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ABSTRACT. We study the wave equation in the exterior of a bounded domain K with
dissipative boundary condition d,u — v(z)0u = 0 on the boundary I and (z) > 0. The
solutions are described by a contraction semigroup V(t) = e'“, ¢t > 0. The eigenvalues Ay
of G with Re A\ < 0 yield asymptotically disappearing solutions u(t,x) = e f(z) having
exponentially decreasing global energy. We establish a Weyl formula for these eigenvalues
in the case mingery(z) > 1. For strictly convex obstacles K this formula concerns all
eigenvalues of G.
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1. INTRODUCTION

Let K C R? d > 2, be a bounded non-empty domain. Let 2 = R?\ K be connected.
and K C {z € R%: |z| < po}. We suppose that the boundary T" of K is C*. Consider the
boundary problem

Uy — Ayu = 0in R x €,
du—y(x)0u =00on R x T, (1.1)
uw(0,2) = f1, w(0,2) = fo

with initial data (f1, f2) € H'(Q) x L*(Q) = H. Here v(z) is the unit outward normal to T

pointing into © and y(xz) > 0 is a C*° function on I'. The solution of the problem (1.1) is
given by V(t)f = e!“f, t > 0, where V (¢) is a contraction semi-group in H whose generator

0 1
¢=(a o)
has a domain D(G) which is the closure in the graph norm

711 = (171 + G 13)™

of functions f = (f1, f2) € C, (R%) x o (R?) satisfying the boundary condition 0, fi — v fs =
0 on I'. It is well known that the spectrum of G in Re z < 0 is formed by isolated eigenvalues
with finite multiplicity (see [7] for d odd and [12] for all d > 2.) Moreover, G has no
eigenvalues on the imaginary axis iR. Notice that if Gf = A\f with 0 # f € D(G), ReA <0
and 0, f1 —vfo=0onI', we get

(1.2)

(A= X2)f; = 0in €,
al/fl _A7f1 =0onT

e-mail:petkov@math.u-bordeaux.fr.
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and u(t,z) = V(t)f = eMf(z) is a solution of (1.1) with exponentially decreasing global
energy. Such solutions are called asymptotically disappearing. On the other hand, the
solutions u(t,z) = V(t)f for which there exists 7" > 0 such that u(t,z) = 0 for t > T are
called disappearing (see [8]). For ¢y > 0 the closed linear space

H(t)) ={geH:V(t)g=0fort >ty}

is invariant under the action of V' (t) and if H(ty) # {0}, then H(¢y) has infinite dimension.
If H(to) is not trivial, the scattering system is non controllable (see section 4 in [8] for the
definition and details). Majda proved in [8] that for obstacles with analytic boundary T’
and analytic v(x) the condition y(z) # 1, Vo € T', implies that there are no disappearing
solutions.
In this paper in the case min,ery(z) > 1 we show that there exists a subspace Hs, C
H with infinite dimension generated by eigenfunctions of G' such that V(t)g, g € Hsp is
asymptotically disappearing. The eigenvalues A, sufficiently close to R™ with Re \, — —o0
present a particular interest for applications since they correspond to solutions decreasing
sufficiently fast as t — +oo. It is important to know that such eigenvalues exist and to
have their asymptotic. It was proved in [2] that if we have at least one eigenvalue A\ of G
with Re A < 0, then the wave operators W, are not complete, that is Ran W_ # Ran W,.
Hence we cannot define the scattering operator S related to the Cauchy problem for the free
wave equations and the boundary problem (1.1) by the product W;l oW_. When the global
energy is conserved in time and the unperturbed and perturbed problems are associated to
unitary groups, the corresponding scattering operator S(z) : L3(S* 1) — L%(S%!) satisfies
the identity
S7z) = 5*(2), z € C, (1.3)

providing S(z) invertible at z. Since S(z) and S*(z) are analytic in the ”physical” half plane
{z € C:Imz < 0} (see [6]) the above relation implies that S(z) is invertible for Im z > 0.
For dissipative boundary problems the relation (1.3) in general is not true and S(zp) may
have a non trivial kernel for some 2y, Im zy > 0. For odd dimensions d Lax and Phillips [7]
proved that this implies that iz, is an eigenvalue of GG. Thus the analysis of the eigenvalues
of G is important for the location and the existence of points, where the kernel of S(z) is not
trivial. A similar connection occurs in the analysis of the interior transmission eigenvalues
(see [1] for the definition and more references). More precisely, consider the far-filed operator

(F(k)f)(0) = /Sd_1 a(k,8,w)f(w)dw, (0, w) € S x S,

Here a(k,0,w) is the scattering amplitude for the Helmholtz equation (A + k*n(z))u =
0, x € K with contrast function n(x) > 0 and for d odd the scattering operator has the
representation

ik (d-1)/2

S(k) = Id + (%)
Therefore if the kernel of F'(k) is non trivial, k is an interior transmission eigenvalue [1].

The location in C of the eigenvalues of G has been studied in [12] improving previous

results of Majda [9]. It was proved in [12] that for the case when K is the unit ball By =

{r € R®: |z| <1} and v = 1, the operator G has no eigenvalues. For this reason we study

the cases

F(k), ke R.

(A) :maxy(z) <1, (B) : minvy(z) > 1.

zel zel
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The results in [12] say that in the case (B) for every 0 < ¢ < 1 and every M € N, M > 1
the eigenvalues lie in A, U Ry, where

Ac={z€C: |Rez| < C.(1+ |Imz|"?*), Rez < 0},

Ry ={2€C: |Imz| < Ay(1+|Rez])™, Rez < 0}.
Moreover, for strictly convex obstacles K there exists Ry > 0 such that the eigenvalues lie
in Ry U{|z] < Rp}. In the case (A) the eigenvalues lie in A.. By using the results in [18], it
is possible to improve the eigenvalue free regions replacing A, by {z € C: —Ay < Rez < 0}
with sufficiently large Ay > 0.
The existence of eigenvalues has been proved (see Appendix in [12]) only for the ball Bj
and v = const > 1 and in this particular case we have

1
—! (1.4)

Moreover, we have infinite number of real eigenvalues and as v \, 1 one gets a large strip
{zeC: —# < Rez < 0} without eigenvalues.

The purpose of this paper is to establish a Weyl formula for the eigenvalues in Ry, N{z €
C: Rez < —=Cjy < —1} in the case (B). Introduce the set

A={\eC: |Im)\ <O (1+|Re))? Red < —Cp < —1}

containing Rz, VM > 2, modulo a compact set and denote by 0,(G) the point spectrum of
G. Increasing the constant Cy > 0 in the definition of A, we subtract a compact set and this
is not important for the asymptotic (1.5) below. In the following we assume that Cy > 2C).
Given A € 0,(G), we define the algebraic multiplicity of A by

UP<G) - (—OO, -

mult (A) = tr L (z—G) 'dz

27 |z—A|=¢
with 0 < € < 1 sufficiently small. Our main result is the following

Theorem 1. Assume y(x) > 1 for all x € I'. Then the counting function of the eigenvalues
in A taken with their multiplicities has the asymptotic

tH{N € 0p(G)NA: (N <r,r>C,}

Wd—1

- ot /F (7 (@) = D@48, )59+ 0,(r42), 1 o0, (1.5)

wq_1 being the volume of the unit ball {x € R4 |z < 1}.

The example concerning the ball B; and (1.4) show that the condition r > C,, is natural
since the coefficient before 7?71 in (1.5) goes to 0 as max,ery(z) \, 1. Notice that for
strictly convex obstacles K in the case (B) we obtain a Weyl formula for all eigenvalues
of G. For Maxwell’s equations with dissipative boundary conditions in the particular case
K = Bs,y = const # 1, the formula (1.5) has been obtained in [4]. Weyl formula for the
transmission eigenvalues have been obtained by several authors. We refer to [13] and [11]
for more references. It is important to note that in [13] the Weyl formula is established
with remainder which depends on the eigenvalue free region. In [11] the relation with the
eigenvalues free regions is not exploited and the argument is based on a Tauberian theorem
which yields a weak remainder. In the present paper we apply the eigenvalue free results in
[12] and the remainder in (1.5) is optimal.
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To prove Theorem 1, we apply the approach of [15] and the construction of a semi-
classical parametrix T'(h,z), 0 < h < hg, 2 = —m, In| < h? for the semi-classical
exterior Dirichlet-to-Neumann map N(h, z) given in [17], [12]. For z = —1 the operator
P(h) :=T(h,—1) —~v(x) is self-adjoint and we denote by u1(h) < po(h) < ... its eigenvalues
counted with their multiplicities. The points 0 < hy, < hg for which py(hy) = 0 correspond to
points h for which P(h) is not invertible. For large fixed ko, depending on hg, the eigenvalues
ur(ho) are positive, whenever k > ko. Thus if up(r=!) < 0, k > ko, we have uy(hy) = 0 for
some 7' < h, < hy and by a more fine analysis we prove that such a hy is unique. The
operator P(h) can be extended as holomorphic one for complex h = h(1 + in) € L with
In] < A% and L defined in (2.12). For the resolvent (A — G)™! a trace formula has been
established in [12] (see Proposition 1). Similarly, a trace formula involving P~'(h) and the
derivative P(ﬁ) can be proved. These two trace formulas differs by negligible terms and this
leads to a map between the points hy, € L, where P(hy) is not invertible and the eigenvalues
of G. To obtain (1.5), one counts the number of the negative eigenvalues of P(r='), r > C,
which is given by well known formula.

The analysis of the counting function of the eigenvalues of G lying in a strip {z € C :
—Ap < Rez <0}, Ag > 0, as well as the study of the case (A) are open problems. There is a
conjecture that there exists a sequence of eigenvalues Ay, |Im A\;| — oo. For the investigation
of these problems it seems convenient to use the semi-classical parametrix 7'(h, z) for the
exterior Dirichlet-to-Neumann problem constructed in [16] for strictly convex obstacles in
the hyperbolic region {z € C: z =1+ ihw}, |w| < By.

The paper is organised as follows. In Section 2 we collect some facts concerning the
operator C(A\) = N(A) — Ay for ReA < 0, where N'()) is exterior Dirichlet-to-Neumann
map defined in the beginning of Section 2. We recall a the trace formula involving the
resolvent (G — \)~! established in [12]. In Section 3 one presents some information for the

1

semi-classical parametrix for N(h,z) and z € Z, ={z € C: z = —m}, In| < h? based

on the construction in [17], [19]. The properties of the operator P(h) for h real are treated

in Section 4. In Section 5 we compare the trace formulas for C(\) and for P(h) and we prove
Theorem 1. Finally, in Section 6 we discuss some generalisations and a dissipative boundary
problem for Maxwell’s equations.

2. PRELIMINARIES

We start with some facts which are necessary for our exposition (see [12]). For Re A < 0
introduce the exterior Dirichlet-to-Neumann map

N\ : H(T) > f — Oulr € H (D),
where u is the solution of the problem
(—A+M)u=0inQ, ue H*(Q),
u= fonl, (2.1)
w: (i\) — outgoing.
A function u(z) is (i))-outgoing if there exists R > po and g € L2, (R?) such that
u(z) = (=Ag+A*)7'g, |z > R,

where Ry(\) = (—Ag+ %) is the outgoing resolvent of the free Laplacian —A, in R? which
is analytic in C for d odd and on the logarithmic covering of C for d even. The resolvent
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Ry(A) has kernel

i —iA (n—2)/2 1
R = (AN ) 2
oAz =) 4\27|x — y| T2<u) u=—i\|z—y| (22)
H, ,51)(2) being the Hankel function of first kind and we have the asymptotic
2 1/2 * vm us
HWY(z) = <—> TN L 0032, —n <arg 2 < 27, |2 = 1 = +o0. (2.3)
r

The solution of the problem (2.1) with f € H*?2(T) has the representation
u=e(f)+ (=Ap + X)) (A = N*)(e(/)),
where e(f) : HY*() > f — e(f) € H?, (Q) is an extension operator and Rp(\) =

comp
(—Ap + A?)~! is the outgoing resolvent of the Dirichlet Laplacian Ap in . The cut-off
resolvent R, (\) = x(z)Rp(A)x(z) with x(z) € C§°(R?) equal to 1 in a neighbourhood of
KUsuppe(f) is analytic for ReA < 0 and meromorphic in C for d odd and on the logarithmic
covering of C for d even. Consequently, N'(\) : H¥%(I') — HY2(T') is a meromorphic
operator-valued function with the same poles as R, (). The same result holds for the action
of N(\) on other Sobolev spaces. Consider the set A C {z € C : Rez < —Cy < —1}

introduced in Section 1. By using the estimates for R, (\) for Re A < —Cj, we obtain
IN O a2y -2y < Aol AP A € A (2.4)
Applying Green’s representation for the solution u(y) of (2.1) and taking the limit
Q3y, —>x el

we have

(Co) ()~ (CrIN () = T wer

where

0
v (y)

(Coo(N) () = / )= Ro(\,x — )dS,.

(Cor(N)g) () = / 9(y)Ro(A — y)dS,

are the Calderén operators or double and single layer potentials which have the same analytic
properties as Ry(\, z —y). Melrose showed ([10], Section 3) that there exists an entire family
Pp()) of compact pseudo-differential operators of order -1 on I' such that

—2(=Ap + 1)Y2Cy (\) = Id + Pp(N),

Ar being the Laplace Beltrami operator on I' equipped with the Riemannian metric induced
by the Euclidean one in R% In fact, —Cy;()\) is a pseudo-differential operator of order -1
with principal symbol (—Ar)~!/2 (see [10]) and one takes the composition of the operators
vV—Ar + 1 and (—Ar)~Y2. Consequently, (Id+ Pp()\))~! is a meromorphic operator-valued
function and for Re A < 0 one deduces

N = (Id+ Pp(N) ™ (~ A + 1)Y2(Id - 2Co0(N)). (2.5)
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Since N(A) is analytic for Re A < 0,- 1 is not an eigenvalue of Pp()) for Re A < 0. On the
other hand, Cy(A) is a pseudo-differential operator of order -1, hence it is compact one. The
Neumann problem

(—A+X)u=0inQ, u e H*(Q),
du=0onl, (2.6)
w : (i\) — outgoing.

has a non-trivial solution if the operator 2Cyo(A) has eigenvalue 1 and this occurs only if A

coincides with a resonance v, Re v; > 0, of the Neumann problem (see [6]). By Fredholm
theorem one deduces that

N = (Id —2C0(M\) Y (=Ap + 1)"Y2(Id + Pp(N)) : H¥(I') — H* (D)

is meromorphic with poles v;.
Going back to the problem (1.2), for Re A < 0 we write the boundary condition as follows

COv = (N = Mo = N(A) (Id - )\N()\)_lfy)v —0,v=f, € HY2(I).

Clearly, for ReA < 0 the operator C(\) has the same singularities as N (), hence C()\) :
HY2(I') — H~Y%(T) is analytic and satisfies the estimate (2.4) with another constant Ag.
The operator N'(A\)~! is compact and by the results in [12] there are points Ay, Re A\g < 0,
for which Id — AN (A\o) ™' is invertible. Applying the analytic Fredholm theorem for the

operator (I d— N (A)‘W) in the half planeRe A < 0, one concludes that

N = <Id . AN(A)%) NO)L: HV2T) = HY2(T) (2.7)

is a meromorphic operator-valued function. Notice that for A € R~ the operators N'(\),C(\)
are self-adjoint. This follows from the Green formula for (—A + A\?).

Remark 1. It is important to note that the analyticity of the resolvent (—Ap + A?)~! for
Re A < 0 and the absence of resonances of the Neumann problem in the half plan {z € C :
Rez < 0} imply that C(A\)™! is meromorphic for Re A < 0 and (2.5) is not necessary for the
proof of this statement.

For the resolvent (A — G)~! in [12] the following trace formula has been proved.

Proposition 1. Let § C {\ € C: Re A < 0} be a closed positively oriented curve without
self intersections. Assume that C(\)~! has no poles on 6 . Then

1 gy 1 _,oc
try omi 6()\ — G) d\ = trHl/Q(]_“) 57 /(;C()\) B ()\)d)\. (2.8)

Since G has only point spectrum in Re A < 0, the left hand term in (2.8) is equal to the
number of the eigenvalues of G in the domain w bounded by ¢ counted with their algebraic

multiplicities. Setting C(\) = A@ — v, we write the right hand side of (2.8) as

271

b Aé(x)lg—i(xm. (2.9)
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Set A= —1, 0 < Reh < 1 and consider the problem

(=h*A+ 1u=0inQ,
—hdu—~yu=0onT, (2.10)
u — outgoing.

We introduce the operator C'(h) := —hN(—h™') — v and using (2.9), the trace formula
(2.8) becomes

1 1 ~ Lo
tr ()\ G)'d\ = tr— [ C(h)"*C(h)dh, (2.11)
2mi 21 )5
where C denote the derivative with respect to h and ¢ is the curve § = {zeC:z= —%, w e
9}
Obviously, for A € A one has | Im A| < 1 and this implies h € L, where
L:={heC: |Imh| <Cyh*, || <C;', Reh > 0}. (2.12)

We write the points in L as h = h(1 4 in) with 0 < h < hy < C’O_l, n € R. Recall that
%+ < 1. Then Cl < 1/2 and for h € L we get

1
|77’ Sé\/1+n27

hence n* < 1/3. This implies
In| < Cih(1+7%)?R* < h?, h(1+in) € L,
since 1961 < 1. Therefore the problem (2.10) becomes
(—h*A — 2)u = 01in ,
—(14+1in)hd,u —yu =0onT, (2.13)
u — outgoing.

with 2z = — —1+s(n), [s(n)] < (2+ h*)h* < 3h?. On the other hand,

—1 pu—
(1+in)?

C’(ﬁ) =—(1+ in)h/\/'(—ffl) — y(x).

3. PARAMETRIX FOR N(h,z) IN THE ELLIPTIC REGION

In our exposition we will use h-pseudo-differential operators and we refer to [5] for more
details. Let X be a C*° smooth compact manifold without boundary with dimension d—1 >
1. Let (x,€) be the coordinates in T*(X) and let a(z,&;h) € C°(T*(X) x (0, hol). Given
¢,m € R, one denotes by S*™ the set of symbols so that

020 a(w, & )| < Caph™ (L + (€)™, Yo, ¥8,  (2,6) € T"(X).

If £ = 0, we denote S®™ by S™. The h—pseudo-differential operator with symbol a(z,&; h)
is defined by

Op(af)(w) s = (2r) 1 [ e hate, i) )y
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We define the space of symbols Sfl’m which have an asymptotic expansion

alw,m;h) ~ > W a;(x,m), a; € S

J=0

and the corresponding classical pseudo-differential operator is given by

(Opla))(a): = )+ [ el maga ) () dyr.

It is clear that by a change of variable & = hn we may write a h— pseudo-differential operator
as a classical one with parameter h. We will use this fact in Section 4. The operators with

symbols in S4™, Sfl’m are denoted by L™, L5™ respectively. The wave front VT/\E’(A) C 7/“;?1*/)

cl
—_ —

of an operator A € L*™ is defined as in [15], where T*(T") is the compactification of T*(T).

We will recall some results for the ezterior semi-classical Dirichlet-to-Neumann map (see
[16], [17], [12]). Consider the operator

P(h,2)u = (—h*A, — 2)u, z = —1 + s(n).

In local normal geodesic coordinates (y1,v'),y1 = dist (y,I') in a neighbourhood U of 2y € T’
the operator P has the form (see [14])

P(h,z) = h*D} +r(y, hDy) + h*q(z) Dy, — z, D; = —id,,

with r(y, ') = (R(y)n',7'), q(y) € C*°. Here
d

R(y) = {’; %%}iﬂ - K%’ %»;2

is a symmetric ((d — 1) x (d — 1)) matrix and 7(0,vy',7') = ro(y',n’), where ro(y', ') is the

principal symbol of the Laplace-Beltrami operator —Ar on I' equipped with the Riemannian

metric induced by the Euclidean one in RY. For z = —1 + s(n) introduce p(y', 7, 2) =
z—ro(y',n') € C®°(T*T") as the root of the equation

P oy ) —2=0
with Im p(y/, 7/, z) > 0. We have p € S and

— s(n) —rog =1v/ ro — s(m)
VT sn) = Lo 1—s(n)+ro+ivI+ry

which implies p —iy/1+ 19 € S7L.
Let u be the solution of the Dirichlet problem
(—=h*A = 2)u=0inQ,
u= fonl, (3.1)
u — outgoing.

Consider the semi-classical Sobolev spaces HF(I') with norm [|(1 — A?A)*/?ul| 2 and
introduce the exterior semi-classical Dirichlet-to-Neumann map

N(h,z): Hi(T) > f — —hd,ulr € H;"1(T).
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G. Vodev [17] established for bounded domains K C RY, d > 2, with C* boundary and
solutions u of the Helmoltz equation (—h?A — 2)u = 0, z € K, an approximation of the
interior Dirichlet-to-Neumann map. With some modifications his results can be applied for
the exterior Dirichlet-to-Neumann map N(h, z) (see [12]). We need some information for
the parametrix build in [17], [19] in the elliptic region Z, :={z € C: z = -1+ s(n)}.

For the reader convenience we recall some points of the construction in [17], [19] for
z € Z. Let 1 € C§°(Up), ¥ = 1 in a neighbourhood Uy of xy € I". Denote the local normal

geodesic coordinates by (x1,2) and the dual variables by (£1,£’). We search a parametrix
uy of the problem (3.1) with boundary data ¢ f in the form

ﬁw(@ _ (2,/Th)—d+1 // e%(¢(z,§’7z)+(y/’§/>)¢2(%)a<x75/’ h, z)f(y’)d&’dy’.
Here 0 < 0 <« 1 and gb( ) € C°(R) is equal to 1 for |t| <1 and to O for [t| > 2. We write

leka +5E1 RN Zﬂflq}c +5E1 QN( )

For ¢ the eikonal equation modulo ¥ becomes (9,,¢)? + (R(2)0yp, Opip) — z = ¥ dx and
one obtains a smooth solution having the form

Zﬂwk Lo = — (), Dy Plui—0 = o1 = p.

The functions @y satlsfy for 0 < K < N — 2 the equalities

S E+DG+ Derngi+ >, (RiVapr, Vaips) — 2 =0. (3.2)
ktj=K ktj+=K
Clearly, we can determine ¢x ., from the above equality since p # 0. For z = —1 we have

p = iy/1+ rg and by recurrence one deduces ¢, = i@y with real-valued function ¢,. Thus
for z = —1 we have p = —(2/,¢&’) + ip with real-valued function ¢. The amplitude of the
parametrix has the form

a = Z hjaj(xuglu 2)7 a0|$1:0 - 77b’ a’j’931:0 = 07 ] > 1

with a; = Z,]cvzo whay ;(2',€,2), apo = ¥, ap; = 0, j > 1. The functions a; satisfy the
transport equations
21—— + 21<R(£L')VI/QO, Vm/aj> + i(Agp)a] + Aaj_l

=aVAY 0<j<N-1,a_,=0.
We write (see Section 3 in [19])

= lefSOkA‘i”% ), Aaj1 = leam |+ a2y FY Y (2)

with
= (k+ )k +2ors2+ Y ((BiVor, Varp) + alv + D ).

l+v=Fk
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gy = (k+1)(k+2)araj1+ Y (<RN1«/7 Varty,j—1) + qe(v + 1)au+1,j—1>-
(+v=~k

This leads to the equality (see (3.18) in [19])
2i Y (A Do+ Drpaarsny +21 D> (Biy Vo, Varany )
k1+ko=k k1+ko+ks=k
A .
+ Y lcpklak” —ap;_ for0<k<N-1,0<j<N-1  (33)
ki1+ko=

We can determine ay,; by recurrence from the above equality so that ago = 1, ag; =0, j >
1, ag—1 =0, £ > 0. Next introduce the operator

di

Ty(h,2)f = —h——|s,=0 = Opn(7y) f
axl
with
N-1
Ty = —lpl/) — Z hj—HCLLj, Q1,5 € S_j.
j=0

By using the outgoing resolvent (h*?Ap — z)~! for the Dirichlet Laplacian in €, we obtain a
parametrix u, in © and for z € Z, we have (see Prop. 2.2 in [12] and [17])

IN(h, 2) (W f) = Ty flapry < Onh™> M| fll 2y, VN € N (3.4)

with Cy > 0,54 > 0 independent of f,h and z and s4 independent of N. Taking a par-
tition of unity ijl ¢;(2") = 1 on I', we construct a parametrix and define the operator

T(h,z) = ZJ Ty, (h, z). For z = —1 the symbol /147y + ZN "hittay; of T(h, —1) is
real valued and we have the estimate (3.4) with Ty (h, 2) replaced by T'(h,z). Clearly, we
may extend the symbol of T'(h, z) holomorphically for h € L.

4. PROPERTIES OF THE OPERATOR P(h)

In this section we assume that v(x) > 1, Vo € I" and we study the operator P(h) =
T(h,—1) —~(x) when h is real. Set

15161%17( x) =co > 1, marxy(m) =0 > ¢

and choose a constant C' = %. As we mentioned in Section 3, we can consider the operator

P(h) as a classical pseudo- dlfferentlal operator Op(P) with parameter h with classical symbol

= 1+ h2rg — v + hPy(x, hE), Py(x,€) € S°. We denote by (.,.) the scalar product in
L2(F) and for two self adjoint operators Lj, Ly the inequality L; > Lo means (Lju,u) >
(Lou,u), Yu € L*(T).

Proposition 2. Let (hA) = (1—h?Ar)Y? and let € = C(co—1)? < 2. Then for h sufficiently

small we have

OP(h)
oh

with a constant Cy > 0 independent of h.

h + CP(h)(hA)"Y2P(h) > €(1 — Cyh)(hA) (4.1)
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Proof. The principal symbol of the operator on the left hand side in (4.1) has the form
g1 = 2h%ro(1 + h2r) ™2 + C\/1 + h2rg — 2C~(z) + C~2(2) (1 4 h2r) /2
= (24 C — 1+ h2rg — 2C(z) + (CH2(x) — 2)(1 + h2re) /2

+ev/ 1+ h2r. (4.2)

Clearly,
(24 C —¢€)(hD)u,u) > ((24+ C — €)u,u)
and
Cy*(z) —2<Cci —2=0.
Therefore,

(CY2(x) = 2)(hD)™?u,u) = ((C7*(x) = 2)((hD) ™ = L)u, u)
+((C*(x) = 2)u,u) > ((C7*(x) = 2)u, u) — hCy[[ull*, 0 < 7 < ho.
Here the operator (C%(x) — 2)((hD)~/2 — 1) has non-negative (classical) principal symbol
(2 = CY(@)Wre
1+ h?rg + /14 h?rq
and applied the semi-classical sharp Géarding inequality (see for instance, [5], Theorem 7.12).

Taking into account (4.2) and the inequality C(vy(z) — 1)> — € > C(co — 1)*> — € = 0, one
deduces

(Op(@)u,u) = (C(y(x) = 1)*) = e)u,u) + e((hD)u,u) — hC: |Jul]*
> e({hD)u, u) — hCyhljull>.
The full symbol of the operator on the right hand side of (4.1) has the form ¢; + hqo.
The term h(Op(qo)u,u) — hCy||lul|? can be absorbed by eCoh((hD)u,u) taking eCy > C} +
1Op(q0)]| 2212 and this complets the proof. O

Remark 2. The values of € depends on (co — 1)* and € \, 0 as ¢co \ 1. In the case when
v = const and K is the ball {x : ||z|| < 1} the operator G has no eigenvalues if v =1 (see
[12]). Moreover, in this case for v > 1 the eigenvalues of G lie in the interval (—oo, —ﬁ)
Thus as v \y 1, in the domain Re A\ > —ﬁ there are no eigenvalues.

Next we follow the argument of Section 4, [15] with some modifications. Consider the
semi-classical Sobolev space H*(I') with norm |[lulls = [[{(hD)*ul|rz. The operator P(h) :
H' — L? has derivative P(h) = O(h™') : H' — L?. Denote by

pa(h) < pa(h) <o < pe(h) <o
the eigenvalues of P(h) repeated with their multiplicities.

Let hy be small and let py(hy) have multiplicity m. For h close to hy one has exactly m
eigenvalues and we denote by F'(h) the space spanned by them. We can find a small interval
(o, B) around pg(hy), independent on h, containing the eigenvalues spanning F'(h). Given
hy > hy close to hy, consider a normalised eigenfunction e(hy) with eigenvalue g (hs). Let
m(h) = E(.p) be the spectral projection of P(h), hence F'(h) = w(h)L*(T"). Then (m(h) —
Im(h) = 0 yields w(h)w(h)7(h) = 0 and we deduce 7(h)|pn) = 0. We construct a smooth
extension e(h) € F(h), h € [hy, ha] of e(hs) with |le(h)| = 1, é(h) € F(h)*. Obviously, e(h;)

will be normalised eigenfunction with eigenvalue g (hy).
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Considering the eigenvalues py(h) of P(h) in a small interval [—d,4], 6 > 0, one gets
|P(h)e(h)|| < 6. On the other hand,

hP(h) = h*A(hD)™* + hLy = P(h) — (hD)™' + hL,

with zero order operators Lo, Ly and this implies |(P(h)e(h),e(h))] < Coh™, h € [hy, hy].
Therefore

he g Cy

) = ()| = | / L (P(n)e(h), e()dn| < Cy / < G )

Assuming ug(h) € [—6,0], we deduce that ug(h) is locally Lipschitz function in h and its
almost defined derivative satisfies ]a“ak—fghw < Coh™L.

To estimate ha“a’“—,gh) from below, we exploit Proposition 2 and apply (4.1). For h < hg <
ﬁ and i (h) € [0, 6] we have
Oy (h)

W= = (RP(he(h), e(h)) > (1 = Coh)((hD)e(h), e(h) = C((hD)™ P(R)e(h), P(h)e(h))

3€

> €(1 — Cyh) — CH* > T

0= (CO - ].)H i —Ogh() Z (C;\;ﬁl)

Consequently, for h € [hq, ho) one has

choosing

3e [P 3e
() = () > / Wtdh > 2 (s — )
h1 2

and we obtain

3¢ _ dpy(h)
— < h < (.
=g =G
Fixing hy > small, we conclude that the eigenvalue p(h) increases when h increases and
wrp(h) € [=6,6]. It is well known (see for instance, [5]) that

1
— dzdé + O(hg4t?),
(2mhg )t /pl(x,§)<o $+ 0™

p1(z,€) being the principal symbol of P(Reh). Then for k& > ko we have p(hg) > 0
and if for h < hy one has p(h) < 0, then there exists a point h < hy < hg with the
properties p(hi) = 0, pur(h) < 0 for 0 < h < hy. This implies that there exists a sequence
hiy > hgor1 > ... of values 0 < h < hg such that pg(hg) = 0, kg > ko. These values hy, are
precisely those for which P(h) is not invertible. Next we choose p > d and construct the
intervals I, containing hy with length |Iy,| ~ AT and |ug(h)] > kP for h € (0, ho] \ Irp-
As in [15], one constructs the disjoint intervals Jj ,, and we obtain the following

t{k : pe(ho) <0} = Ko =

Proposition 3 (Prop. 4.1, [15]). Let p > d be fived. The inverse operator P(h)™' : L? — L?
exists and has norm O(h™P) for h € (0,ho] \ Q,, where Q, is a union of disjoint closed
intervals Jy p, Jop, ... with |Ji,| = ORPT27%) for h € Jy,. Moreover, the number of such
intervals that intersect [h/2,h] for 0 < h < hq is at most O(h'™P).
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5. RELATIONS BETWEEN THE TRACE INTEGRALS FOR C'(h) AND P(h)

In this section we study the operators C'(h) and P(h) for complex h € L. We use
the notation h instead of h used in Sections 2, 3. For z = —1 the operator T'(Reh, —1)
constructed in Section 3 has principal semi-classical symbol /1 + rg, so it is elliptic. The
ellipticity holds also for the operator T'(h, z), h € L,z = —1+s(n), holomorphic with respect
to h, provided |h| small enough. On the other hand, P(h) = (1 + in)T'(h,z) — vy(z) is not
elliptic and for h € R, n =0, z = —1 its semi-classical principal symbol vanishes on the set

Y= {(x,8) € T*(T) : ro(x,&) =~* —1}.

For the symbol ry(z, ) of the Laplace-Beltrami operator on I' there exists a constant C3 > 0
such that ro(z, &) > Cs]|€||?, (z,€) € T*(T). Choose a constant By > 0 so that v/C3By > 2¢;
and consider a symbol x(z,&) € C°(T*(I')), 0 < x(z,£) < 2 such that

27 S F? HgH S BO)
X(z,8) =
0, z €T, ||£] > By+1.

Introduce the operator
M(h) = P(Reh) +~(z)x(z,hD,) = T(Re h, —1) 4+ ~v(x)(x(x, hD,) — 1).
The principal symbol of M (h) has the form
m(z,€) = V1+ro+7(@)(x(z,§) - 1).
Clearly, M (h) is elliptic since for ||€|| < By one gets Rem(x, &) > ¢, while for ||€]| > By we

have
Vs Vs VCs

(2, )] 2 VCallgll = e = 2] + 57 Bo — e 2 €l

Consequently, m(z,&) € S}, the operator M(h)~! : H® — H*"' is bounded by O,(1) and
Wfﬁ?(P(Reh) — M) n{||€]| > By + 1} = 0. Since x(z, &) vanishes for [|€]| > By + 1, by
applying Proposition A.1 in [15], we can extend holomorphically x(z, hD,) to n(z, hD,) in
the domain L. As we mentioned in Section 3, the operator P(h) also has a holomorphic
extension for » € L.Thus M(h) has a holomorphic extension

M(h) = P(h) +v(z)(n(z, hD,) — 1)

for h € L and WE(P(h) — M(h)) N {||¢|]| > By + 1} = 0. The last relation implies P(h) —
M(h):O(1): H* — H®, Vs.

Now we can repeat without any change the proof of Lemma 5.1 in [15], exploiting Propo-
sition 2. First we obtain

Reh

HP(h)*lylﬁ(H,l/Q’Hlm) < Cm, Reh >0, Imh # 0. (51)
Next, one deduces the estimate
Reh
1P ooy < csﬁ, Reh > 0, Imh # 0 (5.2)
m

applying (5.1) and the representation
Pl=M'-MYP-MM*'+MY(P-MPYP—-MM?",
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combined with the property of P(h) — M (h) mentioned above. Following [15], introduce a
piecewise smooth simply positively oriented curve 73, as a union of four segments: Reh €
Jip, Imh = £(Reh)P™ and Reh € 0Jy,, |Imh| < (Reh)P*t, where Ji, is one of the
intervals in €2, defined in Proposition 3. Then we have

Proposition 4 (Prop. 5.2, [15]). For every h € 4y, the inverse operator P(h)~! exists and
| P(h) " cems sy < Cs(Reh) ™, h € Y.
To estimate C'(h)™!, we write
C(h)=—(1+41in)hN(Reh,z) —y(z) = (L +in)T'(Reh, z) — v(x) + Rn(Reh, 2)
= P(h) + Ru(h,z), m > 2p

with R (h, 2) : O((Reh)™) : H* — H*T™!. Therefore

C(h)P(h)™' =Id+ Ru,(Reh,z)P(h)~! (5.3)
and Proposition 4 imply

< Oy(Reh) P,

Ron(Reh, 2)P(h) ™!
[Ruten P,

For small Re h the operator on the right hand side of (5.3) is invertible and
-1
C(n P (1d+ Ro(Reh, 2)P(h) ) = 1d.

On the other hand, the operator C'(h) is elliptic for |{] > 1 and this implies that C(h) :
H'Y? — H=1/%is a Fredholm operator. The index of C'(h) is constant for h € L and according
to the results in [12], this index is 0. Hence the right inverse to C'(h) is also a left inverse,
so it is two side inverse. Thus we obtain

HO(h)ilHE(Hs’HS+1) < CS(RG h)ip, h e Yep- (54)

Moreover,
C(h)™ — P(h)* = P(h)™! ((Id + Rp(Reh, z)P(h)l)_l . Id> — K(h) (5.5)

with K(h) = O(|h|™=2) : H® — H**™' Vs, h € 4.,. To estimate C(h) — P(h), notice
that C'(h) — P(h) is holomorphic with respect to h in Ly and by Cauchy formula

ey - P - 5 [ ST / Rolle b2 e — o),

where 7y, is the boundary of a domain containing 7y, with the property dist (4, Vkp) >
(Re h)P. Thus yileds

K'(h) = O,(|h|™P) : H® — H*"™ ™ Vs, h € ).

Concerning the operator P(h), we obtain a trace formula repeating without any change
the argument in [15]. Let ug(hx) =0, k > kq. It is easy to see that ug(h) has no other zeros
for 0 < h < hyg, exploiting the fact that ug(h) in increasing for ug(h) € [—0,0]. One defines
the multiplicity of A as the multiplicity of the eigenvalue p(hy). Then we have
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Proposition 5 (Prop. 5.3, [15]). Let 3 C L be a closed positively oriented C curve without
self intersections which avoids the points hy with pg(hy) = 0. Then

1 .
tr— [ P(h)"*P(h)dh
tort |, PP

15 equal to the number of hy in the domain bounded by .

Now we may compare the trace formula for C'(h) and P(h). First we compare the integrals
over 7. We have

fr C(h)*C(h)dh = tr i (C(R)™r = P(R)"HC(h)dh

271 271
k,p

tr —— P(h)LC(h)dh = tr 2i P(R)*C(h)dh + O,((Re h)™~%P).

271 - s,

Here we have used (5.5) and the estimate
IC(h) | arve 12y < Clh| 7%, b€ L.
which follows from (2.4). Next the property of K’(h) yields

tri P(h)C(h) dh—tr—/ B)dh + O, ((Re h)™ ).

271

For small A and m > 2p the terms O,((Re h)m*ZP) are negligible and we obtain, as in
[15], a map ¢, between the set of points hy € (0, h(p)] counted with their multiplicities and
the eigenvalues ¢,(hy) € A counted with their multiplicities. The number of points hy, € Ji,
counted with their multiplicities is equal to the number of eigenvalues \; = £(hy) of G counted
with their multiplicities lying in Ay, = {z € C : z = —%, ¢ € Wep}, Wep C L being the
domain bounded by 7y ,. Notice that for a point hj, we could have many \; € £,(hy) C Ak,
On the other hand, for every \; € {,(hy) one has

1
A+l < C,hoH>,
k

The integral over 8 in Proposition 5 can be presented as a sum of integrals over <, plus
integrals over curves v, which are the boundary of domains f;,, such that 3;,NQ, =0, Vj.
By Proposition 3 for h € (0, ho] \ €2, the operator P(h) is invertible. Applying an argument
similar to that used above, one concludes that P(h) is invertible for h € 3;,. Consequently,
there are no contributions from the integrals over «;, and we must sum the contributions
over the integrals over 7 p, that is the sum of the number of the corresponding points hy.

Consider the counting function
N(r)=t{A € 0,(G)NA: |A| <7, ReA < —=Cop}, r > Cy

with hy' = Cy > 0 large enough. Then for [A| < r we must consider 7! < ||, h € L.
Modulo a finite number eigenvalues (see Section 4 and the number kq), we are going to
count the points 7~ < hy < hg and the number of the eigenvalues py(h) for which we have
pr(hy) = 0. Hence we have pux(r~') < 0, since otherwise we obtain a contradiction. The
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problem is reduced to find the number of the negative eigenvalues of P(r~!) which is given

by well known formula

,r,dfl

— dadé + O, (r72).
(2m)d-1 /pl(:c,f)<0 o )

Clearly,

/ drdé = drdé = / (V2 (z) — 1)4=D/2( / dn)dz.
P1(2,6)<0 ro(@.£) <2 (2)-1 r ro(e.m)<1

For the induced Riemannian metric on I' the integral over the dual variable n yields the
volume wy_; of the unit ball {z € R!: || < 1} and we obtain the asymptotic (1.5). This
completes the proof of Theorem 1.

6. GENERALISATIONS
We may study with some modifications a more general dissipative boundary problem
Uy — Agu+ c(x)uy = 0in R x Q,
Ou —y(2)0u — o(x)u =0on RS x T, (6.1)
u(0,7) = f1, u(0,2) = fo,

where c(z) > 0, o(x) > 0 are smooth functions defined respectively in R? and I" and ¢(z) = 0
for |z| > Ry > 0 (see [8]). The solution is given by a semi-group V(t) = €'“, ¢ > 0 with
f = (f1, f2) in the energy space Hg with norm

16, = [ (VoA +10P)de+ [ ol
r
The generator of V (¢) has the form
0 1
¢ = <A c>

with a domain D(G) being the closure in the graph norm

1l = (13 + IG L5,
of functions f = (f1, f2) € C (RY) x o) (RY) satisfying the boundary condition 9, f; —
vfo —ofi = 0 on I'. If we have an eigenfunction f = (fi, f2) with Gf = Af, and A\ = —%

(for simplicity we keep the notation of Section 2), then u = f; is a solution of the problem
(=h2A +1 — he)u = 0in €,
—hd,u —yu+ hou=0onT, (6.2)
u — outgoing.

Therefore with h = h(1 +in), n € R,z = —m we obtain the problem
(—h*A — 2z — ﬁc)u =0in €,
—(1+in)hd,u —yu+ h(1 +in)ou =0onT, (6.3)

u — outgoing.

We need to consider the semi-classical exterior Dirichlet-to-Neumann operator N(h, z) re-

lated to the operator —h?A —z — 1+Linc‘ The construction of the semi-classical paramterix for
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N(h, z) is the same as in [17], [12] . The term ﬁc is lower order operator and the principal

symbol of N(h, z) is v/1 + 9. Next we deal with the operator

P(h)=(141in)N(h,z) —v — h(1 +in)o

and the self-adjoint operator P(h) = N(h, z) —~ — ho. Hear h(1+1in)o is a lower order oper-
ator and we may repeat the arguments of Sections 4, 5. Under the assumptions of Theorem
1 one obtains a Weyl formula (1.5) with the same leading term. We leave the details to the
reader.

We hope that our arguments combined with the construction of a semi-classical parametrix
in [20] can be applied for the analysis of the eigenvalues of Maxwell’s equations with dissi-
pative boundary conditions

OE —curl H =0, O,H + curl E = 0in R, x ,
VAE —~y(x)(vAvAH)=00onR} xT, (6.4)
E(O,JI) = E()(CC'), H(O,l’) = H()(ZL‘),

where d = 3, (Ey, Hy) € L*(R x Q: CY), y(x) > 0, Vo € I". The solution of (6.4) is given
by a contraction semi-group V(t) = €', t > 0 (see [4] for the definition of G}) and the
spectrum of Gy in the half-plan {z € C : Rez < 0} is formed by isolated eigenvalues with
finite multiplicities [2].

We sketch briefly below the similitudes with the analysis in Section 2. If (E, H) # 0 is
an eigenfunction of G} with eigenvalue A, then

curl E = —\H, curl H = A\F in (),

ﬁ(u/\y/\E>+y/\H:OonF, (6.5)

(E,H) : (i\) — outgoing.
Consider the problem
curl E = —\H, curl H = AF in (),
vANE=fonl, (6.6)
(E,H) : (i\) — outgoing.
In the space HL(I") := {u € H*(I") : (v,u) = 0} introduce the operator Ny(A) : H., ((T') —
HY(T) defined by
No(N)f =v A H|r,
(E, H) being the solution of the problem (6.6). The operator A,(A) is the analog of the

exterior Dirichlet-to-Neumann operator in Section 2 (see [20]) and the boundary condition
on (6.5) can be written as

Co(AN)f = WA+ NN f =0, f=vAEl.

V()
The outgoing resolvent of the problem
curl E = —AH + I, curl H = A\E + F5in (),
vAE=0onT,
(E,H) : (i\) — outgoing,
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is analytic for ReA < 0 since the above problem corresponds to a self-adjoint operator.
Therefor we can prove that Cy()) is analytic for Re A < 0. In the same way from the fact
that for Re A < 0 there are no non trivial solutions of the problem

curl E = —\H, curl H = A\EF in 2,
vANH=0onT,
(E,H) : (i\) — outgoing,

one concludes that Ay(X)™! is analytic for ReA < 0. As in Section 2, one deduces that
Cp(A)™! is a meromorphic operator valued function for Re A < 0 (see (2.7) and Remark 1).
Assuming v(x) # 1, Vo € T, according to the results in [3], for every ¢ > 0 and every
M € N, M > 1 the eigenvalues of Gy, lie in A, UR ;. Next one can establish a trace formula
involving (A — G3)~! and for the analysis of the counting function of the eigenvalue of Gy
in A it is possible to apply the strategy of Sections 4, 5 combined with the semi-classical
parametrix constructed in [20].
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