1〈x3〉−m3/2, ζ ∈ C+ \ {0}.
For E = 2b(q − j) + λ+ η, from the resolvent equation we deduce

(6.9) t‖(E) = t‖,0(E)(I‖ − M̃t‖(E))

where M̃ := v0(x3)〈x3〉m3 is a bounded multiplier. By [9, Section 4.1], the operator
t‖,0(E) with E ∈ R \ {0} is trace-class, and we have

(6.10) ‖t‖,0(E)‖1 ≤
c

√

|E|
(1 + E

1/4
+ )

with c independent of E.
Assume j < q. Then (6.9), (6.10), and (2.7) imply t‖(2b(q − j) + λ+ η) ∈ S1, and

(6.11) ‖t‖(2b(q − j) + λ+ η)‖1 = O(1), η → 0.

Finally, for any l ∈ Z+ we have t⊥,l ∈ S1, and

(6.12) ‖t⊥,l‖1 =
b

2π

∫

R2

〈X⊥〉−m⊥dX⊥

(see e.g. [9, Subsection 4.1]). Bearing in mind the structure of the operator Tj (see
(6.7)) and the boundedness of the operator M , we find that Tj(2b(q − j) + λ+ η) ∈ S1,
and due to (6.11) and (6.12), estimate (6.6) holds true. �

Now set P+
q :=

∑∞
j=q+1 pj, q ∈ Z+, the convergence of the series being understood in

the strong sense. For z ∈ C+ set

T+
q (z) := W (H − z)−1P+

q W.

Proposition 6.3. Assume that v0, V , and λ, satisfy the hypotheses of Theorem 6.1,
and η ∈ R satisfies (6.4). Fix q ∈ Z+. Then the operator-norm limit

(6.13) T+
q (2bq + λ+ η) = lim

δ↓0
T+

q (2bq + λ+ η + iδ)

exists in L(L2(R3)). Moreover, T+
q (2bq + λ+ η) ∈ S2, and

(6.14) ‖T+
q (2bq + λ+ η)‖2 = O(1), η → 0.
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Proof. Due to (2.3), the operator-valued function

C+ ∋ z 7→ (H − z)−1P+
q 7→ L(L2(R3))

admits an analytic continuation in {ζ ∈ C |Re ζ < 2bq}. Since λ + η < 0, and W is
bounded, we immediately find that the limit in (6.13) exists. Evidently, the operator-
valued function C+ ∋ z 7→ (H0 − z)−1P+

q 7→ L(L2(R3)) also admits an analytic contin-
uation in {ζ ∈ C |Re ζ < 2bq}, and for E = 2bq + λ+ η we have

(6.15) T+
q (E) = W (H0 −E)−1P+

q (W − v0(H −E)−1P+
q W ).

Arguing as in the proof of [16, Proposition 4.2], we obtain

W (H0 − 2bq − λ− η)−1P+
q ∈ S2,

and

(6.16) ‖W (H0 − 2bq − λ− η)−1P+
q ‖2 = O(1), η → 0.

Since λ < 0, we have

(6.17) ‖W − v0(H − 2bq − λ− η)−1P+
q W‖ = O(1), η → 0.

Putting together (6.15) and (6.16)-(6.17), we obtain (6.14). �

6.3. In this subsection we prove Theorem 6.1.
Suppose that η ∈ R satisfies (6.4). Fix q ∈ Z+. Set

T (2bq + λ+ η) := T−
q (2bq + λ+ η) + Tq(2bq + λ+ η) + T+

q (2bq + λ+ η),

where
T−

q (2bq + λ+ η) =
∑

j<q

Tj(2bq + λ+ η).

Note that the operators Tq(2bq + λ+ η) and T+
q (2bq + λ+ η) are self-adjoint.

By Pushnitski’s representation of the SSF for sign-definite perturbations (see [28]), we
have
(6.18)

ξ(2bq+ λ+ η;H ± V,H) = ±1

π

∫

R

n∓(1,ReT (2bq+ λ+ η) + s ImT (2bq+ λ+ η))
ds

1 + s2
.

By (6.18) and the well-known Weyl inequalities, for each ε ∈ (0, 1) we have

n∓(1 + ε;Tq(2bq + λ+ η)) − Rε(η) ≤ ±ξ(2bq + λ+ η;H ± V,H) ≤

(6.19) n∓(1 − ε;Tq(2bq + λ+ η)) +Rε(η)

where
Rε(η) :=

n∗(ε/3; ReT−
q (2bq + λ+ η)) + n∗(ε/3;T+

q (2bq + λ + η)) +
3

ε
‖T−

q (2bq + λ+ η)‖1 ≤

(6.20)
6

ε

∑

j<q

‖Tj(2bq + λ+ η)‖1 +
9

ε2
‖T+

q (2bq + λ+ η)‖2
2 = O(1), η → 0,
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due to Propositions 6.1 – 6.2.
Next, set

τq = W (pq ⊗ p‖)W, T̃q(λ+ η) := W (pq ⊗ (H‖ − λ− η)−1(I‖ − p‖))W,

provided that η ∈ R satisfies (6.4). Evidently,

Tq(2bq + λ+ η) = −η−1τq + T̃q(λ+ η).

Applying again the Weyl inequalities, we get

n±(s(1 + ε)|η|; (sign η)τq) − n∗(sε; T̃q(λ+ η)) ≤ n∓(s;Tq(2bq + λ+ η)) ≤

(6.21) n±(s(1 − ε)|η|; (sign η)τq) + n∗(sε; T̃q(λ+ η))

for each s > 0, ε ∈ (0, 1), and η satisfying (6.4). Note that since pqUpq ≥ 0 we have

(6.22) n±(s|η|; (sign η) τq) =

{

n+(s|η|; pqUpq) if ± η > 0,
0 if ± η < 0,

for every s > 0. Further,

(6.23) T̃q(λ+ η) = M(t⊥,q ⊗ t̃‖(λ+ η))M

where
t̃‖(λ+ η) := 〈x3〉−m3/2(H‖ − λ− η)−1(I‖ − p‖)〈x3〉−m3/2.

Obviously,

(6.24) ‖t̃‖(λ+ η)‖ ≤ ‖(H‖ − λ− η)−1(I‖ − p‖)‖ = O(1), η → 0.

On the other hand, similarly to (6.9) we have

(6.25) t̃‖(λ+ η) = t‖,0(λ+ η)(I‖− M̃ t̃‖(λ+ η))−〈x3〉−m3/2(H0,‖−λ− η)−1p‖〈x3〉−m3/2.

Since p‖〈x3〉−m3/2 is a rank-one operator, we have

‖〈x3〉−m3/2(H0,‖−λ−η)−1p‖〈x3〉−m3/2‖1 ≤ ‖〈x3〉−m3/2(H0,‖−λ−η)−1‖‖p‖〈x3〉−m3/2‖2 ≤

(6.26)

∫

R

〈x〉−m3ψ(x)2dx |λ+ η|−1 = O(1), η → 0.

Putting together (6.25), (6.10), (6.24), and (6.26), we get

(6.27) ‖t̃‖(λ+ η)‖1 = O(1), η → 0,

which combined with (6.23) and (6.12) yields

(6.28) n±(s; T̃q(λ+ η)) ≤ s−1‖T̃q(λ+ η)‖ = O(1), η → 0.

Now (6.2) – (6.3) follow from estimates (6.19) – (6.22), and (6.28).

Acknowledgements. M. A. Astaburuaga and C. Fernández were partially supported
by the Chilean Laboratorio de Análisis Estocástico PBCT - ACT 13. Philippe Briet and
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de Chile, Vicuña Mackenna 4860, Santiago de Chile

E-mail address : angelica@mat.puc.cl
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