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Abstract. We study the wave equation in the exterior of a bounded domain K with
dissipative boundary condition ∂νu − γ(x)∂tu = 0 on the boundary Γ and γ(x) > 0. The
solutions are described by a contraction semigroup V (t) = etG, t ≥ 0. The eigenvalues λk
of G with Reλk < 0 yield asymptotically disappearing solutions u(t, x) = eλktf(x) having
exponentially decreasing global energy. We establish a Weyl formula for these eigenvalues
in the case minx∈Γ γ(x) > 1. For strictly convex obstacles K this formula concerns all
eigenvalues of G.
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1. Introduction

Let K ⊂ Rd, d ≥ 2, be a bounded non-empty domain. Let Ω = Rd \ K̄ be connected.
and K ⊂ {x ∈ Rd : |x| ≤ ρ0}. We suppose that the boundary Γ of K is C∞. Consider the
boundary problem 

utt −∆xu = 0 in R+
t × Ω,

∂νu− γ(x)∂tu = 0 on R+
t × Γ,

u(0, x) = f1, ut(0, x) = f2

(1.1)

with initial data (f1, f2) ∈ H1(Ω)× L2(Ω) = H. Here ν(x) is the unit outward normal to Γ
pointing into Ω and γ(x) ≥ 0 is a C∞ function on Γ. The solution of the problem (1.1) is
given by V (t)f = etGf, t ≥ 0, where V (t) is a contraction semi-group in H whose generator

G =
(

0 1
∆ 0

)
has a domain D(G) which is the closure in the graph norm

|‖f‖| = (‖f‖2
H + ‖Gf‖2

H)1/2

of functions f = (f1, f2) ∈ C∞(0)(Rd)×C∞(0)(Rd) satisfying the boundary condition ∂νf1−γf2 =
0 on Γ. It is well known that the spectrum of G in Re z < 0 is formed by isolated eigenvalues
with finite multiplicity (see [7] for d odd and [12] for all d ≥ 2.) Moreover, G has no
eigenvalues on the imaginary axis iR. Notice that if Gf = λf with 0 6= f ∈ D(G), Reλ < 0
and ∂νf1 − γf2 = 0 on Γ, we get {

(∆− λ2)f1 = 0 in Ω,

∂νf1 − λγf1 = 0 on Γ
(1.2)
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and u(t, x) = V (t)f = eλtf(x) is a solution of (1.1) with exponentially decreasing global
energy. Such solutions are called asymptotically disappearing. On the other hand, the
solutions u(t, x) = V (t)f for which there exists T > 0 such that u(t, x) ≡ 0 for t ≥ T are
called disappearing (see [8]). For t0 > 0 the closed linear space

H(t0) = {g ∈ H : V (t)g = 0 for t ≥ t0}

is invariant under the action of V (t) and if H(t0) 6= {0}, then H(t0) has infinite dimension.
If H(t0) is not trivial, the scattering system is non controllable (see section 4 in [8] for the
definition and details). Majda proved in [8] that for obstacles with analytic boundary Γ
and analytic γ(x) the condition γ(x) 6= 1, ∀x ∈ Γ, implies that there are no disappearing
solutions.

In this paper in the case minx∈Γ γ(x) > 1 we show that there exists a subspace Hsp (
H with infinite dimension generated by eigenfunctions of G such that V (t)g, g ∈ Hsp is
asymptotically disappearing. The eigenvalues λk sufficiently close to R− with Reλk → −∞
present a particular interest for applications since they correspond to solutions decreasing
sufficiently fast as t → +∞. It is important to know that such eigenvalues exist and to
have their asymptotic. It was proved in [2] that if we have at least one eigenvalue λ of G
with Re λ < 0, then the wave operators W± are not complete, that is Ran W− 6= Ran W+.
Hence we cannot define the scattering operator S related to the Cauchy problem for the free
wave equations and the boundary problem (1.1) by the product W−1

+ ◦W−. When the global
energy is conserved in time and the unperturbed and perturbed problems are associated to
unitary groups, the corresponding scattering operator S(z) : L2(Sd−1) → L2(Sd−1) satisfies
the identity

S−1(z) = S∗(z̄), z ∈ C, (1.3)

providing S(z) invertible at z. Since S(z) and S∗(z) are analytic in the ”physical” half plane
{z ∈ C : Im z < 0} (see [6]) the above relation implies that S(z) is invertible for Im z > 0.
For dissipative boundary problems the relation (1.3) in general is not true and S(z0) may
have a non trivial kernel for some z0, Im z0 > 0. For odd dimensions d Lax and Phillips [7]
proved that this implies that iz0 is an eigenvalue of G. Thus the analysis of the eigenvalues
of G is important for the location and the existence of points, where the kernel of S(z) is not
trivial. A similar connection occurs in the analysis of the interior transmission eigenvalues
(see [1] for the definition and more references). More precisely, consider the far-filed operator

(F (k)f)(θ) =

∫
Sd−1

a(k, θ, ω)f(ω)dω, (θ, ω) ∈ Sd−1 × Sd−1.

Here a(k, θ, ω) is the scattering amplitude for the Helmholtz equation (∆ + k2n(x))u =
0, x ∈ K with contrast function n(x) > 0 and for d odd the scattering operator has the
representation

S(k) = Id+
( ik

2π

)(d−1)/2

F (k), k ∈ R.

Therefore if the kernel of F (k) is non trivial, k is an interior transmission eigenvalue [1].
The location in C of the eigenvalues of G has been studied in [12] improving previous

results of Majda [9]. It was proved in [12] that for the case when K is the unit ball B3 =
{x ∈ R3 : |x| ≤ 1} and γ ≡ 1, the operator G has no eigenvalues. For this reason we study
the cases

(A) : max
x∈Γ

γ(x) < 1, (B) : min
x∈Γ

γ(x) > 1.
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The results in [12] say that in the case (B) for every 0 < ε � 1 and every M ∈ N, M ≥ 1
the eigenvalues lie in Λε ∪RN , where

Λε = {z ∈ C : |Re z| ≤ Cε(1 + | Im z|1/2+ε), Re z < 0},

RM = {z ∈ C : | Im z| ≤ AM(1 + |Re z|)−M , Re z < 0}.
Moreover, for strictly convex obstacles K there exists R0 > 0 such that the eigenvalues lie
in RM ∪ {|z| ≤ R0}. In the case (A) the eigenvalues lie in Λε. By using the results in [18], it
is possible to improve the eigenvalue free regions replacing Λε by {z ∈ C : −A0 ≤ Re z < 0}
with sufficiently large A0 > 0.

The existence of eigenvalues has been proved (see Appendix in [12]) only for the ball B3

and γ ≡ const > 1 and in this particular case we have

σp(G) ⊂ (−∞,− 1

γ − 1
]. (1.4)

Moreover, we have infinite number of real eigenvalues and as γ ↘ 1 one gets a large strip
{z ∈ C : − 1

γ−1
< Re z < 0} without eigenvalues.

The purpose of this paper is to establish a Weyl formula for the eigenvalues in RM ∩{z ∈
C : Re z < −C0 ≤ −1} in the case (B). Introduce the set

Λ = {λ ∈ C : | Imλ| ≤ C1(1 + |Reλ|)−2, Reλ ≤ −C0 ≤ −1}
containing RM , ∀M ≥ 2, modulo a compact set and denote by σp(G) the point spectrum of
G. Increasing the constant C0 > 0 in the definition of Λ, we subtract a compact set and this
is not important for the asymptotic (1.5) below. In the following we assume that C0 ≥ 2C1.
Given λ ∈ σp(G), we define the algebraic multiplicity of λ by

mult (λ) = tr
1

2πi

∫
|z−λ|=ε

(z −G)−1dz

with 0 < ε� 1 sufficiently small. Our main result is the following

Theorem 1. Assume γ(x) > 1 for all x ∈ Γ. Then the counting function of the eigenvalues
in Λ taken with their multiplicities has the asymptotic

]{λj ∈ σp(G) ∩ Λ : |λj| ≤ r, r ≥ Cγ}

=
ωd−1

(2π)d−1

(∫
Γ

(γ2(x)− 1)(d−1)/2dSx

)
rd−1 +Oγ(rd−2), r →∞, (1.5)

ωd−1 being the volume of the unit ball {x ∈ Rd−1 : |x| ≤ 1}.

The example concerning the ball B3 and (1.4) show that the condition r ≥ Cγ is natural
since the coefficient before rd−1 in (1.5) goes to 0 as maxx∈Γ γ(x) ↘ 1. Notice that for
strictly convex obstacles K in the case (B) we obtain a Weyl formula for all eigenvalues
of G. For Maxwell’s equations with dissipative boundary conditions in the particular case
K = B3, γ ≡ const 6= 1, the formula (1.5) has been obtained in [4]. Weyl formula for the
transmission eigenvalues have been obtained by several authors. We refer to [13] and [11]
for more references. It is important to note that in [13] the Weyl formula is established
with remainder which depends on the eigenvalue free region. In [11] the relation with the
eigenvalues free regions is not exploited and the argument is based on a Tauberian theorem
which yields a weak remainder. In the present paper we apply the eigenvalue free results in
[12] and the remainder in (1.5) is optimal.
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To prove Theorem 1, we apply the approach of [15] and the construction of a semi-
classical parametrix T (h, z), 0 < h ≤ h0, z = − 1

(1+iη)2
, |η| ≤ h2 for the semi-classical

exterior Dirichlet-to-Neumann map N(h, z) given in [17], [12]. For z = −1 the operator
P (h) := T (h,−1)− γ(x) is self-adjoint and we denote by µ1(h) ≤ µ2(h) ≤ ... its eigenvalues
counted with their multiplicities. The points 0 < hk ≤ h0 for which µk(hk) = 0 correspond to
points h for which P (h) is not invertible. For large fixed k0, depending on h0, the eigenvalues
µk(h0) are positive, whenever k > k0. Thus if µk(r

−1) < 0, k > k0, we have µk(hk) = 0 for
some r−1 < hk < h0 and by a more fine analysis we prove that such a hk is unique. The
operator P (h) can be extended as holomorphic one for complex h̃ = h(1 + iη) ∈ L with
|η| ≤ h2 and L defined in (2.12). For the resolvent (λ − G)−1 a trace formula has been

established in [12] (see Proposition 1). Similarly, a trace formula involving P−1(h̃) and the

derivative Ṗ (h̃) can be proved. These two trace formulas differs by negligible terms and this
leads to a map between the points hk ∈ L, where P (hk) is not invertible and the eigenvalues
of G. To obtain (1.5), one counts the number of the negative eigenvalues of P (r−1), r ≥ Cγ
which is given by well known formula.

The analysis of the counting function of the eigenvalues of G lying in a strip {z ∈ C :
−A0 ≤ Re z ≤ 0}, A0 > 0, as well as the study of the case (A) are open problems. There is a
conjecture that there exists a sequence of eigenvalues λk, | Imλk| → ∞. For the investigation
of these problems it seems convenient to use the semi-classical parametrix T (h, z) for the
exterior Dirichlet-to-Neumann problem constructed in [16] for strictly convex obstacles in
the hyperbolic region {z ∈ C : z = 1 + ihw}, |w| ≤ B0.

The paper is organised as follows. In Section 2 we collect some facts concerning the
operator C(λ) = N (λ) − λγ for Reλ < 0, where N (λ) is exterior Dirichlet-to-Neumann
map defined in the beginning of Section 2. We recall a the trace formula involving the
resolvent (G − λ)−1 established in [12]. In Section 3 one presents some information for the
semi-classical parametrix for N(h, z) and z ∈ Ze = {z ∈ C : z = − 1

(1+iη)2
}, |η| ≤ h2 based

on the construction in [17], [19]. The properties of the operator P (h) for h real are treated

in Section 4. In Section 5 we compare the trace formulas for C(λ) and for P (h̃) and we prove
Theorem 1. Finally, in Section 6 we discuss some generalisations and a dissipative boundary
problem for Maxwell’s equations.

2. Preliminaries

We start with some facts which are necessary for our exposition (see [12]). For Re λ < 0
introduce the exterior Dirichlet-to-Neumann map

N (λ) : Hs(Γ) 3 f −→ ∂νu|Γ ∈ Hs−1(Γ),

where u is the solution of the problem
(−∆ + λ2)u = 0 in Ω, u ∈ H2(Ω),

u = f on Γ,

u : (iλ)− outgoing.

(2.1)

A function u(x) is (iλ)-outgoing if there exists R > ρ0 and g ∈ L2
comp(Rd) such that

u(x) = (−∆0 + λ2)−1g, |x| ≥ R,

where R0(λ) = (−∆0 +λ2)−1 is the outgoing resolvent of the free Laplacian −∆0 in Rd which
is analytic in C for d odd and on the logarithmic covering of C for d even. The resolvent
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R0(λ) has kernel

R0(λ, x− y) = − i

4

( −iλ

2π|x− y|

)(n−2)/2(
H

(1)
n−2
2

(u)
)∣∣∣

u=−iλ|x−y|
, (2.2)

H
(1)
ν (z) being the Hankel function of first kind and we have the asymptotic

H(1)
ν (z) =

( 2

πr

)1/2

ei(z−
νπ
2
−π

4
) +O(r−3/2), −π < arg z < 2π, |z| = r → +∞. (2.3)

The solution of the problem (2.1) with f ∈ H3/2(Γ) has the representation

u = e(f) + (−∆D + λ2)−1((∆− λ2)(e(f)),

where e(f) : H3/2(Γ) 3 f → e(f) ∈ H2
comp(Ω) is an extension operator and RD(λ) =

(−∆D + λ2)−1 is the outgoing resolvent of the Dirichlet Laplacian ∆D in Ω. The cut-off
resolvent Rχ(λ) = χ(x)RD(λ)χ(x) with χ(x) ∈ C∞0 (Rd) equal to 1 in a neighbourhood of
K∪ supp e(f) is analytic for Reλ < 0 and meromorphic in C for d odd and on the logarithmic
covering of C for d even. Consequently, N (λ) : H3/2(Γ) → H1/2(Γ) is a meromorphic
operator-valued function with the same poles as Rχ(λ). The same result holds for the action
of N (λ) on other Sobolev spaces. Consider the set Λ ⊂ {z ∈ C : Re z < −C0 ≤ −1}
introduced in Section 1. By using the estimates for Rχ(λ) for Reλ < −C0, we obtain

‖N (λ)‖H1/2(Γ)→H−1/2(Γ) ≤ A0|λ|2, λ ∈ Λ. (2.4)

Applying Green’s representation for the solution u(y) of (2.1) and taking the limit

Ω 3 yn → x ∈ Γ,

we have

(C00(λ)f)(x)− (C01(λ)N (λ)f)(x) =
f(x)

2
, x ∈ Γ

where

(C00(λ)f)(x) =

∫
Γ

f(y)
∂

∂ν(y)
R0(λ, x− y)dSy,

(C01(λ)g)(x) =

∫
Γ

g(y)R0(λ, x− y)dSy

are the Calderón operators or double and single layer potentials which have the same analytic
properties as R0(λ, x−y). Melrose showed ([10], Section 3) that there exists an entire family
PD(λ) of compact pseudo-differential operators of order -1 on Γ such that

−2(−∆Γ + 1)1/2C01(λ) = Id+ PD(λ),

∆Γ being the Laplace Beltrami operator on Γ equipped with the Riemannian metric induced
by the Euclidean one in Rd. In fact, −C01(λ) is a pseudo-differential operator of order -1
with principal symbol 1

2
(−∆Γ)−1/2 (see [10]) and one takes the composition of the operators√

−∆Γ + 1 and (−∆Γ)−1/2. Consequently, (Id+PD(λ))−1 is a meromorphic operator-valued
function and for Reλ < 0 one deduces

N (λ) = (Id+ PD(λ))−1(−∆Γ + 1)1/2(Id− 2C00(λ)). (2.5)
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Since N (λ) is analytic for Reλ < 0,- 1 is not an eigenvalue of PD(λ) for Reλ < 0. On the
other hand, C00(λ) is a pseudo-differential operator of order -1, hence it is compact one. The
Neumann problem 

(−∆ + λ2)u = 0 in Ω, u ∈ H2(Ω),

∂νu = 0 on Γ,

u : (iλ)− outgoing.

(2.6)

has a non-trivial solution if the operator 2C00(λ) has eigenvalue 1 and this occurs only if λ
coincides with a resonance νj,Re νj > 0, of the Neumann problem (see [6]). By Fredholm
theorem one deduces that

N (λ)−1 = (Id− 2C00(λ))−1(−∆Γ + 1)−1/2(Id+ PD(λ)) : Hs(Γ)→ Hs+1(Γ)

is meromorphic with poles νj.
Going back to the problem (1.2), for Reλ < 0 we write the boundary condition as follows

C(λ)v := (N (λ)− λγ)v = N (λ)
(
Id− λN (λ)−1γ

)
v = 0, v = f1 ∈ H1/2(Γ).

Clearly, for Reλ < 0 the operator C(λ) has the same singularities as N (λ), hence C(λ) :
H1/2(Γ) → H−1/2(Γ) is analytic and satisfies the estimate (2.4) with another constant A0.
The operator N (λ)−1 is compact and by the results in [12] there are points λ0, Re λ0 < 0,
for which Id − λ0N (λ0)−1γ is invertible. Applying the analytic Fredholm theorem for the

operator
(
Id− λN (λ)−1γ

)
in the half planeReλ < 0, one concludes that

C(λ)−1 =
(
Id− λN (λ)−1γ

)−1

N (λ)−1 : H−1/2(Γ)→ H1/2(Γ) (2.7)

is a meromorphic operator-valued function. Notice that for λ ∈ R− the operators N (λ), C(λ)
are self-adjoint. This follows from the Green formula for (−∆ + λ2).

Remark 1. It is important to note that the analyticity of the resolvent (−∆D + λ2)−1 for
Reλ < 0 and the absence of resonances of the Neumann problem in the half plan {z ∈ C :
Re z < 0} imply that C(λ)−1 is meromorphic for Reλ < 0 and (2.5) is not necessary for the
proof of this statement.

For the resolvent (λ−G)−1 in [12] the following trace formula has been proved.

Proposition 1. Let δ ⊂ {λ ∈ C : Re λ < 0} be a closed positively oriented curve without
self intersections. Assume that C(λ)−1 has no poles on δ . Then

trH
1

2πi

∫
δ

(λ−G)−1dλ = trH1/2(Γ)

1

2πi

∫
δ

C(λ)−1∂C
∂λ

(λ)dλ. (2.8)

Since G has only point spectrum in Re λ < 0, the left hand term in (2.8) is equal to the
number of the eigenvalues of G in the domain ω bounded by δ counted with their algebraic

multiplicities. Setting C̃(λ) = N (λ)
λ
− γ, we write the right hand side of (2.8) as

tr
1

2πi

∫
δ

C̃(λ)−1∂C̃
∂λ

(λ)dλ. (2.9)
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Set λ = − 1
h̃
, 0 < Re h̃� 1 and consider the problem

(−h̃2∆ + 1)u = 0 in Ω,

−h̃∂νu− γu = 0 on Γ,

u− outgoing.

(2.10)

We introduce the operator C(h̃) := −h̃N (−h̃−1) − γ and using (2.9), the trace formula
(2.8) becomes

tr
1

2πi

∫
δ

(λ−G)−1dλ = tr
1

2πi

∫
δ̃

C(h̃)−1Ċ(h̃)dh̃, (2.11)

where Ċ denote the derivative with respect to h̃ and δ̃ is the curve δ̃ = {z ∈ C : z = − 1
w
, w ∈

δ}.

Obviously, for λ ∈ Λ one has | Imλ| ≤ 1 and this implies h̃ ∈ L, where

L := {h̃ ∈ C : | Im h̃| ≤ C1|h̃|4, |h̃| ≤ C−1
0 , Re h̃ > 0}. (2.12)

We write the points in L as h̃ = h(1 + iη) with 0 < h ≤ h0 ≤ C−1
0 , η ∈ R. Recall that

2C1

C0
≤ 1. Then C1

C3
0
≤ 1/2 and for h̃ ∈ L we get

|η| ≤ 1

2

√
1 + η2,

hence η2 ≤ 1/3. This implies

|η| ≤ C1h(1 + η2)2h2 ≤ h2, h(1 + iη) ∈ L,

since 16C1h
9
≤ 1. Therefore the problem (2.10) becomes

(−h2∆− z)u = 0 in Ω,

−(1 + iη)h∂νu− γu = 0 on Γ,

u− outgoing.

(2.13)

with z = − 1
(1+iη)2

= −1 + s(η), |s(η)| ≤ (2 + h2)h2 ≤ 3h2. On the other hand,

C(h̃) = −(1 + iη)hN (−h̃−1)− γ(x).

3. Parametrix for N(h, z) in the elliptic region

In our exposition we will use h-pseudo-differential operators and we refer to [5] for more
details. Let X be a C∞ smooth compact manifold without boundary with dimension d−1 ≥
1. Let (x, ξ) be the coordinates in T ∗(X) and let a(x, ξ;h) ∈ C∞(T ∗(X) × (0, h0]). Given
`,m ∈ R, one denotes by S`,m the set of symbols so that

|∂αx∂
β
ξ a(x, ξ;h)| ≤ Cα,βh

−`(1 + |ξ|)m−|β|, ∀α, ∀β, (x, ξ) ∈ T ∗(X).

If ` = 0, we denote S`,m by Sm. The h−pseudo-differential operator with symbol a(x, ξ;h)
is defined by

(Oph(a)f)(x) : = (2πh)−d+1

∫
T ∗X

ei〈x−y,ξ〉/ha(x, ξ;h)f(y)dydξ.
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We define the space of symbols S`,mcl which have an asymptotic expansion

a(x, η;h) ∼
∞∑
j=0

hj−`aj(x, η), aj ∈ Sm−j

and the corresponding classical pseudo-differential operator is given by

(Op(a)f)(x) : = (2π)−d+1

∫
T ∗X

ei〈x−y,η〉a(x, η;h)f(y)dydη.

It is clear that by a change of variable ξ = hη we may write a h− pseudo-differential operator
as a classical one with parameter h. We will use this fact in Section 4. The operators with

symbols in S`,m, S`,mcl are denoted by L`,m, L`,mcl , respectively. The wave front W̃F (A) ⊂ T̃ ∗(Γ)

of an operator A ∈ L`,m is defined as in [15], where T̃ ∗(Γ) is the compactification of T ∗(Γ).

We will recall some results for the exterior semi-classical Dirichlet-to-Neumann map (see
[16], [17], [12]). Consider the operator

P(h, z)u = (−h2∆x − z)u, z = −1 + s(η).

In local normal geodesic coordinates (y1, y
′), y1 = dist (y,Γ) in a neighbourhood U of x0 ∈ Γ

the operator P has the form (see [14])

P(h, z) = h2D2
y1

+ r(y, hDy′) + h2q(x)Dy1 − z, Dj = −i∂yj

with r(y, η′) = 〈R(y)η′, η′〉, q(y) ∈ C∞. Here

R(y) =
{ d∑
k=1

∂ym
∂xk

∂yj
∂xk

}d
m,j=2

=
{〈∂ym

∂x
,
∂yj
∂x

〉}d
m,j=2

is a symmetric ((d − 1) × (d − 1)) matrix and r(0, y′, η′) = r0(y′, η′), where r0(y′, η′) is the
principal symbol of the Laplace-Beltrami operator −∆Γ on Γ equipped with the Riemannian
metric induced by the Euclidean one in Rd. For z = −1 + s(η) introduce ρ(y′, η′, z) =√
z − r0(y′, η′) ∈ C∞(T ∗Γ) as the root of the equation

ρ2 + r0(y′, η′)− z = 0

with Im ρ(y′, η′, z) > 0. We have ρ ∈ S1 and√
−1 + s(η)− r0 = i

√
1 + r0 −

s(η)√
1− s(η) + r0 + i

√
1 + r0

which implies ρ− i
√

1 + r0 ∈ S−1.
Let u be the solution of the Dirichlet problem

(−h2∆− z)u = 0 in Ω,

u = f on Γ,

u− outgoing.

(3.1)

Consider the semi-classical Sobolev spaces Hk
h(Γ) with norm ‖(1 − h2∆)s/2u‖L2(Γ) and

introduce the exterior semi-classical Dirichlet-to-Neumann map

N(h, z) : Hs
h(Γ) 3 f −→ −h∂νu|Γ ∈ Hs−1

h (Γ).
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G. Vodev [17] established for bounded domains K ⊂ Rd, d ≥ 2, with C∞ boundary and
solutions u of the Helmoltz equation (−h2∆ − z)u = 0, x ∈ K, an approximation of the
interior Dirichlet-to-Neumann map. With some modifications his results can be applied for
the exterior Dirichlet-to-Neumann map N(h, z) (see [12]). We need some information for
the parametrix build in [17], [19] in the elliptic region Ze := {z ∈ C : z = −1 + s(η)}.

For the reader convenience we recall some points of the construction in [17], [19] for
z ∈ Ze. Let ψ ∈ C∞0 (U0), ψ = 1 in a neighbourhood U0 of x0 ∈ Γ. Denote the local normal
geodesic coordinates by (x1, x

′) and the dual variables by (ξ1, ξ
′). We search a parametrix

uψ of the problem (3.1) with boundary data ψf in the form

ũψ(x) = (2πh)−d+1

∫∫
e
i
h

(ϕ(x,ξ′,z)+〈y′,ξ′〉)φ2(
x1

δ
)a(x, ξ′, h, z)f(y′)dξ′dy′.

Here 0 < δ � 1 and φ(t) ∈ C∞0 (R) is equal to 1 for |t| ≤ 1 and to 0 for |t| ≥ 2. We write

R(x) =
N−1∑
k=0

xk1Rk(x
′) + xN1 RN(x), q(x) =

N−1∑
k=0

x1qk(x
′) + xN1 QN(x).

For ϕ the eikonal equation modulo xN1 becomes (∂x1ϕ)2 + 〈R(x)∂x′ϕ, ∂x′ϕ〉 − z = xN1 ΦN and
one obtains a smooth solution having the form

ϕ =
N∑
k=0

xk1ϕk(x
′, ξ′, z), ϕ0 = −〈x′, ξ′〉, ∂x1ϕ|x1=0 = ϕ1 = ρ.

The functions ϕk satisfy for 0 ≤ K ≤ N − 2 the equalities∑
k+j=K

(k + 1)(j + 1)ϕk+1ϕj+1 +
∑

k+j+`=K

〈R`∇x′ϕk,∇x′ϕj〉 − z = 0. (3.2)

Clearly, we can determine ϕK+1 from the above equality since ρ 6= 0. For z = −1 we have
ρ = i

√
1 + r0 and by recurrence one deduces ϕk = iϕ̃k with real-valued function ϕ̃k. Thus

for z = −1 we have ϕ = −〈x′, ξ′〉 + iϕ̃ with real-valued function ϕ̃. The amplitude of the
parametrix has the form

a =
N−1∑
j=0

hjaj(x, ξ
′, z), a0|x1=0 = ψ, aj|x1=0 = 0, j ≥ 1

with aj =
∑N

k=0 x
k
1ak,j(x

′, ξ′, z), a0,0 = ψ, a0,j = 0, j ≥ 1. The functions aj satisfy the
transport equations

2i
∂ϕ

∂x1

∂aj
∂x1

+ 2i〈R(x)∇x′ϕ,∇x′aj〉+ i(∆ϕ)aj + ∆aj−1

= xN1 A
(j)
N , 0 ≤ j ≤ N − 1, a−1 = 0.

We write (see Section 3 in [19])

∆ϕ =
N−1∑
k=0

xk1ϕ
∆
k + xN1 EN(x), ∆aj−1 =

N−1∑
k=0

xk1a
∆
k,j−1 + xN1 F

(j−1)
N (x)

with

ϕ∆
k = (k + 1)(k + 2)ϕk+2 +

∑
`+ν=k

(
〈R`∇x′ ,∇x′ϕν〉+ q`(ν + 1)ϕν+1

)
,
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a∆
k,j−1 = (k + 1)(k + 2)ak+2,j−1 +

∑
`+ν=k

(
〈R`∇x′ ,∇x′aν,j−1〉+ q`(ν + 1)aν+1,j−1

)
.

This leads to the equality (see (3.18) in [19])

2i
∑

k1+k2=k

(k1 + 1)(k2 + 1)ϕk1+1ak2+1,j + 2i
∑

k1+k2+k3=k

〈Rk1∇x′ϕk3 ,∇x′ak3,j〉

+
∑

k1+k2=k

iϕ∆
k1
ak2,j = −a∆

k,j−1 for 0 ≤ k ≤ N − 1, 0 ≤ j ≤ N − 1. (3.3)

We can determine ak,j by recurrence from the above equality so that a0,0 = ψ, a0,j = 0, j ≥
1, ak,−1 = 0, k ≥ 0. Next introduce the operator

Tψ(h, z)f = −h∂ũψ
∂x1

|x1=0 = Oph(τψ)f

with

τψ = −iρψ −
N−1∑
j=0

hj+1a1,j, a1,j ∈ S−j.

By using the outgoing resolvent (h2∆D − z)−1 for the Dirichlet Laplacian in Ω, we obtain a
parametrix uψ in Ω and for z ∈ Ze we have (see Prop. 2.2 in [12] and [17])

‖N (h, z)(ψf)− Tψf‖HN
h (Γ) ≤ CNh

−sd+N‖f‖L2(Γ), ∀N ∈ N (3.4)

with CN > 0, sd > 0 independent of f, h and z and sd independent of N . Taking a par-
tition of unity

∑M
j=1 ψj(x

′) ≡ 1 on Γ, we construct a parametrix and define the operator

T (h, z) =
∑M

j=1 Tψj(h, z). For z = −1 the symbol
√

1 + r0 +
∑N−1

j=0 hj+1a1,j of T (h,−1) is

real valued and we have the estimate (3.4) with Tψ(h, z) replaced by T (h, z). Clearly, we

may extend the symbol of T (h, z) holomorphically for h̃ ∈ L.

4. Properties of the operator P (h)

In this section we assume that γ(x) > 1, ∀x ∈ Γ and we study the operator P (h) =
T (h,−1)− γ(x) when h is real. Set

min
x∈Γ

γ(x) = c0 > 1, max
x∈Γ

γ(x) = c1 ≥ c0

and choose a constant C = 2
c21
. As we mentioned in Section 3, we can consider the operator

P (h) as a classical pseudo-differential operator Op(P ) with parameter h with classical symbol
P =

√
1 + h2r0 − γ + hP0(x, hξ), P0(x, ξ) ∈ S0. We denote by (., .) the scalar product in

L2(Γ) and for two self adjoint operators L1, L2 the inequality L1 ≥ L2 means (L1u, u) ≥
(L2u, u), ∀u ∈ L2(Γ).

Proposition 2. Let 〈h∆〉 = (1−h2∆Γ)1/2 and let ε = C(c0−1)2 < 2. Then for h sufficiently
small we have

h
∂P (h)

∂h
+ CP (h)〈h∆〉−1/2P (h) ≥ ε(1− C2h)〈h∆〉 (4.1)

with a constant C2 > 0 independent of h.
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Proof. The principal symbol of the operator on the left hand side in (4.1) has the form

q1 = 2h2r0(1 + h2r0)−1/2 + C
√

1 + h2r0 − 2Cγ(x) + Cγ2(x)(1 + h2r0)−1/2

= (2 + C − ε)
√

1 + h2r0 − 2Cγ(x) + (Cγ2(x)− 2)(1 + h2r0)−1/2

+ε
√

1 + h2r0. (4.2)

Clearly,
((2 + C − ε)〈hD〉u, u) ≥ ((2 + C − ε)u, u)

and
Cγ2(x)− 2 ≤ Cc2

1 − 2 = 0.

Therefore,

((Cγ2(x)− 2)〈hD〉−1/2u, u) = ((Cγ2(x)− 2)(〈hD〉−1/2 − 1)u, u)

+((Cγ2(x)− 2)u, u) ≥ ((Cγ2(x)− 2)u, u)− hC1‖u‖2, 0 < h ≤ h0.

Here the operator (Cγ2(x)− 2)(〈hD〉−1/2 − 1) has non-negative (classical) principal symbol

(2− Cγ2(x))h2r0

1 + h2r0 +
√

1 + h2r0

and applied the semi-classical sharp Gärding inequality (see for instance, [5], Theorem 7.12).
Taking into account (4.2) and the inequality C(γ(x) − 1)2 − ε ≥ C(c0 − 1)2 − ε = 0, one
deduces

(Op(q1)u, u) ≥ ((C(γ(x)− 1)2)− ε)u, u) + ε(〈hD〉u, u)− hC1‖u‖2

≥ ε(〈hD〉u, u)− hC1h‖u‖2.

The full symbol of the operator on the right hand side of (4.1) has the form q1 + hq0.
The term h(Op(q0)u, u) − hC1‖u‖2 can be absorbed by εC2h(〈hD〉u, u) taking εC2 ≥ C1 +
‖Op(q0)‖L2→L2 and this complets the proof. �

Remark 2. The values of ε depends on (c0 − 1)2 and ε ↘ 0 as c0 ↘ 1. In the case when
γ ≡ const and K is the ball {x : ‖x‖ ≤ 1} the operator G has no eigenvalues if γ ≡ 1 (see
[12]). Moreover, in this case for γ > 1 the eigenvalues of G lie in the interval (−∞,− 1

γ−1
).

Thus as γ ↘ 1, in the domain Reλ > − 1
γ−1

there are no eigenvalues.

Next we follow the argument of Section 4, [15] with some modifications. Consider the
semi-classical Sobolev space Hs(Γ) with norm ‖u‖s = ‖〈hD〉su‖L2 . The operator P (h) :
H1 → L2 has derivative Ṗ (h) = O(h−1) : H1 → L2. Denote by

µ1(h) ≤ µ2(h) ≤ ... ≤ µk(h) ≤ ...

the eigenvalues of P (h) repeated with their multiplicities.

Let h1 be small and let µk(h1) have multiplicity m. For h close to h1 one has exactly m
eigenvalues and we denote by F (h) the space spanned by them. We can find a small interval
(α, β) around µk(h1), independent on h, containing the eigenvalues spanning F (h). Given
h2 > h1 close to h1, consider a normalised eigenfunction e(h2) with eigenvalue µk(h2). Let
π(h) = E(α,β) be the spectral projection of P (h), hence F (h) = π(h)L2(Γ). Then (π(h) −
I)π(h) = 0 yields π(h)π̇(h)π(h) = 0 and we deduce π̇(h)|F (h) = 0. We construct a smooth
extension e(h) ∈ F (h), h ∈ [h1, h2] of e(h2) with ‖e(h)‖ = 1, ė(h) ∈ F (h)⊥. Obviously, e(h1)
will be normalised eigenfunction with eigenvalue µk(h1).
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Considering the eigenvalues µk(h) of P (h) in a small interval [−δ, δ], δ > 0, one gets
‖P (h)e(h)‖ ≤ δ. On the other hand,

hṖ (h) = h2∆〈hD〉−1 + hL0 = P (h)− 〈hD〉−1 + hL1

with zero order operators L0, L1 and this implies |(Ṗ (h)e(h), e(h))| ≤ C0h
−1, h ∈ [h1, h2].

Therefore

|µk(h2)− µk(h1)| =
∣∣∣∫ h2

h1

d

dh
(P (h)e(h), e(h))dh

∣∣∣ ≤ C0

∫ h2

h1

h−1dh ≤ C0

h1

(h2 − h1).

Assuming µk(h) ∈ [−δ, δ], we deduce that µk(h) is locally Lipschitz function in h and its

almost defined derivative satisfies |∂µk(h)
∂h
| ≤ C0h

−1.

To estimate h∂µk(h)
∂h

from below, we exploit Proposition 2 and apply (4.1). For h ≤ h0 ≤
1

8C2
and µk(h) ∈ [−δ, δ] we have

h
∂µk(h)

∂h
= (hṖ (h)e(h), e(h)) ≥ ε(1−C2h)(〈hD〉e(h), e(h))−C(〈hD〉−1P (h)e(h), P (h)e(h))

≥ ε(1− C2h)− Cδ2 ≥ 3ε

4
,

choosing

δ = (c0 − 1)

√
1

4
− C2h0 ≥

(c0 − 1)

2
√

2
.

Consequently, for h ∈ [h1, h2] one has

µk(h2)− µk(h1) ≥ 3ε

4

∫ h2

h1

h−1dh ≥ 3ε

4h2

(h2 − h1)

and we obtain
3ε

4
≤ h

dµk(h)

dh
≤ C0.

Fixing h0 > small, we conclude that the eigenvalue µk(h) increases when h increases and
µk(h) ∈ [−δ, δ]. It is well known (see for instance, [5]) that

]{k : µk(h0) ≤ 0} = κ0 =
1

(2πh0)d−1

∫
p1(x,ξ)≤0

dxdξ +O(h−d+2
0 ),

p1(x, ξ) being the principal symbol of P (Reh). Then for k > κ0 we have µk(h0) > 0
and if for h < h0 one has µk(h) < 0, then there exists a point h < hk < h0 with the
properties µk(hk) = 0, µk(h) < 0 for 0 < h < hk. This implies that there exists a sequence
hk0 ≥ hk0+1 ≥ ... of values 0 < h ≤ h0 such that µk(hk) = 0, k0 > κ0. These values hk are
precisely those for which P (h) is not invertible. Next we choose p > d and construct the
intervals Ik,p containing hk with length |Ik,p| ∼ hp+1 and |µk(h)| ≥ hp for h ∈ (0, h0] \ Ik,p.
As in [15], one constructs the disjoint intervals Jk,p, and we obtain the following

Proposition 3 (Prop. 4.1, [15]). Let p > d be fixed. The inverse operator P (h)−1 : L2 → L2

exists and has norm O(h−p) for h ∈ (0, h0] \ Ωp, where Ωp is a union of disjoint closed
intervals J1,p, J2,p, ... with |Jk,p| = O(hp+2−d) for h ∈ Jk,p. Moreover, the number of such
intervals that intersect [h/2, h] for 0 < h ≤ h0 is at most O(h1−p).
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5. Relations between the trace integrals for C(h) and P (h)

In this section we study the operators C(h) and P (h) for complex h ∈ L. We use

the notation h instead of h̃ used in Sections 2, 3. For z = −1 the operator T (Reh,−1)
constructed in Section 3 has principal semi-classical symbol

√
1 + r0, so it is elliptic. The

ellipticity holds also for the operator T (h, z), h ∈ L, z = −1+s(η), holomorphic with respect
to h, provided |h| small enough. On the other hand, P (h) = (1 + iη)T (h, z) − γ(x) is not
elliptic and for h ∈ R, η = 0, z = −1 its semi-classical principal symbol vanishes on the set

Σ = {(x, ξ) ∈ T ∗(Γ) : r0(x, ξ) = γ2 − 1}.

For the symbol r0(x, ξ) of the Laplace-Beltrami operator on Γ there exists a constant C3 > 0
such that r0(x, ξ) ≥ C3‖ξ‖2, (x, ξ) ∈ T ∗(Γ). Choose a constant B0 > 0 so that

√
C3B0 ≥ 2c1

and consider a symbol χ(x, ξ) ∈ C∞0 (T ∗(Γ)), 0 ≤ χ(x, ξ) ≤ 2 such that

χ(x, ξ) =

{
2, x ∈ Γ, ‖ξ‖ ≤ B0,

0, x ∈ Γ, ‖ξ‖ ≥ B0 + 1.

Introduce the operator

M̃(h) = P (Reh) + γ(x)χ(x, hDx) = T (Reh,−1) + γ(x)(χ(x, hDx)− 1).

The principal symbol of M̃(h) has the form

m̃(x, ξ) =
√

1 + r0 + γ(x)(χ(x, ξ)− 1).

Clearly, M̃(h) is elliptic since for ‖ξ‖ ≤ B0 one gets Re m̃(x, ξ) ≥ c0, while for ‖ξ‖ > B0 we
have

|m̃(x, ξ)| ≥
√
C3‖ξ‖ − c1 ≥

√
C3

2
‖ξ‖+

√
C3

2
B0 − c1 ≥

√
C3

2
‖ξ‖.

Consequently, m̃(x, ξ) ∈ S1
0 , the operator M̃(h)−1 : Hs − Hs+1 is bounded by Os(1) and

W̃F (P (Reh) − M̃(h)) ∩ {‖ξ‖ � B0 + 1} = ∅. Since χ(x, ξ) vanishes for ‖ξ‖ ≥ B0 + 1, by

applying Proposition A.1 in [15], we can extend holomorphically χ(x, hDx) to η(x, h̃Dx) in
the domain L. As we mentioned in Section 3, the operator P (h) also has a holomorphic

extension for h̃ ∈ L.Thus M̃(h) has a holomorphic extension

M(h) = P (h) + γ(x)(η(x, h̃Dx)− 1)

for h̃ ∈ L and W̃F (P (h) −M(h)) ∩ {‖ξ‖ � B0 + 1} = ∅. The last relation implies P (h) −
M(h) : O(1) : H−s → Hs, ∀s.

Now we can repeat without any change the proof of Lemma 5.1 in [15], exploiting Propo-
sition 2. First we obtain

‖P (h)−1‖L(H−1/2,H1/2) ≤ C
Reh

| Imh|
, Reh > 0, Imh 6= 0. (5.1)

Next, one deduces the estimate

‖P (h)−1‖L(Hs,Hs+1) ≤ Cs
Reh

| Imh|
, Reh > 0, Imh 6= 0 (5.2)

applying (5.1) and the representation

P−1 = M−1 −M−1(P −M)M−1 +M−1(P −M)P−1(P −M)M−1,
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combined with the property of P (h) −M(h) mentioned above. Following [15], introduce a
piecewise smooth simply positively oriented curve γk.p as a union of four segments: Reh ∈
Jk,p, Imh = ±(Reh)p+1 and Reh ∈ ∂Jk,p, | Imh| ≤ (Reh)p+1, where Jk,p is one of the
intervals in Ωp defined in Proposition 3. Then we have

Proposition 4 (Prop. 5.2, [15]). For every h ∈ γk,p the inverse operator P (h)−1 exists and

‖P (h)−1‖L(Hs,Hs+1) ≤ Cs(Reh)−p, h ∈ γk,p.

To estimate C(h)−1, we write

C(h) = −(1 + iη)hN(Reh, z)− γ(x) = (1 + iη)T (Reh, z)− γ(x) +Rm(Reh, z)

= P (h) +Rm(h, z), m� 2p

with Rm(h, z) : O((Reh)m) : Hs → Hs+m−1. Therefore

C(h)P (h)−1 = Id+Rm(Reh, z)P (h)−1 (5.3)

and Proposition 4 imply∥∥∥Rm(Reh, z)P (h)−1
∥∥∥
L(Hs,Hs+m)

≤ Cs(Reh)−p+m.

For small Reh the operator on the right hand side of (5.3) is invertible and

C(h)P (h)−1
(
Id+Rm(Reh, z)P (h)−1

)−1

= Id.

On the other hand, the operator C(h) is elliptic for |ξ| � 1 and this implies that C(h) :
H1/2 → H−1/2 is a Fredholm operator. The index of C(h) is constant for h ∈ L and according
to the results in [12], this index is 0. Hence the right inverse to C(h) is also a left inverse,
so it is two side inverse. Thus we obtain

‖C(h)−1‖L(Hs,Hs+1) ≤ Cs(Reh)−p, h ∈ γk,p. (5.4)

Moreover,

C(h)−1 − P (h)−1 = P (h)−1
((
Id+Rm(Reh, z)P (h)−1

)−1

− Id
)

= K(h) (5.5)

with K(h) = Os(|h|m−2p) : Hs → Hs+m+1, ∀s, h ∈ γk,p. To estimate Ċ(h) − Ṗ (h), notice
that C(h)− P (h) is holomorphic with respect to h in L0 and by Cauchy formula

Ċ(h)− Ṗ (h) =
1

2πi

∫
γ̃k,p

C(ζ)− P (ζ)

ζ − h
dζ =

1

2πi

∫
γ̃k,p

Rm(Reh, z)

ζ − h
dζ = K ′(h),

where γ̃k,p is the boundary of a domain containing γk,p with the property dist (γ̃k,p, γk.p) ≥
(Reh)p. Thus yileds

K ′(h) = Os(|h|m−p) : Hs → Hs+m+1, ∀s, h ∈ γk,p.

Concerning the operator P (h), we obtain a trace formula repeating without any change
the argument in [15]. Let µk(hk) = 0, k ≥ k0. It is easy to see that µk(h) has no other zeros
for 0 < h ≤ h0, exploiting the fact that µk(h) in increasing for µk(h) ∈ [−δ, δ]. One defines
the multiplicity of hk as the multiplicity of the eigenvalue µk(hk). Then we have
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Proposition 5 (Prop. 5.3, [15]). Let β ⊂ L be a closed positively oriented C1 curve without
self intersections which avoids the points hk with µk(hk) = 0. Then

tr
1

2πi

∫
β

P (h)−1Ṗ (h)dh

is equal to the number of hk in the domain bounded by β.

Now we may compare the trace formula for C(h) and P (h). First we compare the integrals
over γk,p. We have

tr
1

2πi

∫
γk,p

C(h)−1Ċ(h)dh = tr
1

2πi

∫
γk,p

(C(h)−1 − P (h)−1)Ċ(h)dh

+tr
1

2πi

∫
γk,p

P (h)−1Ċ(h)dh = tr
1

2πi

∫
γk,p

P (h)−1Ċ(h)dh+Op((Reh)m−2p).

Here we have used (5.5) and the estimate

‖Ċ(h)‖L(H1/2,H−1/2) ≤ C|h|−2, h ∈ L.

which follows from (2.4). Next the property of K ′(h) yields

tr
1

2πi

∫
γk,p

P (h)−1Ċ(h)dh = tr
1

2πi

∫
γk,p

P (h)−1Ṗ (h)dh+Op((Reh)m−2p).

For small h and m � 2p the terms Op((Reh)m−2p) are negligible and we obtain, as in
[15], a map `p between the set of points hk ∈ (0, h(p)] counted with their multiplicities and
the eigenvalues `p(hk) ∈ Λ counted with their multiplicities. The number of points hk ∈ Jk,p
counted with their multiplicities is equal to the number of eigenvalues λj = `(hk) ofG counted
with their multiplicities lying in Λk,p = {z ∈ C : z = −1

ζ
, ζ ∈ ωk,p}, ωk,p ⊂ L being the

domain bounded by γk,p. Notice that for a point hk we could have many λj ∈ `p(hk) ⊂ Λk,p.
On the other hand, for every λj ∈ `p(hk) one has

|λj +
1

hk
| ≤ Cph

p+2−d
k .

The integral over β in Proposition 5 can be presented as a sum of integrals over γk,p plus
integrals over curves αj,p which are the boundary of domains βj,p such that βj,p∩Ωp = ∅, ∀j.
By Proposition 3 for h ∈ (0, h0] \ Ωp the operator P (h) is invertible. Applying an argument
similar to that used above, one concludes that P (h) is invertible for h ∈ βj,p. Consequently,
there are no contributions from the integrals over αj,p and we must sum the contributions
over the integrals over γk,p, that is the sum of the number of the corresponding points hk.

Consider the counting function

N(r) = ]{λ ∈ σp(G) ∩ Λ : |λ| ≤ r, Reλ ≤ −C0}, r > C0

with h−1
0 = C0 > 0 large enough. Then for |λ| ≤ r we must consider r−1 < |h̃|, h̃ ∈ L.

Modulo a finite number eigenvalues (see Section 4 and the number κ0), we are going to
count the points r−1 < hk ≤ h0 and the number of the eigenvalues µk(h) for which we have
µk(hk) = 0. Hence we have µk(r

−1) < 0, since otherwise we obtain a contradiction. The
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problem is reduced to find the number of the negative eigenvalues of P (r−1) which is given
by well known formula

rd−1

(2π)d−1

∫
p1(x,ξ)≤0

dxdξ +Oγ(rd−2).

Clearly, ∫
p1(x,ξ)≤0

dxdξ =

∫
r0(x,ξ)≤γ2(x)−1

dxdξ =

∫
Γ

(γ2(x)− 1)(d−1)/2(

∫
r0(x,η)≤1

dη)dx.

For the induced Riemannian metric on Γ the integral over the dual variable η yields the
volume ωd−1 of the unit ball {x ∈ Rd−1 : |x| ≤ 1} and we obtain the asymptotic (1.5). This
completes the proof of Theorem 1.

6. Generalisations

We may study with some modifications a more general dissipative boundary problem
utt −∆xu+ c(x)ut = 0 in R+

t × Ω,

∂νu− γ(x)∂tu− σ(x)u = 0 on R+
t × Γ,

u(0, x) = f1, ut(0, x) = f2,

(6.1)

where c(x) ≥ 0, σ(x) ≥ 0 are smooth functions defined respectively in Rd and Γ and c(x) = 0
for |x| ≥ R0 > 0 (see [8]). The solution is given by a semi-group V (t) = etG, t ≥ 0 with
f = (f1, f2) in the energy space HE with norm

‖f‖2
HE =

∫
Ω

(|∇xf1|2 + |f2|2)dx+

∫
Γ

σ|f1|2dy.

The generator of V (t) has the form

G =
(

0 1
∆ c

)
with a domain D(G) being the closure in the graph norm

|‖f‖|E = (‖f‖2
HE + ‖Gf‖2

HE)1/2

of functions f = (f1, f2) ∈ C∞(0)(Rd) × C∞(0)(Rd) satisfying the boundary condition ∂νf1 −
γf2 − σf1 = 0 on Γ. If we have an eigenfunction f = (f1, f2) with Gf = λf, and λ = − 1

h̃
(for simplicity we keep the notation of Section 2), then u = f1 is a solution of the problem

(−h̃2∆ + 1− h̃c)u = 0 in Ω,

−h̃∂νu− γu+ h̃σu = 0 on Γ,

u− outgoing.

(6.2)

Therefore with h̃ = h(1 + iη), η ∈ R, z = − 1
(1+iη)2

we obtain the problem
(−h2∆− z − h

1+iη
c)u = 0 in Ω,

−(1 + iη)h∂νu− γu+ h(1 + iη)σu = 0 on Γ,

u− outgoing.

(6.3)

We need to consider the semi-classical exterior Dirichlet-to-Neumann operator N(h, z) re-
lated to the operator −h2∆−z− h

1+iη
c. The construction of the semi-classical paramterix for
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N(h, z) is the same as in [17], [12] . The term h
1+iη

c is lower order operator and the principal

symbol of N(h, z) is
√

1 + r0. Next we deal with the operator

P (h̃) = (1 + iη)N(h, z)− γ − h(1 + iη)σ

and the self-adjoint operator P (h) = N(h, z)−γ−hσ. Hear h(1 + iη)σ is a lower order oper-
ator and we may repeat the arguments of Sections 4, 5. Under the assumptions of Theorem
1 one obtains a Weyl formula (1.5) with the same leading term. We leave the details to the
reader.

We hope that our arguments combined with the construction of a semi-classical parametrix
in [20] can be applied for the analysis of the eigenvalues of Maxwell’s equations with dissi-
pative boundary conditions

∂tE − curlH = 0, ∂tH + curlE = 0 in R+
t × Ω,

ν ∧ E − γ(x)(ν ∧ ν ∧H) = 0 on R+
t × Γ,

E(0, x) = E0(x), H(0, x) = H0(x),

(6.4)

where d = 3, (E0, H0) ∈ L2(R+
t × Ω : C6), γ(x) > 0, ∀x ∈ Γ. The solution of (6.4) is given

by a contraction semi-group Vb(t) = etGb , t ≥ 0 (see [4] for the definition of Gb) and the
spectrum of Gb in the half-plan {z ∈ C : Re z < 0} is formed by isolated eigenvalues with
finite multiplicities [2].

We sketch briefly below the similitudes with the analysis in Section 2. If (E,H) 6= 0 is
an eigenfunction of Gb with eigenvalue λ, then

curlE = −λH, curlH = λE in Ω,
1

γ(x)

(
ν ∧ ν ∧ E

)
+ ν ∧H = 0 on Γ,

(E,H) : (iλ)− outgoing.
(6.5)

Consider the problem 
curlE = −λH, curlH = λE in Ω,

ν ∧ E = f on Γ,

(E,H) : (iλ)− outgoing.
(6.6)

In the space Ht
s(Γ) := {u ∈ Hs(Γ) : 〈ν, u〉 = 0} introduce the operator Nb(λ) : H t

s+1(Γ) →
H t
s(Γ) defined by

Nb(λ)f = ν ∧H|Γ,
(E,H) being the solution of the problem (6.6). The operator Nb(λ) is the analog of the
exterior Dirichlet-to-Neumann operator in Section 2 (see [20]) and the boundary condition
on (6.5) can be written as

Cb(λ)f =
1

γ(x)
(ν ∧ f) +Nb(λ)f = 0, f = ν ∧ E|Γ.

The outgoing resolvent of the problem
curlE = −λH + F1, curlH = λE + F2 in Ω,

ν ∧ E = 0 on Γ,

(E,H) : (iλ)− outgoing,
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is analytic for Reλ < 0 since the above problem corresponds to a self-adjoint operator.
Therefor we can prove that Cb(λ) is analytic for Reλ < 0. In the same way from the fact
that for Reλ < 0 there are no non trivial solutions of the problem

curlE = −λH, curlH = λE in Ω,

ν ∧H = 0 on Γ,

(E,H) : (iλ)− outgoing,

one concludes that Nb(λ)−1 is analytic for Reλ < 0. As in Section 2, one deduces that
Cb(λ)−1 is a meromorphic operator valued function for Reλ < 0 (see (2.7) and Remark 1).
Assuming γ(x) 6= 1, ∀x ∈ Γ, according to the results in [3], for every ε > 0 and every
M ∈ N, M ≥ 1 the eigenvalues of Gb lie in Λε ∪RM . Next one can establish a trace formula
involving (λ − Gb)

−1 and for the analysis of the counting function of the eigenvalue of Gb

in Λ it is possible to apply the strategy of Sections 4, 5 combined with the semi-classical
parametrix constructed in [20].
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