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Abstract. We consider the unperturbed operator H0 := (−i∇ − A)2 + W , self-adjoint

in L2(R2). Here A is a magnetic potential which generates a constant magnetic field b > 0,

and the edge potential W is a non-decreasing non constant bounded function depending only

on the first coordinate x ∈ R of (x, y) ∈ R
2. Then the spectrum of H0 has a band structure

and is absolutely continuous; moreover, the assumption limx→∞(W (x)−W (−x)) < 2b implies

the existence of infinitely many spectral gaps for H0. We consider the perturbed operators

H± = H0 ± V where the electric potential V ∈ L∞(R2) is non-negative and decays at infinity.

We investigate the asymptotic distribution of the discrete spectrum of H± in the spectral gaps

of H0. We introduce an effective Hamiltonian which governs the main asymptotic term; this

Hamiltonian involves a pseudo-differential operator with generalized anti-Wick symbol equal

to V . Further, we restrict our attention on perturbations V of compact support and constant

sign. We establish a geometric condition on the support of V which guarantees the finiteness

of the number of the eigenvalues of H± in any spectral gap of H0. In the case where this condi-

tion is violated, we show that, generically, the convergence of the infinite series of eigenvalues

of H+ (resp. H−) to the lower (resp. upper) edge of a given spectral gap, is Gaussian.
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1 Introduction

The general form of the unperturbed operators we are going to consider in the present
article and its successor [16], is

H0 = H0(b,W ) := − ∂2

∂x2
+

(

−i ∂
∂y

− bx

)2

+W (x).

Here b > 0 is the constant magnetic field, and the edge potential W ∈ L∞(R; R) is
independent of y. The self-adjoint operator H0 is defined initially on C∞

0 (R2) and then
is closed in L2(R2). Let F be the partial Fourier transform with respect to y, i.e.

(Fu)(x, k) = (2π)−1/2

∫

R

e−ikyu(x, y)dy, u ∈ L2(R2).
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Then we have

FH0F∗ =

∫ ⊕

R

h(k)dk

where the operator

h(k) := − d2

dx2
+ (bx− k)2 +W (x), k ∈ R,

is self-adjoint in L2(R). Note that h(k), k ∈ R, is a Kato analytic family (see [13] or
[25, Section XII.2]). For w ∈ L2(R) and k ∈ R set (τkw)(x) := w(x − k/b). Evidently
τk is a unitary operator in L2(R), and we have τ ∗kh(k)τk = h̃(k) where

h̃(k) := − d2

dx2
+ b2x2 +W (x+ k/b), k ∈ R.

Evidently, for each k ∈ R the operator h(k) (and, hence, h̃(k)) has a discrete and simple
spectrum. Let {Ej(k)}∞j=1 be the increasing sequence of the eigenvalues of h(k) (and,

hence, of h̃(k)). The Kato analytic perturbation theory [13] implies that Ej(k), j ∈ N,
are real analytic functions of k ∈ R. When we need to indicate the dependence of Ej(k)
on b and/or W , we will write Ej(k; b,W ) or Ej(k;W ) instead of Ej(k). Note that if
W = 0, then the eigenvalues are independent of k, and their explicit form is well-known:

Ej(k; b, 0) = Ej(b, 0) = b(2j − 1), k ∈ R, j ∈ N.

Further,

σ(H0) =
∞
⋃

j=1

Ej(R). (1.1)

In the present article we will consider monotone W . For definiteness we assume that
W is non-decreasing. Then the band functions Ej , j ∈ N, are also non-decreasing, and
σ(H0) =

⋃∞
j=1[E−

j , E+
j ] with

E−
j = lim

k→−∞
Ej(k) = b(2j − 1) +W−, E+

j = lim
k→∞

Ej(k) = b(2j − 1) +W+, (1.2)

W− := lim
x→−∞

W (x), W+ := lim
x→∞

W (x).

(see Proposition 2.1 below). Throughout the article we assume that

W− < W+, (1.3)

i.e. W is not identically constant. Hence, E−
j < E+

j for each j ∈ N. Moreover, we will
assume that

W+ −W− < 2b. (1.4)
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Then we have
E+

j < E−
j+1, j ∈ N, (1.5)

and the intervals (E+
j , E−

j+1), j ∈ N, are open gaps in the spectrum of H0. Thus all the
bands in the spectrum of H0 are separated by gaps where discrete spectrum may appear
under appropriate perturbations.
The perturbations under consideration will be electric potentials V : R2 → R which
are ∆-compact. A simple sufficient condition which guarantees the compactness of the
operator V (−∆ − i)−1, is

V ∈ L∞
0 (R2) := {u ∈ L∞(R2) | u(x, y) → 0 as x2 + y2 → ∞}.

By the diamagnetic inequality, the operator V (H0 − i)−1 is also compact, and hence

σess(H0 + V ) = σess(H0) =
∞
⋃

j=1

[E−
j , E+

j ].

For simplicity, we will consider perturbations of definite sign. More precisely we will
suppose that V ≥ 0, and will consider the operators H± := H0 ± V . Note that in the
case of positive (resp. negative) perturbations, the discrete eigenvalues of the perturbed
operator which may appear in a given open gap of the spectrum of the unperturbed
operator, may accumulate only to the lower (resp. upper) edge of the gap.
In order to give a more explicit formulation of the problem, we need the following
notations. Let T be a self-adjoint linear operator in a Hilbert space. Denote by PO(T )
the spectral projection of T corresponding to the Borel set O ⊆ R. For λ > 0 set

N−
0 (λ) := rank P(−∞,E−

1
−λ)(H−).

Next, fix j ∈ N and assume that (1.4) holds. Pick λ ∈ (0, E−
j+1 − E+

j ), and set

N−
j (λ) := rank P(E+

j ,E−

j+1
−λ)(H−), N+

j (λ) := rank P(E+

j +λ,E−

j+1
)(H+).

We reduce the investigation of the accumulation of the discrete eigenvalues to the edges
of the gap (E+

j , E−
j+1) of its essential spectrum, to the study of the asymptotic behavior

as λ ↓ 0 of the counting functions N±
j (λ).

The investigation of the asymptotic behavior of the discrete spectrum of perturbed an-
alytically fibered quantum Hamiltonians, lying in the gaps of the essential one has a
long history. Probably, the first results of this type were obtained for the Schrödinger
operator with periodic potential perturbed by a decaying one (see e. g. [29, 14, 21, 27]).
Recently, similar problems have been considered for perturbed 2D magnetic Hamilto-
nians [4], and for Dirichlet Laplacians in twisted wave-guides [3]. The common feature
of the above cited articles is that the edges of the gaps in the spectrum of the unper-
turbed operator coincide with the extremal values of the band functions taken at local
non degenerate extrema; in this case the arising effective Hamiltonian is a differential
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Schrödinger type operator. In the present article the edges of the gaps are the limiting
values of the band functions Ej(k) as k → ±∞. The effective Hamiltonian which arises
in this case involves a “kinetic” part equal in the momentum representation to the mul-
tiplier by Ej, and a “potential” part which is a pseudodifferential operator (ΨDO) with
contravariant (generalized anti-Wick) symbol equal to V . These ΨDOs are unitarily
equivalent to the Berezin-Toeplitz operators which appear as effective Hamiltonians in
the study of compact perturbations of the Landau operator (see e. g. [20, 23]). Note
however that in the case of the Landau operator (which is equal to H0 with W = 0) the
kinetic part of the effective Hamiltonian is proportional to the identity operator.

The article is organized as follows. In Section 2 we describe the basic spectral proper-
ties of the unperturbed operators which we need in the sequel. In Section 3 we introduce
the effective Hamiltonian appropriate for the asymptotic analysis as λ ↓ 0 of the func-
tion N±

j (λ) with fixed j ∈ N. Our effective Hamiltonian approach allows us to consider
various types of W and V which satisfy the assumptions stated above. Nonetheless, the
rest of the article is dedicated to the case where V ∈ L∞

0 (R2; R) has a compact support.
This choice is motivated by the possible applications in the theory of the quantum Hall
effect (see e. g. [6, 10, 5]), and, on the other hand, by the spectacular progress in the
investigation of the discrete spectrum for localized perturbations of the Landau Hamil-
tonian H0(b, 0) (see e. g. [23, 15, 18, 7, 26, 17, 19]). For definiteness, we suppose that
V ≥ 0 and discuss only the behavior of the counting functions N+

j (λ), j ∈ N, near the
lower edges of the spectral gaps; in the case V ≤ 0 the behavior of N−

j (λ) near the upper
edges is analogous. In Section 4 we establish a sufficient condition of geometric nature
which guarantees that all the functions N+

j (λ), j ∈ N, remain bounded as λ ↓ 0, i.e.
that there is a finite number of eigenvalues of H+ in any gap of its essential spectrum.
When this sufficient condition is violated, we show that for any j ∈ N the functions
N+

j (λ) generically blow up as λ ↓ 0. More precisely, in Section 5 we reduce the analysis
of N+

j (λ) to counting functions for operators in holomorphic spaces. These operators
are studied in Section 6 in order to establish a lower asymptotic estimate

C−| lnλ|1/2(1 + o(1)) ≤ N+
j (λ), λ ↓ 0, j ∈ N, (1.6)

with C− > 0 which holds when the sufficient condition of Section 4 is not fulfilled, and
an upper asymptotic estimate

N+
j (λ) ≤ C+| lnλ|1/2(1 + o(1)), λ ↓ 0, j ∈ N, (1.7)

with C+ > C−. Note that the constants C± in (1.6) and (1.7) admit a clear geometric
interpretation and are independent of j ∈ N. Thus, in the case of infinitely many
eigenvalues in any given gap, the main asymptotic term of N+

j (λ) is expected to be of

order | lnλ|1/2 which, loosely speaking, corresponds to a Gaussian convergence of the
discrete eigenvalues to the edges of the gaps of the essential spectrum. This behavior is
different from the case of compactly supported perturbations of the Landau Hamiltonian
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where typically we have

N+
j (λ) ∼ | lnλ|

ln | lnλ| , λ ↓ 0, j ∈ N, (1.8)

(see e.g. [23]). Hopefully, in a future work we will attack the problem of finding the
main asymptotic term as λ ↓ 0 of N±

j (λ), j ∈ N.
Finally, we note that in the second part [16] of this study, we consider analogous problems
for periodic edge potentials W .

2 Basic spectral properties of H0

In the following proposition we consider the general properties of the band functions Ej ,
j ∈ N. By analogy with the operator h̃(k), introduce the shifted harmonic oscillator

h̃∞ := − d2

dx2
+ b2x2 +W+, (2.1)

which is self-adjoint in L2(R), and essentially self-adjoint on C∞
0 (R).

Proposition 2.1. Assume that W is non-decreasing and bounded. Then for each j ∈ N

the eigenvalue Ej(k) is a non-decreasing function of k ∈ R, and (1.2) holds true.

Proof. The fact that Ej are non-decreasing bounded functions of k follows directly from
the mini-max principle. Let us prove (1.2). Pick E > −b −W−. Then for each k ∈ R

we have −E < b+W− ≤ inf σ(h̃(k)). Moreover, −E < b+W+ = inf σ(h̃∞). Then,

|(Ej(k) + E)−1 − (b(2j − 1) +W+ + E)−1| ≤

‖(h̃(k) + E)−1(W+ −W (· + k/b))(h̃∞ + E)−1‖ ≤
‖(h̃(k) + E)−1‖‖(W+ −W (· + k/b))(h̃∞ + E)−1‖. (2.2)

Moreover,
‖(h̃(k) + E)−1‖ ≤ (E + b+W−)−1, (2.3)

and the r.h.s. is k-independent. Further, the multiplier by (W+ −W (· + k/b)), x ∈ R,
tends strongly to zero as k → ∞, while the operator (h̃∞ + E)−1 is compact and k-
independent. Hence, the operator (W+ −W (· + k/b))(h̃∞ + E)−1 tends uniformly to
zero as k → ∞. Now, (2.2) – (2.3) imply

lim
k→∞

(Ej(k) + E)−1 = (b(2j − 1) +W+ + E)−1, j ∈ N,

which yields the second limit in (1.2). The first one is proved in the same manner.
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Proposition 2.1 implies that if (1.3) holds, then there are no identically constant
functions Ej , j ∈ N. Applying the general theory of analytically fibred Hamiltonians
(see e.g. [25, Section XIII.16]), we immediately obtain the following

Corollary 2.2. Assume that W is increasing and bounded, and (1.3) holds true. Then

the spectrum of the operator H0 is absolutely continuous.

Our next theorem will play a crucial role in the construction of the effective Hamilto-
nian introduced in the next section. For its formulation we need the following notations.
Fix k ∈ R and j ∈ N denote by πj(k) the orthogonal projection onto Ker (h(k)−Ej(k)).
Then we have

πj(k) = 〈·, ψj(·; k)〉ψj(·; k), (2.4)

where 〈·, ·〉 is the scalar product in L2(R), and ψj(x; k), x ∈ R, is an eigenfunction of
h(k) which satisfies

h(k)ψj(·; k) = Ej(k)ψj(·; k), ‖ψj(·; k)‖L2(R) = 1. (2.5)

Moreover, ψj(·; k) could be chosen to be real-valued.
Set

h∞(k) := τkh̃∞τ
∗
k = − d2

dx2
+ (bx− k)2 +W+, k ∈ R,

the operator h̃∞ being defined in (2.1). Denote by πj,∞(k), k ∈ R, j ∈ N, the orthogonal
projection onto Ker (h∞(k) − E+

j ). Then, similarly to (2.4), we have

πj,∞(k) = 〈·, ψj,∞(·; k)〉ψj,∞(·; k). (2.6)

where the eigenfunction ψj,∞(x; k) satisfies

−∂
2ψj,∞(x; k)

∂x2
+(bx−k)2ψj,∞(x; k) = b(2j−1)ψj,∞(x; k), ‖ψj,∞(·; k)‖L2(R) = 1. (2.7)

Moreover, ψj,∞(·; k) could be chosen to be real-valued. The functions ψj,∞, j ∈ N, admit
an explicit description. Namely, if we put

ϕj(x) :=
Hj−1(x)e

−x2/2

(
√
π2j−1(j − 1)!)1/2

, x ∈ R, j ∈ N, (2.8)

where

Hq(x) := (−1)qex2 dq

dxq
e−x2

, x ∈ R, q ∈ Z+,

are the Hermite polynomials (see e.g. [1, Chapter I, Eqs. (8.5), (8.7)]), then the real-
valued function ϕj satisfies

−ϕ′′
j (x) + x2ϕj(x) = (2j − 1)ϕj(x), ‖ϕj‖L2(R) = 1,
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and we have

ψj,∞(x; k) = b1/4ϕj(b
1/2x− b−1/2k), j ∈ N, x ∈ R, k ∈ R. (2.9)

Put

pj = pj(b) :=
b−j+3/2

√
π(j − 1)!2j−1

, j ∈ N. (2.10)

Note that
ψj,∞(x; k) = p

1/2
j (−k)j−1e−(b−1/2k−b1/2x)2/2(1 + o(1)) (2.11)

as k → ∞, uniformly with respect to x belonging to compact subset of R.

Theorem 2.3. Fix j ∈ N. Then we have

lim
k→∞

(

E+
j −Ej(k)

)−1/2 ‖πj,∞ − πj(k)‖1 = 0 (2.12)

where ‖T‖1 denotes the trace-class norm of the operator T .

We will divide the proof of the theorem into several lemmas and propositions.
By analogy with (2.4) and (2.6) set

π̃j(k) := 〈·, ψ̃j(·; k)〉ψ̃j(·; k), k ∈ R, π̃j,∞ := 〈·, ψ̃j,∞〉ψ̃j,∞, j ∈ N,

where
ψ̃j(·; k) := τ ∗kψj(·; k), ψ̃j,∞ := τ ∗kψj,∞,

the function ψj(·; k) (resp., ψj,∞) being introduced in (2.5) (resp., in (2.7)). Evidently,

h̃(k)ψ̃j(·; k) = Ej(k)ψ̃j(·; k), ‖ψ̃j(·; k)‖L2(R) = 1,

ψ̃j,∞(x) := b1/4ϕj(b
1/2x), x ∈ R,

the function ϕj being defined in(2.8), and

h̃∞ψ̃j,∞ = E+
j ψ̃j,∞, ‖ψ̃j,∞‖L2(R) = 1.

Since we have

τkπ̃j(k)τ
∗
k = πj(k), τkπ̃j,∞τ

∗
k = πj,∞(k), k ∈ R, j ∈ N,

relation (2.12) is equivalent to

lim
k→∞

(

E+
j − Ej(k)

)−1/2 ‖π̃j,∞ − π̃j(k)‖1 = 0. (2.13)

For z ∈ C \ (σ(h̃∞) \ {E+
j }) set

R⊥
0,j(z) := (h̃∞ − z)−1(I − π̃j,∞).
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Similarly, for z ∈ C \ (σ(h̃(k)) \ {Ej(k)}) put

R⊥
j (z) := (h̃(k) − z)−1(I − π̃j(k)).

Set
Uk(x) := W+ −W (x+ k/b) = h̃∞ − h̃(k), x ∈ R, k ∈ R.

Proposition 2.4. We have

π̃j,∞ = π̃j,∞π̃j(k) − π̃j,∞UkR
⊥
j (E+

j ) = π̃j(k)π̃j,∞ −R⊥
j (E+

j )Ukπ̃j,∞, (2.14)

π̃j(k) = π̃j(k)π̃j,∞ + π̃j(k)UkR
⊥
0,j(Ej) = π̃j,∞π̃j(k) +R⊥

0,j(Ej)Ukπ̃j(k). (2.15)

Proof. We have
π̃j,∞ = π̃j,∞π̃j(k) + π̃j,∞(I − π̃j(k))

= π̃j,∞π̃j(k) + π̃j,∞(h̃∞ − E+
j − Uk)(h̃(k) − E+

j )−1(I − π̃j(k)).

Since π̃j,∞(h̃∞ − E+
j ) = 0, we obtain the first equality in (2.14). The second equality is

obtained by taking the adjoint. In relations (2.15) we have only exchanged the role of
h̃(k) and h̃∞.

Set

Φj(k) = Φj(k;W ) :=

(
∫

R

Uk(x)ψ̃j,∞(x)2dx

)1/2

, k ∈ R. (2.16)

By the dominated convergence theorem we have limk→+∞ Φj(k) = 0. Note that

Φj(k) = (Tr π̃j,∞Ukπ̃j,∞)1/2 = ‖π̃j,∞U
1/2
k ‖1 = ‖U1/2

k π̃j,∞‖1 = ‖π̃j,∞U
1/2
k ‖ = ‖U1/2

k π̃j,∞‖.
(2.17)

Corollary 2.5. Fix j ∈ N. Then we have

‖π̃j,∞ − π̃j(k)‖1 = o(Φj(k)), k → ∞. (2.18)

Proof. By (2.14) and (2.15) we have

π̃j,∞ − π̃j(k) = −π̃j,∞UkR
⊥
j (E+

j ) − R⊥
0,j(Ej)Ukπ̃j,∞ +R⊥

0,j(Ej)Uk(π̃j,∞ − π̃j(k)),

i.e.
(I −R⊥

0,j(Ej)Uk)(π̃j,∞ − π̃j(k)) = −π̃j,∞UkR
⊥
j (E+

j ) − R⊥
0,j(Ej)Ukπ̃j,∞.

Since s− limk→∞Uk = 0 and the operator R⊥
0,j(Ej) is compact and uniformly bounded,

we have limk→∞ ‖R⊥
0,j(Ej)Uk‖ = 0. Therefore, the operator I − R⊥

0,j(Ej)Uk is invertible
for sufficiently great k, and for such k we have

π̃j,∞ − π̃j(k) = −(I −R⊥
0,j(Ej)Uk)

−1(π̃j,∞UkR
⊥
j (E+

j ) +R⊥
0,j(Ej)Ukπ̃j,∞).
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Therefore,

‖π̃j,∞ − π̃j(k)‖1 ≤ ‖(I − R⊥
0,j(Ej)Uk)

−1‖(‖U1/2
k R⊥

j (E+
j )‖ + ‖R⊥

0,j(Ej)U
1/2
k ‖)‖π̃j,∞U

1/2
k ‖1.
(2.19)

Arguing as above, we easily find that

lim
k→∞

‖U1/2
k R⊥

j (E+
j )‖ = lim

k→∞
‖R⊥

0,j(Ej)U
1/2
k ‖ = 0. (2.20)

Now the combination of (2.19), (2.20), and (2.17) implies (2.18).

Proposition 2.6. We have

E+
j − Ej(k) = Φj(k)

2(1 + o(1)), k → ∞. (2.21)

Proof. Assume k large enough. Evidently,

E+
j = Tr h̃∞π̃j,∞ = − 1

2πi
Tr

∫

Γj

h̃∞(h̃∞ − ω)−1dω = − 1

2πi
Tr

∫

Γj

ω(h̃∞ − ω)−1dω

where Γj is a sufficiently small circle run over in the anticlockwise direction which
contains in its interior Ej(k) and E+

j but no other points from the spectra of h̃(k) and

h̃∞. Similarly,

Ej(k) = − 1

2πi
Tr

∫

Γj

ω(h̃(k) − ω)−1dω.

Therefore,

E+
j −Ej(k) = − 1

2πi
Tr

∫

Γj

ω
(

(h̃∞ − ω)−1 − (h̃(k) − ω)−1
)

dω =

1

2πi
Tr

∫

Γj

ω(h̃∞ − ω)−1Uk(h̃(k) − ω)−1dω. (2.22)

Applying the Cauchy theorem, we easily get

1

2πi

∫

Γj

ω(h̃∞ − ω)−1Uk(h̃(k) − ω)−1dω =

π̃j,∞Ukπ̃j(k) − E+
j π̃j,∞UkR

⊥
j (E+

j ) −EjR
⊥
0,j(Ej)Ukπ̃j(k). (2.23)

Comparing (2.22) and (2.23), and bearing in mind (2.17), we obtain

E+
j −Ej(k) − Φj(k)

2 =

Tr π̃j,∞Uk(π̃j(k) − π̃j,∞) − E+
j Tr π̃j,∞UkR

⊥
j (E+

j ) − EjTrR⊥
0,j(Ej)Ukπ̃j(k). (2.24)
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In order to complete the proof of (2.21), it remains to show that the three terms on the
r.h.s. of (2.24) are of order o(Φj(k)

2) as k → ∞.
First, we have

|Tr π̃j,∞Uk(π̃j(k) − π̃j,∞)| ≤ ‖π̃j,∞U
1/2
k ‖‖U1/2

k ‖‖π̃j(k) − π̃j,∞‖1 = o(Φj(k)
2), k → ∞,

(2.25)

by (2.17), (2.18), and the fact that ‖U1/2
k ‖ is uniformly bounded with respect to k ∈ R.

Next, using the trivial identities π̃j,∞ = π̃2
j,∞ and R⊥

j (E+
j )π̃j(k) = 0, as well as the

cyclicity of the trace, we obtain

Tr π̃j,∞UkR
⊥
j (E+

j ) = −Tr (π̃j(k) − π̃j,∞)π̃j,∞UkR
⊥
j (E+

j ). (2.26)

Therefore, similarly to (2.25), we have

|E+
j Tr π̃j,∞UkR

⊥
j (E+

j )| ≤ |E+
j |‖π̃j(k) − π̃j,∞‖1‖π̃j,∞U

1/2
k ‖‖U1/2

k R⊥
j (E+

j )‖ = o(Φj(k)
2)

(2.27)
as k → ∞. Finally, by analogy with (2.26) we have

TrR⊥
0,j(Ej)Ukπ̃j(k) = TrR⊥

0,j(Ej)Ukπ̃j(k)(π̃j(k) − π̃j,∞) =

TrR⊥
0,j(Ej)Ukπ̃j,∞(π̃j(k) − π̃j,∞) + TrR⊥

0,j(Ej)Uk(π̃j(k) − π̃j,∞)2.

Hence,
|EjTrR⊥

0,j(Ej)Ukπ̃j(k)| ≤

|Ej(k)|‖R⊥
0,j(Ej)U

1/2
k ‖‖U1/2

k π̃j,∞‖‖π̃j(k) − π̃j,∞‖1+

|Ej(k)|‖R⊥
0,j(Ej)Uk‖‖π̃j(k) − π̃j,∞‖2

1 = o(Φj(k)
2), k → ∞, (2.28)

by (2.17), (2.18), and the fact that |Ej(k)|, ‖R⊥
0,j(Ej(k))U

1/2
k ‖, and ‖R⊥

0,j(Ej(k))Uk‖ are
uniformly bounded with respect to k ∈ R.
Putting together (2.24), (2.25), (2.27), and (2.28), we obtain (2.21).

Now (2.13) (and, hence, (2.12)) follows immediately from (2.18) and (2.21).

3 Effective Hamiltonians

Assume that W is a non-decreasing function, and (1.4) holds true. As explained in the
introduction, for definiteness, we will consider the case of positive perturbations, and
respectively the asymptotic behavior as λ ↓ 0 of N+

j (λ), j ∈ N, λ ∈ (0, 2b+W− −W+).
Pick j ∈ N, A ∈ [−∞,∞) and λ > 0, and set

Pj(A) :=

∫ ⊕

(A,∞)

πj(k)dk, Pj(A) := F∗Pj(A)F , Pj,∞(A) :=

∫ ⊕

(A,∞)

πj,∞(k)dk,
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Tj(λ;A) :=

∫ ⊕

(A,∞)

(E+
j − Ej(k) + λ)−1/2πj(k)dk,

Tj,∞(λ;A) :=

∫ ⊕

(A,∞)

(E+
j − Ej(k) + λ)−1/2πj,∞(k)dk.

Proposition 3.1. Assume M ∈ L∞
0 (R2). Then the operator MF∗Tj,∞(λ;A) is compact

for any λ > 0 and A ∈ [−∞,∞). Moreover, for any A1, A2 ∈ [−∞,∞) the operator

MF∗(Tj,∞(λ;A1) − Tj,∞(λ;A2)) (3.1)

extends to a uniformly bounded and continuous operator for λ ≥ 0.

Proof. Denote by χR the characteristic function of a disk of radius R centered at the
origin. For λ > 0 and A ∈ [−∞,∞) write

MF∗Tj,∞(λ;A) = χRMF∗Tj,∞(λ;A) + (1 − χR)MF∗Tj,∞(λ;A). (3.2)

The first operator at the r.h.s of (3.2) is Hilbert-Schmidt for any R ∈ (0,∞), and the
norm of the second one tends to zero as R → ∞. Hence, the operator MF∗Tj,∞(λ;A)
is compact. Further, the case A1 = A2 in (3.1) is trivial so that we suppose A1 6= A2.
Define the value for λ = 0 of the operator in (3.1) as

MF∗
∫ ⊕

(A−,A+)

(E+
j − Ej(k))

−1/2πj,∞(k)dk

with A− := min{A1, A2} and A+ := max{A1, A2}. Now the uniform boundedness for
λ ≥ 0 of the operator in (3.1) follows from the estimates

‖MF∗(Tj,∞(λ;A1) − Tj,∞(λ;A2))‖ ≤ ‖M‖L∞(R2) sup
k∈(A−,A+]

(E+
j −Ej(k))

−1/2, λ ≥ 0,

while the uniform continuity of this operator for λ ≥ 0 follows from the estimates

‖MF∗((Tj,∞(λ1;A1) − Tj,∞(λ1;A2)) − (Tj,∞(λ2;A1) − Tj,∞(λ2;A2)))‖ ≤

|λ1 − λ2|‖M‖L∞(R2) sup
k∈(A−,A+]

(E+
j − Ej(k))

−2, λ1, λ2 ≥ 0.

Let s > 0 and T = T ∗ be a linear compact operator acting in a given Hilbert space1.
Set

n±(s;T ) := rank P(s,∞)(±T );

1All Hilbert spaces in this article are supposed to be separable.
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thus the functions n±(·;T ) are respectively the counting functions of the positive and
negative eigenvalues of the operator T . In the case where T is compact but not neces-
sarily self-adjoint (in particular, T could act between two different Hilbert spaces), we
will use also the notations

n∗(s;T ) := n+(s2;T ∗T ), s > 0;

thus n∗(·;T ) is the counting function of the singular values of T . Of course, we have
n∗(s;T ) = n∗(s;T

∗) and hence n+(s;T ∗T ) = n+(s;TT ∗) for any s > 0. For further
references we recall here the well-known Weyl inequalities

n+(s1 + s2;T1 + T2) ≤ n+(s1;T1) + n+(s2;T2) (3.3)

where sj > 0 and Tj , j = 1, 2, are linear self-adjoint operators acting in a given Hilbert
space. In the case where T1 and T2 are linear and compact but not necessarily self-
adjoint, we recall also the Ky-Fan inequalities

n∗(s1 + s2;T1 + T2) ≤ n∗(s1;T1) + n∗(s2;T2), s1, s2 > 0. (3.4)

Theorem 3.2. Assume that V ∈ L∞
0 (R2; R). Fix j ∈ N and A ∈ [−∞,∞). Then for

any ε ∈ (0, 1) we have

n+(1 + ε;Tj,∞(λ;A)FVF∗Tj,∞(λ;A)) +O(1) ≤

N+
j (λ) ≤

n+(1 − ε;Tj,∞(λ;A)FVF∗Tj,∞(λ;A)) +O(1), λ ↓ 0. (3.5)

Proof. The Birman-Schwinger principle implies

N+
j (λ) = n−(1;V 1/2(H0 − E+

j − λ)−1V 1/2) +O(1), λ ↓ 0. (3.6)

Pick Ã ∈ R. Applying the Weyl inequalities (3.3), we get

n+(1 + s;V 1/2(E+
j −H0 + λ)−1Pj,ÃV

1/2)− n−(s;V 1/2(E+
j −H0 + λ)−1(I −Pj,Ã)V 1/2) ≤

n−(1;V 1/2(H0 − E+
j − λ)−1V 1/2) ≤

n+(1−s;V 1/2(E+
j −H0+λ)−1Pj,ÃV

1/2)+n+(s;V 1/2(E+
j −H0+λ)−1(I−Pj,Ã)V 1/2), (3.7)

for any s ∈ (0, 1). By V ∈ L∞
0 (R2; R) and the diamagnetic inequality, we easily find

that
n±(s;V 1/2(E+

j −H0 + λ)−1(I − Pj,Ã)V 1/2) = O(1), λ ↓ 0. (3.8)

Further, for any r > 0 we have

n+(r2;V 1/2(E+
j −H0 + λ)−1Pj,ÃV

1/2) =

12



n+(r2;V 1/2F∗
∫ ⊕

(Ã,∞)

(E+
j − Ej(k) + λ)−1πj(k)dkFV 1/2) =

n∗(r;V
1/2F∗Tj(λ; Ã)). (3.9)

Applying the Ky-Fan inequalities (3.4), we obtain

n∗(r(1 + s);V 1/2F∗Tj,∞(λ; Ã)) − n∗(rs;V
1/2F∗(Tj,∞(λ; Ã) − Tj(λ; Ã))) ≤

n∗(r;V
1/2F∗Tj(λ; Ã)) ≤

n∗(r(1 − s);V 1/2F∗Tj,∞(λ; Ã)) + n∗(rs;V
1/2F∗(Tj,∞(λ; Ã) − Tj(λ; Ã))). (3.10)

Now note that
‖V 1/2F∗(Tj,∞(λ; Ã) − Tj(λ; Ã))‖ ≤

‖V ‖1/2
L∞(R2) sup

k>Ã

(E+
j − Ej(k))

−1/2‖πj(k) − πj,∞(k)‖, (3.11)

uniformly with respect to λ > 0. By (3.11) and Theorem 2.3 we find that for each q > 0
there exists A0 = A0(q) such that Ã ≥ A0(q) implies

‖V 1/2F∗(Tj,∞(λ; Ã) − Tj(λ; Ã))‖ ≤ q

for each λ > 0. Choosing Ã ≥ A0(rs) in (3.10) we find then that

n∗(rs;V
1/2F∗(Tj,∞(λ; Ã) − Tj(λ; Ã))) = 0 (3.12)

for each λ > 0. Next, the Ky-Fan inequalities (3.4) imply that for any λ > 0, r > 0,
s ∈ (0, 1) and A, Ã, we have

n∗(r(1 + s);V 1/2F∗Tj,∞(λ;A)) − n∗(rs;V
1/2F∗(Tj,∞(λ;A) − Tj,∞(λ; Ã))) ≤

n∗(r;V
1/2F∗Tj,∞(λ; Ã)) ≤

n∗(r(1 − s);V 1/2F∗Tj,∞(λ;A)) + n∗(rs;V
1/2F∗(Tj,∞(λ;A) − Tj,∞(λ; Ã))). (3.13)

By Proposition 3.1 we have

n∗(r;V
1/2F∗(Tj,∞(λ;A) − Tj,∞(λ; Ã))) = O(1), λ ↓ 0, (3.14)

for any fixed r > 0. Finally we note that

n∗(r;V
1/2F∗Tj,∞(λ;A)) = n+(r2;Tj,∞(λ;A)FVF∗Tj,∞(λ;A)) (3.15)

for each r > 0, λ > 0. Putting together (3.6) – (3.10), and (3.12) – (3.15), we obtain
(3.5).
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Note that the operator Tj,∞(λ;A)FVF∗Tj,∞(λ;A) regarded as an operator on the
Hilbert space Pj,∞(A)L2(R2), is unitarily equivalent to the operator Sj(λ;A)∗Sj(λ;A)
where Sj(λ;A) : L2(A,∞) → L2(R2) is an operator with integral kernel

(2π)−1/2V (x, y)1/2eikyψj,∞(x; k)(E+
j − Ej(k) + λ)−1/2, k ∈ R, (x, y) ∈ R

2, λ > 0,
(3.16)

the function ψj,∞ being defined in (2.9). Therefore,

n+(r;Tj,∞(λ;A)FVF∗Tj,∞(λ;A)) = n+(r;Sj(λ;A)∗Sj(λ;A)), r > 0, λ > 0. (3.17)

For (x, ξ) ∈ T ∗R = R2 and j ∈ N set

Ψx,ξ;j(k) = b−1/2e−ikξψj,∞(x; k), k ∈ R.

Note that for each j ∈ N the system {Ψx,ξ;j}(x,ξ)∈T ∗R
is overcomplete with respect to the

measure b
2π
dxdξ, i.e. for each f ∈ L2(R) we have

b

2π

∫

T ∗R

|〈f,Ψx,ξ;j〉|2dxdξ =

∫

R

|f(k)|2dk

(see [1] or [28, Section 24]). For (x, ξ) ∈ T ∗R and j ∈ N set Px,ξ;j := 〈·,Ψx,ξ;j〉Ψx,ξ;j, and
introduce the operator

Vj =
b

2π

∫

T ∗R

V (x, ξ)Px,ξ;jdxdξ

where the integral is understood in the weak sense. Then Vj can be interpreted as a
ΨDO with contravariant (generalized anti-Wick symbol) V (see [1]). Moreover, we have

Sj(λ;−∞)∗Sj(λ;−∞) = (E+
j −Ej + λ)−1/2Vj(E+

j − Ej + λ)−1/2. (3.18)

Bearing in mind (3.17) and (3.18), and applying the Birman-Schwinger principle, we
find that (3.5) with A = −∞ and ε ∈ (0, 1) can be re-written as

rank P(E+

j +λ,∞)(Ej + (1 + ε)−1Vj) +O(1) ≤

N+
j (λ) ≤

rank P(E+

j +λ,∞)(Ej + (1 − ε)−1Vj) +O(1), λ ↓ 0.

Thus, the operator Ej + Vj could be interpreted as the effective Hamiltonian which
governs the asymptotics of N+

j (λ) as λ ↓ 0, the multiplier by Ej being its “kinetic”
part, and the ΨDO Vj being its “potential” part.
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4 Sufficient condition for the boundedness of N+
j (λ)

Assume that W is a bounded non-decreasing function with W− < W+. Set

x+ := inf{x ∈ R |W (x) = W+}. (4.1)

By the assumption W− < W+, we have x+ > −∞. Set

X := {x ∈ R | there exists y ∈ R such that (x, y) ∈ ess supp V } ,
X− := inf X , X+ := supX .

Theorem 4.1. Let W be a bounded and non-decreasing function with W− < W+ and

x+ ≤ ∞. Assume that V ∈ L∞
0 (R2), V ≥ 0, −∞ < X− < X+ < ∞. Suppose in

addition that ess supx∈R

∫

R
V (x, y)dy <∞, and

X+ < x+. (4.2)

Then we have

N+
j (λ) = O(1), λ ↓ 0, j ∈N. (4.3)

In order to prove Theorem 4.1 we need some information on the asymptotic behaviour
as k → ∞ of the function Φj(k) defined in (2.16) which by Proposition 2.6 determines
the asymptotics of Ej −Ej(k). Let w−, w+ ∈ R, w− < w+, x0 ∈ R. Put

w(x) :=

{

w+ if x ≥ x0,
w− if x < x0.

(4.4)

Proposition 4.2. Assume that w− < w+. Then we have

Φj(k;w)2 =
(w+ − w−)

2
pjk

2j−3e−(b−1/2k−b1/2x0)2(1 + o(1)), k → ∞, (4.5)

the number pj being defined in (2.10).

We omit the simple proof of the proposition, based on the standard Laplace method
for approximate evaluation of integrals depending on a large parameter.

Remark: Comparing (2.21) and (4.5), we find that under the assumptions of Propo-
sition 4.2, we have

Ej(k; b,w) = E+
j − (w+ − w−)

2
pjk

2j−3e−(b−1/2k−b1/2x0)2(1 + o(1)), k → ∞. (4.6)

Thus, in spite of the fact that the band functions Ej(k; b,W ), k ∈ R, j ∈ N, imitate
in many aspects the behaviour of the edge potential W (see e.g. Proposition 2.1),
asymptotic relation (4.6) reveals an important difference: the function w is equal to
its maximal value w+ on the interval [x0,∞), while the band functions Ej(k; b,w),
j ∈ N, being analytic increasing functions, never reach their suprema E+

j . This purely
quantum effect related to the uncertainty principle, explains many of the asymptotic
results obtained in the sequel.
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Proof of Theorem 4.1. By the upper bound in (3.5), and (3.17), it suffices to show that

n∗(r;Sj(λ;A)) = O(1), λ ↓ 0, (4.7)

for any fixed r > 0 and A ∈ [−∞,∞). We have

n∗(r;Sj(λ;A)) ≤ r−2TrSj(λ;A)∗Sj(λ;A) =
1

2πr2
I0(λ) (4.8)

where

I0(λ) :=

∫ ∞

A

∫

R2

(E+
j − Ej(k; b,W ) + λ)−1ψj,∞(x; k)2V (x, y)dxdydk.

Now pick x̃ ∈ (X+, x+) which is possible due to (4.2), and set

W̃ (x) =

{

W+ if x ≥ x̃,
W (x̃) if x < x̃.

(4.9)

Since W (x) ≤ W̃ (x), x ∈ R, the mini-max principle implies

(E+
j − Ej(k; b,W ) + λ)−1 ≤ (E+

j −Ej(k; b, W̃ ) + λ)−1, k ∈ R, j ∈ N, λ > 0.

Therefore,

I0(λ) ≤
(

ess sup
x∈R

∫

R

V (x, y)dy
)

I1(λ) (4.10)

where

I1(λ) :=

∫ ∞

A

∫ X+

X−

(E+
j − Ej(k; b, W̃ ) + λ)−1ψj,∞(x; k)2dxdk.

Taking into account (2.11), (2.21), and (4.5), and bearing in mind that the interval
[X−, X+] is compact, we find that for sufficiently large A > 0 and any λ ≥ 0 we have

I1(λ) ≤ 4(W+ −W (x̃))−1 max
x∈[X−,X+]

e−b(x2−x̃2)

∫ ∞

A

∫ X+

X−

ke−2k(x̃−x)dxdk

≤ 2(W+ −W (x̃))−1 max
x∈[X−,X+]

e−b(x2−x̃2)

∫ ∞

A

e−2k(x̃−X+)dk <∞, (4.11)

due to x̃ > X+. Putting together (4.8) - (4.11), we obtain (4.7), and hence, (4.3).

5 Reduction to operators in holomorphic spaces

In what follows we assume that there exist bounded domains Ω± ⊂ R
2 with Lipschitz

boundaries, and constants c±0 > 0 such that

c−0 χΩ−
(x, y) ≤ V (x, y) ≤ c+0 χΩ+

(x, y), (x, y) ∈ R
2, (5.1)
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where χΩ±
denotes the characteristic function of the domain Ω±. Next, for δ ∈ (0, 1/2)

introduce the intervals

I− = I−(δ) := (δ, 1 − δ), I+ = I+(δ) := (0, 1 + δ).

In what follows we will assume that the infimum x+ defined in (4.1) satisfies x+ < ∞
because in the case x+ = ∞ Theorem 4.1 implies N+

j (λ) = O(1) as λ ↓ 0. Since
the operator H0 is invariant under magnetic translations, we will assume that x+ = 0
without any loss of generality.
Let δ ∈ (0, 1/2) and m > 0. Define the operator Γ−

δ (m) : L2(I−) → L2(Ω−) as the
operator with integral kernel

π−1/2me−bx2/2em(x+iy)kk1/2, k ∈ I−, (x, y) ∈ Ω−,

and the operator Γ+
δ (m) : L2(I+) → L2(Ω+) as the operator with integral kernel

π−1/2me−bx2/2em(x+iy+δ)kk1/2, k ∈ I+, (x, y) ∈ Ω+.

Remark: Introduce the set

B(Ω±) :=
{

u ∈ L2(Ω±) | u is analytic in Ω±
}

(5.2)

considered as a subspace of the Hilbert space L2(Ω±; e−bx2

dxdy). Note that as a func-
tional set B(Ω±) coincides with the Bergman space over Ω± (see e.g. [9, Subsection
3.1]). Then, up to unitary equivalence, the operators Γ±

δ (m) map L2(I±) into B(Ω±).

Theorem 5.1. Suppose that W is a bounded non-decreasing function with W− < W+.

Assume that V ∈ L∞
0 (R2; R) satisfies (5.1). Then we have

n∗(r;Sj(λ;A)) ≥ n∗(r(1 + ε)
√

(W+ −W−)/c−0 ; Γ−
δ (

√

b|lnλ|)) +O(1), (5.3)

n∗(r;Sj(λ;A)) ≤ n∗(r(1 − ε)
√

(W+ −W (−δ))/c+0 e−bδ2/2; Γ+
δ (

√

b|lnλ|)) +O(1), (5.4)

as λ ↓ 0, for all j ∈ N, A > 0, ε ∈ (0, 1), δ ∈ (0, 1/2) and r > 0.

We will divide the proof of Theorem 5.1 into two propositions.

For the proof of the first one we need the following auxiliary result. Define the
operators Fl, l = 0, 1. by

(Flv)(z) :=

∫

R

ezkklv(k)dk, v ∈ C∞
0 (R), z ∈ C.

Note that Flv are entire functions in C, and (F1v)(z) = ∂(F0v)
∂z

(z). Moreover, the opera-
tors Fl can be extended as continuous operators from D′

comp(R), the space of compactly
supported distributions, dual to C∞

0 (R), into the space of functions entire in C. Set

f±
l [v] :=

∫

Ω±

e−bx2 |(Flv)(x+ iy)|2dxdy, v ∈ C∞
0 (A,∞), l = 0, 1.
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Denote by D[f±
1 ] the closure of C∞

0 (A,∞) in the norm generated by the quadratic form
f±

1 .

Lemma 5.2. The quadratic form f±
0 is closable in D[f±

1 ], and the operator F± generated

by its closure, is compact in D[f±
1 ].

Proof. Consider D[f±
1 + f±

0 ], the closure of C∞
0 (A,∞) in the norm generated by the

quadratic form f±
1 + f±

0 . The quadratic form f±
0 is bounded, and hence closable in

D[f±
1 + f±

0 ]. Denote by F̃± the operator generated by its closure in D[f±
1 + f±

0 ]. For
v ∈ C∞

0 (A,∞) set
w(x, y) := (F0v)(x+ iy), x+ iy ∈ C.

Then we have

f±
0 [v] =

∫

Ω±

e−bx2 |w|2dxdy, f±
1 [v] = 2

∫

Ω±

e−bx2 |∇w|2dxdy. (5.5)

Since the Ω± is a bounded domain with a Lipschitz boundary, the Sobolev space H1(Ω±)
is compactly embedded in L2(Ω±). Hence, (5.5) implies that F̃± is compact.
Let us now check that ‖F̃±‖ < 1. Evidently, ‖F̃±‖ ≤ 1. Assume ‖F̃±‖ = 1. Since F̃±

is compact, this means that there exists 0 6= v± ∈ D[f±
1 + f±

0 ] such that f±
1 [v] = 0.

Let {v±n }n∈N
be sequence of functions v±n ∈ C∞

0 (A,∞) ⊂ C∞
0 (R) converging to v± in

D[f±
1 + f±

0 ]. Set w±
n (z) = (F0v

±
n )(z). Evidently, for any n ∈ N we have w±

n ∈ B(Ω±)
(see (5.2)). Since B(Ω±) is complete, there exists w± ∈ B(Ω±) such that limn→∞ ‖w±

n −
w±‖B(Ω±) = 0. Since (F1v

±
n )(z) = ∂w±

n

∂z
, it is not difficult to check that f±

1 [v±] = 0
implies that w± is constant in Ω± (see e.g. [9, Theorem 2, Exercise 1]), and hence
w± admits a unique analytic extension as a constant to C. Then the distributional
Paley-Wiener theorem (see e.g. [11, Theorem 1.7.7]) combined with [24, Theorem V.11]
implies that v± is proportional to the Dirac δ-function supported at k = 0. Since
supp v± ⊂ [A,∞) and A > 0 we conclude that v± = 0 as an element of D′(R), and
hence f±

1 [v±] + f±
0 [v±] = 0, which contradicts with the hypothesis that v± 6= 0 as an

element of D[f±
1 +f±

0 ]. Therefore, ‖F̃
±‖ < 1, and the quadratic form f±

0 is bounded, and
hence closable in D[f±

1 ]. Finally, the operator F± generated by its closure is unitarily
equivalent to (I − F̃±)−1F̃± and therefore is compact in D[f±

1 ].

Define the non-decreasing functions

W−
0 (x) :=

{

W+ if x > 0,
W− if x ≤ 0,

W+
0 (x) = W+

0 (x; δ) :=

{

W+ if x ≥ −δ,
W (−δ) if x < −δ, δ > 0.

Since x+ = 0 and δ > 0 we have

W−
0 (x) ≤W (x) ≤W+

0 (x; δ), x ∈ R. (5.6)
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Set
ω± := {x ∈ R | there exists y ∈ R such that (x, y) ∈ Ω±} . (5.7)

Let λ > 0, A ∈ [−∞,∞). Fix j ∈ N. Define Q±
j (λ;A) : L2(A,∞) → L2(Ω±) as the

operator with integral kernel

( pj

2π

)1/2

eikye−(b1/2x−b−1/2k)2/2
(

E+
j −Ej(k;W

±
0 ) + λ

)−1/2
(−k)j−1, (5.8)

with k ∈ (A,∞), (x, y) ∈ Ω±, the number pj being defined in (2.10).

Proposition 5.3. Assume that W and V satisfy the assumptions of Theorem 5.1. Then

for every A > 0, r > 0, and ε ∈ (0, 1), we have

n∗(r(1+ε);
√

c−0 Q
−
j (λ;A))+O(1) ≤ n∗(r;Sj(λ;A)) ≤ n∗(r(1−ε);

√

c+0 Q
+
j (λ;A))+O(1),

(5.9)
as λ ↓ 0, where Sj(λ;A) is the operator defined by (3.16), Q±

j (λ;A) are the operators

defined by (5.8), and c±0 are the constants occurring in (5.1).

Proof. Inequalities (5.1) and (5.6), combined with the mini-max principle, imply the
estimates

n∗(r;
√

c−0 S̃
−
j (λ;A)) ≤ n∗(r;Sj(λ;A)) ≤ n∗(r;

√

c+0 S̃
+
j (λ;A)) (5.10)

where S̃±
j (λ;A) : L2(A,∞) → L2(Ω±) is the operator with integral kernel

(2π)−1/2eikyψj,∞(x; k)(E+
j −Ej(k;W

±
0 ) + λ)−1/2, k ∈ R, (x, y) ∈ Ω±.

In the case j = 1 inequality (5.10) yields immediately (5.9) since in this case we have
S̃±

1 (λ;A) = Q±
1 (λ;A). Assume j ≥ 2. Then we have

ψj,∞(x; k) = p
1/2
j

j−1
∑

l=0

Pl,j(x)(−k)j−1−le−(b−1/2k−b1/2x)2/2, x ∈ R, k ∈ R, (5.11)

where Pl,j is a polynomial of degree less than or equal to l, and P0,j = 1. Therefore,

S̃±
j (λ;A) =

j−1
∑

l=0

Pl,jQ
±
j (λ;A)Bl

where the operator B : L2(A,∞) → L2(A,∞) with A > 0 is defined by

(Bu)(k) = k−1u(k), k ∈ (A,∞), u ∈ L2(A,∞).
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Further, for each u ∈ L2(A,∞) and η ∈ (0, 1), we have

‖S̃−
j (λ;A)u‖2

L2(Ω−) =

∫

Ω−

∣

∣

∣

∣

∣

j−1
∑

l=0

Pl,j(x)(Q
−
j (λ,A)Blu)(x, y)

∣

∣

∣

∣

∣

2

dxdy ≥

(1 − η)

∫

Ω−

∣

∣P0,j(x)
2(Q−

j (λ,A)Blu)(x, y)
∣

∣

2
dxdy−

(η−1 − 1)

∫

Ω−

∣

∣

∣

∣

∣

j−1
∑

l=1

Pl,j(x)(Q
−
j (λ,A)Blu)(x, y)

∣

∣

∣

∣

∣

2

dxdy ≥

(1 − η)

∫

Ω−

∣

∣P0,j(x)
2(Q−

j (λ,A)Blu)(x, y)
∣

∣

2
dxdy−

(η−1 − 1)(j − 1)c−2

j−1
∑

l=1

∫

Ω−

∣

∣(Q−
j (λ,A)Blu)(x, y)

∣

∣

2
dxdy

with c−2 := maxl=1,...,j−1 supx∈ω−
Pl,j(x)

2, the set ω− being defined in (5.7). Therefore,

S̃−
j (λ;A)∗S̃−

j (λ;A) ≥

(1 − η)Q−
j (λ;A)∗Q−

j (λ;A) − (j − 1)(η−1 − 1)c−2

j−1
∑

l=1

BlQ−
j (λ;A)∗Q−

j (λ;A)Bl. (5.12)

Similarly,
S̃+

j (λ;A)∗S̃+
j (λ;A) ≤

(1 + η)Q+
j (λ;A)∗Q+

j (λ;A) + (j − 1)(η−1 + 1)c+2

j−1
∑

l=1

BlQ+
j (λ;A)∗Q+

j (λ;A)Bl (5.13)

with η > 0, and c+2 := maxl=1,...,j−1 supx∈ω+
Pl,j(x)

2. Let us consider now the quadratic
forms

a±l [u] = a±l [u;λ, j] :=
2π

pj
‖Q±

j (λ;A)Blu‖2
L2(Ω±) =

∫

Ω±

e−bx2

∣

∣

∣

∣

∫ ∞

A

ek(x+iy)e−b−1k2/2
(

E+
j − Ej(k;W

±
0 ) + λ

)−1/2
(−k)j−l−1u(k)dk

∣

∣

∣

∣

2

dxdy

(5.14)
with u ∈ C∞

0 (A,∞), λ > 0, j ≥ 2, l = 0, . . . , j − 2. Evidently, a±l [u] ≥ 0, and a±l [u] = 0
implies u = 0. Denote by D[a±l ], l = 0, . . . , j − 2, the completion of C∞

0 (A,∞) in the
norm generated by a±l .
Further, for j ≥ 2, l = 0, . . . , j − 2, and λ > 0, define the operator Uj,l,λ by

(U±
j,l,λu)(k) := e−b−1k2/2

(

E+
j − Ej(k;W

±
0 ) + λ

)−1/2
kj−l−2u(k), k ∈ (A,∞).
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Note that the mapping U±
j,l,λ : C∞

0 (A,∞) → C∞
0 (A,∞) is bijective, and we have

a±l [u] = f±
1 [U±

j,l,λu], a±l+1[u] = f±
0 [U±

j,l,λu], u ∈ C∞
0 (A,∞), l = 0, . . . , j − 2. (5.15)

It follows from Lemma 5.2 that the quadratic form a±l+1 is closable inD[a±l ], l = 0, . . . , j−
2. Denote by A

±
l the operator generated in D[a±l ] by the closure of the quadratic form

a±l+1. Since A
±
l = (U±

j,l,λ)
−1

F
±U±

j,l,λ, i.e. the operator A
±
l is unitarily equivalent to F

±,

and F± does not depend on λ, we find that σ(A±
l ) is independent of λ. Moreover, since

F± is compact by Lemma 5.2, we find that the operator A
±
l is compact as well.

Now it follows easily from (5.12) - (5.13) that for each ε ∈ (0, 1) there exist subspaces
H± of C∞

0 (A,∞) such that the codimensions codimH± are finite and independent of λ,
and

‖S̃−
j (λ;A)u‖2 ≥ (1 + ε)−2‖Q−

j (λ;A)u‖2, u ∈ H−, (5.16)

‖S̃+
j (λ;A)u‖2 ≤ (1 − ε)−2‖Q+

j (λ;A)u‖2, u ∈ H+. (5.17)

Combining (5.16) - (5.17) with standard variational arguments (see. e.g. [2, Lemma
1.13] and the proof of [2, Lemma 1.16]), we get

n∗(r; S̃
−
j (λ;A)) ≥ n∗(r(1 + ε);Q−

j (λ;A)) − codimH−, (5.18)

n∗(r; S̃
+
j (λ;A)) ≤ n∗(r(1 − ε);Q+

j (λ;A)) + codimH+. (5.19)

Putting together (5.18) - (5.19) and (5.10), we arrive at (5.9).

Proposition 5.4. For every r > 0, A > 0, δ ∈ (0, 1/2), and ε ∈ (0, 1), we have

n∗(r;Q
−
j (λ;A)) ≥ n∗(r(1 + ε)

√

W+ −W−; Γ−
δ (

√

b| lnλ|)) +O(1), (5.20)

n∗(r;Q
+
j (λ;A)) ≤ n∗(r(1 − ε)

√

W+ −W (−δ)e−bδ2/2; Γ+
δ (

√

b| lnλ|) +O(1), (5.21)

as λ ↓ 0.

Proof. Let λ > 0, A ∈ [−∞,∞). Define the operators M±
j,1(λ;A) : L2(Ω±) → L2(Ω±)

as the operators with integral kernels

pj

2π
e−b(x2+x′2)/2

∫ ∞

A

(E+
j −Ej(k;W

±
0 ) + λ)−1k2(j−1)e−b−1k2

ek(x+x′+i(y−y′))dk (5.22)

with (x, y), (x′, y′) ∈ Ω±. Evidently, Q±
j (λ;A)Q±

j (λ;A)∗ = M±
j,1(λ;A). Therefore,

n+(r;Q±
j (λ;A)∗Q±

j (λ;A)) = n+(r;M±
j,1(λ;A)), r > 0. (5.23)

In the rest of the proof of the proposition we just show by successive simplifications that
we can replace the operators M±

j,1(λ;A) by their “asymptotic values” as λ ↓ 0, namely
the operators

const. Γ±
δ (

√

b| lnλ|) Γ±
δ (

√

b| lnλ|)∗.
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The main ideas of these steps are inspired by the elementary asymptotic analysis as
λ ↓ 0 of the integral in (5.22); here we apply essentially relation (4.6) dealing with the
asymptotics of Ej(k) as k → ∞. The technical details of the proof become somewhat
tedious since we need to ensure an adequate control on the differences of the eigenvalue
counting functions for the successive approximations.

First, we concentrate at the proof of (5.20). Fix ε > 0. Then by (4.6) there exists
A−

0 = A−
0 (ε) such that k ≥ A−

0 implies

E+
j − Ej(k;W

−
0 ) ≤ (1 + ε)

W+ −W−
2

pjk
2j−3e−b−1k2

. (5.24)

For p > 0 and A > 0 define M−
j,2(λ,A, p) : L2(Ω−) → L2(Ω−) as the operator with

integral kernel

pj

2π
e−b(x2+x′2)/2

∫ ∞

A

(p+ λk3−2jeb−1k2

)−1kek(x+x′+i(y−y′))dk (5.25)

with (x, y), (x′, y′) ∈ Ω−. Then (5.24) implies that for A1 = max{A,A−
0 } we have

n+(r;M−
j,1(λ;A)) ≥ n+

(

r;M−
j,2(λ,A1, pj(1 + ε)(W+ −W−)/2)

)

. (5.26)

Fix δ ∈ (0, 1/2). Set Λ := | lnλ|1/2, and assume that λ > 0 is small that A1 < δ
√
bΛ.

Then, by the mini-max principle,

n+(r;M−
j,2(λ,A1, p)) ≥ n+(r;M−

j,2(λ, δ
√
bΛ, p)), p > 0, r > 0. (5.27)

In the integral defining the kernel of the operator M−
j,2(λ, δ

√
bΛ, p) (see (5.25)), change

the variable k =
√
bΛ(1 + u)1/2 with u ∈ (−1 + δ2,∞). Then we see that the integral

kernel of M−
j,2(λ, δ

√
bΛ, p) is equal to

pjbΛ
2

4π
e−b(x2+x′2)/2

∫ ∞

−1+δ2

(p+ (
√
bΛ(1 + u)1/2)3−2jeΛ

2u)−1e(x+x′+i(y−y′))
√

bΛ(1+u)1/2

du.

Define M−
j,3(λ, δ, p) : L2(Ω−) → L2(Ω−) as the operator with integral kernel

pjbΛ
2

4π
e−b(x2+x′2)/2

∫ −1+(1−δ)2

−1+δ2

(p+ (
√
bΛ(1 + u)1/2)3−2jeΛ

2u)−1e(x+x′+i(y−y′))
√

bΛ(1+u)1/2

du

with (x, y), (x′, y′) ∈ Ω−. Evidently, the mini-max principle implies

n+(r;M−
j,2(λ, δ

√
bΛ, p)) ≥ n+(r;M−

j,3(λ, δ, p)), p > 0, r > 0, δ ∈ (0, 1/2). (5.28)

Further, define M−
j,4(λ, δ, p) : L2(Ω−) → L2(Ω−) as the operator with integral kernel

pjbΛ
2

4πp
e−b(x2+x′2)/2

∫ −1+(1−δ)2

−1+δ2

e(x+x′+i(y−y′))
√

bΛ(1+u)1/2

du (5.29)
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with (x, y), (x′, y′) ∈ Ω−. By the dominated convergence theorem,

lim
λ↓0

‖M−
j,3(λ, δ, p) −M−

j,4(λ, δ, p)‖2
2 = 0

where ‖·‖2 denotes the Hilbert-Schmidt norm. Fix ε > 0. Applying the Weyl inequalities
and the elementary Chebyshev-type estimate

n∗(s;M
−
j,3(λ, δ, p) −M−

j,4(λ, δ, p)) ≤ s−2‖M−
j,3(λ, δ, p) −M−

j,4(λ, δ, p)‖2
2, s > 0,

we get
n+(r;M−

j,3(λ, δ, p)) ≥ n+(r(1 + ε);M−
j,4(λ, δ, p)) +O(1), λ ↓ 0. (5.30)

In the integral defining the kernel of the operator M−
j,4(λ, δ, 1) (see (5.29)), change the

variable (1 + u)1/2 = k with k ∈ (δ, 1 − δ). Then we see that the integral kernel of
M−

j,4(λ, δ, 1) equals

pjbΛ
2

2πp
e−b(x2+x′2)/2

∫ 1−δ

δ

e(x+x′+i(y−y′))
√

bΛkkdk, (x, y), (x′, y′) ∈ Ω−.

Therefore
M−

j,4(λ, δ, p) =
pj

2p
Γ−

δ (
√

b| lnλ|)Γ−
δ (

√

b| lnλ|)∗. (5.31)

Combining now (5.23), (5.26), (5.27), (5.28), (5.30), and (5.31), we obtain (5.20).
Let us now prove (5.21). The proof is quite similar to that of (5.20), so that we omit
certain details. Set ν1 = 0 and νj = 1 if j ∈ N, j ≥ 2. Pick ε ∈ (0, 1). Then there exists
A+

0 = A+
0 (ε) such that k ≥ A+

0 implies

E+
j −Ej(k;W

+
0 ) ≥ (1 − ε)

W+ −W (−δ)
2

pj(k + νj)
2j−3e−(b−1/2k+b1/2δ)2 . (5.32)

For p > 0 and A > 0 define M+
j,2(λ,A, p) : L2(Ω+) → L2(Ω+) as the operator with

integral kernel

pj

2π
e−b(x2+x′2)/2

∫ ∞

A

(p+ λ(k + νj)
3−2jeb−1k2+2δk)−1kek(x+x′+i(y−y′)+2δ)dk, (5.33)

with (x, y), (x′, y′) ∈ Ω+. Therefore, similarly to (5.26), we have

n+(r;M+
j,1(λ;A))≤n+

(

r;M+
j,2(λ,A1, (1 − ε)pje

−bδ2

(W+ −W (−δ))/2)
)

(5.34)

for A1 = max{A,A+
0 }. Moreover, it is easy to check that

n+(r;M+
j,2(λ,A, p)) = n+(r;M+

j,2(λ, 0, p)) +O(1), λ ↓ 0, (5.35)
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for any A ≥ 0, p > 0. In the integral defining the kernel of the operator M+
j,2(λ, 0, p)

(see (5.33)), change the variable k =
√
bΛ(1+u)1/2 with u ∈ (−1,∞). Then we see that

the integral kernel of M+
j,2(λ, 0, p) is equal to

pjbΛ
2

4π
e−b(x2+x′2)/2

∫ ∞

−1

(p+ (
√
bΛ(1 + u)1/2 + νj)

3−2jeΛ
2u+2δ

√
bΛ(1+u)1/2

)−1e(x+x′+i(y−y′)+2δ)
√

bΛ(1+u)1/2

du.

Define now M+
j,3(λ, δ, p) : L2(Ω+) → L2(Ω+), as the operator with integral kernel

pjbΛ
2

4π
e−b(x2+x′2)/2

∫ −1+(1+δ)2

−1

(p+ (
√
bΛ(1 + u)1/2 + νj)

3−2jeΛ
2u+2δ

√
bΛ(1+u)1/2

)−1e(x+x′+i(y−y′)+2δ)
√

bΛ(1+u)1/2

du

with (x, y), (x′, y′) ∈ Ω+. By the dominated convergence theorem,

lim
λ↓0

‖M+
j,2(λ, δ, p) −M+

j,3(λ, δ, p)‖2
2 = 0.

Therefore, similarly to (5.30), we obtain

n+(r;M+
j,2(λ, δ, p)) ≤ n+(r(1 − ε);M+

j,3(λ, δ, p)) +O(1), λ ↓ 0, (5.36)

for any r > 0, ε ∈ (0, 1), δ > 0, p > 0. Next, define M+
j,4(λ, δ, p) : L2(Ω+) → L2(Ω+),

δ > 0, as the operator with integral kernel

bpjΛ
2

4πp
e−b(x2+x′2)/2

∫ −1+(1+δ)2

−1

e(x+x′+i(y−y′)+2δ)
√

bΛ(1+u)1/2

du, (x, y), (x′, y′) ∈ Ω+.

Evidently, the mini-max principle implies

n+(r;M+
j,3(λ, δ, p)) ≤ n+(r;M+

j,4(λ, δ, p)), r > 0. (5.37)

Finally, by analogy with (5.31), we get

M+
j,4(λ, δ, p) =

pj

2p
Γ+

δ (
√

b| lnλ|)Γ+
δ (

√

b| lnλ|)∗. (5.38)

Putting together (5.23) and (5.34) – (5.38), we arrive at (5.20).

Now, the combination of (5.9) and (5.20) - (5.21) yields (5.3) - (5.4).
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6 Asymptotic bounds of N+
j (λ) as λ ↓ 0

In what follows we identify when appropriate R
2 with C writing z = x + iy ∈ C for

(x, y) ∈ R2. Moreover, we denote by dµ(z) = dxdy the Lebesgue measure on R2.
Further, we assume as before that x+ = 0, that V satisfies (5.1) with some constants
c±0 > 0 and some bounded domains Ω± ⊂ R2 with Lipschitz boundaries, and that

Ω− ∩ {z ∈ C |Re z > 0} 6= ∅. (6.1)

We will show that under these assumptions the functions N+
j (λ) satisfy the asymptotic

estimates (1.6) and (1.7) with some explicit constants C± > 0. In order to define these
constants we need the following notations. Let Ω ⊂ R2 be a bounded domain. Set

K−(Ω) :=
{

(p, q) ∈ R
2 | p < q, ∃x ∈ R such that (x, p+ t(q − p)) ∈ Ω, ∀t ∈ [0, 1]

}

,

c−(Ω) := sup
(p,q)∈K−(Ω)

(q − p).

In other words, c−(Ω) is just the maximal length of the vertical segments contained in
Ω. Next, for s ∈ [0,∞) put

κ(s) := |{t > 0 |t ln t < s}|

where | · | denotes the Lebesgue measure of a Borel set in R. Let BR(ζ) ⊂ R2 be the
open disk of radius R > 0 centered at ζ ∈ C. Set

K+(Ω) := {(ξ, R) ∈ R × (0,∞) | ∃ η ∈ R such that Ω ⊂ BR(ξ + iη)} ,

c+(Ω) := inf
(ξ,R)∈K+(Ω)

Rκ

(

ξ+
eR

)

where ξ+ := max{ξ, 0}. Evidently,

c+(Ω) ≥ 1

2
diam (Ω) ≥ 1

2
c−(Ω). (6.2)

Finally, put
Ω̃± := {z ∈ Ω± |Re z > 0}.

Note that (6.1) implies Ω̃± 6= ∅. Occasionally, we will also use the notation

Ω̃+(δ) := {z ∈ Ω+ |Re z > −2δ}

for δ ≥ 0 so that Ω̃+(0) = Ω̃+.
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Theorem 6.1. Suppose that W is a bounded non-decreasing function with W− < W+,

and x+ = 0. Assume that V satisfies (5.1), and (6.1) holds true. Then asymptotic

relation (1.6) is satisfied with C− := (2π)−1
√
bc−(Ω̃−) while asymptotic relation (1.7)

holds true with C+ := e
√
bc+(Ω̃+). In particular,

lim
λ↓0

lnN+
j (λ)

ln |lnλ| =
1

2
, j ∈ N.

Remark. Under the hypotheses of Theorem 6.1 we have C− < C+ due to (6.2),
Ω̃− ⊂ Ω̃+, and 1/π < e.

The proof of (1.6) is contained in Subsection 6.1, and the proof of (1.7) can be found
in Subsection 6.2.

6.1 Lower bound of N+
j (λ)

In this subsection we prove (1.6). Taking into account Theorem 3.2, (3.17) and Theorem
5.1, we find that it suffices to show that for any r > 0 independent of λ > 0, we have

lim
δ↓0

lim inf
λ↓0

| lnλ|−1/2n+(r; Γ−
δ (

√

b| lnλ|)∗Γ−
δ (

√

b| lnλ|)) ≥ C−. (6.3)

Let Ω ⊂ R
2 be a bounded domain, and I ⊂ (0,∞) be a bounded open non-empty

interval. For m > 0 and δ ≥ 0 define the operator Gm,δ(Ω, I) : L2(I) → L2(I) as the
operator with integral kernel

π−1m2
√
kk′

∫

Ω

em((z+δ)k+(z̄+δ)k′)dµ(z), k, k′ ∈ I. (6.4)

Set
ǫ− := inf

x∈ω−

e−bx2

, ǫ+ := sup
x∈ω+

e−bx2

, (6.5)

the numbers ω± being defined in (5.7). Then we have

Γ−
δ (m)∗Γ−

δ (m) ≥ ǫ−Gm,0(Ω−, I−(δ)), m > 0. (6.6)

Further, let R ⊂ Ω̃− ⊂ Ω−be an open non-empty rectangle whose sides are parallel to
the coordinate axes. Since a translation z 7→ z + iη, η ∈ R, in the integral in (6.4)
generates a unitary transformation of the operator Gm,0(Ω−, I−(δ)) into an operator
unitarily equivalent to it, we assume without any loss of generality that R = (α, β) ×
(−L,L) with 0 < α < β <∞ and L ∈ (0,∞). Evidently,

Gm,0(Ω−, I−(δ)) ≥ Gm,0(R, I−(δ)), m > 0. (6.7)
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For η ∈ R and δ ∈ (0, 1/2) define the operator G−
η,δ(m) : L2(I−(δ)) → L2(I−(δ)) as the

integral operator with kernel

eηm(k+k′) sin (m(k − k′))

π(k − k′)

2
√
kk′

k + k′
, k, k′ ∈ I−(δ).

Then
Gm,0(R, I−(δ)) = G−

β,δ(mL) −G−
α,δ(mL). (6.8)

Define the operator gI(m) : L2(I) → L2(I), m > 0, as the operator with integral kernel

sin (m(k − k′))

π(k − k′)

2
√
kk′

k + k′
, k, k′ ∈ I.

Note that we have gI(m) := γI(m)∗γI(m) where γI(m) : L2(I) → L2((0,∞)×(−m,m))
is the operator with integral kernel

π−1/2e−(x+iy)kk1/2, k ∈ I, x ∈ (0,∞), y ∈ (−m,m).

Evidently, for any finitem > 0, the operator γI(m) is Hilbert-Schmidt, and ‖γI(m)‖ < 1.
Therefore, gI(m) = gI(m)∗ ≥ 0 is a trace-class operator, and

‖gI(m)‖ < 1. (6.9)

Simple variational arguments yield

n+(r;G−
β,δ(m) −G−

α,δ(m)) ≥ n+(r(1 − e2(α−β)δm)−1;G−
β,δ(m)) ≥

n+(re−2βδm(1 − e2(α−β)δm)−1; gI−(δ)(m)), r > 0, δ ∈ (0, 1/2). (6.10)

Combining (6.6) – (6.10), we find that under the hypotheses of Theorem 6.1 for each
δ ∈ (0, 1/2) we have

n+(r; Γ−
δ (m)∗Γ−

δ (m)) ≥ n+(re−2βδm(ǫ−(1 − e2(α−β)δm))−1; gI−(δ)(mL)). (6.11)

In order to complete the proof of (6.3), we need the following

Proposition 6.2. For all l ∈ N we have

lim
m→∞

m−1Tr gI(m)l =
|I|
π
. (6.12)

Proof. Let l = 1. Then, Tr gI(m) = m|I|
π

. Let now l ≥ 2. Set

φm(k) :=
sinmk

πk
k ∈ I.
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Denote by χI the characteristic function of the interval I. Then we have

Tr gI(m)l =

∫

R

. . .

∫

R

φm(k1 − k2)φm(k2 − k3) . . . φm(kl−1 − kl)φm(kl − k1)×

2l k1 . . . kl

(k1 + k2)(k2 + k3) . . . (kl−1 + kl)(kl + k1)
χI(k1) . . . χI(kl)dk1 . . . dkl.

Changing the variables k1 = t1, kj = t1 +m−1tj , j = 2, . . . , l, we get

Tr gI(m)l =

m

∫

R

. . .

∫

R

φ1(−t2)φ1(t2 − t3) . . . φ1(tl−1 − tl)φ1(tl)×

2l t1(t1 +m−1t2) . . . (t1 +m−1tl)

(2t1 +m−1t2)(2t1 +m−1(t2 + t3)) . . . (2t1 +m−1(tl−1 + tl))(2t1 +m−1tl)
×

χI(t1)χI(t1 +m−1t2) . . . χI(t1 +m−1tl)dt1 . . . dtl.

Applying the dominated convergence theorem, we get

lim
m→∞

m−1Tr gI(m)l = |I|
∫

R

. . .

∫

R

φ1(−t2)φ1(t2 − t3) . . . φ1(tl−1 − tl)φ1(tl)dt2 . . . dtl.

(6.13)
Further, we have

φ1(t) =
1

2π

∫

R

eitξχ(−1,1)(ξ)dξ, t ∈ R.

Therefore,

∫

R

. . .

∫

R

φ1(−t2)φ1(t2 − t3) . . . φ1(tl−1 − tl)φ1(tl)dt2 . . . dtl =
1

2π

∫

R

χ(−1,1)(ξ)
ldξ =

1

π
.

(6.14)
Putting together (6.13) and (6.14), we obtain (6.12).

Now Proposition 6.2 and estimate (6.9) combined with the Kac-Murdock-Szegő the-
orem (see the original work [12], [8, Section 11.8], or [22, Lemmas 3.1, 3.2]), imply the
following

Corollary 6.3. We have

lim
m→∞

m−1n+(s; gI(m)) =

{ |I|
π

if s ∈ (0, 1),
0 if s > 1.

(6.15)
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Now we are in position to prove (6.3). Fix arbitrary s ∈ (0, 1). Assume that m is so
large that re−2βδm(ǫ−(1 − e2(α−β)δm))−1 < s. Then (6.11) implies

n+(r; Γ−
δ (m)∗Γ−

δ (m)) ≥ n+(s; gI−(δ)(mL)). (6.16)

Putting together (6.15) and (6.16), we find that the asymptotic estimate

lim inf
λ↓0

| lnλ|−1/2n+(r; Γ−
δ (

√

b| lnλ|)∗Γ−
δ (

√

b| lnλ|)) ≥
√
bL

π
(1 − 2δ)

holds for every δ ∈ (0, 1/2). Letting δ ↓ 0, and optimizing with respect to L we obtain
(6.3).

6.2 Upper bound of N+
j (λ)

In this subsection we prove (1.7). By analogy with (6.3), it suffices to show that for any
r > 0 independent of λ > 0, we have

lim
δ↓0

lim sup
λ↓0

| lnλ|−1/2n+(r; Γ+
δ (

√

b| lnλ|)∗Γ+
δ (

√

b| lnλ|)) ≤ C+. (6.17)

Evidently,
Γ+

δ (m)∗Γ+
δ (m) ≤ ǫ+Gm,δ(Ω+; I+(δ)), m > 0, (6.18)

the integral kernel of the operator Gm,δ(Ω+; I) being defined in (6.4), and the number
ǫ+ being defined in (6.5). Since we have Gm,δ(Ω+ \ Ω̃+(δ); I+(δ)) ≥ 0 and

lim
m→∞

TrGm,δ(Ω+ \ Ω̃+(δ); I+(δ)) = π−1 lim
m→∞

m2

∫ 1+δ

0

∫

Ω+\Ω̃+(δ)

e2m(Re z+δ)kdµ(z)kdk = 0,

we easily find that the Weyl inequalities entail

n+(r;Gm,δ(Ω+; I+(δ))) ≤ n+(r(1 − ε);Gm,δ(Ω̃+(δ); I+(δ))) +O(1), m→ ∞, (6.19)

for each r > 0 and ε ∈ (0, 1). Further, pick an open disk BR(ζ) ⊂ R2 such that
Ω̃+(δ) ⊂ BR(ζ). Evidently,

n+(r;Gm,δ(Ω̃+(δ); I+(δ))) ≤ n+(r;Gm,δ(BR(ζ); I+(δ))), r > 0. (6.20)

Next, put I∗ = I∗(δ) := (0, (1 + δ)−1), and define G+
δ (m) : L2(I∗) → L2(I∗) as the

operator with integral kernel

π−1m2e2m(ξ+δ)+

∫

BR(0)

em(zk+z̄k′)dµ(z), k, k′ ∈ I∗(δ).
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Changing the variable z 7→ z+ζ in the integral defining the kernel of Gm,δ(BR(ζ); I+(δ))
(see (6.4)), and after that changing the variable k 7→ (1+ δ)2k in I∗(δ), we find that the
mini-max principle implies

n+(r;Gm,δ(BR(ζ); I+(δ))) ≤ n+(r;G+
δ ((1 + δ)2m)), r > 0, (6.21)

with ξ = Re ζ . Further, expanding the exponential functions into power series, and
passing to polar coordinates, we get

∫

BR(0)

em(zk+z̄k′)dµ(z) = πR2
∞

∑

q=0

(m2R2kk′)q

(q!)2(q + 1)
.

Therefore, the quadratic form of the operator G+
δ (m) can be written as

〈G+
δ (m)u, u〉L2(I∗) = e2m(ξ+δ)+

∞
∑

q=0

(mR)2q+2

(q!)2(q + 1)
|ũq|2 (6.22)

where

ũq =

∫

I∗(δ)

kqu(k)dk, u ∈ L2(I∗(δ)), q ∈ Z+.

Let {pq(k)}q∈Z+
be the system of polynomials orthonormal in L2(I∗(δ)), obtained by the

Gram-Schmidt procedure from {kq}q∈Z+
, k ∈ I∗(δ). Then,

kq =

q
∑

l=0

θq,lpl(k), k ∈ I∗(δ), q ∈ Z+,

with appropriate θq,l; in what follows we set θq,l = 0 for l > q. Put

uq =

∫

I∗(δ)

pq(k)u(k)dk, u ∈ L2(I∗(δ)), q ∈ Z+.

Then we have

ũq =
∞

∑

l=0

θq,lul, q ∈ Z+, (6.23)

and

‖u‖2
L2(I∗(δ)) =

∞
∑

q=0

|uq|2. (6.24)

Further, it is easy to check that

∞
∑

q=0

∞
∑

l=0

θ2
q,l =

∞
∑

l=0

∫

I∗(δ)

k2ldk =
∞

∑

l=0

(1 + δ)−2l−1

2l + 1
<∞.
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Therefore, the operator Θ : l2(Z+) → l2(Z+) defined by

(Θu)q =
∞

∑

l=0

θq,lul, q ∈ Z+, u = {ul}l∈Z+
,

is a Hilbert-Schmidt, and hence bounded operator. Let ρ(m) : l2(Z+) → l2(Z+) be the
diagonal operator with diagonal entries

e2m(ξ+δ)+
(mR)2q+2

(q!)2(q + 1)
, q ∈ Z+. (6.25)

Now (6.22) – (6.25) imply

n+(s;G+
δ (m)) = n+(s; Θ∗ρ(m)Θ), s > 0. (6.26)

Evidently,
n+(s; Θ∗ρ(m)Θ) ≤ n+(s; ‖Θ‖2ρ(m)), s > 0. (6.27)

On the other hand, for any s > 0 we have

n+(s; ρ(m)) = #

{

q ∈ Z+

∣

∣

∣

∣

em(ξ+δ)+(mR)q+1

q!
√
q + 1

>
√
s

}

, s > 0. (6.28)

Applying the Stirling formula

q! = (2π)1/2(q + 1)q+1(q + 1)−1/2e−q−1(1 + o(1)), q → ∞,

we find that for each ε ∈ (0, 1) there exists q0 ∈ Z+ such that

#

{

q ∈ Z+

∣

∣

∣

∣

em(ξ+δ)+(mR)q+1

q!
√
q + 1

>
√
s

}

≤

#

{

q ∈ Z+

∣

∣

∣

∣

∣

(ξ + δ)+

eR
>
q + 1

eRm
ln

(

q + 1

eRm

)

+
ln

(√
2πs(1 − ε)

)

eRm

}

+ q0. (6.29)

Passing from Darboux sums to Riemann integrals, we find that for each constant c ∈ R

we have

lim
m→∞

m−1#

{

q ∈ Z+

∣

∣

∣

∣

(ξ + δ)+

eR
>
q + 1

eRm
ln

(

q + 1

eRm

)

+
c

m

}

=

eRκ

(

(ξ + δ)+

eR

)

. (6.30)

Putting together (6.18) – (6.21) and (6.26) – (6.30), we get

lim sup
λ↓0

| lnλ|−1/2n+(r; Γ+
δ (

√

b| lnλ|)∗Γ+
δ (

√

b| lnλ|)) ≤ (1 + δ)2
√
beRκ

(

(ξ + δ)+

eR

)
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for any δ > 0. Letting δ ↓ 0 and optimizing with respect to ξ and R, we obtain (6.17).
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Schrëdinger operator, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov.
(LOMI) 190 (1991), 157–162, 187–188 (Russian); English translation in: J. Math.
Sci. 71 (1994), 2269–2272.

[15] M. Melgaard, G. Rozenblum, Eigenvalue asymptotics for weakly perturbed
Dirac and Schrödinger operators with constant magnetic fields of full rank, Comm.
PDE 28 (2003), 697-736.

[16] P. Miranda, G. Raikov, Discrete spectrum of quantum Hall effect Hamiltonians
II. Periodic edge potentials, ArXiv Preprint arXiv:1101.1079 (2011).

[17] M. Persson, Eigenvalue asymptotics of the even-dimensional exterior Landau-
Neumann Hamitonian, Adv. Math. Phys. 2009 (2009), Article ID 873704, 15 pp.

[18] A. Pushnitski, G. Rozenblum, Eigenvalue clusters of the Landau Hamiltonian
in the exterior of a compact domain, Doc. Math. 12 (2007), 569–586.

[19] A. Pushnitski, G. Rozenblum, On the spectrum of Bargmann-Toeplitz opera-
tors with symbols of a variable sign, ArXiv Preprint arXiv:0912.4486 (2009).

[20] G. D. Raikov, Eigenvalue asymptotics for the Schrödinger operator with homo-
geneous magnetic potential and decreasing electric potential. I. Behaviour near the
essential spectrum tips, Commun. P.D.E. 15 (1990), 407-434.

[21] G. Raikov, Eigenvalue asymptotics for the Schrödinger operator with perturbed
periodic potential, Invent. Math. 110 (1992), 75–93.

[22] G.D.Raikov, Eigenvalue asymptotics for the Schrödinger operator in strong con-
stant magnetic fields, Commun. P.D.E. 23 (1998), 1583-1620.

[23] G.D.Raikov, S.Warzel, Quasi-classical versus non-classical spectral asymp-
totics for magnetic Schrödinger operators with decreasing electric potentials, Rev.
Math. Phys. 14 (2002), 1051–1072.

[24] M. Reed, B. Simon, Methods of Modern Mathematical Physics. I. Functional
analysis, Academic Press, New York-London, 1972. xvii+325 pp.

[25] M. Reed, B. Simon, Methods of Modern Mathematical Physics. IV. Analysis of
operators, Academic Press, New York-London, 1978. xv+396 pp.

[26] G. Rozenblum, G. Tashchiyan, On the spectral properties of the perturbed
Landau Hamiltonian, Comm. Partial Differential Equations 33 (2008), 1048–1081.

[27] K. M. Schmidt, Critical coupling constants and eigenvalue asymptotics of per-
turbed periodic Sturm-Liouville operators, Comm. Math. Phys. 211 (2000), 465–
485.

33



[28] M. A. Shubin, Pseudodifferential Operators and Spectral Theory, Second edition.
Springer-Verlag, Berlin, 2001. xii+288 pp.

[29] L. B. Zelenko, Asymptotic distribution of the eigenvalues in a lacuna of the
continuous spectrum of a perturbed Hill operator, (Russian) Mat. Zametki 20
(1976), 341–350.

Vincent Bruneau
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