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2 Département de Mathématiques, Université Paris 13, Villetaneuse, France

Key words Schrödinger operator, Spectral Shift Function, operator valued pseudo-differential operators.
MSC (2000) 81Q10 35J10 35P05 47A55 47B25 47F05 47N50 47A56

We consider the three-dimensional Schrödinger operator with constant magnetic field of strength b > 0, and
with smooth electric potential. The weak asymptotics of the Spectral Shift Function with respect to b ↗ +∞
is studied. First, we fix the distance to the Landau levels, then the distance to Landau levels tends to infinity as
b ↗ +∞. In particular we give explicitly the leading terms in the asymptotics and in some case we obtain full
asymptotics expansions.

1 Introduction

The three-dimensional Schr ödinger operator with electric and constant magnetic fields can be written as:

H1(b) = (Dx +
b

2
y)2 + (Dy −

b

2
x)2 + D2

z + V (x, y, z), Dν = −i
∂

∂ν

= H0(b) + V (x, y, z),

where b represents the strength of the magnetic fields. We assume that V ∈ C∞(R3;R) and there exists p > 2,
s > 1 such that

|∂α
x ∂β

y ∂γ
z V (x, y, z)| ≤ Cα,β,γ〈x, y〉−p〈z〉−s. (1.1)

Here 〈X〉 = (1 + |X |2)1/2.
It is well known [1], [15] that the spectrum of H0(b) is absolutely continuous, equals to [b, +∞[, and has an

infinite set of thresholds bΛq = b(2q − 1), q ≥ 1 (called Landau levels). By the Weyl criterion the essential
spectrum of H1(b) and H0(b) are the same.

There are many papers dealing with different aspects of the spectral theory of H1(b). In particular, the asymp-
totics of the counting function of the number of eigenvalues of H1(b) in the gap ] −∞, b[ have been studied by
many authors in different aspects. We refer to [1],[18], [19],[16], [15], [26], [10], [20] and the references given
there.

The assumption (1.1) implies that the spectral shift function (SSF for short) ξ(λ, b) related to H1(b) and H0(b)
is well defined in the sense of distribution :

〈ξ′(·, b), f(·)〉 := tr
(
f(H1(b)) − f(H0(b))

)
, f ∈ C∞

0 (R). (1.2)

The SSF may be considered as a generalization of the eigenvalues counting function. Under suitable assump-
tions it can be identified with the scattering phase. For more details, we refer to [27] or to the survey paper [22].
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For continuous properties of ξ away from Landau levels, we refer to [7]. Let us remark that according to Theorem
5.1 of [1], the operator H could have embedded eigenvalues and then the derivative of the SSF could be locally
a Dirac distribution.

Recently a substantial progress has been given in the analysis of the spectral shift function and the works
around trace formula. Many results on the upper and lower bounds of resonances can be obtained easily by
proving an asymptotic expansion of the right hand side of (1.2) and combining it with a representation of the
derivative of the SSF related to the resonances [5], [23], [24], [6], [12], [4], [25].... For this reason, it is natural to
study the asymptotic behavior of the right hand side of (1.2) as b → +∞.

Since the distance between two Landau levels grows to infinity as b → ∞ and since the external potential is
uniformly bounded with respect to b, the effect caused by the potential V will be located near the Landau levels.

To simplify the notation and the exposition of this paper we only consider the first Landau level bΛ1 = b and
we refer to Remark 1.4 for the other Landau levels bΛq, q ≥ 2. We should say that throughout this article we
have opted for ease of exposition over generality.

Our first result is the following :

Theorem 1.1 Fix δ in ]0, +∞[, and let b 7→ κ(b) be a non-negative bounded function. We assume that either,
κ(b)b → ∞ when b tends to infinity or κ(b) = δ

2b . For f ∈ C∞
0 (] − δ, +δ[;R), there exists b0 > 0 such that for

all b > b0, we have

trL2(R3)

(
f(κ(b)(H1(b) − b)) − f(κ(b)(H0(b) − b))

)
= (1.3)

trL2(R2
y,z)

(
f(κ(b)Q(b−1)) − f(κ(b)D2

z)
)

+ Of (b−1κ(b)
1
2 )

where

Q(b−1) := D2
z + V w(b−1Dy, y, z) +

b−1

4
(∆x,yV )w(b−1Dy, y, z). (1.4)

Here and in the following, trE denote the trace on L(E). For a symbol a, aw denote the Weyl quantization (see
Section 2 and Appendix).

Using Theorem 1.1 and the b−1-pseudodifferential calculus, we prove in section 3 the following asymptotics :

Theorem 1.2 (Asymptotics near bΛ1). Let f ∈ C∞
0 (R). We assume that the support of f is independent of b.

Under the assumption (1.1), the following asymptotic holds :

〈ξ′(· + b, b), f(·)〉 = trL2(R3)

(
f(H1(b) − b) − f(H0(b) − b)

)
(1.5)

= bγ1(f) + γ0(f) + O(b−1), b → +∞,

with

γ1(f) =
1

2π

∫ ∫

R2

trL2(Rz)

(
f(D2

z + V (x, y, z)) − f(D2
z)

)
dxdy,

γ0(f) =
1

8π

∫ ∫

R2

trL2(Rz)

(
∆x,yV (x, y, z)f ′(D2

z + V (x, y, z))
)
dxdy+

1

2π

∫ ∫

R2

trL2(Rz)

(
T (∂xV, ∂yV ) − T (∂yV, ∂xV )

)
(x, y)dxdy,

where T is the operator valued function of two operators defined by (3.5).

Theorem 1.3 (Asymptotics away from bΛ1). Let f and κ(b) be as in Theorem 1.1 and Theorem 1.2. In
addition, we assume that κ(b) → 0 as b tends to infinity. We have the following asymptotics expansion: for all
M, N ∈ N

1

κ(b)
〈ξ′(

·

κ(b)
+ b, b), f(·)〉 = trL2(R3)

(
f(κ(b)(H1(b) − b)) − f(κ(b)(H0(b) − b))

)
=
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b

N∑

k=0

κ(b)
1
2 +kβk(f)+

M∑

k=0

κ(b)
1
2+kαk(f)+O(min(b−1κ(b)

1
2 , bκ(b)N+1, κ(b)M+1)), b → +∞, (1.6)

with

β0(f) =
2

(2π)2

∫ ∫ ∫

R3

V (x, y, z)dxdydz ×

∫ ∞

0

f ′(r2)dr.

Notice that, in the case where b−1 = O(κ(b)∞), Theorem 1.3 gives a full asymptotic expansion in powers of
κ(b) given by the first sum in (1.6).

Let us introduce the (x, y)-dependent spectral shift function ξx,y(λ) corresponding to the pair (−∆z +
V (x, y, z),−∆z). Then γ1(f) can be expressed in term of ξ′x,y(λ):

γ1(f) = (2π)−1

∫ ∫
〈ξ′x,y(.), f〉 dxdy.

Let f be in C∞
0 (]0, δ[). By a change of variables, we have:

β0(f) =
1

2(2π)2

∫

R

f(t)t−
3
2 dt

∫ ∫ ∫

R3

V (x, y, z)dxdydz.

The asymptotics (1.5) and (1.6) tell us that the following asymptotics hold in D′ as b → ∞:

(2πb−1)ξ′(t + b, b) →

∫ ∫
ξ′x,y(t) dxdy,

1

b
(

t

κ(b)
)3/2ξ′(

t

κ(b)
+ b, b) → (2(2π)2)−1

∫ ∫ ∫

R3

V (x, y, z)dxdydz.

To our best knowledge, there is only two results concerning the spectral shift function corresponding to
(H1(b), H0(b)) for large b. The first one is due to [7], and the second is the recent paper of L. Michel [17].
In [7], the first term of the asymptotic (in the strong sense) of

∆1 3 λ → ξ(λ + bΛq + Eb, b)

is given for E = 0 (near the Landau levels) or E > 0 (far from the Landau levels) without remainder estimate
(under weaker assumption on V ). Here ∆1 is some compact (b-independent) interval in (0, +∞). In [17], the
Schr ödinger operator with constant magnetic field is considered in all dimension. For energy far from Landau
levels and under weak assumptions on V , L. Michel [17] obtains the first term of the asymptotic of the scattering
amplitude and complete asymptotic expansion of the scattering phase (which can be identified with the SSF).

For b fixed, the behavior of the SSF is also studied into two directions: In [13], the behavior of ξ(λ + bΛq) is
considered as λ → 0 and in [8] the high energy asymptotics is discussed.

In the 2D dimensional case, a Weyl type asymptotic with optimal remainder estimate for the counting func-
tion of eigenvalues was obtained in [10]. In our case the situation is more complicated, since our operator are
L(L2(Rz))-valued symbol. This question will be treated elsewhere. On the other hand, for the weak asymptotics,
our proofs are very simple. We don’t need the construction of Grushin problem as in [10].

Remark 1.4 Similar techniques could be applied near other Landau levels. In this case we prove the same
asymptotics expansions and the leading terms of the weak asymptotics near bΛq and away from bΛq are indepen-
dent of q.

The paper is organized as follows: In the next section, we introduce some notations and prove Theorem 1.1.
In section 3, we develop some b−1-pseudodifferential calculus and prove Theorem 1.2 and Theorem 1.3. In an
appendix, we recall some results on h-pseudodifferential calculus with operator valued symbol.
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2 The strong field reduction

Throughout this section we assume that the assumptions of Theorem 1.1 are satisfied and we prove Theorem 1.1.
In this work we will use the standard notations for symbols and pseudodifferential operators (see [21], [11],

[15]).
Let m : R

2d → [0,∞[ be an order function (see Definition 7.5 in [11]), we define the class of semi-classical
symbols on T ∗

R
d = R

2d:

S(R2d, m) = {a(x, ξ; h) ∈ C∞(R2d×]0, 1]); ∀α, β ∈ N
d, ∃ Cα,β ,

|∂α
x ∂β

ξ a(x, ξ; h)| ≤ Cα,β m(x, ξ)}. (2.1)

In the special case when m = 1 we will write S(R2d) instead of S(R2d; 1).
If a = a(x, ξ; λ, h) depends also on some parameter λ ∈ Ω, we say that a ∈ S(R2d, m), if the constant Cα,β

in (2.1) is independent of λ ∈ Ω.
When the symbol a is an operator in L(K, L), (K, L being subspaces of a Hilbert space), |.| denote the norm

in L(K, L) and the associated class of symbols will be denoted by S(R2d, m;L(K, L)).
Let a(x, ξ; h) ∈ S(R2d, m). We say that a(x, ξ; h) has an asymptotic expansion in powers of h in S(R2d, m),

and we write

a(x, ξ; h) ∼

∞∑

j=0

aj(x, ξ)hj in S(R2d, m),

if for every N ∈ N, h−(N+1)(a −
∑N

j=0 ajh
j) ∈ S(R2d, m).

We will use the standard Weyl quantization of symbols. More precisely, if P (x, ξ) is a function on T ∗
R

d

satisfying suitable estimates, P w(y, Dy) is the operator defined by

P w(y, Dy)u(y) = (2π)−n

∫ ∫

R2d

ei(y−y′)·ηP (
y + y′

2
, η)u(y′)dy′dη,

for u ∈ S(Rd), the class of rapidly decreasing functions. Sometimes we will quantize a function P (x, y, ξ, η)
only with respect to the variable (y, η): in this case we will denote by P w(x, y, ξ, Dy) the operator obtained as
above by considering (x, ξ) as a parameter.

Finally, when P (x, ξ) is a function on T ∗
R

d (possibly operator valued), we denote by P w(x, hDx) the semi-
classical quantization obtained as above by quantizing P (x, hξ). In an appendix, we recall some results on
h-pseudodifferential calculus.

By using a symplectic change of variables (see [14], [15]), we have :

Proposition 2.1 There exits a unitary operator U ∈ L(L2(R3)) such that:

UH0U
∗ = H̃0 + b, UH1U

∗ = H̃1 + b

where

H̃0 = b(D2
x + x2) ⊗ Iyz + Ixy ⊗ D2

z − bIxyz, (2.2)

H̃1 = H̃0 + V w(b−
1
2 Dx + b−1Dy, y − b−

1
2 x, z), (2.3)

are the self-adjoint operators with domain D := B2(Rx) ⊗ L2(Ry) ⊗ H2(Rz), B2(Rx) being the domain of
the Harmonic Oscillator (D2

x + x2).

For the simplicity of the notation we will note V w instead of V w(b−
1
2 Dx + b−1Dy, y − b−

1
2 x, z). Let fn,

n ∈ N
∗ be the n-th normalized Hermite function:

(D2
x + x2)fn = Λnfn, Λn = 2n − 1 ‖fn‖L2 = 1.

We then introduce the following operators :

Π : L2(R3) → L2(R3), v 7→ 〈v(., y, z), f1〉f1(x),
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where 〈., .〉 denotes the scalar product on L2(Rx).
Obviously,

Π ◦ Π = Π.

From now on, we denote :

Π̂ := 1 − Π, Ĥj = Π̂H̃jΠ̂, j = 0, 1.

The following lemma is a simple consequence of the spectral theorem, the fact that V w is uniformly bounded

with respect to b as well as the fact that σ
(
Ĥ0

)
= [2b, +∞[.

Lemma 2.2 Fix δ in ]0, +∞[, and let b 7→ κ(b) =: κ be a non-negative bounded function. We assume that
either, κb → ∞ when b tends to infinity or κ = δ

2b . There exists b0 > 0, such that for all b > b0, the operators

Ej(λ, κ) :=
(
λ − κĤj

)−1

Π̂, j = 0, 1, (2.4)

are well defined, holomorphic for λ ∈ D(0, δ) := {z ∈ C; |z| < δ}, and

‖Ej(λ, κ)‖ = O((κb)−1), (2.5)

uniformly with respect to λ ∈ D(0, δ − η) and b ∈ [b0, +∞[. Here η is some constant in ]0, δ[.

Lemma 2.3 Under the assumptions of Lemma 2.2, there exists c0 > 0 and b0 > 0, such that for all b > b0,

‖[Π, V w]〈z〉s‖ = O(b−1/2), (2.6)

and

(c0b + D2
z)Ej(λ, κ) = O(κ−1), (2.7)

uniformly with respect to λ ∈ D(0, δ − η).
Moreover, the operator [Π, V w]Ej(λ, κ) is trace class one, and

‖[Π, κV w]Ej(λ, κ)‖tr = O(1), (2.8)

uniformly with respect to λ ∈ D(0, δ − η). Here [., .] denotes the commutator: [A, B] := AB − BA.

P r o o f. First, we claim that

b1/2 [Π, V w] ∈ Opw
(
S(R6; 〈(b−1η, y)〉−p〈x〉−∞〈ξ〉−∞〈z〉−s)

)
.

Here, by a(x) = 〈x〉−∞ we mean a(x) = 〈x〉−q for all q ∈ N.
To see this, choose a function f ∈ C∞

0 (]0, 3[; [0, 1]) such that f(x) = 1 near x = 1. Obviously, f(D2
x +x2)⊗

Iyz = Π, and according to Theorem 8 in [11], we have

Π ∈ Opw
(
S(R6; 〈x〉−∞〈ξ〉−∞)

)
.

On the other hand, from (1.1) and the expression of V w, we have

V w ∈ Opw
(
S(R6; 〈(b−

1
2 ξ + b−1η, y − b−

1
2 x)〉−p〈z〉−s)

)
.

By observing that

〈(b−
1
2 ξ + b−1η, y − b−

1
2 x)〉−p ≤ C〈(b−1η, y)〉−p〈b−

1
2 x〉p〈b−

1
2 ξ〉p ≤ C〈(b−1η, y)〉−p〈x〉p〈ξ〉p,

the claim follows from the composition formula of pseudodifferential operators (see Theorem A1) and the as-
sumption (1.1). Notice that, the term b1/2 comes from the expression of V w and the fact that we are working
with a commutator operator.
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Now applying Theorem A2 to the claim we obtain (2.6).
Since σ(Ĥ0) ⊂ [2b, +∞[, it follows from the assumption on κ(b) that : there exists c0 > 0 and b0 >> 1 such

that for b > b0,

<〈
(
κD2

z + bκ(D2
x + x2) − κb −<λ

)
Π̂u, Π̂u〉 ≥ κ 〈

(
D2

z + c0b)Π̂u, Π̂u〉.

From this we deduce (2.7) for j = 0. The case j = 1 follows by using resolvent equation, estimate (2.5) and that
‖V w‖ is uniformly bounded with respect to b.

Notice that, for s > 1 the operator

〈z〉−s(c0b + D2
z)−1 : L2(R) → L2(R)

is trace class one and ‖〈z〉−s(c0b + D2
z)−1‖tr = O(b−1/2). Combining this with the claim and using (2.6), (2.7)

as well as Theorem A3 in the Appendix we get (2.8).

Lemma 2.4 Assume that V satisfies (1.1). For all N ∈ N there exists a b−1-pseudodifferential operator
(independent of x),

QN(y, b−1Dy, z) =

N∑

i=0

qw
i (y, b−1Dy, z)b−i,

such that
ΠV wΠ = ΠQN (y, b−1Dy, z)Π + b−(N+1)RN (b),

with
supb∈[1,+∞[‖RN(b)‖ < +∞, supb∈[1,+∞[‖RN(b)(κD2

z + 1)−1‖tr = O(bκ− 1
2 ).

Moreover,

q0(y, η, z) = V (η, y, z), q1(y, η, z) =
1

4
(∆x,yV )(η, y, z).

P r o o f. Notice that, we can view V w as a b−1-pseudodifferential operator on (y, z) with L(L2(Rx))-operator
valued symbol. Its symbol is given by :

V̂ (y, η) := V w(η + b−1/2Dx, y − b−1/2x, z).

On the other hand, by Taylor’s formula (see also the proof of Proposition 2.5 in [10]), we can write

V̂ (y, η) = V (η, y, z) + b−1/2∂ηV (η, y, z) · Dx − b−1/2∂yV (η, y, z) · x + ....

Combining this with the fact that

〈xl∂m
x fj , fj〉L2(Rx) = 0, for l + m + 1 ∈ 2N,

〈D2
xfj , fj〉L2(R) = 〈x2fj , fj〉L2(R) =

2j − 1

2
,

as well as the fact that ∂m
x fj(x) = O(e−x2/3) for any m ∈ N, we get the lemma. The trace class estimate is

obtained repeating the arguments of the proof of (2.8).

Lemma 2.5 The following estimate holds uniformly for λ ∈ D(0, δ)

‖Π̂(λ − κH̃1)
−1Π̂ − E1(λ, κ)‖tr = O(b−3/2|=λ|−4). (2.9)

P r o o f. Making use of the fact that Π̂Π = 0, Π2 = Π, [Π̂, H̃0] = 0 and Π̂2 = Π̂, we obtain

ΠV wΠ̂ = Π[Π, V w]Π̂, (2.10)

Π̂(λ − κH̃1)
−1Π = −Π̂(λ − κH̃1)

−1[Π, κV w](λ − κH̃1)
−1Π, (2.11)
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(λ − κH̃1)E1(λ, κ) = Π̂ − Π[Π, κV w]E1(λ, κ). (2.12)

The last equality implies that

Π̂(λ − κH̃1)
−1Π̂ = E1(λ, κ) + Π̂(λ − κH̃1)

−1Π[Π, κV w]E1(λ, κ). (2.13)

Next, the left hand side of (2.11) can be written as

Π̂(λ − κH̃1)
−1Π = Π̂(λ − κH̃1)

−1Π̂[Π, κV w](λ − κH̃1)
−1Π (2.14)

+Π̂(λ − κH̃1)
−1Π[Π, κV w](λ − κH̃1)

−1Π = (1) + (2).

From (2.5), (2.6) and (2.13) we deduce

‖(1)‖ = O(b−3/2|=λ|−2). (2.15)

Substituting Π̂(λ − κH̃1)
−1Π in (2) by the right hand side of (2.14), and using the rough estimate

‖Π̂(λ − κH̃1)
−1Π‖ = O(b−1/2|=λ|−2)

(which follows from (2.6) and (2.11)), we obtain

‖(2)‖ = O(b−3/2|=λ|−4). (2.16)

Putting together (2.15), (2.16), (2.8) we get (2.9).

Now, let f ∈ C∞
0 (] − δ, δ[) and let f̃ ∈ C∞

0 (D(0, δ)) be an almost analytic extension of f such that

∂λf̃(λ) = O(|=λ|∞). (2.17)

By Helffer-Sj östrand formula (see for instance [11]), we have :

f(κH̃1) − f(κH̃0) = −
1

π

∫
∂f̃(λ)

(
(λ − κH̃1)

−1 − (λ − κH̃0)
−1

)
(Ldλ),

where L(dλ) denotes the Lebesgue measure on C.
Recall that Π̂ commutes with H̃0. Then Π̂(λ−κH̃0)

−1Π̂ = Π̂(λ−κΠ̂H̃0Π̂)−1Π̂ = E0(λ, κ) is holomorphic
for λ ∈ D(0, δ). Combining this with Lemma 2.5, Lemma 2.2 and using the cyclicity of the trace and the fact
that ∂λf̃(λ) = O(|=λ|∞) we obtain :

Proposition 2.6 Let δ and b → κ(b) be as in Lemma 2.2. For all f ∈ C∞
0 (] − δ, δ[), we have :

trL2(R3)

(
Π̂(f(κH̃1) − f(κH̃0))Π̂

)
= trL2(R3)

(
Π̂f(κH̃1)Π̂

)
= O(b−3/2). (2.18)

Set
H1 = H̃0 + ΠV wΠ.

Proposition 2.7 Under the assumption of Proposition 2.6, we have

trL2(R3)

(
Π(f(κH̃1) − f(κH1))Π

)
= O(b−1κ1/2). (2.19)

P r o o f. The ideas of the proof is quite similar to the one in Lemma 2.5 and that is why we omit some details.
Making use of the resolvent equation and taking into account (2.10), we obtain

Π
(
λ − κH̃1)

−1 − (λ − κH1)
−1

)
Π = Π(λ − κH̃1)

−1κΠ̂V wΠ(λ − κH1)
−1Π (2.20)

= Π(λ − κH1)
−1κΠ̂V wΠ(λ − κH1)

−1Π − Π(λ − κH1)
−1ΠκV wΠ̂(λ − H̃1)

−1Π̂κV wΠ(λ − κH1)
−1Π
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= −Π(λ − κH1)
−1Π[Π, κV w]Π̂(λ − κH̃1)

−1Π̂[κV w, Π]Π(λ − κH1)
−1Π,

where we used that Π(λ − κH1)
−1Π̂ = Π̂(λ − κH1)

−1Π = 0.
Next, by observing that Π(λ − κH̃0)

−1Π = Π(λ − κD2
z)

−1Π, and repeating the arguments in the proof of
(2.8), we get

‖Π(λ − κH1)
−1Π[Π, κV w]‖tr = O(|=λ|−2(bκ)1/2). (2.21)

On the other hand, (2.5), (2.6) and (2.13) yield

‖Π̂(λ − κH̃1)
−1Π̂[Π, κV w]‖ = O(|=λ|−3b−3/2),

which together with (2.20) and (2.21) gives

‖Π
(
λ − κH̃1)

−1 − (λ − κH1)
−1

)
Π‖tr = O(b−1κ1/2|=λ|−6).

Now, applying the Helffer-Sj östrand formula and using the above estimate as well as the fact that ∂λf̃(λ) =
O(|=λ|∞), we obtain (2.19).

Let us now give the proof of Theorem 1.1.

P r o o f. Using the cyclicity of the trace, Proposition 2.1, as well as the fact that ΠΠ̂ = 0, we obtain

trL2(R3)

(
(f(κ(H1(b) − b)) − f(κ(H0(b) − b))

)
= trL2(R3)

(
f(κH̃1) − f(κH̃0)

)
=

trL2(R3)

(
Π̂(f(κH̃1) − f(κH̃0))Π̂

)
+ trL2(R3)

(
Π(f(κH̃1) − f(κH̃0))Π

)
,

which together with Proposition 2.6, Proposition 2.7 leads to:

trL2(R3)

(
(f(κ(H1(b) − b)) − f(κ(H0(b) − b))

)
= trL2(R3)

(
Π(f(κH1) − f(κH̃0))Π

)
+ O(b−1κ1/2).

Moreover by Lemma 2.4 and Theorem A3 we have

trL2(R3)

(
Π(f(κH1) − f(κH̃0))Π

)
=

trL2(R3)

(
Π(f(κH̃0 + κΠqw

0 Π + κb−1Πqw
1 Π) − f(κH̃0))Π

)
+ O(b−1κ1/2).

Since Π commutes with H̃0, q0 and q1 (we recall that q0 and q1 are independent of (x, ξ)), we have Πf(κ(H̃0 −

b))Π = Πf(κΠ(H̃0 − b)Π))Π = f(κD2
z)Π and

Πf(κH̃0 + κΠqw
0 Π + κb−1Πqw

1 Π)Π = f(κD2
z + κqw

0 + κb−1qw
1 )Π.

Summing up we have proved Theorem 1.1.

3 Proofs of Theorem 1.2 and Theorem 1.3

From now on, we denote h = b−1, and we assume (1.1). We recall that

Q(h) := D2
z + V w(hDy, y, z) +

h

4
(∆x,yV )w(hDy, y, z).
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Theorem 3.1 For every f ∈ C∞
0 (R), the following full asymptotic expansion holds as h ↘ 0 :

tr(f(Q(h)) − f(D2
z)) ∼

∞∑

j=0

cj(f) hj−1. (3.1)

In particular,

c0(f) =
1

2π

∫ ∫

R2

trL2(Rz)

(
f(D2

z + V (x, y, z)) − f(D2
z)

)
dxdy, (3.2)

c1(f) =
1

8π

∫ ∫

R2

trL2(Rz)

(
∆x,yV (x, y, z)f ′(D2

z + V (x, y, z))
)
dxdy (3.3)

+
1

2π

∫ ∫

R2

trL2(Rz)

(
T (∂xV, ∂yV ) − T (∂yV, ∂xV )

)
(x, y)dxdy, (3.4)

where (A, B) → T (A, B) is defined by

T (A, B) = lim
ε→0

[ 1

2i

∫
f(t)

(
G(t + iε) − G(t − iε)

)
dt

]
(3.5)

with
G(t ± iε) = (t ± iε− D2

z − V )−1 A (t ± iε − D2
z − V )−1 B (t ± iε− D2

z − V )−1.

P r o o f. The proof of Theorem is quite standard, and uses the h-pseudodifferential calculus of operator with
operator valued symbol. We only mimic the proof in [10] (see also [9], [11]).

Let f̃ ∈ C∞
0 (C) be an almost analytic extension of f with

∂̄λf̃(λ) = O(|=λ|∞). (3.6)

By Helffer-Sj östrand formula, we have

f(Q(h)) − f(D2
z) = −

1

π

∫
∂̄λf̃(λ)

[
(λ − Q(h))−1 − (λ − D2

z)
−1

]
L(dλ). (3.7)

From the resolvent equation, we have

(λ − Q(h))−1 − (λ − D2
z)

−1 = (λ − Q(h))−1W (h)(λ − D2
z)

−1,

where

W (h) = V w(hDy, y, z) +
h

4
(∆x,yV )w(hDy, y, z).

Under assumption (1.1) it follows from Theorem A3 that W (h)(λ − D2
z)

−1 is a trace class operator with

‖W (h)(λ − D2
z)

−1‖tr = O(h−1|=λ|−1). (3.8)

Recalling that, we can view Q(h) as an h-pseudodifferential operator with L(H2, L2)-valued symbol. Hence,
for every N ∈ N, we can construct a symbol (see [9], [11], [2])

c(y, η, λ, h) = E0(y, η, λ) + hE1(y, η, λ) + ... + hNEN (y, η, λ)

such that

(λ − Q(h))−1 = cw(y, hDy, λ, h) + O(hN(1−2δ)), (3.9)

uniformly for {λ ∈ C; |=λ| ≥ hδ}, where δ is some fixed constant in ]0, 1/2[. The symbol Ej(y, η, λ) is a finite
sum of terms of the form

(λ − D2
z − V (η, y, z))−1b1(y, η, z)(λ − D2

z − V (η, y, z))−1....bk(y, η, z)(λ − D2
z − V (η, y, z))−1,
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1 ≤ k ≤ 2j + 1 and bk depends on V and their derivatives.
On the other hand, the composition formula of h-pseudodifferential calculus shows that

(λ − Q(h))−1W (h)(λ − D2
z)

−1 = (3.10)

Ẽw
0 (y, hDy, λ) + hẼw

1 (y, hDy, λ) + ... + hN Ẽw
N (y, hDy, λ) + O(hN(1−2δ)),

where Ẽj has the same properties as Ej . In particular,

Ẽ0(y, η, λ) = (λ − D2
z − V (η, y, z))−1V (η, y, z)(λ − D2

z)−1 = (λ − D2
z − V (η, y, z))−1 − (λ − D2

z)
−1,

Ẽ1(y, η, λ) =
1

4
(λ − D2

z − V (η, y, z))−1∆x,yV (η, y, z)(λ − D2
z − V (η, y, z))−1

−
i

2

(
T̃ (∂xV, ∂yV ) − T̃ (∂yV, ∂xV )

)
(η, y, z),

T̃ (A, B) := (λ−D2
z − V (η, y, z))−1A(λ−D2

z − V (η, y, z))−1B(λ−D2
z − V (η, y, z))−1. (3.11)

Using Theorem A3 we check easily that trace norm of the remainder is also O(hN(1−2δ)−1).
Next, fix δ in ]0, 1/2[. We decompose the right hand side of (3.7) as a sum of two terms

f(Q(h)) − f(D2
z) = −

1

π

∫

{|=λ|≤hδ}

∂̄λf̃(λ)
[
(λ − Q(h))−1 − (λ − D2

z)
−1

]
L(dλ) (3.12)

−
1

π

∫

{|=λ|≥hδ}

∂̄λf̃(λ)
[
(λ − Q(h))−1 − (λ − D2

z)
−1

]
L(dλ) = I1 + I2.

If follows from (3.6) and (3.8) that I1 = O(h∞). Inserting the right hand side of (3.10) in I2 and using Theorem
A3 we get (3.1).

Formula (3.2) (resp. (3.3)-(3.4)) follows from the expression of Ẽ0(y, η, λ) (resp. Ẽ1(y, η, λ)), the cyclicity
of the trace and the Cauchy formula (see [9]).

Set Q(h, κ) = κQ(h).

Theorem 3.2 Assume that h
κ ≤ C and κ → 0 as h tends to 0. For f ∈ C∞

0 (R), the following full asymptotic
expansion holds as h ↘ 0 :

tr(f(Q(h, κ)) − f(κD2
z)) =

∞∑

k=0

∞∑

j=0

ck,j(f) κ
1
2+jhk−1. (3.13)

In particular,

c0,0 =
2

(2π)2

∫ ∞

0

f ′(r2)dr

∫ ∫ ∫

R3

V (x, y, z)dxdydz. (3.14)

P r o o f. Helffer-Sj östrand formula yields

f(Q(h, κ)) − f(κD2
z) = −

1

π

∫
∂̄λf̃(λ)

[
(λ − Q(h, κ))−1 − (λ − κD2

z)
−1

]
L(dλ). (3.15)

From the resolvent equation, we obtain :

(λ − Q(h, κ))−1 =

N∑

j=0

κj
[
(λ − κD2

z)
−1W (h)

]j

(λ − κD2
z)

−1

+κN+1(λ − Q(h, κ))−1W (h)
[
(λ − κD2

z)
−1W (h)

]N

(λ − κD2
z)

−1.
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Consequently,

(λ − Q(h, κ))−1 − (λ − κD2
z)

−1 = (3.16)

N∑

j=1

κj
[
(λ − κD2

z)
−1W (h)

]j

(λ − κD2
z)

−1

+κN+1(λ − Q(h, κ))−1W (h)
[
(λ − κD2

z)
−1W (h)

]N

(λ − κD2
z)

−1

=
N∑

j=1

Aj(λ) + B(λ).

Clearly, ‖B(λ)‖tr = O(κN |=λ|−(N+2)h−1), which together with (3.6) implies

‖

∫
∂̄λf̃(λ)B(λ) L(dλ)‖tr = O(κNh−1).

For j = 0, 1, ..., set

Ij := −
1

π

∫
∂̄zf̃(λ) tr(Aj(λ)) L(dλ).

In view of (3.15), (3.16) and the above estimate, it suffices to show that Ij has an asymptotic expansion like the
right hand side of (3.13).

Fix δ in ]0, 1/2[. From (3.6) and (3.8), we obtain

‖

∫

|=λ|≤κ
δ
2

∂̄λf̃(λ)Aj(λ) L(dλ)‖tr = O(κ∞h−1).

Fix N in N. By the h-pseudodifferential calculus (see [11] chapters 7,8), there exists A(y, η, z, k, λ, κ, h) ∈

S4
(
R

4; 〈y, η〉−p〈z〉−s〈k〉−2
)

such that

Aj(λ) = Aw(y, hDy, z, κ
1
2 Dz, λ, κ, h) + O(κ

N
2 (1−2δ)h−1)

uniformly for λ ∈ Ωδ := {λ ∈ C; |=λ| > κ
δ
2 } in the trace norm class. Moreover

A(y, η, z, k, λ, κ, h) ∼

∞∑

i,l=0

Ai,l(y, η, z, k)κ
i
2 +1hl, in S4

(
R

4; 〈y, η〉−p〈z〉−s〈k〉−2
)

where Ai,l(y, η, z, k) is a finite sum of terms of the form

ai(k)(λ − k2)−m−i−1gi(y, η, z),

with ai(k) is a homogeneous polynomial of degree i and gi are functions depending on V, W and their derivatives.
In particular,

A0,0(y, η, z, k) = (λ − k2)−2V (η, y, z). (3.17)

Since ai(−k) = −ai(k) for i odd, it follows from the above discussion that κ
1
2 Ij has an asymptotic expansion

in powers of κ. It remains to prove (3.14).
Applying the following formula

−
1

π

∫
∂̄zf̃(z)(z − µ)−2 L(dz) = f ′(µ), for all µ ∈ R,

to µ = A0,0(y, η, z, k) and using Theorem A3 we get (3.14).

At last, combining Theorem 1.1 with Theorem 3.1 (resp. Theorem 3.2) we deduce Theorem 1.2 (resp. Theo-
rem 1.3).
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4 Appendix: Operator valued pseudo-differential operators

Here, we recall some results about operator valued pseudodifferential operators. Concerning the proofs, we refer
to [2] and [11]. Let K, L be two subspaces of a Hilbert space H . Let m : R

2d → [0,∞[ be an order function
(see Definition 7.5 in [11]). We introduce the class of symbols S(R2d, m;L(K, L)) defined by the set of operator
valued functions a ∈ C∞(R2d,L(K, L)) such that for any (α, β) ∈ N

2d, we have:

‖∂α
x ∂β

y a(x, ξ)‖L(K,L) = Oα,β

(
m(x, ξ)

)
.

In the special cases when m = 1 we will write S(R2d;L(K, L)) instead of S(R2d, 1;L(K, L)), and when
K = L = H we will write S(R2d, m) instead of S(R2d, m;L(H)).

For a ∈ S(R2d, m;L(K, L)) we define the Weyl quantization, aw(x, hDx) := Opw
h (a) by:

Opw
h (a)u(x) =

1

(2πh)d

∫ ∫

R2d

eih−1(x−y).ξa(
x + y

2
, ξ)u(y)dydξ,

when u ∈ S(Rd, K) the class of rapidly decreasing functions.
As in the case of scalar symbols, we have the following composition Theorem.

Theorem A 1 [2] Let a ∈ S(R2d, m1;L(K, L)) and b ∈ S(R2d, m2;L(L, H)). Then there exists c(h) ∈
S(R2d, m1m2;L(K, H)) such that

Opw
h (a)oOpw

h (b) = Opw
h (c(h)).

The symbol c(h) is given by:

c(x, ξ, h) =
(

exp(
ih

2
(Dξ Dy − Dη Dx))a(x, ξ)b(y, η)

)
|(y,η)=(x,ξ).

The L2-boundedness can be established exactly as in the scalar case:

Theorem A 2 [2] For a ∈ S(R2d, 1;L(K, L)) the operator a(x, hDx) can be extended to a bounded operator
from L2(Rd, K) to L2(Rd, L) and there exist Cd > 0, Pd ∈ N such that

‖a(x, hDx)‖L(L2(Rd,K),L2(Rd,L)) ≤ Cd sup
(x,ξ)∈R2d

|α|,|β|≤Pd

‖∂α
x ∂β

y a(x, ξ)‖L(K,L).

We have also trace class properties for such operators:

Theorem A 3 [2] Suppose that the injection K ↪→ H is of the Schatten class σ1−ν , 0 < ν < 1 (in particular
this injection is of trace class). For a ∈ S(R2d, m;L(K, L)), with m ∈ L1(R2d), the bounded operator
a(x, hDx) ∈ L(L2(Rd, H)) is of trace class and there exists Cd > 0 such that for any integer P > d

ν , we have

‖a(x, hDx)‖tr ≤ Cdh
−d

∑

|α|+|β|≤2P

∫ ∫

R2d

‖∂α
x ∂β

y a(x, ξ)‖trdxdξ,

tr
(
a(x, hDx)

)
= (2πh)−d

∫ ∫

R2d

tr(a(x, ξ))dxdξ

where the trace in the LHS is in L(L2(Rd, H)) and the trace in the RHS is in L(H).

At last, we give a characterization of pseudo-differential operators due to Beals [3] (see also section 8 of [11]).

Theorem A 4 Let A = Ah be an operator from S(Rd, K) to S ′(Rd, H), 0 < h < h0. The following two
statements are equivalent:

(1) Ah = Opw
h (a(h)) for some a(h) ∈ S(R2d, 1;L(K, H)).

(2) For every N ∈ N and for every sequence l1(x, ξ), · · · , lN (x, ξ) of linear forms on R
2d, the operators

[l1(x, hDx) [l2(x, hDx) [· · · [lN (x, hDx), Ah] · · · ]]] ,

belongs to L(L2(Rd, K), L2(Rd, H)) and is of norm O(hN ) in that space. Here [., .] denote the commutator:
[A, B] := AB − BA.

The proof of this result for operator valued symbols follows the proof of the scalar case (see section 8 of [11]).
The main difference is that the numerical functions Φ(x), Ψ(x) ∈ S(Rd) are replaced by Φ(x)f ∈ S(Rd, K),
Ψ(x)g ∈ S(Rd, H) (for f ∈ K, g ∈ H) and the product Φ(x)Ψ̂(ξ)a(x, ξ) becomes Φ(x)Ψ̂(ξ)〈a(x, ξ)f, g〉H×H .
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[11] M. Dimassi and J. Sjöstrand, Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture
Note Series, 268, Cambridge University Press, Cambridge, 1999. xii+227.

[12] M. Dimassi and M. Zerzeri, A local trace formula for resonances of perturbed periodic Schrödinger operators, J. Funct.
Anal., 198 (2003), 142-159.

[13] C. Fernandez and G. D. Raikov, On the singularities of the magnetic spectral shift function at the Landau levels, Ann.
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