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Abstract. Let V (t) = etGb , t ≥ 0, be the semigroup generated by
Maxwell’s equations in an exterior domain Ω ⊂ R3 with dissipative
boundary condition Etan − γ(x)(ν ∧ Btan) = 0, γ(x) > 0, ∀x ∈ Γ = ∂Ω.
We study the case when Ω = {x ∈ R3 : |x| > 1} and γ 6= 1 is a constant.
We establish a Weyl formula for the counting function of the negative
real eigenvalues of Gb.
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1. Introduction

Let K ⊂ {x ∈ R3 : |x| ≤ a} be an open connected domain and let Ω = R3\K̄
be connected domain with C∞ smooth boundary Γ. Consider the boundary
problem

∂tE = curl B, ∂tB = −curlE in R+
t × Ω,

Etan − γ(x)(ν ∧Btan) = 0 on R+
t × Γ,

E(0, x) = E0(x), B(0, x) = B0(x).

(1.1)

with initial data f = (E0, B0) ∈ L2(Ω; C6) = H. Here ν(x) is the unit outward
normal to ∂Ω at x ∈ Γ pointing into Ω, 〈 , 〉 denotes the scalar product in C3,
utan := u− 〈u, ν〉ν, and γ(x) ∈ C∞(Γ) satisfies γ(x) > 0 for all x ∈ Γ. Let

G =
(

0 curl
−curl 0

)
and let Gb be the operator G with domain D(Gb) which is the closure in the
graph norm

|‖u‖| = (‖u‖2H + ‖Gu‖2H)1/2

of functions u = (v, w) ∈ C∞0 (R3; C6) satisfying the boundary condition
vtan − γ(ν ∧ wtan) = 0 on Γ. The operator Gb generates a contraction semi-
group V (t) in H (see for instance Theorem 3.1.8 and Section 3.8 in [6]) and
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the solution of the problem (1.1) is described by

(E,B) = V (t)f = etGbf, t ≥ 0.

In [1] it was proved that the spectrum of Gb in the open half plan
{z ∈ C : Re z < 0} is formed by isolated eigenvalues with finite multiplicities.
Note that if Gbf = λf with Re λ < 0, the solution u(t, x) = V (t)f = eλtf(x)
of (1.1) has exponentially decreasing global energy. Such solutions are called
asymptotically disappearing and they are very important for the inverse scat-
tering problems (see [1]). In particular, the eigenvalues λ with Re λ → −∞
imply a very fast decay of the corresponding solutions. In [2] the existence
of eigenvalues of Gb has been studied for the ball B3 = {x ∈ R3 : |x| < 1}
assuming γ constant. It was proved that for γ = 1 there are no eigenvalues
in {z ∈ C : Re z < 0}, while for γ = const , γ 6= 1, there is always an infinite
number of real eigenvalues {λn}n∈N and with exception of λ1 they satisfy the
estimate

λn ≤ − 1
max{(γ0 − 1),

√
γ0 − 1}

= −c0 , (1.2)

where γ0 = max{γ, 1
γ }.

In this paper we study the distribution of the negative eigenvalues and
our purpose is to obtain a Weyl formula for the counting function

N(r) = #{λ ∈ σp(Gb) ∩ R− : |λ| ≤ r}, r > r0(γ),

where every eigenvalues λn is counted with its algebraic multiplicity given by

mult(λn) = rank
1

2πi

∫
|λn−z|=ε

(z −Gb)−1dz,

where 0 < ε � 1. Our main result is the following

Theorem 1.1. Let γ 6= 1 be a constant and let γ0 = max{γ, 1
γ }. Then the

counting function N(r) for the ball B3 has the asymptotic

N(r) = (γ2
0 − 1)r2 +Oγ(r), r ≥ r0(γ) > c0. (1.3)

The proof of Theorem 1.1 is based on a precise analysis of the roots of
the equation (3.1) involving spherical Hankel functions h

(1)
n (λ) of first kind.

We show in Section 3 that for γ > 1 this equation has only one real root
λn < 0. Moreover, we have λn+1 < λn, ∀n ∈ N, so we have a decreasing
sequence of eigenvalues. The geometric multiplicity of λn is 2n + 1. Since Cb

is not a self-adjoint operator the geometric multiplicity could be less than
the algebraic one. In our case these multiplicities coincide and the proof is
based on a representation of (Gb− z)−1. To estimate λn as n →∞, we apply
an approximation of the exterior semiclassical Dirichlet to Neumann map
for the operator (h2∆ + z) established in [7] (see also [9]) combined with an
application of Rouché theorem.
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We conjecture that in the general case of strictly convex obstacles and
miny∈Γ γ(y) = γ1 > 1 we have the asymptotic

N(r) =
1
4π

(∫
Γ

(γ2(y)− 1)dSy

)
r2 +Oγ(r), r ≥ r0(γ).

For the ball B3 this agrees with (1.3).

2. Boundary problem for Maxwell system

Our purpose is to study the eigenvalues of Gb in case the obstacle is the
ball B3 = {x ∈ R3 : |x| ≤ 1}. Setting λ = iµ, Im µ > 0, an eigenfunction
(E,B) 6= 0 of Gb satisfies

curlE = −iµB, curlB = iµE. (2.1)

Replacing B by H = −B yields for (E,H) ∈ H2({|x| ≥ 1}; C6) the problem{
curlE = iµH, curlH = −iµE, for x ∈ B3,

Etan + γ(ν ∧Htan) = 0, for x ∈ S2.
(2.2)

The functions E(x),H(x) are solutions in {x ∈ R3 : |x| > 1} of the Helmholtz
equation

∆v + µ2v = 0

and since (E,H) ∈ H these solutions are outgoing. By using spherical co-
ordinates ω on S2, we can expand E(x),H(x) by the spherical functions
Y m

n (ω), n = 0, 1, 2, ..., |m| ≤ n, ω ∈ S2, and the spherical Hankel functions
of first kind

h(1)
n (z) :=

H
(1)
n+1/2(z)
√

z
, n ≥ 1.

An application of Theorem 2.50 in [3] (in the notation of [3] it is nec-
essary to replace k by µ ∈ C \ {0}) says that the outgoing solution of the
system

curlE = iµH, curlH = −iµE, for x ∈ B3

for x = |x|ω, r = |x| > 0, ω = x
r has the form

E(x) =
∞∑

n=1

∑
|m|≤n

[
αm

n

√
n(n + 1)

h
(1)
n (µr)

r
Y m

n (ω)ω

+
αm

n

r
(rh(1)

n (µr))′Um
n (ω) + βm

n h(1)
n (µ)V m

n (ω)
]
, (2.3)

H(x) = − 1
iµ

∞∑
n=1

∑
|m|≤n

[
βm

n

√
n(n + 1)

h
(1)
n (µr)

r
Y m

n (ω)ω

+
βm

n

r
(rh(1)

n (µr))′Um
n (ω) + µ2αm

n h(1)
n (µ)V m

n (ω)
]
. (2.4)



4 F. Colombini and V. Petkov

Here Um
n (ω) = 1√

n(n+1)
grad S2Y m

n (ω) and V m
n (ω) = ν ∧ Um

n (ω) for n ∈
N,−n ≤ m ≤ n form a complete orthonormal basis in

L2
t (S2) = {u(ω) ∈ (L2(S2; C3) : 〈ω, u(ω)〉 = 0 on S2}.

To find a representation of ν ∧Htan, observe that ν ∧ (ν ∧ Um
n ) = −Um

n , so
for r = 1 one has

(ν ∧Htan)(ω) = − 1
iµ

∞∑
n=1

∑
|m|≤n

[
βm

n

(
h(1)

n (µ) +
d

dr
h(1)

n (µr)|r=1

)
V m

n (ω)

−µ2αm
n h(1)

n (µ)Um
n (ω)

]
and the boundary condition in (2.2) is satisfied if

αm
n

[
h(1)

n (µ) +
d

dr
(h(1)

n (µr))|r=1 − γiµh(1)
n (µ)

]
= 0, ∀n ∈ N, |m| ≤ n, (2.5)

−βm
n γ

iµ

[
h(1)

n (µ)+
d

dr
(h(1)

n (µr))|r=1−
iµ
γ

h(1)
n (µ)

]
= 0, ∀n ∈ N, |m| ≤ n. (2.6)

3. Roots of the equation gn(λ) = 0

To examine the eigenvalues of Gb, it is necessary to find the roots of the
equations (2.5) and (2.6). Since h

(1)
n (µ) 6= 0 for Im µ > 0, the problem is

reduced to study the roots λ ∈ R− of the equation

1 +
d

dr
h(1)

n (−iλr)
∣∣∣
r=1

(h(1)
n (−iλ))−1 − λγ = 0 (3.1)

and the same equation with γ replaced by 1
γ . Clearly, if µ = −iλ is such that

the expressions in the brackets [...] in (2.5) and (2.6) are non-vanishing for
every n ≥ 1, we must have αm

n = βm
n = 0 which implies Etan = Btan =

0. Hence (E,B) = 0 because the boundary problem with γ = 0 has no
eigenvalues in {z ∈ C : Re z < 0}. In this section we suppose that γ 6= 1 and
examine the equation

gn(λ) :=
1
λ

+
d

dλ

(
h(1)

n (−iλ)
)
(h(1)

n (−iλ))−1 − γ = 0. (3.2)

It is well known that (see [5])

h(1)
n (−iλ) = (−i)n+1 eλ

−iλ
Rn

( i
−2iλ

)
= (−i)n eλ

λ
Rn

(
− 1

2λ

)
with

Rn(z) :=
n∑

m=0

am,nzm, am,n =
(n + m)!

m!(n−m)!
> 0.

We will prove the following
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Proposition 3.1. For λ < 0 we have

Gn,n+1(λ) =
d

dλh
(1)
n+1(−iλ)

h
(1)
n+1(−iλ)

−
d

dλh
(1)
n (−iλ)

h
(1)
n (−iλ)

> 0. (3.3)

Proof. The purpose is to show that(
h(1)

n (−iλ)
d

dλ
h

(1)
n+1(−iλ)−h

(1)
n+1(−iλ)

d

dλ
h(1)

n (−iλ)
)(

h
(1)
n+1(−iλ)h(1)

n (−iλ)
)−1

> 0.

Introduce the functions

ξn(λ) :=
eλ

λ
Rn

(
− 1

2λ

)
, ηn(λ) := λξn(λ).

Then h
(1)
n (−iλ) = (−i)nξn(λ) and the above inequality is equivalent to(

ξn(λ)
d

dλ
ξn+1(λ)− ξn+1(λ)

d

dλ
ξn(λ)

)(
ξn+1(λ)ξn(λ)

)−1

=
(
ηn(λ)

d

dλ
ηn+1(λ)− ηn+1(λ)

d

dλ
ηn(λ)

)(
ηn+1(λ)ηn(λ)

)−1

> 0.

Since ηn(λ)ηn+1(λ) > 0 for λ < 0, it suffices to show that the function

F (λ) = ηn(λ)
d

dλ
ηn+1(λ)− ηn+1(λ)

d

dλ
ηn(λ)

has positive values for λ ∈ (−∞, 0). Consider the derivative

F ′(λ) = ηn(λ)
d2

dλ2
ηn+1(λ)− ηn+1(λ)

d2

dλ2
ηn(λ).

We have

ηn(λ) = in+1h(1)
n (−iλ)(−iλ) = in+1Ξn(−iλ) = −in−1Ξn(−iλ).

The function Ξn(z) = zh
(1)
n (z) satisfies the equation

Ξ′′n(z) +
(
1− n2 + n

z2

)
Ξn(z) = 0

and
d2

dλ2
ηn(λ) = in−1Ξ′′n(−iλ) = −in−1

(
1 +

n2 + n

λ2

)
Ξn(−iλ)

=
(
1 +

n2 + n

λ2

)
ηn(λ).

Consequently,

F ′(λ) =
[ (n + 1)2 + n + 1

λ2
− n2 + n

λ2

]
ηn(λ)ηn+1(λ)

= 2(n + 2)
ηn(λ)ηn+1(λ)

λ2
> 0.

On the other hand,

F (λ) = eλRn

(
− 1

2λ

) d

dλ

(
eλRn+1

(
− 1

2λ

))
−eλRn+1

(
− 1

2λ

) d

dλ

(
eλRn

(
− 1

2λ

))
=

e2λ

2λ2

[
Rn

(
− 1

2λ

)
R′n+1

(
− 1

2λ

)
−Rn+1

(
− 1

2λ

)
R′n(− 1

2λ
)
]
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and
lim

λ→−∞
F (λ) = 0, lim

λ↗0
F (λ) = +∞

since
lim

w→+∞

[
Rn(w)R′n+1(w)−Rn+1(w)R′n(w)

]
= +∞.

Finally, the function F (λ) in the interval (−∞, 0] is increasing from 0 to +∞
and this completes the proof. �

Now if λn < 0 is a solution the equation (3.2) one has

gn+1(λn) =
1
λn

+
( d

dλ
h

(1)
n+1(−iλn)

)
(h(1)

n+1(−iλn))−1 − γ = Gn,n+1(λn) > 0,

so λn is not a root of the equation

gn+1(λ) =
1
λ

+
( d

dλ
h

(1)
n+1(−iλ)

)
(h(1)

n+1(−iλ))−1 − γ = 0.

In the following we assume that γ > 1. Then for λ → −∞ we have
gn+1(λ) → 1− γ < 0, and since gn+1(λn) > 0 the equation gn+1(λ) = 0 has
at least one root −∞ < λn+1 < λn.

Lemma 3.1. Let γ > 1. For every n ≥ 1 the equation gn(λ) = 0 in the interval
(−∞, 0) has exactly one root λn < 0.

Proof. Setting w = − 1
2λ , we write the equation (3.2) asRn(w) := w2R′n(w)+

αRn(w) = 0, where α = 1−γ
2 < 0. We will show that this equation has exactly

one positive root. Since

w2R′n(w) =
n∑

k=1

kak,nwk+1, Rn(w) =
n∑

k=0

ak,nwk,

the polynomial Rn(w) has the representation

Rn(w) =
n+1∑
k=0

bk,nwk

with {
bk,n = (k − 1)ak−1,n + αak,n, 0 ≤ k ≤ n, a−1,n = 0,

bn+1,n = (2n)!
(n−1)! .

Taking into account the form of ak,n, we deduce

bk,n =
(n + k − 1)!

(n− k + 1)!k!

(
k(k− 1) + α(n + k)(n− k + 1)

)
, 0 ≤ k ≤ n + 1. (3.4)

Thus the sign of bk,n depends on the sign of the function

B(k) := (1− α)k2 + (α− 1)k + α(n2 + n)

which for k ≥ 1 is increasing since

B′(k) = 2(1− α)k + α− 1 ≥ 1− α > 0.

Clearly, b0,n = α < 0 and bn+1,n > 0. There are two cases:
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(i) b1,n ≤ 0. Then there is only one change of sing in the Descartes’
sequence {bn+1,n, bn,n, ..., b1,n, b0,n}.

(ii) b1,n > 0. Then bk,n > 0 for 1 ≤ k ≤ n + 1 and in the Descartes’
sequence {bn+1,n, bn,n, ..., b1,n, b0,n} one has again only one change of sign.

Applying the Descartes’ rule of signs, we conclude that the number of
the positive roots of Rn(w) = 0 is exactly one.

�

Combining Proposition 3.1 and Lemma 3.1, one obtain the following

Corollary 3.1. Let γ > 1. Then the generator Gb has an infinite sequence of
real eigenvalues

−∞ < ... < λn < ... < λ2 < λ1 < 0

and λn has geometric multiplicity 2n + 1.

The geometric multiplicity is 2n+1 since the functions {Ym,n(ω)}m
m=−n

are linearly independent. The algebraic multiplicity of λm will be discussed
in Section 5.

4. Estimation of the roots

Throughout this section we assume γ > 1. Set λ = i
√

z
h , 0 < h � 1 with

z = −1 + iη, 0 ≤ |η| ≤ h1/2, η ∈ R. Consider the Dirichlet problem{
(h2∆ + z)w = 0, |x| > 1, w ∈ H2(|x| > 1),
w = f, |x| = 1

(4.1)

and note that ∆ + z
h2 = ∆− λ2. The solution of (4.1) has the form

w(rω) =
∞∑

n=0

n∑
m=−n

h(1)
n (−iλr)(h(1)

n (−iλ)−1αn,mYn,m(ω),

where

f(ω) =
∞∑

n=0

n∑
m=−n

αn,mYn,m(ω).

The semiclassical Dirichlet-to-Neumann operator Next(h, z) = h
i

d
dr w|r=1 re-

lated to (4.1) becomes

Next(h, z) = −i
√

z

∞∑
n=0

n∑
m=−n

(h(1)
n )′(−iλ)(h(1)

n (−iλ))−1αn,mYn,m

=
√

z

∞∑
n=0

n∑
m=−n

d

dλ

(
h(1)

n (−iλ)
)
(h(1)

n (−iλ))−1αn,mYn,m.
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By using the approximation of Next(h, z) established in [9],[7] for z = −1+iη,
one deduces

‖Next(h, z)f −Oph(ρ)f‖L2(S2) ≤ C
|
√

z|
|λ|

‖f‖L2(S2), 0 < h ≤ h0

with ρ =
√

z − r0(x′, ξ′) and a constant C > 0 independent of z, λ and f .
Here r0(x′, ξ′) is the principal symbol of the semiclasssical Laplace-Beltrami
operator −h2∆S2 = z

λ2 ∆S2 and Oph(ρ) is a h−pseudodifferential operator
with symbol ρ. Moreover,

√
z = i

√
1− iη = i(1− iη

2 +O(η2)) and

Re λ = − 1
h

+O(1), Im λ = O(h−1/2).

Hence, for 0 < h ≤ h0 we get

λ ∈ Λ0 = {z ∈ C : | Im z| ≤ ch
1/2
0 |Re z|, Re λ < −ε < 0, |λ| ≥ λ0}.

On the other hand, it easy to see that∥∥∥Oph(ρ)−
√

z
(√

1− ∆S2

λ2

)∥∥∥
L2(S2)→L2(S2)

≤ C1|λ|−1, λ ∈ Λ0.

Applying the spectral calculus for the operator ∆S2 , one deduces(√
1− ∆S2

λ2

)
f =

∞∑
n=0

n∑
m=−n

(√
1 +

n(n + 1)
λ2

)
αn,mYn.m

and∥∥∥(Next(h,−z)−
√

z
(√

1− ∆S2

λ2

)
f
∥∥∥2

L2(S2)
= |z|

∞∑
n=0

n∑
m=−n

∣∣∣ d

dλ

(
hn(−iλ)

)
(hn(−iλ))−1

−
√

1 +
n(n + 1)

λ2

∣∣∣2|an,m|2.

This implies∣∣∣ d

dλ

(
h(1)

n (−iλ)
)
(h(1)

n (−iλ))−1 −
√

1 +
n(n + 1)

λ2

∣∣∣ ≤ C2|λ|−1, ∀n ∈ N, λ ∈ Λ0

(4.2)
which we write as∣∣∣[ 1

λ
+

d

dλ

(
h(1)

n (−iλ)
)
(h(1)

n (−iλ))−1− γ
]
−
[√

1 +
n(n + 1)

λ2
− γ
]∣∣∣ ≤ C0|λ|−1.

(4.3)

Remark 4.1. For bounded 1 ≤ n ≤ N0 and sufficiently large |λ| the estimate
(4.2) follows easily from the fact that R′

n(w)
Rn(w) = n(n + 1) +O(|w|) as |w| → 0.

Remark 4.2. The estimate (4.2) is similar to that in Proposition 2.1 in [8],
where the function J′

ν(λ)
Jν(λ) for ν ≥ 0 and 0 < C ≤ | Im λ| ≤ δ|Re λ|, Re λ > C1

has been approximated. Here Jν(z) is the Bessel function, while the boundary
problem examined in [8] is in the bounded domain {x ∈ R3 : |x| < 1}.
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Put z = λ and for z ∈ Λ0 consider the function

fn(z) :=

√
1 +

n(n + 1)
z2

− γ

with zeros

z±n = ±

√
n2 + n

γ2 − 1
.

In the following we set zn = −
√

n(n+1)
γ2−1 . Clearly,

f ′n(z) = −1
z

n(n+1)
z2√

1 + n(n+1)
z2

and n(n+1)
z2

n
= γ2−1, f ′n(zn) = −γ2−1

γzn
. A calculus yields the second derivative

f ′′n (z) =
1
z2

[3n(n + 1)
z2

(√
1 +

n(n + 1)
z2

)
−n2(n + 1)2

z4

(√
1 +

n(n + 1)
z2

)−1/2](
1 +

n(n + 1)
z2

)−1

.

For n large enough and a > 0 to be fixed below introduce the contour

Cn(a) := {z = zn + aeiϕ, 0 ≤ ϕ < 2π} ⊂ Λ0.

Our purpose is to choose a so that

|fn(z)| ≥ C0

|z|
, ∀z ∈ Cn(a). (4.4)

We have
z2 = z2

n + 2znaeiϕ + a2e2iϕ

and
n(n + 1)

z2
= (γ2 − 1)

(
1 +O

( 1
n

)
a +O

( 1
n2

)
a2
)−1

, z ∈ Cn(a). (4.5)

On the other hand,√
n(n + 1)

z2
+ 1 =

[γ2 +O
(

1
n

)
a +O( 1

n2 )a2

1 +O
(

1
n

)
a +O( 1

n2 )a2

]1/2

.

Clearly, one has the estimate

|fn(z)| ≥ γ2 − 1
γ|zn|

a− a2

2
sup

z∈Cn(a)

|f ′′n (z)|, z ∈ Cn(a). (4.6)

Set Cγ = γ2−1
γ > 0 and choose a > 0 so that Cγa > 4C0. We fix a and obtain

Cγa

2|zn|
>

2C0

|zn|
>

C0

|zn||1 + aeiϕ

zn
|
, 0 ≤ ϕ < 2π,
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taking n large enough to satisfy the inequality

1∣∣∣1 + aeiϕ

zn

∣∣∣ < 2.

Next we arrange the inequality

Cγa

2|zn|
− a2

2
sup

z∈Cn(a)

|f ′′n (z)| > 0. (4.7)

It is clear that

f ′′n (z) =
1
z2

G
(n(n + 1)

z2

)
,

where

G(ζ) =
[
3ζ
√

ζ + 1− ζ2(ζ + 1)−1/2
]
(ζ + 1)−1.

Note that for z ∈ Cn(a) and n large enough according to (4.4), the function
|G(n(n+1)

z2 )| is bounded by a constant Bγ,a depending on γ and a . Thus for
large n we get

sup
z∈Cn(a)

|f ′′n (z)| ≤ Bγ,a sup
z∈Cn(a)

1
|z|2

= Bγ,a
1

|zn|2
sup

z∈Cn(a)

1
|1 + aeiϕ

zn
|2
≤ 4Bγ,a

1
|zn|2

and the proof of (4.7) is reduced to

Cγ > 4Bγ,a
a

|zn|

which is satisfied taking again n large. Finally, we proved the estimate (4.3)
and we can apply Rouché theorem for the functions gn(z) and fn(z) and
conclude that the function gn(z) has exactly one simple zero λn in Cn(a).
Since gn(z) has only real zeros (see Appendix in [2]), this implies the following

Lemma 4.1. There exist n0(γ) and a(γ) > 0 depending on γ such that for
n ≥ n0(γ) the negative root λn of the equation (3.2) satisfies the estimate

∣∣∣λn +

√
n(n + 1)
γ2 − 1

∣∣∣ ≤ a(γ). (4.8)

Remark 4.3. According to Proposition 2.1, n0(γ) must satisfy the inequality

n0(γ) ≥
√

γ2 − 1
max{γ − 1,

√
γ − 1}

.
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5. Weyl asymptotics

We start with the analysis of the algebraic multiplicity of λn.

Lemma 5.1. For n ≥ n0(γ) we have mult(λn) = 2n + 1.

Proof. Since the geometric multiplicity of λn is 2n+1, it is sufficient to show
that

mult(λn) ≤ 2n + 1. (5.1)
Let λ ∈ Λ0, where Λ0 is the set introduced in the previous section and let
λ /∈ σ(Gb). If 0 6= (f, g) ∈ (Image Gb) ∩ L2(Ω), one has div f = div g = 0
and for (u, v) = (Gb−λ)−1(f, g) we get div u = div v = 0. Consider the skew
self-adjoint operator

A =
(

0 −curl
curl 0

)
with boundary condition ν ∧ u = 0 on S2. Then σ(A) ⊂ iR and let

(u0(x;λ), v0(x;λ)) = (A− λ)−1(f, g),

that is (A− λ)

(
u0

v0

)
=

(
f

g

)
for |x| > 1,

ν ∧ u0 = 0 on S2.

(5.2)

Since div u0 = div v0 = 0, the well known coercive estimates yield (u0, v0) ∈
H1(Ω). Moreover the resolvent (A − λ)−1 is analytic in {z ∈ C : Re z < 0}
and u0(x;λ), v0(x;λ) depend analytically on λ. We write (u, v) = (u0, v0) +
(u1, v1), where (u1(x;λ), v1(x;λ)) is the solution of the problem(G− λ)

(
u1

v1

)
=

(
0
0

)
for |x| > 1,

(u1)tan − γ(ν ∧ (v1)tan) = −γ(ν ∧ (v0)tan(x; z)) on S2.

(5.3)

To solve (5.3), note that −γ(ν ∧ (v0)tan(ω; z)) = F (ω;λ) ∈ L2(S2) with
F (ω;λ) analytical in λ for λ ∈ Λ0. Thus we may write

F (ω;λ) =
∞∑

n=1

n∑
m=−n

α̃m
n (λ)Um

n (ω) + β̃m
n (λ)V m

n (ω)

with analytical coefficients α̃m
n (λ), β̃m

n (λ). Now we can solve (2.5), (2.6) with
right hand part (α̃m

n (λ), β̃m
n (λ)). Finally, we obtain a representation of the

solution of (5.3) with meromorphic coefficients

αm
n (λ) =

α̃m
n (λ)

h
(1)
n (−iλ)

[
1 + d

dr (h(1)
n (−iλr))|r=1(h

(1)
n (−iλ))−1 − λγ

] ,
βm

n (λ) = − λβ̃m
n (λ)

γh
(1)
n (−iλ)

[
1 + d

dr (h(1)
n (−iλr))|r=1(h

(1)
n (−iλ))−1 − λγ−1

] .



12 F. Colombini and V. Petkov

If γ > 1 the analysis in the previous section shows that for λ ∈ Λ0 the
meromorphic function αm

n (λ) has a simple pole at λn < 0, while βm
n (λ) is

analytic in Λ0. For 0 < γ < 1 the function αm
n (λ) is analytic in Λ0 and

βm
n (λ) is meromorphic. Next we integrate (u(x;λ), v(x;λ)) over the circle
|λn − λ| = ε, where ε is sufficiently small. The integral of (u0(x;λ), v0(x;λ))
vanishes, while for the integral of (u1(x;λ), v1(x;λ)), taking into account the
representation of the solution of (5.3), we will obtain a sum

Sn =

{
cn

∑m
m=−n α̃m

n (λn)Um
n (ω), cn 6= 0, γ > 1,

dn

∑m
m=−n λnβ̃m

n (λn)γ−1V m
n (ω), dn 6= 0, 0 < γ < 1.

This completes the proof of (5.1). �

Passing to the analysis of N(r), consider first the case γ > 1. The root
λn has algebraic multiplicity 2n + 1 and to find a lower bound of N(r) we
apply the estimate

|λn| ≤

√
n(n + 1)
γ2 − 1

+ a(γ) <
n + 1√
γ2 − 1

+ a(γ) ≤ r

for r ≥ a(γ) + n0(γ)+1√
γ2−1

. Then

N(r) ≥
[(r−a(γ))

√
γ2−1−1]∑

j=n0(γ)

(2j + 1) = (γ2 − 1)r2 +Oγ(r) + Aγ .

To get a upper bound for N(r), we use the estimate

|λn| ≥

√
n(n + 1)
γ2 − 1

− a(γ) >
n√

γ2 − 1
− a(γ) ≥ r

for
n ≥ (r + a(γ))

√
γ2 − 1 ≥ 2a(γ)

√
γ2 − 1 + n0(γ) + 1,

hence

N(r) ≤
[(r+a(γ))

√
γ2−1]+1∑

j=n0(γ)

(2j + 1) + Dγ = (γ2 − 1)r2 +Oγ(r) + A′γ .

If 0 < γ < 1, we have 1
γ > 1 and one applies the above argument for the

roots of the the equation (2.6). This completes the proof of theorem 1.1
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