Large deviations for Gaussian stationary
processes and semi-classical analysis
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Abstract In this paper, we obtain a large deviation principle for quadratic forms of Gaussian
stationary processes. It is established by the conjunction of a result of Roch and Silbermann on
the spectrum of products of Toeplitz matrices together with the analysis of large deviations carried
out by Gamboa, Rouault and the first author. An alternative proof of the needed result on Toeplitz
matrices, based on semi-classical analysis, is also provided.
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1 Introduction

For any bounded measurable real function f on the torus T = [—, 7|, the ¢2(N) Toeplitz and
Hankel operators are respectively defined as
T = (Fs) o, md HO) = (Fan) 1)

where (fn) stands for the sequence of Fourier coefficients of f. We refer the reader to the books
of Bottcher and Silbermann [3], [4] for a general presentation of Toeplitz operators. A well-known
identity between the product T'(f)T(g) and T'(fg) is

T(f9) —T(f)T(9) = H(f)H(9) (2)

where g(x) = g(—x). The analogue of identity (2) for finite section Toeplitz matrices is given by
the formula of Widom [16]

To(fg) — Tn(f)Tn(9) = PnH(f)H(9) P + QuH (f)H(9)Qn (3)
where the projection P, and the operator @), are given by

Pn(xo,l‘l,.fg,...) = (zo,xl,...,xn,(),...),

Qn(xO,xlaan .. ) = (xna'rn—h e ax070a .. ')a
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and T,,(f) is the finite section of order n > 1 of T'(f) which means that T,,(f) is identified with
P, T(f)P,. In other words, our operators will be considered as operators on Im P and Im P,, where
P stands for the projection operator on ¢?(N). We clearly have Q2 = P,, P,Q,, = Q.P, = Qp,

The classical Szeg6 theorem deals with the asymptotic behavior of the spectrum of a single
Toeplitz matrix. It states that if f is a bounded measurable real function on T, the limiting set of
eigenvalues of the sequence (T,,(f)) is exactly

o(T(f)) = [essinff, esssupf],

where o(T(f)) denotes the spectrum of the operator T'(f). Moreover, the empirical spectral mea-
sure of (T),(f)) converges to Py which is the image probability of the uniform measure on T by
the application f. In other words, if AJ,..., A\ are the eigenvalues of T),(f), then for any bounded
continuous real function ¢

m LY =L x))dz
dm 0300 = 5 [etr@)a. n

In particular, the maximum eigenvalue of T, (f) converges to esssupf while the minimum eigen-
value of T,,(f) converges to essinff. One can find more details in Section 5.2 of [10] or in Section
5.4 of [4]. Our purpose is to make use of similar results for the spectrum of the product of two
Toeplitz matrices T, (f)T,,(g). Several authors have investigated the asymptotic behavior of the
spectrum of T, ( f)T},(g). More precisely, it was shown in Lemma 5 of [1] or Lemma 2.6 of [15] that
if f and g are two bounded measurable real functions on T, then the empirical spectral measure
associated with the sequence (7),(f)T5(g)) converges to the limiting measure Py,. However, the
limiting set of eigenvalues of (T}, (f)T(g)) is much more difficult to understand. Via a theorem of
Roch and Silbermann, we shall see that, as soon as f and g > 0 are bounded piecewise contin-
uous real functions, the limiting set of eigenvalues of (T;,(f)T(g)) coincides with the spectrum
of the limiting operator T'(f)T'(g). In particular, the maximum and the minimum eigenvalues of
T,.(f)T.(g) both converge to the maximum and minimum of the spectrum of T'(f)T'(g).

In this paper, we make use of the previous results on Toeplitz operators to obtain a large
deviation principle (LDP) for quadratic forms of Gaussian stationary processes. More precisely,
consider a centered stationary real Gaussian process (X,) with bounded piecewise continuous
spectral density g. It was shown in [1] an LDP for subsequences of the empirical periodogram
Wh(f)) integrated over a bounded piecewise continuous real function f. We can now deduce a
full LDP for the sequence (W, (f)).

We also give an alternative proof of the theorem of Roch and Silbermann in the particular case
of Toeplitz operators with continuous symbols. Our approach is based on semi-classical analysis
and scattering theory by construction of quasimodes which are approximative eigenvectors. We
hope that this microlocal approach can be used in other situations.

The paper is organized as follows. In Section 2, we recall a theorem of Roch and Silbermann.
Section 3 is devoted to the application in probability. An enlightening example is treated in
Section 4. Then, we give our alternative proof of the result of Roch and Silbermann in the case
of Toeplitz operators with continuous symbols. This result and our functional point of view on
Toeplitz operators are given in Section 5. The convergence of the spectrum is proved in Section
6. Finally, in Section 7, we propose an alternative proof of Coburn’s theorem dealing with the
essential spectrum of products of Toeplitz operators.
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2 Results on Toeplitz operators

Denote by A the Banach algebra of all sequences (4,) of uniformly bounded linear operators
on Im P,, endowed with the sum and the composition term by term, and the supremum of the
operator norm of the elements. Let B be the collection of all sequences (A,) of A for which one
can find two bounded linear operators A and A in Im P such that

A, = A, AL AT QuALQ. — A, QuALQ, — A

where * stands the adjoint operator and — stands for the strong convergence. Finally, denote by
C the smallest closed subalgebra of A containing the collection of all sequences (7, (f)) where f
are bounded piecewise continuous real functions. In fact, C is a subalgebra of 5 and

To(f) = T(f),  QuTu(f)Qn — T(f).

We refer to Section 2.5 of [4] for more details on B. We are now in position to state a theorem of
Roch and Silbermann.

Theorem 2.1 (Roch—Silbermann) Let (T,,) be a sequence of selfadjoint operators of C. More-
over, denote the strong limits of T,, and Q,,T,,Q,, by T and T, respectively. For A\ € R, the following
properties are equivalent:

i) A e a(T)Uo(T),
i1) A is the limit of a sequence (\,) where \,, € o(T},),
ii1) A is the limit of a subsequence (A, ) where A, € o(T},).

Theorem 2.1 was established in [14] together with several examples of application. It is given,
in its present form, in Theorem 4.16 of [4].

A direct application of this result is as follows. First of all, let us introduce some notations. Let
f and g be two bounded piecewise continuous real functions with g > 0. From Lemma 6.1 below,
the sequence (T, (g)"/?) as well as (T,,(9)"/*>T,,(f)T,.(9)"/?) belong to C,

T,(9)*Tu(£)T0(9)"/* = T(9)'*T(f)T(9)"/?,
QuTu(9)*Tu(£)T0(9)2Qn — T@)*T())T(G)'/2.
On Im P,, we clearly have
o (T(£)T0(9)) = o (Tu(9)*Tu(£)Tn(9)"/?),
with the same multiplicity. Moreover, by Lemma 6.6, we also have on Im P
o(T(9)*T(£)T(9)"?) = o(T(H)T(9)) = o(T(HT(@)) = o(T@*T(HT@"?).
Denote the maximum and minimum eigenvalues of T, (f)T,(g) by

Anax (f5 )—maXU(Tn(f)Tn( ))

In addition, denote the extrema of the spectrum of T'(f)T(g) by

Amax(f, ) = maxo (T(f)T(g)),
)\min(fa g) = man(T(f)T(g)>

One can observe that, in general, we do not know if Apax(f, ¢) and Anin(f, g) are eigenvalues.
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Corollary 2.2 Assume that f and g are two bounded piecewise continuous real functions on
T with g > 0. Then, the limiting sets of eigenvalues of the sequence (T, (f)T,(g)) are given by
o(T(f)T(g)). In particular,

nli)nolo Arnax(f ) = Amax(f, g)) (1)
Jim A (£,.9) = Amin(f, ) @

In Section 4, we shall show via an example related to Gaussian autoregressive process that it is not
true in general that for two bounded continuous real functions f and g, Amax(f,g) = sup(fg) or
Amin(f; g) = inf(fg). One can also observe that the norm of T'(g)'/2T(f)T(g)/? is not always equal
t0 | f9lloo OF || floo]lg]|co- The situation is totally different from the case of a single Toeplitz operator
T(f) with bounded continuous real function as Ayax(f,1) = sup(f) and Ayin(f, 1) = inf(f).

3 Application in probability

Let (X,,) be a centered stationary real Gaussian process with bounded piecewise continuous spec-
tral density g > 0 which means that

B, X0 = o [ explily ~ Ba)gla) da.

We assume in all the sequel that g is not the zero function. For any bounded piecewise continuous
real function f on the torus T, we are interested in the asymptotic behavior of

271_n/f ZX exp(ijx)

The purpose of this section is to provide the last step in the analysis of the large deviation properties
of Wi (f)) by establishing an LDP for (W,,(f)) in the spirit of the original work of [1] or of Bryc
and Dembo [6]. We refer the reader to the book of Dembo and Zeitouni [7] for the general theory

i (1)

on large deviations. The covariance matrix associated with the vector X(™ = (Xy,..., X,)? is
T,.(g). Consequently, it immediately follows from (1) that
1 1
Wa(f) = S XU, ()X = —Y O, (9) 2T (f)Ta(g) 2y ) (2)
n n

where the vector Y has a Gaussian N(0,1,,) distribution. In order to investigate the large
deviation properties of (W, (f)), it is necessary to calculate the normalized cumulant generating
function given, for all ¢t € R, by

L,(t) = %logE[eXp(nth(f))].

For convenience and in all the sequel, we use of the notation that logt = —oo if ¢ < 0. We deduce
from (2) and standard Gaussian calculation that for all t € R

1
Li(t) = = 5~ logdet (I, = 2tT;,(9) /T (£)T(9)'/?)
1 n
= — — log(1 — 2t\?
on I;J Og( k)v

where A2, ..., A" are the eigenvalues of T}, (¢)"/?T,(f)T,(g)"/?. For all t € R, let
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Liot) =~ [ Tox(1 = 2t (@)gw)) do.

and denote by Iy, its Fenchel-Legendre transform
Ig(x) =sup{at — Lgy(t)}.
teR

Furthermore, for all z € R, let

Ifg(a)—i—m(aﬁ—a) if x €] — 00, d]
Tra(a) = { Ir,(a) it o €a,b 3)
Ifg(b)—Fm(l‘—b) ifz e [b,+OO[

where a and b are the extended real numbers given by

. 1
‘= Lfg (2)\min(fv g))

if Amin(f,9) < 0 and Apin(f, 9) < inf(fg), a = —oo otherwise, while

) 1
b= Lo (%max(f, g>>

if Amax(fy9) > 0 and Apax(f,9) > sup(fg), b = 400 otherwise. We immediately deduce from
Theorem 1 of [1] together with Corollary 2.2, that an LDP holds for (W, (f)).

Theorem 3.1 The sequence WV, (f)) satisfies an LDP with good rate function Jt,. More pre-
cisely, for any closed set F' C R

1
limsupﬁlogP(Wn(f) eF)< —;1612 Jrq(2),

n—oo

while for any open set G C R

1
lim inf — log P(W,,(f) € G) > — inf J;,(x).

n—oo n zeG

Remark 3.2 Denote by p the derivative of Ly, at point zero

1

= 57 | F@o@yia.

I

Then, we have Jyq(p) = 0 and it follows from Theorem 3.1 that for all x > 1
li ! log P(W. >z)=—-J
nlﬁn;oﬁ og ( n(f) —w)*i fg(x)a

whereas for all x < p

lim llog]P’(VVn(f) <z)=—Jpg(x).

n—oco N
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4 An illustrative example

Let a and 0 be two real numbers with |§] < 1 and consider the two bounded continuous real
functions f and g given by

1

f(z) = a+ cos(z) and g(x) = 1462 — 20 cos(z)

The goal of this section is to study the limiting set of eigenvalues of the sequence (T, (f)Tn(g)). We
clearly have ||f||oo = |a| + 1 and ||g||lcc = (1 —|6])~2. The function g is simply the spectral density
of a Gaussian autoregressive process [1]. If § = 0, g = 1 and the product T,,(f)T(g) reduces to
T,.(f). Consequently, Apmax(f,1) = a+ 1 and Apin(f, 1) = a — 1. If § # 0, denote

1+46
aez—(+) and by = —

(1-9)
26 '

20

It is more convenient to work with the inverse of T},(g). As a matter of fact, T,,(g) ~* is a tridiagonal
matrix quite similar to 7},(g~!) except that, at the two diagonal corners of T},(g~!), the coefficient
1+ 6?2 is replaced by 1

1 -6 0

—-01+6% -6
T.(9)"' =
-0 1+6%-0
0 -0 1

It is not hard to see that det(7},(g)~') = 1 — #%. In order to find the eigenvalues A of the product
T.(f)T.(g), it is equivalent to calculate the zeros of its characteristic polynomial which correspond
also to the zeros of det(M,,(t)) where

Mn(t) = tTn(f) - Tn(9)71

with ¢ = 1/X\. As T,,(f) and T,(g)~! are both tridiagonal matrices, we can easily compute
det (M, (t)). Via the same lines than in Lemma 11 of [1], we find that for n large enough, M, (t) is
negative definite only on the domain D = D; U Dy with

D, = {—292 <p<—6%and ¢* < —492(p+92)},

Dy = {p < —20% and p < —\q|}a

where p = at — (1 + 6?) and q = t + 20. In term of the variable \, the inverses of the boundaries
of D give the extrema of o(T(f)T'(g)) that is Amax(f, 9) and Amin(f, g). After some tedious but
straightforward calculations, we obtain three inverses of the boundaries

a—1 a+1 1

1+0)2 1-0)2 46(1+ ab)’

Two of them coincide with inf(fg) and sup(fg). It only depends on the location of a with respect
to —(1 + 62)/(20). The last one can be Apax(f,g) > sup(fg) or Amin(f,g) < inf(fg). It only
depends on the sign of § as well as on the location of a with respect to the interval [ag, bg]. More
precisely, if 8 > 0 then \pax(f, g) = sup(fg) while

a—1 a+1 )

1 . .
Amin(f, 9) = — 57 < nf(fg) = min <(1 +6)2" (1—-0)2

~ —460(1 + ab)

if a €]ag, bg[ and Apmin(f, g) = inf(fg) otherwise. Moreover, if § < 0 then Apin(f, g) = inf(fg) while
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a—1 a+1 )

1
Sms(1:9) = gz gy > U9 =mox (g g

if a €]ag, bg[ and Amax(f, g) = sup(fg) otherwise.

5 Toeplitz operators and functional calculus

We will prove the following result which implies Corollary 2.2 for continuous fonctions.

Theorem 5.1 Let f and g be two bounded continuous real functions with g > 0. For A € R, the
following properties are equivalent:

i) A e a(T(f)T(9)),
ii) A is the limit of a sequence (\,) where \,, € o(T,,(f)Tn(9)),
ii1) A is the limit of a subsequence (A, ) where \,, € o(Ty, (f)Tn,(9)).

First, let us interpret the projection operators P, and P as spectral projectors of the derivation
operator and introduce the main ingredients of the proofs.

5.1 A functional point of view

We consider the Toeplitz operators T'(f) and T,,(f) as the cut-off, in frequencies, of the operator of
multiplication by f. To be more precise, let us introduce the Fourier transform, F : L?(T) — ¢%(Z),
defined by

1 us

(.F’Ll,)k = U = % .

u(z)e” e dz.

The operator F is an isomorphism. We denote by ~! its inverse, and we introduce the projections
P and P, as

Piie?(Z) —s (...,0,0,T,11,...) € £*(Z)
P, i€ (*(Z) —s (...,0,0,Ty,qy, . .., Tn,0,0,...) € *(Z).

On the other hand, if we identify f € L>(T) with L(f), the bounded operator defined on L?(T)
by
u € L*(T) — fu € L*(T),

we have

T(f)=PfP and T,(f) =P, fP,,

with P = F~'PF and P, = F~'P,F. In the following, we will systematically identify f with the

operator L(f). Since
1d

gﬁ(eikw) _ keikx7
the derivation operator D defined on

HY(T) = {u € L*(T); %u € L3(T)} = {u € L*(T); (kin)x € £*(Z)}

by

1d
D: HYT) — = —u e L%T
ue€ H(T) pECES (T)
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is self-adjoint on L?(T) and FDF ! is the diagonal operator (kdy. ;)i jez. For any bounded Borel
function ¢, the bounded operator ¢(D) is defined with the help of the functional calculus for
self-adjoint operators. It satisfies

p(D) = F ' M(p)F,

where M () is the operator
UELL)— (..., k), ...) € L3(Z).
In particular, if 1; denotes the indicator function of the interval I, we have
Losoo(D)=P  and 1 ,(D)=1pq(n"' D)= P,.
Moreover, note that if supp(¢) C [a, b], we have the trivial properties
Lia,5)(D) o(D) = ¢(D) and 1 (D)™ =™ 1,y k(D).

In the rest of the paper, a function is a of_,,(1) if, for each ¢ fixed, the function goes to 0 as a

tends to b. In the same way, a function is a O°(1) if, for each ¢ fixed, the function is a O(1).

5.2 A commutator estimate

In this subsection, we recall a standard result of the functional analysis. For p € R, we denote by
SP(R) the class of functions ¢ in C*°(R) such that

[05¢(s)| < Cils)’™,
for k > 0. Here (z) = (1 + |z|?)'/2.

Lemma 5.2 (Lemma C.3.2 of [8]) Let A, B be self-adjoint operators on a Hilbert space with
B and [A, B] bounded. If ¢ € SP(R) with p < 1, then

Ile(A), BlI| < Co|l[A, BI||-
Here, [A, B] = AB — BA denotes the commutator. The constant C, only depends on .
Applying this lemma, we immediately obtain
Lemma 5.3 Let f € C%(T) and ¢ € S?(R) with p < 0. Then
[9(=D), f] = 0eo(1).

Proof. By Weierstrass’s theorem, there exist f, € C!(T) satisfying fr — f in L°(T). Then,
viewed as operators, we have fi, — f. Remark that [eD, fx] = —eif,. From Lemma 5.2, we obtain

lle(eD), fulll < eColl filloo-

Then, using the assumption that ¢ is bounded,

[@(gD)v f] :[W(‘ED)’ fk] + Ok—)oo(l) = Ok(E) + 0k—>oo(1)
:06~>O(1)7

since [p(eD), f] does not depend on k. O
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5.3 Essential spectrum of the product of Toeplitz operators

Here, we recall, in our setting, a consequence of a theorem of Coburn [5] concerning the essential
spectrum of the product of Toeplitz operators. This result has been extended by Douglas to a
more general framework (see [12, Theorem 4.5.10]). We shall give in section 7 an alternative proof
of the following theorem, more related to our approach.

Theorem 5.4 (Coburn) Let f and g be two bounded continuous real functions with g > 0. The
bounded self-adjoint operator T(g)'/?>T(f)T(g)'/? satisfies on Tm P

0ess (T(9)*T(£)T(9)"/?) = [inf(fg),sup(fg)].
Here, 04ss(A) denotes the essential spectrum of A.

In Theorem 5.4, the operator T'(g)'/2T(f)T(g)*/? is viewed as an operator on Im P. On L3(T),
this operator is a block diagonal operator with respect to the orthogonal sum L? = Im P&+ Im(1—
P) and is equal to 0 on Im(1 — P). In particular, we have

Remark 5.5 If the operator T(g)Y/*T(f)T(g)'/? is viewed on L*(T), we have

0ess (T(9)°T(f)T(9)"/?) = [inf(fg),sup(fg)] U{0}.

6 Proof of Theorem 5.1

The goal of this section is to prove Theorem 5.1. First of all, one can observe that part i) clearly
implies 7). In the next subsection, we first show that i) implies ).

6.1 The implication i) gives ii)

Lemma 6.1 Let f and g be two bounded piecewise continuous real functions with g > 0. Then,
To(9)*Tu(£)Tu(9)"/* — T(9)"*T(f)T(9)"/?

strongly on L*(T). If A belongs to the spectrum of T(f)T(g) on Im P, then there exists an eigen-
value A\, of T,,(f)T(g) on Im P, such that A, — A.

Proof. Since P,, — P, it follows from Lemma II1.3.8 of [11] that for all f € L*°(T), T,,(f) —
T(f). In particular, from Problem VI.14 of [13] (see also Theorem V1.9 of [13]), T;(g)*/? —
T(g)/?. Consequently, we deduce from Lemma IT1.3.8 of [11] that

T (9) P T (f)Tu(9)"/? — T(9)'*T(f)T(g)"?, (1

~—

on L?(T). In particular, we obtain on Im P
Tn(g)1/2T7L(f)Tn(g)1/2 + M(P - Pn) - T(g)1/2T(f)T(g)1/27

for all M € R. We choose i = ||f|loollgllcc and M = u + 1. Therefore, it follows from Corollary
VIII.1.6 together with Theorem VIII.1.14 of [11] that, for each A belonging to the spectrum
o(T(f)T(g)) = o(T(g9)"*>T(f)T(g)*/?) on Im P, there exists an eigenvalue \,, of the matrix

T(9) *To(f)T0(9)"/? + M(P — P,),



10 B. Bercu, J.-F. Bony, V. Bruneau

on Im P such that A\, — \. As | T(g)"?T(f)T(9)*/?| < p, we necessarily have A\ € [—pu, u] and
then M > |A|+1. In particular, for n large enough, M > |\,|+1/2. Therefore, A, is an eigenvalue
of T,,(g)'/?T,, ()T (g)'/? on Im P, because

Tn(g)l/zTn(f)Tn(g)l/2 +M(P—-P,) = Tn(g)l/QTn(f)Tn(g)l/2 e M(P — Py),

is a block diagonal operator with respect to the orthogonal sum Im P = Im P, &+ Im(P — P,). O

6.2 The implication iii) gives i)

Let Ay be a sequence of eigenvalues of Ty (f)Tv (g) such that Ay — A € R. Here N is a subsequence
of N and we have to show that A is in the spectrum of T'(f)T(g). From Theorem 5.4, we know
that [inf(fg),sup(fg)] is always inside the spectrum of T'(f)T'(g). Thus, we can assume that

A ¢ [inf(fg),sup(fg)]. (2)

By Weierstrass’s theorem, there exists a sequence of functions (fx) € C°°(T) such that fi, — f
in L>(T) and supp fr C [k, k]. We also consider (gi) a sequence corresponding to g with the
same properties mutatis mutandis. In particular, for all n € N,

To(f) = Tn(fr) + 0k —o00(1) and T(f) =T(fr) + ok—oo(1). (3)

Recall that, by definition, a 0g_oo(1) is uniform with respect to n.
Finally, let uy € Im Py be an eigenvector of T (f)Tn(g) associated with Ay and satisfying
|lun]] = 1. From (3),

TN(f)TN(g)UN = ANuny = Auy + ON*}OO(l) (4)
In(fe)Tn(gr)un = AN + 0N o0 (1) 4 0k oo (1). (5)

In the following, we denote D,, = n=1D.

6.2.1 Localization of the eigenvectors

Lemma 6.2 Let ¢ € C5°(]0,1[). Then, in L*(T) norm,
@(DN)uN = ON—00(1).
Proof. From Lemma 5.3, we have

o(Dn)TN(f) =p(DN)1j0,1)(Dn) fLlio1(Dn) = @(Dn) fLjo,1(DnN)
=fo(Dn)1jo1)(DN) + 0N —oo(1)
=fp(DN) + on—eo(1). (6)

Applying two times this estimate, we obtain

o(DN)TN(f)Tn(g)un = fe(DN)TN(9)un + on—oo(1)
= fgo(DN)un + ONoo(1).

Then, (4) gives
(fg = MNe(Dn)un = oN—oo(1).
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Since A ¢ [inf(fg),sup(fg)], the function (fg — A)~! belongs to L>(T) and the lemma follows
from the last equation. a

1]) such that ¢ = 1 near [¢,1 — €] for ¢ > 0 small enough (we

Now, we take ¢ € C§5°(]0,1], [0,
([—¢,2¢],[0,1]) and p* € C§°([1 —2¢,1+¢], [0, 1]) be two functions

choose € = 1/8). Let ¢~ € C§°
such that
ettt =
in the neighborhood of [0, 1]. Set
uy = ¢ (Dn)un = ¢* (D)1 (Dn)un- (7)
As |luy]| = 1, it follows from Lemma 6.2 that
luy +ufll =1+ on—oo(1). (8)
In particular, we can assume, up to the extraction of a subsequence, that
N upll =13 o WN ull = 1/3.
In the next section, we will suppose that

Juyll = 1/3. (9)

The case |[u}| > 1/3 follows essentially the same lines and is treated in Section 6.2.3. But
before, we show that uy, and uj are both quasimodes of Ty (f)Tn(g) (this means that they are
eigenvectors modulo a small term).

Lemma 6.3 We have
T (fi) T (gr)uy = My + 0k 00 (1) + 000 (1).
Proof. As in (6), using Lemma 5.3, we get
(fk)TN(glc)UN =1(0,11(Dn) fr1jo,1)(Dn)gkli0,1)(Dn )™ (Dn)un
L0,11(Dn) fulo,11(Dn) g™ (D) 10,1y (D )un
(D) frdjo,1)(Dn) 0™ (Dn)grlioa)(Dn)un + 0y o0 (1)
) (Dn)

=10, (D)™ (Dn) fido,1) (D) gk 0,1 (DN )ty + 0R o0 (1)
@ (D) T (f1)Tn (gr)un + 000 (1) (10)

The lemma follows from (5), (7) and the last identity. O

1p0,1(Dn)f

6.2.2 Concentration near the low frequencies

Here, we assume (9) and we prove that uy, viewed as an element of Im P, is a quasimode of

T(fr)T(gx)-

Lemma 6.4 For 4k < N, we have
T(fi)T(gr)un = Tn(fr)Tn(gr)uy
Remark 6.5 In fact, for 4k < N < n, we have

To(fe)Tn(gr)uy = Tn(fu) T (gr)uy
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Proof. Recall that, if u,v are two functions of L?(T) such that supp @ C [a,b] and supp¥ C [c, d],
then suppuv C [a + ¢, b + d]. By definition,

T(fu)T(gr)uy = PfuPgPe~ (Dn)un = PfrPgrPne~ (Dn)un. (11)

Since supp gr C [k, k] and supp F(Pye~ (Dy)uny) C [0,N/4], the Fourier transform of the
function gy Pne~ (Dn)un is supported inside [k, N/4 + k] C [k, N]. In particular,

PgpPne™ (Dn)uny = PngePne™ (Dy)un, (12)

and the Fourier transform of this function is supported inside [0, N/4 + k]. As before, the Fourier
transform of
JePngePne™ (DN )uy

is supported inside [k, N/4 + 2k] C [k, N|. Then
PfiPngPne™ (Dn)uny = Py fiPngPne™ (Dn)un. (13)
The lemma follows from (11), (12) and (13). O
From (3), Lemma 6.3 and Lemma 6.4, we get
T()T(9)un = My + koo (1) + 0K, (1), (14)
for 4k < N. If A ¢ o(T(f)T(g)), the operator T'(f)T(g) — A is invertible and then
Uy = Op—so0(1) + 0% o (1).

From (9), we obtain 1/3 < 000 (1) + 0% _, . (1). Taking k large enough and then N large enough,
it is clear that this is impossible. Thus,

A ea(T(f)T(9)),

which implies Theorem 5.1 under the assumption (9).

6.2.3 Concentration near the high frequencies

We replace the assumption (9) by |luf;|| > 1/3. Let J be the isometry f ~— f in L2(T). One can
observe that J(uv) = J(u)J(v). Using the notation P, = 1[4 (D), we have P,y J = JP_p _q
and P[ayb]eim = eich[a_ab_c]. Combining these identities with Lemma 6.3, we get

T (J fi) T (Jgr)e™* (Juk) =Ppo,ny(J fr) Pio,ny (Jgx) Po,vie ™ (Ju)
=™ Py o) (J fr) P=n,0) (T9k) Pr— .0 (Ju)
=N J Py, N1 £1Po, 196 Plo, nu
:)\eiNz(Ju}) + 0psoo(1) + 0k, (1). (15)

In particular, Uy = e'N*(Ju}) satisfies |[uy || > 1/3,
T (Jfi)In (Jgr)tiy = My + 0k (1) + 0K L0 (1),

and the support of the Fourier transform of @y is inside [0, N/4]. Hence, we can apply the method

developed in the case ||uy|| > 1/3. The unique difference is that f, g are replaced by f,g. Then,
we obtain

x e o(T(HT)).
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Theorem 5.1 follows from the following lemma and o(T'(f)T(g)) = o(T(9)T(f)) (the spectrum of
T(f)T(g) is real and (T'(f)T(g) — 2)* = T(9)T(f) —2).

Lemma 6.6 Let f,g € L*(T). Then
o(T(HT@)) = o(T(9)T()).
Proof. For A a bounded linear operator on L?, we define A? by
(Atu,v) = (u, AD),

for all u,v € L?. Simple calculi give f* = f, P[ta_b] = Pi_y,_q); (AB)" = B*A" and then

t
T(f)" = (Po, ool f Protoof) = B—o0,01f P—co,0]-
By the same way, since J = J* = J !,
TP 0.0 f B=c0.00 = Plo oo Po.4ocl = T(f)-
Combining these identities concerning * and J, we get

J(T(HT@G) T =T (P 0.0/7P—o0.01) (B-00.0)/ Poo0]) I
=T(g)T(f). (16)

Since JA'J — z = J(A — 2)"J, A and JA'J have the same spectrum and the lemma follows. O

7 Proof of Theorem 5.4

We give here an alternative proof of Coburn’s theorem. Let ¢ € C*°(R) satisfying ¥ = 1 near
[2, +o0o] and 9 = 0 near | — o0, 1]. For £ > 0, we have on Im P

T(9)YT(f)T(9)"/* =T(9)"/*(eD)T(f)¢(D)T(9)"/* + R.
=T(9)"/*$(eD) f(eD)T(9)"/* + Re, (1)
where
Re =T(9)'/*(1 = (eD)T(S)(eD)T(9)"/* + T(9)"*T(f)(1 — ¥(eD)T(9)"?,

is a self-adjoint operator of finite rank. Recall that if A > 0 is a bounded operator with || A|| < 1,
then

—+o0
U S
=0
where [|[1 — A|| <1 and }7;5, ;| <2 < +o00. On the other hand, Lemma 5.3 implies

T(9)(eD) =PgPy(eD) = Pgip(eD) = Pip(eD)g + 0—0(1)
=(eD)g + 0=—0(1), (2)

Then, for a fixed § > 0 such that |T(g)| < |lg]lec < 7!, we have
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T(9)"/*y(D) =5’1/2T(59)1/2¢(8D)

1/220 1 —T(69))4(eD)
=5 1/22 T(69))" (D) + 0 00(1)

J
612y (eD) ch (1=69)7 + 05500(1) + 0Z,5(1)
7=0
:5_1/2¢(6D)(5g)1/2 + 0Jaoo(1) + 05*}0(1)
=(D)g""? + 0.50(1), (3)

since these quantities do not depend on J. Using this identity and its adjoint, (1) becomes

T(9)"*T(f)T(9)"/* =(eD) fgvo(eD) + Re + 0—50(1)
=T(fg) + R- + e, (4)

where e. = 0.,(1) and
R. = R. + ((eD) = )T(fg)¢(eD) + T(fg)(1)(eD) — 1),
is a self-adjoint operator of finite rank. In particular, e, is a self-adjoint operator. Since, on Im P

inf(fg) < T(fg) < sup(fg),

we get o(T(fg) +ec) C [inf(fg) — 0c—0(1),sup(fg) + 0-—0(1)]. As R, is of finite rank, we obtain,
from Weyl’s theorem [13, Theorem S.13],

Oess (T(g)l/QT(f)T(g)l/Q) = 0ess(T(fg) +ec) C [inf(fg) —0:50(1),sup(fg) + OE—>O(1)}'
As the essential spectrum of T(g)Y2T(f)T(g)'/? does not depend on ¢, we get
oess (T(9)*T(f)T(9)"/?)  [inf(fg),sup(fg)], (5)

which is the first inclusion of Coburn’s theorem.
Now, let ¢ € C*°([-1,1],[0,1]) with ||¢||z2 = 1. For g € T and o, 8 € N, we set

u= a1/2<p(a(:c — zo))e’ﬁz and v=PueclmP,
which satisfies |Ju|| = 1. We have

(1-Pu :a1/21]_myo](D)ei5w<p(a(x — zp))
:al/2eiﬂm117w77ﬂ] (D)(p(oz(a: — 3:0))
:al/QeiB””l]_oo)_ﬁ](D)(D +4)"M(D + )M (o — 20))
=0 (5~ Mal), (6)

in L? norm for any M € N. Moreover, for a continuous function ¢, we have
lu = é(xo)al/%(a(m —20)) e + 00100 (1), (7)

in L2 norm. Using that ||T(¢)/2]| < ||¢||:L%, for all function £ € L* with £ > 0, we get
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T(f)T(g)v =PfPgPu= PfPgu+ O(af™")
=g(xo)PfPu+ (’)(aﬂ_l) + On—oo
=g(xo)Pfu+ O(aﬁfl) + 0a—oo(1)
=(fg)(xo)Pu+ (’)(aﬁ_l) + 0a—00(1)
=(fg)(zo)v + O(aB™") + 0amseo(1). (8)

Taking 3 = a? — 400, (6) implies ||v]| = 1 + 04—00(1). On the other hand, (8) leads to
T(H)T(g)v = (fg)(@o)v + 0a—soc (1)
Then, (f)(z0) € o(T(/)T(9)) = o(T(g)"/*T(f)T(g)"/?). Therefore,

[inf(f9).sup(fg)] C o (T(a)"/*T()T(9)'?). (9)

1)

fg
fg

Recall that the essential spectrum of a self-adjoint bounded operator on an infinite Hilbert
space is never empty. Therefore, if inf(fg) = sup(fg), (5) implies the theorem.

Assume now that inf(fg) < sup(fg). Then [inf(fg),sup(fg)] is an interval with non empty
interior. From the definition of the essential spectrum, this interval is necessarily inside the essential
spectrum of T(g)Y/?T(f)T(g)'/?. This achieves the proof of the second inclusion of Coburn’s
theorem.
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