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Abstract. For hyperbolic flows ϕt we examine the Gibbs measure of points
w for which ∫ T

0
G(ϕtw)dt− aT ∈ (−e−εn, e−εn)

as n → ∞ and T ≥ n, provided ε > 0 is sufficiently small. This is similar

to local central limit theorems. The fact that the interval (−e−εn, e−εn) is

exponentially shrinking as n → ∞ leads to several difficulties. Under some
geometric assumptions we establish a sharp large deviation result with leading

term C(a)εneγ(a)T and rate function γ(a) ≤ 0. The proof is based on the

spectral estimates for the iterations of the Ruelle operators with two complex
parameters and on a new Tauberian theorem for sequence of functions gn(t)

having an asymptotic as n→∞ and t ≥ n.

1. Introduction

Let ϕt : M −→M be a C2 weak mixing Axiom A flow on a compact Riemannian
manifold M , and let Λ be a basic set for ϕt. The restriction of the flow on Λ is
a hyperbolic flow [11]. For any x ∈ M let W s

ε (x),Wu
ε (x) be the local stable and

unstable manifolds through x, respectively (see [2], [7], [11]). It follows from the
hyperbolicity of Λ that if ε0 > 0 is sufficiently small, there exists ε1 > 0 such that
if x, y ∈ Λ and d(x, y) < ε1, then W s

ε0(x) and ϕ[−ε0,ε0](W
u
ε0(y)) intersect at exactly

one point [x, y] ∈ Λ (cf. [7]). That is, there exists a unique t ∈ [−ε0, ε0] such that
ϕt([x, y]) ∈ Wu

ε0(y). Setting ∆(x, y) = t, defines the so called temporal distance
function. Here and throughout the whole paper we denote by d(·, ·) the distance
on M determined by the Riemannian metric.

Let R = {Ri}ki=1 be a fixed (pseudo) Markov family of pseudo-rectangles Ri =
[Ui, Si] = {[x, y] : x ∈ Ui, y ∈ Si} (see Section 2). Set R = ∪ki=1Ri, U = ∪ki=1Ui.
Consider the Poincaré map P : R −→ R, defined by P(x) = ϕτ(x)(x) ∈ R, where
τ(x) > 0 is the smallest positive time with ϕτ(x)(x) ∈ R (first return time function).
The shift map σ : R −→ U is given by σ = πU ◦ P, where πU : R −→ U is the
projection along stable leaves.

Define a (k × k) matrix A = {A(i, j)}ki,j=1 by

A(i, j) =

{
1 if P(IntRi) ∩ IntRj 6= ∅,
0 otherwise.
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Following [2], it is possible to construct a Markov family R so that A is irreducible
and aperiodic.

Consider the suspension space

Rτ = {(x, t) ∈ R× R : 0 ≤ t ≤ τ(x)}/ ∼,

where by ∼ we identify the points (x, τ(x)) and (Px, 0). The suspension flow on
Rτ is defined by ϕτt (x, s) = (x, s+ t) taking into account the identification ∼ . For
a Hölder continuous function f on R, the topological pressure PrP(f) with respect
to P is defined by

PrP(f) = sup
m∈MP

{
h(P,m) +

∫
fdm

}
,

where MP denotes the space of all P-invariant Borel probability measures and
h(P,m) is the entropy of P with respect to m. We say that u and v are cohomolo-
gous and we denote this by u ∼ v if there exists a continuous function w such that
u = v+w ◦ P −w. The flow ϕt on Λ is naturally related to the suspension flow ϕτt
on Rτ . There exists a natural semi-conjugacy projection π(x, t) : Rτ −→ Λ which
is one-to-one on a residual set (see [2]) such that π(x, t) ◦ ϕτs = ϕτs ◦ π(x, t). For
z ∈ R set

τn(z) := τ(z) + τ(P(z)) + ...+ τ(Pn−1(z)).

Notice that since τ(x) is constant along stable leaves for x = πU (z) we have

τn(z) = τn(x) = τ(x) + τ(σ(x)) + ...+ τ(σn(x)).

Denote by Û (or R̂) the set of those x ∈ U (resp. x ∈ R) such that Pm(x) does
not belong to the bounder of any rectangle Ri for all m ∈ Z. In a similar way define

R̂τ . It is well-known (see [1]) that Û (resp. R̂) is a residual subset of U (resp. R)
and has full measure with respect to any Gibbs measure on U (resp. R). Clearly in
general τ is not continuous on U , however τ is essentially Hölder on U , i.e. there
exist constants L > 0 and α > 0 such that |τ(x) − τ(y)| ≤ L (d(x, y))α whenever
x, y ∈ Ui and σ(x), σ(y) ∈ Uj for some i, j. The same applies to σ : U −→ U and
to P : R −→ R. Throughout we will mainly work with the restrictions of τ and σ

to Û and also with the restrictions of τ and P to R̂.
Consider the space Cα(R̂τ ) of all α-Hölder functions on R̂τ with norm ‖w‖α =

|w|α + ‖w‖∞. We should stress that throughout the whole paper the Hölder norms

|w|α for functions on Û , R̂ or R̂τ are always determined with respect to distance
d(·, ·) on M determined by the Riemannian metric.

For F ∈ Cα(R̂τ ), define the function f : R −→ R by

f(z) =

∫ τ(z)

0

F (z, t) dt, z ∈ R.

Here and in the following we use the notation F (z, t) = F (στt (z, 0)). Given a func-

tion G ∈ C(R̂τ ), we define

GT (w) =

∫ T

0

G(ϕτt (w)) dt, w ∈ Rτ .

Throughout the paper we assume that F,G ∈ Cα(R̂τ ). Let a =
∫
Rτ
GdmF+tG,

where mF+tG is the equilibrium state of F + tG for some t ∈ R. More precisely,
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for a function A on R̂τ the equilibrium state mA of A is a στt -invariant probability
measure on Rτ such that

Prϕτt (A) = sup
m∈Mτ

{h(ϕτ1 ,m) +

∫
A(w) dm(w)},

h(ϕτ1 ,m) being the entropy of ϕτ1 with respect to m and Mτ the space of all ϕτt
invariant Borel probability mesures on Rτ . The supremum above is given by a
measure mA called equilibrium state of A. Moreover, if G is not cohomologous to
a constant, we have

0 < σ2
m(G) = lim

T→∞

1

T

(∫ T

0

(G ◦ στt )dt− T
∫
Gdm

)2

<∞

and d2Pr(F+tG)
dt2 = σ2

mF+tG
(G), mH being the equilibrium state of H.

Introduce the rate function

γ(a) := inf
t∈R
{Pr(F + tG)− Pr(F )− ta} = Pr(F + ξ(a)G)− Pr(F )− ξ(a)a,

where ξ(a) is the unique real number such that

dPr(F + tG)

dt

∣∣∣∣
t=ξ(a)

=

∫
GdmF+ξ(a)G = a

and Pr(A) = Prστt (A) is the pressure of A with respect to the flow στt on Rτ .
For simplicity of the notations we will write Pr(A) instead of Prϕτt (A). Let

β(t) = Pr(F + tG)− Pr(F ).

Clearly,

γ′(a) = β′(ξ(a))ξ′(a)− ξ′(a)a− ξ(a) = −ξ(a),

and

ξ′(a) =
1

β′′(ξ(a))
=

1

σ2
mF+ξ(a)G

(G)
.

Consequently, γ′(a) = 0 if and only if ξ(a) = 0 which is equivalent to
∫
GdmF = a.

Thus γ(a) is a non-positive concave function and γ(a) = 0 if only if
∫
GdmF = a.

In this paper we continue the analysis of sharp large deviations in [12], [14].
Our purpose is to improve the results in [14] and to study for a fixed q ≥ 0 the
asymptotic of

mF

{
w ∈ Rτ : ∀T ≥ n− q we have

∫ T

0

G(ϕτt (w))dt− aT ∈
(
−e−εn, e−εn

)}
as n→∞. Here 0 < ε ≤ µ0/8 is a small constant, where µ0 > 0 defined in Section
4 is related to the meromorphic continuation of the function Z(s, ω, a) across the
line Re s = γ(a).

Recall the subset Û of R̂ defined earlier. We will regard Û as a subset of R̂τ

using the identification x ←→ (x, 0) for x ∈ R. Now we introduce two definitions
of independence.

Definition 1.1. Two functions f1, f2 ∈ Cα(Û) are called σ-independent if when-
ever there are constants t1, t2 ∈ R such that t1f1 + t2f2 is cohomologous to a

function in C(Û : 2πZ), we have t1 = t2 = 0.



4 V. PETKOV AND L. STOYANOV

For a function G ∈ Cα(R̂τ ) consider the skew product flow SGt on S1×Rτ defined
by

SGt (e2πiα, y) =
(
e2πi(α+G

t(y)), ϕτt (y)
)
.

Definition 1.2 ([10]). Let G ∈ Cα(R̂τ ). Then G and ϕτt are flow independent if
the following condition is satisfied. If t0, t1 ∈ R are constants such that the skew
product flow SHt with H = t0+t1G is not topologically transitive, then t0 = t1 = 0.

Following the result in [10], if G and ϕτt are flow independent, then the flow
ϕτt is topologically weak-mixing and the function G is not cohomologous to a
constant function. On the other hand, if G and ϕτt are flow independent, then

g(x) =
∫ τ(x)
0

G(x, t)dt, x ∈ U and τ(x) are σ-independent.

Introduce the set

ΓG =
{∫

GdmF+tG : t ∈ R
}
.

Our first result is the following

Theorem 1.3. Assume that the Standing Assumptions stated in Section 2 below
are satisfied. Let G : Λ −→ (0,∞) be a Hölder function function for which there
exists a Markov family R = {Ri}ki=1 for the flow ϕt on Λ such that G is constant
on the stable leaves of all ”rectangular boxes”

Bi = {ϕt(x) : x ∈ Ri, 0 ≤ t ≤ τ(x)},
i = 1, . . . , k. Assume in addition that G and ϕτt are flow independent. Let q ≥ 0
be fixed, let 0 < µ0 < 1 be the constant in Proposition 3 and let εn = e−εn, 0 <
ε ≤ µ0/8. Then for any compact set J b ΓG and 0 < η � 1 there exists n0(η) ∈ N
such that for a ∈ J, n ≥ n0(η) + q and T ≥ n0(η)− q we have
√

2εnC(a)√
πTβ′′(ξ(a))

eγ(a)T (1−η) ≤ mF

{
w ∈ Rτ :

∫ T

0

G(ϕτt (w)) dt−aT ∈
(
−e−εn, e−εn

)}
≤

√
2εnC(a)√

πTβ′′(ξ(a))
eγ(a)T (1 + η), (1.1)

where C(a) > 0 is a constant defined in Section 6.

The above theorem says that for T ≥ n− q and n→∞ we have

mF

{
w ∈ Rτ :

∫ T

0

G(ϕτt (w)) dt− aT ∈
(
−e−εn, e−εn

)}
∼

√
2εnC(a)√

πTβ′′(ξ(a))
eγ(a)T . (1.2)

Notice that the proof of Theorem 1.3 works if we assume that G is not coho-

mologous to a constant and τ(x) and g(x) =
∫ τ(x)
0

G(x, t)dt are σ− independent.
As it was mentioned above, these properties are satisfied if G and ϕτt are flow
independent.

Theorem 1.3 is an improvement of a result in [14], where the asymptotic of

µf

{
x ∈ U :

∫ τn(x)

0

G(ϕτt (x, 0))dt− aτn(x) ∈
(
−e−εn, e−εn

)}
, n→∞
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has been investigated, µf being the equilibrium state of f(x). When we replace
τn(x) by T , we have to study two limits: n → ∞ and T → ∞, and the condition
T ≥ n − q is natural. It is easer to study the case when n is fixed and we take
T ≥ T (η, n) to arrange (1.1). However assuming n ≥ n0(η), for fixed 0 < η � 1 we
could have limn→∞ T (η, n) =∞ and we cannot arrange an uniformity with respect
to n. Thus, our result is much more precise and to prove it we follow a strategy
based on Tauberian theorems with two parameters n, T examining the asymptotic
of a sequence of functions gn(T ). We discuss briefly this approach below.

Our second result concerns the function

ζ(T ; a) = mF

{
w ∈ Rτ :

∫ T

0

G(ϕτt (w)) dt− aT ∈
(
−e−εT ,−e−εT

)}
.

Applying Theorem 1, we prove the following

Theorem 1.4. Under the assumptions of Theorem 1.3, for a ∈ J and any 0 <
η � 1 there exists n0(η) ∈ N such that for T ≥ n0(η) + 1 we have
√

2e−εe−εTC(a)√
πTβ′′(ξ(a))

eγ(a)T (1− η) ≤ ζ(T ; a) ≤
√

2eεe−εTC(a)√
πTβ′′(ξ(a))

eγ(a)T (1 + η). (1.3)

It is possible to obtain a slightly better result assuming one can generalise The-
orem 1.3 for sequences nk →∞ instead of a sequence of integers n→∞, however
we are not going to discuss such generalisations.

The results of the type discussed above are known as local central limit theorems
(LCLT) (see [4] for recent results and references). In particular, (LCLT) in a very
general setting are studied in [4] and asymptotics of the form

mF

{
w ∈ Rτ :

∫ T

0

G(ϕτt (w))dt− T
∫
GdmF − c

√
T ∈ I

}
∼ g(c)√

T
Leb(I), T →∞

are proved when I is a bounded interval in R, g(c) is a Gaussian density and
Leb(I) is the Lebesgue measure of I. The case considered in the present paper,
where we deal with exponentially shrinking intervals In ⊂ R and we want to have
an asymptotic as n→∞ and T →∞, is more difficult. Large deviations for Anosov
flows have been examined by Waddington [20], where for the measure

mF

{
w ∈ Rτ :

∫ T

0

G(στt (w)) dt− aT ∈ [c, d]
}

it was obtained an asymptotic similar to (1.2) with leading term having the form∫ d

c

e−ξ(a)tdt
C(a)√

2πTβ′′(ξ(a))
eγ(a)T .

In [20] there are several points presented without proofs. In the exposition in [20]
the case when G is constant along stable leaves is treated, while in the general case
no argument is provided. This gap is essential since for large deviations, applying a
reduction based on Proposition 2.2 (see Section 2), new terms appear in the analysis
of the Laplace transform when we work with the iterations of Ruelle operators. A
second gap is related to Proposition 6(ii) in [20] which is also presented without
proof. This Proposition concerns a Tauberian theorem for a nonnegative function
which is not monotonic. In general, without a slowly decreasing condition (see
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Section 10 in [9]), or without some condition on the growth of the derivative, it is
not known if the result is true.

In the analysis of the large deviations in the case when a fixed interval [c, d]
is replaced by an exponentially shrinking interval (−e−εn, e−εn), several additional
difficulties appear. In two previous papers [12], [14] some partial cases have been
treated, but in these papers we have considered only limits n → ∞ (see also [16],
where the case of an interval (−n−κ, n−κ) with suitable κ > 1 has been studied).
In this paper we deal with two limits n → ∞, T ≥ n − q. Our approach is based
on spectral estimates for the iterations of a Ruelle operator

Ls,ω,a = Lf−sτ+(ξ(a)+iω)(g−aτ), s ∈ C, ω ∈ R

with two complex parameters s and iω which may have modulus going to ∞. We
exploit the estimates obtained in [13], [14] (see Theorem 2.1) in order to obtain an
analytic continuation of the Laplace transform Fn(s) of the function gn(T ) defined
below for | Im s| ≥ M and |ω| ≥ ε0. We establish the existence of an analytic
continuation of Fn(s) across the line Re s = γ(a) for γ(a) − µ0 ≤ Re s, | Im s| ≥
M � 1. This continuation and the corresponding estimates play a crucial role in
the new type Tauberian theorems concerning double limits n→∞, T →∞. These
Tauberian theorems are of independent interest.

For convenience of the reader we explain briefly the idea of the proof of Theorem
1.3. Let χ(t) ∈ C∞0 (R : R+) be a nonnegative cut-off function and let

GT (w) =

∫ T

0

G(ϕt(w))dt, w ∈ Rτ .

Set χn(t) = χ
(
t
εn

)
.We study the function

gn(T ) := εne
−γ(a)T+T

∫
Rτ
χ
(GT − aT

εn

)
(w)dmF (w)

=
ε2n
2π
e−γ(a)T+T

∫
Rτ

∫
R
eiω(G

T−aT )(w)χ̂(εnω)dωdmF (w),

where χ̂n(ω) = εnχ̂(εnω) is the Fourier transform of χn(t). We extend this function
as 0 for T < 0 and examine the Laplace transform

Fn(s) =
ε2n
2π

∫
R

[∫ ∞
0

e−sT−γ(a)T+T
(∫

Rτ
eiω(G

T−aT )(w)dmF (w)
)
dT
]
χ̂(εnω)dω.

Our purpose is to prove that for fixed q ≥ 0, as n→∞, T ≥ n− q, we have

gn(T ) ∼
√

2C(a)ε2n√
πβ′′(ξ(a))T

eT (1.4)

which yields the asymptotic (1.2). The factor εn in gn(T ) is involved to have an
independent of n bound for the derivative g′n(T ) (see Proposition 5.6 and Lemma
5.7 in Section 5). Let

Z(s, ω, a) =

∫ ∞
0

e−(s+γ(a)−1)T
(∫

Rτ
eiω(G

T−aT )wdmF (w)
)
dT.

For fixed a the function Z(s, ω, a) depends on two complex parameters s ∈ C and
iω. Moreover, in Z(s, ω, a) we have no integration with respect to ω. First we
show that this function is analytic for Re s > γ(a). Second we prove that in a
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small neighbourhood of (γ(a), 0) ∈ C2 this function has a pole s(ω, a) with residue
C(ω, a) > 0. To establish an analytic continuation across the line Re s = γ(a)
for |s − γ(a)| ≥ ε0 > 0, first we reduce the integration on R, and then by using
the hypothesis that G is constant along stable leaves, we reduce once more the
integration on U and write (see Section 3)

Z(s, ω, a) =

∫
U

B2(s, ω, a, u)

∞∑
m=0

(
Lmf−sτ+iω(g−aτ)B1(s, ω, a, .)

)
(u)h(u)dν(u),

Lf−sτ+iω(g−aτ) being the Ruelle operator related to f − sτ + iω(g − aτ), where
f(x), g(x), x ∈ U, are determined by F,G, respectevely, and the measure ν(u) on U
is determined by f(u). We exploit the estimates for the iterations Lmf−sτ+iω(g−aτ)
obtained in [14] (see Theorem 2.1 in Section 2) to obtain a meromorphic continua-
tion of Z(s, ω, a) across Re s = γ(a).

The integration with respect to ω is not involved in the definition of Z(s, ω, a).
Taking the inyegration in a small interval [−ε0, ε0], writing χ̂(εnω) = χ̂(0) +
χ̂′(0)εnω +O(ε2nω

2), and repeating the calculus in [8], [20], we get

ε2n

∫ ε0

−ε0

χ̂(εnω)

s− 1− s(ω, a)
dω =

C(a)χ̂(0)ε2n√
2β′′(ξ(a))(s− 1)

+ smoother terms.

The leading term becomes An√
s−1 with An = O(ε2n) = O(e−2εn) and this difficulty

corresponds to the type of Tauberain results proved in Section 5, where the remain-
der of the asymptotic has order o(ε2n).

The integral with respect to ω over R\[−ε0, ε0] yields analytic functions, however
we need precise estimates on theirs growth as | Im s| → ∞ independent on n in order
to apply Proposition 5.6. For this purpose, applying the results of Section 4, we
are going to estimate the integral

ε2n

∫
|ω|≥M�1

(1 + | Im s|ν + |ω|ν)|χ̂(εnω)|dω

with 0 < ν < 1, uniformly with respect to n. Here the presence of the factor ε2n is
crucial and our choice of εn in the definition of gn(T ) is once more very convenient.
To check the hypothesis of Proposition 5.6, we use in an essential way the analytic
continuation of Z(s, ω, a) and its corresponding estimates.

The plan of the paper is as follows. In Section 2 we introduce some definitions
and our Standing assumptions. A Sinai’s lemma for the suspended flow is stated; it
is proved in the Appendix. In Section 3 a representation of the Laplace transform
Z(s, ω, a) of the function gn(T ) is obtained. Section 4 is devoted to the analysis
of the meromorphic continuation of Z(s, ω, a) based, as mentioned above, on the
results in [14]. In Section 5 two Tauberain theorems are proved for a sequence
of nonnegative functions gn(T ). The novelty here is that these functions have
singularities An√

s−1 with 0 < e−µn ≤ An ≤ C1 and 0 < µ ≤ µ0/4 and we have a

double limit n→∞, t→∞. Theorems 1.3 and 1.4 are proved in Section 6.

By using Proposition 2.2, we can study also the general case when the function
G is not constant on stable leaves. A part of Proposition 4.2 in Section 4 concern-
ing the analytic continuation for | Im s| ≥ M can be established. However, some
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new difficulties appear in the description of the singularities of Z(s, ω, a) given by
Proposition 4.1 (ii). How to deal with this is an interesting open problem.

2. Definitions and Standing Assumptions

2.1. Standing assumptions. Throughout we use the notation and assumptions
from the beginning of Section 1. In particular, ϕt : M −→M is a C2 weak mixing
Axiom A flow and Λ is a basic set for ϕt. As in [13] and [14], we will work under
the following rather general non-integrability condition about the flow on Λ:

(LNIC): There exist z0 ∈ Λ, ε0 > 0 and θ0 > 0 such that for any ε ∈ (0, ε0], any
ẑ ∈ Λ ∩Wu

ε (z0) and any tangent vector η ∈ Eu(ẑ) to Λ at ẑ with ‖η‖ = 1 there
exist z̃ ∈ Λ ∩Wu

ε (ẑ), ỹ1, ỹ2 ∈ Λ ∩W s
ε (z̃) with ỹ1 6= ỹ2, δ = δ(z̃, ỹ1, ỹ2) > 0 and

ε′ = ε′(z̃, ỹ1, ỹ2) ∈ (0, ε] such that

|∆(expuz (v), πỹ1(z))−∆(expuz (v), πỹ2(z))| ≥ δ ‖v‖
for all z ∈Wu

ε′(z̃)∩Λ and v ∈ Eu(z; ε′) with expuz (v) ∈ Λ and 〈 v
‖v‖ , ηz〉 ≥ θ0, where

ηz is the parallel translate of η along the geodesic in Wu
ε0(z0) from ẑ to z.

Next, given x ∈ Λ, T > 0 and δ ∈ (0, ε] set

BuT (x, δ) = {y ∈Wu
ε (x) : d(ϕt(x), ϕt(y)) ≤ δ , 0 ≤ t ≤ T}.

We will say that ϕt has a regular distortion along unstable manifolds over the basic
set Λ if there exists a constant ε0 > 0 with the following properties:

(a) For any 0 < δ ≤ ε ≤ ε0 there exists a constant R = R(δ, ε) > 0 such that

diam(Λ ∩BuT (z, ε)) ≤ R diam(Λ ∩BuT (z, δ))

for any z ∈ Λ and any T > 0.

(b) For any ε ∈ (0, ε0] and any ρ ∈ (0, 1) there exists δ ∈ (0, ε] such that for any
z ∈ Λ and any T > 0 we have diam(Λ ∩BuT (z, δ)) ≤ ρ diam(Λ ∩BuT (z, ε)).

Standing Assumptions:

(A) ϕt has Lipschitz local holonomy maps over Λ,

(B) the local non-integrability condition (LNIC) holds for ϕt on Λ,

(C) ϕt has a regular distortion along unstable manifolds over the basic set Λ.

In this paper we will work under the above Standing Assumptions1.
A large class of examples satisfying the conditions (A) – (C) is provided by

imposing the following pinching condition:

(P): There exist constants C > 0 and β ≥ α > 0 such that for every x ∈ M we
have

1

C
eαx t ‖u‖ ≤ ‖dϕt(x) · u‖ ≤ C eβx t ‖u‖ , u ∈ Eu(x) , t > 0

for some constants αx, βx > 0 with α ≤ αx ≤ βx ≤ β and 2αx − βx ≥ α for all
x ∈M .

1These assumptions are needed to ensure the validity of certain strong spectral estimates for

Ruelle transfer operators (see [14]). However recent developments in [19] suggest that similar
estimates should be established in much higher generality. So, we expect that the methods of the

present paper would apply without change under much more general assumptions.
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It is well-known that (P) holds for geodesic flows on manifolds of strictly negative
sectional curvature satisfying the so called 1

4 -pinching condition. (P) always holds
when dim(M) = 3.

Simplifying Assumptions: ϕt is a C2 contact Anosov flow satisfying the
condition (P).

It follows from the results in [18], that the pinching condition (P) implies that ϕt
has Lipschitz local holonomy maps and regular distortion along unstable manifolds
and moreover:

The Simplifying Assumptions imply the Standing Assumptions.

Throughout this paper we work under the Standing Assumptions.

2.2. Some definitions and Ruelle transfer operators. As in Section 1, let
R = {Ri}ki=1 be a Markov family for ϕt over Λ consisting of rectangles Ri = [Ui, Si],
where Ui (resp. Si) are (admissible) subsets of Wu

ε (zi) ∩ Λ (resp. W s
ε (zi) ∩ Λ) for

some ε > 0 and zi ∈ Λ. We will use the set-up and some arguments from [17] and
[13]. As in these papers, fix a (pseudo) Markov family R = {Ri}ki=1 of pseudo-
rectangles

Ri = [Ui, Si] = {[x, y] : x ∈ Ui, y ∈ Si}.
Set

R = ∪ki=1Ri , U = ∪ki=1Ui.

Consider the Poincaré map P : R −→ R, defined by P(x) = ϕτ(x)(x) ∈ R, where
τ(x) > 0 is the smallest positive time with ϕτ(x)(x) ∈ R (first return time function).
The shift map σ : U −→ U is given by σ = πU ◦ P, where πU : R −→ U is the
projection along stable leaves.

Recall the subsets Û of U and R̂ of R introduced in Sect. 1. Throughout α > 0

will be fixed constant such that τ ∈ Cα(Û). We assume in Theorem 1 that

F,G ∈ Cα(R̂τ ). If τ ∈ Cα̃(Û) for some 0 < α̃ < 1, we may take α = min{α, α̃}, to
arrange that F,G, τ are in the Hölder spaces with the same α. Fir simplicity of the
notations we assume in the following that this is arranged. Since the local stable
(and unstable) holonomy maps are uniformly Hölder ([5], [6]), we may assume α is
chosen so that

d([x, y], [x′, y]) ≤ C(d(x, x′))α, x, x′, y ∈ Ri , i = 1, . . . , k. (2.1)

The hyperbolicity of the flow implies the existence of constants c0 ∈ (0, 1] and
γ1 > γ > 1 such that

c0γ
m (d(x, y))1/α ≤ d(Pm(x)),Pm(y)) ≤ γm1

c0
(d(x, y))α (2.2)

for all x, y ∈ R such that Pj(x),Pj(y) belong to the same Rij for all j = 0, 1, . . . ,m.
Moreover, we choose the constants so that if y ∈W s(x) for some x, y ∈ Ri, then

d(Pn(x),Pn(y)) ≤ c0
γn

, n ≥ 0. (2.3)

Fix a constant α′ ∈ (0, α] so that

ρ =
γα
′

1

γ
< 1.
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Let ‖h‖0 denote the standard sup norm of h on U . For |b| ≥ 1, and β > 0, as in
[3], define the norm

‖h‖β,b = ‖h‖∞ +
|h|β
|b|

on the space Cβ(Û) of β-Hölder functions on Û .
As in [13] and [14], in this paper we will frequently use Ruelle transfer operators

of the form

Lf−sτ+zgv(y) =
∑
σx=y

ef(x)−sτ(x)+zg(x)v(x), s, z ∈ C, y ∈ U,

depending on two complex parameters s and z. The following theorem was proved
in [14].

Theorem 2.1. Let ϕt : M −→M satisfy the Standing Assumptions over the basic
set Λ, and let α > β > 0. Let R = {Ri}ki=1 be a Markov family for ϕt over Λ as

above. Then for any real-valued functions f, g ∈ Cα(Û) and any constants ν > 0
and B > 0 there exist constants 0 < ρ < 1, a0 > 0, b0 ≥ 1 and C = C(B, ν) > 0
such that if a, c ∈ R satisfy |a|, |c| ≤ a0 then

‖Lmf−(a+ib)τ+(c+iw)gh‖β,b ≤ C e
mPrσ(f) ρm |b|ν ‖h‖β,b (2.4)

for all h ∈ Cβ(U), all integers m ≥ 1 and all b, w ∈ R with |b| ≥ b0 and |w| ≤ B |b|.

2.3. Sinai’s lemma for suspension flows. Given functions G and G̃ on R̂τ ,
define

g(x) =

∫ τ(x)

0

G(x, t) dt, g̃(x) =

∫ τ(x)

0

G̃(x, t) dt

for all x ∈ R̂. Here G(x, t) = G(π(x, t)) = G(στt (x, 0)). It is easy to see that if

G ∈ Cα(R̂τ ), then g ∈ Cα(R̂).
Consider the function (defined as in the proof of Proposition 1.2 in [PP])

p(x) =

∞∑
n=0

[g(Pn(x))− g(Pn(πUx)))] , x ∈ R̂. (2.5)

Since x, x̃ = πU (x) belong to the same stable leaf in R̂, (2.3) implies

d(Pn(x),Pn(πU (x))) ≤ c0
γn

for all n ≥ 0. Thus, the series in (2.5) is convergent. Now define

G̃(x, t) = G(πU (x), t)

+

∞∑
n=0

(
G(Pn+1(πU (x))), t τ(Pn+1(x))/τ(x))

−G(Pn(πU (P(x))), t τ(Pn+1(x))/τ(x))
)

for x ∈ R̂ and 0 ≤ t < τ(x). Notice that since τ(x) is constant on stable leaves, we
have

τ(Pn+1(x)) = τ(Pn(πU (P(x))).
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The following is the analogue of the well-known Sinai’s lemma (see e.g. Propo-
sition 1.2 in [11]) for suspension flows.

Proposition 2.2. (a) The function p defined above belongs to Cβ(R̂) for some
β > 0 and

g(x) = g̃(x) + p(x)− p(P(x)) (2.6)

for all x ∈ R̂. Moreover G̃ is constant on stable leaves of R̂τ and is β-Hölder,
where

β = α2α′/2 > 0. (2.7)

(b) The function

P (x, t) =

∞∑
n=0

[G(Pn(x), t τ(Pn(x))/τ(x))−G(Pn(πU (x)), t τ(Pn(x))/τ(x))]

(2.8)

(x ∈ R̂, 0 ≤ t < τ(x)) is also β-Hölder on R̂τ ,

p(x) =

∫ τ(x)

0

P (x, t) dt, x ∈ R̂, (2.9)

and
G(x, t) = G̃(x, t) + P (x, t)− P (P(x), t τ(P(x))/τ(x)) (2.10)

for all x ∈ R̂ and 0 ≤ t < τ(x).

We prove Proposition 2.2 in the Appendix.

Remark 2.3. (a) It follows from the definition of g that it is α-Hölder with |g|α ≤
C|G|α. Then (2.5) and d(Pn(x),Pn(πU (x)) ≤ c0/γ

n, which follows from (2.3),
imply

|p(x)| ≤
∞∑
n=0

C|G|α c0/γn ≤ C |G|α

for all x ∈ R, so |p|∞ ≤ C |G|α. Similarly, |P |∞ ≤ C |G|α.

(b) Given y ∈ Ri for some i, consider the function wy(x) = h([x, y]) on Ri. Now
(2.1) implies

|wy(x)− wy(x′)| ≤ |h|α (d([x, y], [x′, y]))α ≤ C|h|α (d(x, x′))α
2

.

Thus, wy ∈ Cα2 and |wy|α2 ≤ C |h|α ≤ C |g|α. This can be written as

|p([·, y])|α2 ≤ C |G|α, y ∈ Ri , i = 1, . . . , k.

By (2.7) , β < α2, so the above is also true with α2 replaced by β. With (a) this
gives ‖h([·, y])‖α2 ≤ C |G|α and so

‖p([·, y])‖β ≤ C |G|α, y ∈ Ri , i = 1, . . . , k. (2.11)

(c) (Following Ch. 1 in [2]; in particular sections 1B and 1C)

Let f̃ : R −→ R depend only on x ∈ U , i.e. f̃(x) = f̃(x′) whenever πU (x) =

πU (x′). Then we can regard f̃ as a function on U , f̃ ∈ Cβ(U), and by the Ruelle-
Perron-Frobenius Theorem there exist (unique) positive function h0 ∈ Cβ(U) and
a probability measure ν on U such that (Lf̃ )∗ν = ν and

∫
U
h0 dν = 1. Then

dmf̃ (x) = h0(x) ν(x) (2.12)
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is a σ-invariant probability measure on U , called the Gibbs measure determined by
f̃ . It gives rise to a P-invariant probability measure m on R as follows. Given a
continuous real valued function w on R, define

w∗(x) = min{w(y) : y ∈W s
R(x)}, x ∈ R.

Then w∗ ∈ C(R) and w∗ is constant on stable leaves of R, so it can be considered
as a function in C(U). Define∫

R

w(z) dm(z) =

∫
U

w∗(x) dmf̃(x).

As in section 1C in [2], one checks that this defines a P-invariant probability measure
m on R. Usually one denotes m = dmf̃ and calls this the Gibbs measure determined

by f̃ on R. The above definition shows that if w ∈ C(R) depends only on x ∈ U ,
i.e. w(x) = w(x′) whenever πU (x) = πU (x′), then we have∫

R

w(z) dm(z) =

∫
U

w(x) dmf̃ (x).

(d) To estimate ‖ep([·:y])h0‖β , first we have

|ep([·,y])h0|∞ ≤ eC|G|α |h0|∞ ≤ CeC|G|α .
Using (a),

|ep([·:y])|β ≤ eC|G|α |p([·, y])|β ≤ C|G|α eC|G|α .
This implies

|ep([·,y])h0|β ≤ |ep([·:y])|∞ |h0|β + |ep([·:y])|β |h0|∞ ≤ C,

eC|G|α + C|G|α eC|G|α ≤ C|G|α eC|G|α .
Combining the above estimates, yields

‖ep([·,y])h0‖β ≤ C|G|α eC|G|α

and this estimate is uniform in y ∈ R.

2.4. Application of Proposition 2.2. By Proposition 2.2 there exist functions
F̃ (w, t) and Y (w, t) such that

F (w, t) = F̃ (w, t) + Y (w, t)− Y
(
P(w),

tτ(P(w))

τ(w)

)
,

where F̃ (w, t) is constant on stable leaves. Let

f̃(w) =

∫ τ(w)

0

F̃ (w, t)dt, y(w) =

∫ τ(w)

0

Y (w, t)dt.

By a change of variables t τ(P(w))
τ(w) = s, one deduces∫ τ(w)

0

Y
(
P(w),

tτ(P(w))

τ(w)

)
dt = y(P(w)).

Now for the equilibrium state mF one obtains

mF =
1∫

τ(u)dµf̃

(
µf̃ (w)× l

)
since

µf(w) = µf̃(w)+y(w)−y(P(w)) = µf̃ (w).



SHARP LARGE DEVIATIONS 13

Hear µq denote the equilibrium state of q which is a probability measure invariant

with respect to P and l is the Lebesgue measure on R. Obviously, f̃ depends only
on x = πU (w) ∈ U . Moreover, adding a constant, we preserve mF and can arrange
Pr(F ) = 0. Since

PrP(f(w)− Pr(F )τ) = 0,

this implies

0 = PrP(f̃(w) + y(w)− y(P(w)) = PrP(f̃(w)).

We may express the pressure by

PrP(f̃) = lim
n→∞

log
∑
Pnw=w

ef̃
n(w).

Since f̃(w) depends only on x = πUw and Pnw = w implies σnx = x, one de-

duces PrP(f̃(x)) = Prσ(f̃(x)) = 0. Therefore the Ruelle operator Lf̃ has 1 as an

eigenvalue with eigenfunction h(x) > 0. Moreover, we have dµf̃ (x) = h(x)dν(x)

and ν(x) is a σ-invariant measure on U which can be considered as a P-invariant
measure on R as we have mentioned above. For this measure we have

(L∗
f̃
)nν(x) = ν(x), n ≥ 1. (2.13)

3. Representation of the function Z(s, ω, a)

Let χ ∈ C∞0 (R;R+) be a fixed cut-off function. Set qn(t) = eξ(a)tχn(t), where

χn(t) = χ
( t
εn

)
, εn = e−εn, 0 < ε ≤ µ0/8,

µ0 > 0 being the constant introduced in Proposition 4.2 in Section 4.
The Fourier transform of χn satisfies χ̂n(ω) = εn χ̂(en ω). Given a continuous

function Q on Rτ , consider

QT (w̃) =

∫ T

0

Q(ϕτt (w̃))dt, w̃ ∈ Rτ .

Notice that we have

PrP(q − Pr(Q)τ) = 0

if q(w) =
∫ τ(w)

0
Q(w, t)dt, w ∈ R (see [11]).

To establish Theorem 1.3, we will study the nonnegative function

ρn(T ) :=

∫
Rτ
qn((GT − aT )(y))dmF (y).

We have

ρn(T ) =

∫
Rτ
qn((G− a)T (y)) dmF (y) =

∫
Rτ
eξ(a)(G−a)

T (y) χn((G− a)T (y)) dmF (y)

=
1

2π

∫
Rτ

∫
R
eξ(a)(G−a)

T (y) eiω(G−a)
T (y) χ̂n(ω) dmF (y) dω

=
1

2π

∫
R

(∫
Rτ

ez (G−a)
T (y) dmF (y)

)
χ̂n(ω) dω ,

where z = ξ(a) + iω.
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Define Γz(T ) for T ≥ 0 by

Γz(T ) =

∫
Rτ

ez (G−a)
T (y) dmF (y)

and Γz(T ) = 0 for T < 0. Our purpose is to study the Laplace transform

Z(s, ω, a) =

∫ ∞
0

e−sT Γz(T ) dT, s ∈ C, ω ∈ R. (3.1)

Since for large M0 > 0 we have |Γz(T )| ≤ CeC1T , Re s > M0, with some constant
C1 > 0, the transformation Z(s, ω, a) exists for Re s > M0 uniformly with respect
to ω ∈ R. In Section 4 we will show that Z(s, ω, a) has an analytic extension to

{s ∈ C : γ(a)− µ0 ≤ Re s, ω ∈ R} \ {(s(ω, a) : |ω| ≤ ε0},
with ε0 > 0 and µ0 > 0 sufficiently small. Here s(ω, a) is a simple pole described
in Section 4. We use the notation Z(s, ω, a) since the Laplace transform depends
on s ∈ C, ω ∈ R and a.

Set

f(w) =

∫ τ(w)

0

F (w, t)dt, g(w) =

∫ τ(w)

0

G(w, t)dt, w ∈ R.

We repeat the argument of Section 4 in [20] (see also [15]) to obtain a representation
of Z(s, ω, a). For the equilibrium statemF of F we apply the reduction in Subsection

2.4 and we obtain the measure dµf̃ (x) = h(x)ν(x), where f̃(x) depends only on

x ∈ U . For simplicity of the notation in the following we will denote f̃(x) again by
f(x) and µf̃ by µf . Moreover, in the following we assume that G is constant on

the stable foliations in Rτ , so g(x) depends only on x ∈ U.
Given a Hölder function Q(w) on Rτ , we have∫

Rτ
Q(w)dmF (w) =

∫
R

∫ τ(x)
0

Q(x, η)dηdµq(x)∫
τdµ

,

where µq is the equilibrium state of q(w) =
∫ τ(w)

0
Q(w, t)dt. Therefore, setting

Q = z(G− a), we obtain

Z(s, w, a) =
1∫
τdµ

∫ ∞
0

e−(s+az)T
(∫

R

∫ τ(x)

0

ezG
T (x,η)dηdµ(x)

)
dT

=
1∫
τdµ

∫ ∞
0

e−(s+az)T
(∫

U

∫ τ(x)

0

ezG
T+η(x,0)−zGη(x,0)dηh(x)dν(x)

)
dT.

Here we interpret the integral on R as an integral on U as we have mentioned in
Remark 1(c) in Section 2. Given T > 0, x ∈ U, 0 ≤ η ≤ τ(x), there exists a unique
choice of n ≥ 0 and 0 ≤ v < τ(σnx) so that T + η = v + τn(x). Notice that when
x ∈ U changes the integer n may change but since

T − τ(σnx) ≤ τn(x) = T + η − v ≤ T + τ(x),

we deduce that for fixed T, T ≥ T0, and all x ∈ U there is only a finite number
(depending on T ) of possible choices for n.

For T + η = τn(x) + v one applies the formula

eG
T+η(x,0) =

∞∑
n=0

∫ τ(σnx)

0

eG
v+τn(x)(x,0)δ(η + T − v − τn(x))dv,
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where for fixed x ∈ U, T ≥ T0 only one term in the infinite sum is not vanishing
(see [15], [20] for a similar argument). Then we may transform the integral

1∫
τdµ

∫ ∞
0

e−(s+az)T
(∫

U

∫ τ(x)

0

ezG
T+η(x,0)−zGη(x,0)dηh(x)dν(x)

)
dT

in the above expression for Z(s, ω, a), as in Section 4 in [20] to obtain the represen-
tation

Z(s, ω, a) =
1∫
τdµ

∞∑
n=0

∫
U

e−(s+(ξ(a)+iω)a)τn(x)+(ξ(a)+iω)gn(x)

×B1(s, ω, a, σn(x))B2(s, ω, a, x)h(x)dν(x),

where

B1(s, ω, a, x) =

∫ τ(x)

0

exp
(
−(s+ az)v + zGv(x, 0)

)
dv,

B2(s, ω, a, x) =

∫ τ(x)

0

exp
(

(s+ az)η − zGη(x, 0)
)
dη.

We apply (2.13) and then use the adjoint of the Ruelle operator L∗f , noting that[
Lnf
(
e−(s+(ξ(a)+iω)a)τn+(ξ(a)+iω))gnd

)]
(y)

=
[
Lnf−sτ+(ξ(a)+iω)(g−aτ)d

]
(y).

Therefore, we conclude that

Z(s, ω, a) =
1∫
τdµ

∞∑
n=0

∫
U

B1(s, ω, a, y)

×
(
Lnf−(sτ+(ξ(a)+iω)(g−aτ)

[
h(.)B2(s, ω, a, .)

])
(y)dν(y). (3.2)

4. Meromorphic extension of Z(s, ω, a)

We assume f(x) and g(x), x ∈ U , fixed as in Section 3. Introduce the Ruelle
operator

Ls,ω,a = Lf−sτ+(ξ(a)+iω)(g−aτ), s ∈ C, ω ∈ R.
It is easy to see that for s = γ(a) and ω = 0 we have

PrP(f + ξ(a)(g − aτ)− γ(a)τ) = 0.

Indeed,
γ(a) = Pr (F + ξ(a)G)− ξ(a)a

and
PrP(f + ξ(a)g − Pr (F + ξ(a)G)τ) = 0.

Notice that there is an unique number t such that

PrP(f + ξ(a)(g − aτ)− tτ) = 0.

Since f, g, τ depend only on x ∈ U , as in Subsection 2.4 we deduce that

Prσ(f + ξ(a)(g − aτ)− γ(a)τ) = 0.

Below we will write simply Pr instead of Prσ if there are no confusions.
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Set fa = f + ξ(a)(g − aτ) and consider the Ruelle operator Ls,ω,a, where s =
γ(a) + q + ib, q ∈ R, b ∈ R, ω ∈ R. Let

p(s, w, a) = fa − sτ + iω(g − aτ), s = γ(a) + q + ib.

Since Pr p(γ(a), 0, a) = 0, by a standard argument we may define Pr p(s, ω, a) for
(s, ω) in a small neighbourhood of (γ(a), 0) in C2 (see [11]). Recall the following
result proved in [20].

Proposition 4.1 (Proposition 4, [20]). Let Gα(Rτ ) be a function such that G and
ϕτt are flow independent. Assume that G is constant on stable leaves. Then
(i) The function Z(s, ω, a) is analytic for (s, ω) ∈ {s ∈ C : Re s > γ(a)} × R.
(ii) There exists an open neighbourhood W of (γ(a), 0) in C2 such that for (s, ω) ∈
W we have

Z(s, ω, a) =
B3(s, ω, a)

1− exp
(

Pr(p(s, ω, a))
) + J(s, ω, a), (4.1)

where

B3(s, ω, a) =
1∫
τdµ

∫
R

B1(s, ω, a, .)hp(s,ω,a)(x)dν(x)

∫
hB2(s, ω, a, .)dνp(s,ω,a).

(4.2)
and J(s, ω, a) is analytic for (s, ω) ∈ W. Here hp(s,ω,a)(x) > 0 is the eigenfunction

corresponding to the eigenvalue ePr(p(s,ω,a)) of Lp(s,ω,a) and similarly the measure

νp(s,ω,a) is determined by the eigenvalue ePr(p(s,ω,a)) of the dual operator L∗p(s,ωa).
(iii) Z(s, ω, a) is analytic for (s, ω) in an open neighbourhood V1 of {s : Re s =
γ(a), s 6= γ(a))} × {0}.
(iv) For each ω ∈ R\{0}, Z(s, ω, a) is analytic for (s, ω) in an open neighbourhood
V2 of {s : Re s = γ(a)} × {ω}.

For our analysis we need to estimate the norms

‖B1(s, ω, a, x)‖∞, ‖B2(s, ω, a, .)‖β
The norm ‖B2(s, ω, a, .)‖∞ is easily estimated uniformly with respect to ω ∈ R,

since ∣∣ exp
(

(s+ a(ξ(a) + iω))η − (ξ(a) + iω)Gη(x, 0)
)∣∣

≤ exp
(

(|Re s|+ a|ξ(a)|)η + |ξ(a)||Gη(x, 0)|
)

and

‖B2(s, ω, a, x)‖∞ ≤ exp
(

(|Re s|+ a|ξ(a)|)κ1 + |ξ(a)|max
x∈U

G(x, 0)κ1

)
,

where κ1 = maxx∈U τ(x). Similarly, one treats the norm ‖B1(s, ω, a, .)‖∞. For the
norm |B2(s, ω, a, .)|β we apply the following elementary estimate. Let

k(x) =

∫ τ(x)

0

e(s+az)ηeK
η(x,0)dη, K ∈ Cβ(Rτ ).

Then

|k(x)− k(y)| =
∣∣ ∫ τ(x)

0

e(s+az)ηeK
η(x,0)dη −

∫ τ(y)

0

e(s+az)ηeK
η(y,0)dη

∣∣
≤
∫ τ(x)

0

e|Re s+aξ(a)|η
∣∣∣eKη(x,0) − eK

η(y,0)
∣∣∣dη +

∣∣ ∫ τ(y)

τ(x)

e(s+az)ηeK
η(y,0)dη

∣∣.
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The second term in the right-hand-side is estimated by

exp( max
0≤η≤κ1

|ReKη|+ |Re s+ aξ(a)|κ1)|τ(x)− τ(y)|.

For the first term on the right we use the inequality

|ez1 − ez2 | =
∣∣ ∫ z2

z1

eudu
∣∣ ≤ e|Re z1|+|Re z2||z1 − z2|,

and we obtain∫ τ(x)

0

e|Re s+aξ(a)|η
∣∣∣eKη(x,0) − eK

η(y,0)
∣∣∣dη ≤ exp

(
(2‖ReK‖∞ + |Re s+ aξ(a)|)κ1

)

×
∫ τ(x)

0

|Kη(x, 0)−Kη(y, 0)|dη

≤ exp
(

(2‖ReK‖∞ + |Re s+ aξ(a)|)κ1
)∫ τ(x)

0

∫ η

0

∣∣∣K(στt (x, 0))−K(στt (y, 0))
∣∣∣dtdη

which yields an estimate for |B2(s, ω, a, .)|β uniformly with respect to ω ∈ R.
For (s, ω) = (γ(a), 0) one has a maximal real eigenvalue 1 of L(γ(a),0,a) and the

rest of the spectrum is contained in a disk of radius 0 < r < 1. By perturbation
theory there exists an unique eigenvalue with maximal modulus of Ls,ω,a given by

λs,ω,a = exp
(

Pr(p(s, ω, a))
)
,

defined for (s, ω) ∈W. We get

∂λs,ω,a
∂s

∣∣∣∣
(s,ω,a)=(γ(a),0,a)

= −
∫
τdµfa < 0,

where µfa is the equilibrium state of fa. By the implicit function theorem (see
Lemma 3 in [20]) for small ε1 > 0 we may determine s = s(ω, a), |ω| ≤ ε0, from the
equation λs,ω,a = 1 so that

λ(s(ω,a),ω,a) = 1, s(0, a) = γ(a).

Therefore

s− s(ω, a)

1− exp
(

Pr(p(s, ω, a))
) =

(∫
τdνfa−s(ω,a)τ+iωg

)−1
+O(s− s(ω, a)).

This shows that we have a pole at s = s(ω, a) and taking the residue at s(ω, a), the
singular term in (4.1) becomes( B3(s(ω, a), ω, a)∫

τdνfa−s(ω,a)τ+iωg

) 1

s− s(ω, a)
.

Now we will show that Z(s, ω, a) has an meromorphic continuation across the
line Re s = γ(a). First note that for a =

∫
U
G(y)dmF+ξ(a)G with a Hölder function

G ≥ g0 > 0 on U one has

g0 ≤ a ≤ max
y∈U

G(y) = m.
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Let 0 < η < g0/2 be a fixed number. We will apply the spectral estimates for the
operator Ls,ω,a given in Theorem 2.1 in Section 2 (see [14]). It is possible to write
Ls,ω,a in two different forms

L1,s,ω,a = Lha−(Re s−γ(a))τ−i Im sτ+iω(g−aτ),

L2,s,ω,a = Lha−(Re s−γ(a))τ−i(Im s+aω)τ+iωg,

where ha = fa−γ(a)τ and Prσ(ha) = 0. In the operators Lk,s,ω,a, k = 1, 2, we have
different factors −i Im s and −i(Im s+ aω) in front of τ. Applying Theorem 2.1, we
can find a0 > 0 and constants 0 < ρ < 1, M > 0 such that for |Re s − γ(a)| ≤ a0
and any ν > 0 we have

‖Lm1,s,ω,ah‖β,Im s ≤ C(ν,B1)ρm| Im s|ν‖h‖β,Im s (4.3)

for | Im s| ≥M, |ω| ≤ B1| Im s|,
‖Lm2,s,ω,ah‖β,(Im s+aω) ≤ D(ν,B2)ρm| Im s+ aω|ν‖h‖β,Im s+aω (4.4)

for | Im s + aω| ≥ M, |ω| ≤ B2| Im s + aω|. Let us remark that we can take the
same constants a0, ρ and M in both estimates above, since if we have constants

ak > 0, 0 < ρk < 1,Mk > 0, k = 1, 2

for the operators Lk,s,ω,a, we can choose

a0 = min{a1, a2}, ρ = max{ρ1, ρ2}, M = max{M1,M2}.
On the other hand, the constants C(ν,B1) and D(ν,B2) depend on (ν,B1) and
(ν,B2), respectively.

Proposition 4.2. Assume the assumptions of Theorem 1.3 fulfilled. Then for any

Hölder continuous functions F,G ∈ Cα(R̂τ ) there exist µ0 > 0 and ε0 > 0 such
that the function Z(s, ω, a) admits a meromorphic continuation for

(s, ω) ∈ {(s, ω) ∈ C2 : Re s ≥ γ(a)− µ0, ω ∈ R} (4.5)

with only one simple pole at s(ω, a), |ω| ≤ ε0. The pole s(ω, a) is determined as the
root of the equation Pr(fa − sτ + iω(g − aτ)) = 0 with respect to s for |ω| ≤ ε0.
Moreover, there exist constants η > 0, M > 0 such that for any ν > 0 if | Im s| ≥M
or |ω| ≥ 1

ηM , we have the estimate

|Z(s, ω, a)| ≤ Bν(| Im s|ν + |ω|ν), Re s ≥ γ(a)− µ0, (4.6)

uniformity with respect to a ∈ J in a compact interval J b ΓG with a constant
Bν > 0 independent on s, ω and a ∈ J.

Proof. We suppose below that |Re s − γ(a)| ≤ a0, since for Re s > γ(a) + a0 the
result follows from Proposition 4.1, (i). Consider three cases.

Case 1. (Im z, ω) ∈ DM = {| Im z| ≤M, |ω| ≤ 1
ηM}.

For (Im s, ω) ∈ Bε0 = {| Im z| < ε0, |ω| < ε0} the result follows from Proposition
4.1, (ii). So assume that (Im z, ω) ∈ DM \Bε0 .

In this situation we may apply the statement (iii) of Proposition 4.1. For reader’s
convenience we present a proof. Let (s0, w0) with (Im s0, ω0) ∈ DM \Bε0 be fixed.
Assume first that Im p(s0, ω0, a) is cohomologous to c+2πQ with an integer-valued
function Q ∈ C(U ;Z) and a constant c ∈ [0, 2π). Then we define the pressure
Pr(p(s0, ω0, a)) = Pr(fa) + c and we extend the pressure in a small neighbourhood
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of (s0, ω0). Since G and στt are flow independent, the functions g and τ are σ-
independent. If we have c = 0, from the fact that Im s0τ+ω0g is cohomologous to a
function in C(U ; 2πZ), we deduce Im s0 = ω0 = 0 which is impossible. Thus we have
c 6= 0. Consequently, the operator Ls0,ω0,a has an eigenvalue eic. Then there exists
a neighborhood U2 of (s0, ω0) such that for (s, ω) ∈ U2 we have Pr(p(s, ω, a)) 6= 0
and for (s, ω) ∈ U2 we have an analytic extension of Z(s, ω, a) given by

Z(s, ω, a) =
[ B4(s, ω, a)

1− ePr(p(s,ω,a))
+ J2(s, ω, a)

]
with a function J2(s, ω, a) analytic with respect to s for (s, ω) ∈ U2. Second, let
Im p(s0, ω0, a) be not cohomologous to c+2πQ. Then the spectral radius of Ls0,ω0,a

is strictly less than 1 and this will be the case for (s, ω) is a small neighbourhood U3

of (s0, ω0). Therefore it is easy to see that the series in (3.2) is absolutely convergent
and we obtain again an analytic extension. Covering the compact set DM \ Bε0
by a finite number of neighbourhoods, we may choose µ0 > 0 small so that for
γ(a) − µ0 ≤ Re s ≤ γ(a), (Im s, ω) ∈ DM \ Bε0 , we have an analytic extension of
Z(s, ω, a) in (4.5).

Case 2. | Im s| ≤M, |ω| > 1
ηM > 2

g0
M.

Notice that 2M
g0
≥ 2M

a . We consider the operator L2,s,ω,a and observe that

| Im s+ aω| ≥ a|ω| − | Im s| ≥M

and also

| Im s+ aω| ≥ a

2
|ω|+ a

2
|ω| − | Im s| ≥ a

2
|ω|.

Hence |ω| ≤ 2
a | Im s+ aω| ≤ 2

g0
| Im s+ aω|.

To apply the estimate (4.4) with B2 = 2
δ0

to the series in (3.2), we must estimate
the norm

‖hB2(s, ω, a, .)‖β,Im s+aω

uniformly with respect to ω ∈ R. The norm ‖B2(s, ω, a, .)‖β has been estimated
above. Next one gets ∣∣∣ 1

Im s+ aω

∣∣∣ ≤ 1

M
and we deduce the needed estimate.

Now the series in (3.2) is absolutely convergent and we obtain an analytic ex-
tension of Z(s, w, a) for |Re s − γ(a)| ≤ a0, | Im s| ≥ M, |ω| > 1

ηM as well as the
estimate

|Z(s, ω, a)| ≤ Cν,B2
| Im s+ aω|ν ≤ Cν,B2,M (1 + |ω|)ν . (4.7)

Decreasing, if is necessary, µ0 we obtain an analytic extension in (4.5).

Case 3. | Im s| > M.
We consider two subcases:

Subcase 3a. |ω| ≤ 1
η | Im s|. We work with the operator L1,s,ω,a. For every

ν > 0 with b = Im s, B1 = 1
η and | Im s| ≥ M one obtains from (4.3) the spectral

estimates

‖Lms,ω,ah‖β,b ≤ C(ν, η)ρm| Im s|ν‖h‖β,b, m ∈ N. (4.8)
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The series (3.2) is absolutely convergent and we deduce

|Z(s, ω, a)| ≤ C̃(ν, η)| Im s|ν .

Subcase 3b. |ω| > 1
η | Im s|. We work now with the operator L2,s,ω,a. In this

case

| Im s+ aω| ≥ a|ω| − | Im s| ≥ (a− η)|ω| ≥ 1

2
g0|ω|.

Hence

|ω| ≤ 2

g0
| Im s+ aω|.

On the other hand, for |ω| > 1
η | Im s| ≥ 1

ηM we have

| Im s+ aω| ≥ g0
2
|ω| ≥ g0

2η
M ≥M,

because 2η < g0. Therefore, for any ν > 0 we can use (4.4) with B2 = 2
g0

and obtain

‖Lms,ω,ah‖β,Im s+aω ≤ D(ν, g0)ρm| Im s+ aω|ν‖h‖β,Im s+aω

≤ D(ν, g0,M)ρm(1 + |ω|)ν‖h‖β,Im s+aω, m ∈ N. (4.9)

These estimates lead again to (4.7) and the proof is complete. �

5. Tauberian theorem

In this section we prove a Tauberian theorem for a sequence of functions {gn(t)}n∈N
similar to that in [8] (see also Proposition 6 (i) in [20]). The novelty here is that
the leading terms contain a factor An ≥ e−µn with µ > 0 which can converge to
0 exponentially fast and the remainders must be smaller that this leading term.
Moreover, we have two limits n→∞ and t→∞ and this creates new difficulties.
Under some assumptions on the Laplace transform of gn(t), stronger that those in
[8], we obtain an asymptotic for t ≥ n− q and n→∞.

Proposition 5.1. Let gn(t), n ∈ N, be monotonic nondecreasing functions defined
for t ∈ [0,∞) such that gn(0) = 0, n ∈ N. Assume that for any n ∈ N the Laplace
transform

Fn(s) =

∫ ∞
0

e−stgn(t)dt

is analytic for Re s > 1. Assume that there exist µ0 > 0 and M > 0, C0 > 0, C1 >
0, δ0 > 0 such that Fn(s) has a representation

Fn(s) =
An√
s− 1

+AnKn(s) + Ln(s), (5.1)

where C0e
−µn ≤ An ≤ C1, 0 < µ ≤ µ0/4, ∀n ∈ N, Kn(s) are analytic functions for

Re s > 1 and for t ∈ R and s = 1 + δ + it, 0 < δ � 1, Kn(s) has a limit kn(1 +

it) ∈ W 1,1
loc (R) (functions which are locally integrable and have locally integrable

derivatives) almost everywhere on R as δ ↘ 0 and |kn(1+δ+it)| ≤ k0(t), where k0(t)
is locally integrable, while Ln(s) has an analytic continuation for 1 − µ0 ≤ Re s ≤
1 + δ0. Moreover, assume that the functions Kn(s) have analytic continuations to
1 − µ0 ≤ Re s ≤ 1 + δ0, | Im s| ≥ M , and for every compact set D ⊂ R uniformly
with respect to n we have

‖k′n(1 + it)‖L1(D) ≤ C(D), ∀n ∈ N.
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Next assume that for any 0 < ν < 1 with a constant B(ν) > 0 independent on n
we have for any n ∈ N the estimates∣∣∣ dk

dsk
Ln(s)

∣∣∣ ≤ B(ν)(1 + | Im s|ν), 1− µ0 ≤ Re s ≤ 1 + δ0, k = 0, 1, (5.2)∣∣∣ dk
dsk

Kn(s)
∣∣∣ ≤ B(ν)(1+| Im s|ν), 1−µ0 ≤ Re s ≤ 1+δ0, k = 0, 1, | Im s| ≥M. (5.3)

Then for fixed q ≥ 0 and for any 0 < η � 1 there exists n0(η) ∈ N such that for
t ≥ n− q and n ≥ n0(η) + q we have

Ane
t

√
πt

(1− η) ≤ gn(t) ≤ Ane
t

√
πt

(1 + η). (5.4)

Remark 5.2. Notice that if the estimates (5.2), (5.3) are satisfied for µ0 > 0 and
k = 0, then fixing numbers 0 < µ1 < µ0, 0 < δ1 < δ0, we obtain the estimates (5.2)
(resp.(5.3)) for 1−µ1 ≤ Re ≤ 1 + δ1, (resp. for 1−µ1 ≤ Re s ≤ 1 + δ1, | Im s| ≥M)
with another constants B1(ν) by applying the Cauchy formula for the first derivative
of the analytic functions Kn(s) and Ln(s). In the proof we use only the estimates
with ν = 1/3, but if we change the relation between µ, µ0 and t ≥ β(n), we need
estimates with different ν. In Section 6 we establish (5.2), (5.3).

Proof. We follow the proof in [8] with a more precise analysis concerning the
dependence of n. If we replace the function gn(t) by g̃n(t) = gn(t)

√
t, one obtains

Fn(s) =

∫ ∞
0

1√
t
e−stg̃n(t)dt.

For simplicity of the notations below we will denote g̃n(x) by gn(x). Now intro-
duce the function Hn(x) = gn(x)e−x and for s = 1 + ε+ it define

Kε,n(t) = Fn(s)− An√
s− 1

.

After a change of variable x = v2, one obtains

Kε,n(t) = 2

∫ ∞
0

e−(s−1)v
2
(
Hn(v2)− An√

π

)
dv.

Consequently,

Kε,n(t) = lim
ξ→∞

2

∫ ξ

0

(
Hn(v2)− An√

π

)
e−(s−1)v

2

dv

and for fixed n and fixed ε this limit is uniform for |t| ≤ 2λ. We multiply Kε,n(t)

by
√
yeity

(
1− |t|2λ

)
and integrate over t in [−2λ, 2λ]. Thus∫ 2λ

−2λ

√
y
(

1− |t|
2λ

)
Kε,n(t)eiytdt

= lim
ξ→∞

2

∫ 2λ

−2λ

√
yeity

(
1− |t|

2λ

)(∫ ξ

0

(
Hn(v2)− An√

π

)
e−εv

2−itv2dv
)
dt.

As in [8], we interchange the limit ξ → ∞ and the integration and write the
right hand side of the last term as

2

∫ ∞
0

(
Hn(v2)− An√

π

)
e−εv

2
(∫ 2

−2
λ
√
yeiλ(y−v

2)u
(

1− |u|
2

)
du
)
dv.
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We change the variable v =
√
y − w

λ and the last term becomes∫ λy

−∞

(
Hn

(
y − w

λ

)
− An√

π

)
e−ε(y−(w/λ)

√
y
(∫ 2

−2

(
1− |u|

2

)
eiwudu

) dw√
y − (w/λ)

= 2

∫ λy

−∞
Hn

(
y − w

λ

)
e−ε(y−w/λ)

sin2 w

w2

√
y√

y − w/λ
dw

−2An√
π

∫ λy

−∞

sin2 w

w2

√
y√

y − w/λ
e−ε(y−w/λ)dw.

Now, as in [8], we take the limit ε ↘ 0 and set K0,n(t) = limε↘0Kε,n(t). By the
Lebesgue convergence theorem and Sub-Lemma 4.5 in [8] we obtain

lim
y→∞

1

2

∫ 2λ

−2λ
K0,n(t)

(
1− |t|

2λ

)√
yeitydy +An

√
π

= lim
y→∞

∫ λy

−∞
Hn

(
y − w

λ

) sin2 w

w2

√
y√

y − w/λ
dw. (5.5)

By using an integration by parts and the fact that K0,n(t) ∈ W 1,1
loc (R), we may

deduce that for every fixed λ > 1 the first term on the left hand side of (5.5) has a
limit 0 as y →∞. However, for every fixed 0 < η < 1 and fixed λ > 1 if we wish to
arrange the inequality∣∣∣1

2

∫ 2λ

−2λ
K0,n(t)

(
1− |t|

2λ

)√
yeitydt

∣∣∣ ≤ Anη, (5.6)

we must take y ≥ Y (η, λ, n) and we may have Y (η, λ, n)→∞ as n→∞, λ→∞.

By using the representation (5.1) and the estimates (5.2), (5.3), we will prove a
more precise result.

Lemma 5.3. Let q ≥ 0 be fixed and let y ≥ n − q, λ = λn = e
1
2µ0n.Then for any

η > 0 there exists n0(η) ∈ N such that for all n ≥ n0(η) + q we have (5.6).

Proof. First we treat the integral

Jn(y) =

∫ 2λn

−2λn
Ln(1 + it)

(
1− |t|

2λn

)√
yeitydt,

where Ln(1 + it) = limδ↘0 Ln(1 + δ + it). We write this integral as follows

Jn(y) = −
∫
γ1

iLn(s)
(

1− s− 1

2iλn

)√
ye(s−1)yds

−
∫
γ2

iLn(s)
(

1 +
s− 1

2iλn

)√
ye(s−1)yds,

where

γ1 = {s ∈ C : s = 1 + it, 0 ≤ t ≤ 2λn}, γ2 = {s ∈ C : s = 1 + it, −2λn ≤ t ≤ 0}.

Since Ln(s) has an analytic continuation for 1 − µ0 ≤ Re s ≤ 1 + δ0, we have the
equality ∫

γ1

+

∫
ω1,1

+

∫
ω1,2

+

∫
ω1,3

= 0,
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where the function under integration is −iLn(s)
(

1− s−1
2iλn

)√
ye(s−1)y and

ω1,1 = {s ∈ C : s = z + 2iλn, 1− µ0 ≤ z ≤ 1},
ω1,2 = {s ∈ C : s = 1− µ0 + it, 0 ≤ t ≤ 2λn}, ω1,3 = {s ∈ R : 1− µ0 ≤ s ≤ 1}

with suitable orientation (see Figure 1). The integral over ω1,2 has the form

−e−µ0y
√
y

∫ 2λn

0

Ln(1− µ0 + it)
(

1 +
µ0 − it

2iλn

)
eitydt.

0 1

-2λn

γ1

γ2

1-µ0

2λn

Figure 1. Contour of integration for Ln(1 + it)

We integrate by parts and one obtains

e−µ0y

i
√
y

∫ 2λn

0

d

dt

[
Ln(1− µ0 + it)

(
1 +

µ0 − it

2iλn

)]
eitydt

−e
−µ0y

i
√
y

( µ0

2iλn
Ln(1− µ0 + 2iλn)e2iλny −

(
1 +

µ0

2iλn

)
Ln(1− µ0)

)
.

The function Ln(1 + it) has an analytic continuation Ln(z+ it) for 1−µ0 ≤ z ≤
1 + δ0 and for any 0 < ν < 1 and any n we have the estimate∣∣∣ d

dt
Ln(z + it)

∣∣∣ ≤ B(ν)(1 + |t|ν), 1− µ0 ≤ z ≤ 1 + δ0.

Thus for y ≥ n− q and large n one gets∣∣∣e−µ0y

i
√
y

∫ 2λn

0

d

dt

[
Ln(1− µ0 + it)

(
1 +

µ0 − it

2iλn

)]
eitydt

∣∣∣
≤ C1,2(ν)

e−µ0y

√
y
λ1+νn ≤ C1,2(ν)e−µ0(n−q)e

1
2 (1+ν)µ0n

= C1,2(ν)eµ0qe(−
1
2+

1
2ν)µ0n.

We choose ν = 1/3 and for the last term of the above inequality one obtains a

bound O(e−
1
3µ0n). Since An ≥ C0e

−µ04 n, we obtain a term Ano(n). The boundary
terms are easily estimated and we get

|
∫
ω1,2

| ≤ C1.2e
− 1

3µ0n. (5.7)
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Passing to the integral over ω1,1, notice that for s ∈ ω1,1 we have

1−
(s− 1

2iλn

)
=

1− z
2iλn

, |e(s−1)y| ≤ e(z−1)y ≤ 1, Re s = z.

We integrate by parts with respect to z and deduce

|
∫
ω1,1

| ≤ A1,1(ν)
e−µ0y

√
y

(1 + λνn)

λn
+

1

2
√
yλn

∫ 1

1−µ0

∣∣∣ d
dz

[
(1− z)Ln(z + 2iλn)

]∣∣∣dz.
Therefore, applying (5.2) for the second term in the right-hand-side, one obtains

|
∫
ω1,1

| ≤ C1,1(ν)√
n

e−
1
2 (1−ν)µ0n ≤ C1,1e

− 1
3µ0n, (5.8)

choosing ν = 1/3. Before treating the integral over ω1,3, consider the equality∫
γ2

+

∫
ω2,1

+

∫
ω2,2

+

∫
ω2,3

= 0,

where the function under integration is −iLn(s)
(

1 + s−1
2iλn

)√
ye(s−1)y and

ω2,1 = {s ∈ C : s = z − 2iλn, 1− µ0 ≤ z ≤ 1},
ω2,2 = {s ∈ C : s = 1− µ0 + it, −2λn ≤ t ≤ 0}, ω2,3 = {s ∈ R : 1− µ0 ≤ s ≤ 1}

with suitable orientation (see Figure 1). In particular, the curves ω1,3 and ω2,3

coincide, but they have inverse orientations. The analysis of
∫
ω2,2

is completely

similar and one obtains (5.7). For s ∈ ω2,1 we have

1 +
(s− 1

2iλn

)
=
z − 1

2iλn
, |e(s−1)y| ≤ e(z−1)y ≤ 1

and as above one has (5.8). Now we take the sum of the integrals over ω1,3 and
ω2,3 and we are going to estimate the integral

1

λn

∫ 1

1−µ0

(z − 1)
√
yLn(z)e(z−1)ydz.

We integrate by parts and the analysis is reduced to the integral

1
√
yλn

∫ 1

1−µ0

e(z−1)y
d

dz

(
(z − 1)Ln(z)

)
dz

which can be estimated by C1,3e
− 1

2µ0n.

Next we pass to the analysis of the integral

In(y) =

∫ 2λ

−2λn
kn(1 + it)

(
1− |t|

2λn

)√
yeitydt,

where
kn(1 + it) = lim

δ↘0
Kn(1 + δ + it).

Our purpose is to show that for y ≥ n − q and λn = e−
1
2µ0n for any 0 < η � 1

there exists n0(η) such that for n ≥ n0(η) + q we have |In(y)| < η. We integrate by
parts with respect to t and deduce

In(y) = − 1

i
√
y

∫ 2λn

−2λn

d

dt

[(
1− |t|

2λn

)
kn(1 + it)

]
eitydt
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=
i
√
y

(∫ M+1

−M−1
+

∫ −M−1
−2λn

+

∫ 2λn

M+1

)
.

The integral over [−M − 1,M + 1] can be estimated taking n large by using the
factor 1√

y and the fact that by hypothesis

‖kn(1 + it)‖L1(−M−1,M+1) + ‖k′n(1 + it)‖L1(−M−1,M+1) ≤ C(M), ∀n ∈ N.

0 1

-M

γ1

γ2

1-µ0

2λn

-2λn

M

Figure 2. Contour of integration for Kn(1 + it)

For the other two integrals we apply the argument used above exploiting the
analytic continuation of kn(s) for 1 − µ0 ≤ Re s ≤ 1, | Im s| ≥ M. We treat below
only the integral over [M +1, 2λn], the analysis of the other one is very similar. We
have

1
√
y

∫ 2λn

M+1

d

dt

[(
1− t

2λn

)
kn(1 + it)

]
eitydt

= − 1

2λn
√
y

∫ 2λn

M+1

kn(1 + it)eitydt

+
1
√
y

∫ 2λn

M+1

(
1− t

2λn

) d
dt
kn(1 + it)dt.

We write the term on the right hand side as follows

i

2λn
√
y

∫
β1

kn(s)e(s−1)yds− 1
√
y

∫
β1

(
1− s− 1

2iλn

) d
ds

(kn(s))ds,

where
β1 = {s ∈ C : s = 1 + it, M + 1 ≤ t ≤ 2λn}.

The integral is equal to a sum of three integrals over the curves

β1,1 = {s ∈ C : s = z + 2iλn, 1− µ0 ≤ z ≤ 1},
β1,2 = {s ∈ C : s = 1− µ0 + it, M + 1 ≤ t ≤ 2λn},
β1,3 = {s ∈ C : s = z + i(M + 1), 1− µ0 ≤ z ≤ 1}

with suitable orientation (see Figure 2). For the integral over β1,2 we obtain an

estimate O
(
e−µ0yλ1+ν

n√
y

)
= O

(
e−

1
3µ0n

)
, choosing ν = 1/3, while for that over β1,1
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one deduces an estimate O(
λ−1+ν
n√
y ) which yields the same bound. To investigate

the integral over β1.3, we use the factor 1√
y and the fact that M is fixed. This

completes the proof of Lemma 5.3. �

Lemma 5.4. For any 0 < η � 1 there exists n0(η) ∈ N such that for y ≥ 1, λn =

e
1
2µ0n we have ∣∣∣∫ λny

−∞

√
y√

y − w/λn
sin2 w

w2
dw − π

∣∣∣ < η, n ≥ n0(η). (5.9)

The proof is a repetition of the proof of Sub-Lemma 4.5 in [8] and we leave the
details to reader.

Combining Lemmas 5.3 and 5.4, one obtains from the equality (5.5) that for
fixed q ≥ 0 and any 0 < η � 1 there exists n0(η) ∈ N such that for y ≥ n− q and
n ≥ n0(η) + q we have

An
√
π(1− η) ≤

∫ λny

−∞
Hn

(
y − w

λn

) sin2 w

w2

√
y√

y − w/λn
dw < An

√
π(1 + η). (5.10)

Passing to the function Hn(y), we have the following

Lemma 5.5. Let q ≥ 0 be fixed. For any 0 < η � 1 there exists n0(η) ∈ N such
that for y ≥ n− q and n ≥ n0(η) + q we have

An√
π

(1− η) ≤ Hn(y) ≤ An√
π

(1 + η). (5.11)

Proof. Since Hn(y) is nonnegative, from (5.10) for y ≥ n − q, n ≥ n0(η) + q it
follows that∫ √λn

−
√
λn

Hn

(
y − w

λn

) sin2 w

w2

√
y√

y − w/λn
dw ≤ An

√
π(1 + η). (5.12)

By the monotonicity of gn(w) for w ∈ [−
√
λn,
√
λn], we deduce

Hn

(
y − w

λn

)
≥ Hn

(
y − 1√

λn

)
exp
(
− 2√

λn

)
,

hence

Hn

(
y − 1√

λn

)
exp
(
− 2√

λn

)∫ √λn
−
√
λn

sin2 w

w2

√
y√

y − w/λn
dw ≤ An

√
π(1 + η)

and

Hn

(
y − 1√

λn

)
≤ An

√
π(1 + η)e

2√
λn∫√λn

−
√
λn

sin2 w
w2

√
y√

y−w/λn
dw

.

As in Lemma 5.4, for large n we can arrange∣∣∣∫ √λn
−
√
λn

sin2 w

w2

√
y√

y − w/λn
dw − π

∣∣∣ < η.

The above inequalities imply

Hn

(
y − 1√

λn

)
≤ An√

π

[
(1 + η)e

2√
λn

](
1− η

π

)−1
≤ An√

π
(1 + C3η)
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with C3 > 0 independent on n. Replacing y by y + 1√
λn
, we obtain for large n the

upper bound in (5.11).
Next we pass to the analysis of the lower bound. Applying the upper bound

obtained above and the monotonicity of Hn(y), from the left-hand-side inequality
in (5.10) we obtain

An
√
π(1− η) ≤ An√

π
(1 + η)

∫ −√λn
−∞

1

w2
dw

+

∫ √λn
−
√
λn

Hn

(
y +

1√
λn

)
e

2√
λn

sin2 w

w2

√
y√

y − w/λn
dw

+
An√
π

(1 + η)

∫ λny

√
λn

sin2 w

w2

√
y√

y − w/λn
dw.

Clearly, for large n ∫ −√λn
−∞

1

w2
dw =

1√
λn

< η.

For the third term on the right hand side for large n one gets∫ λny

√
λn

=

∫ λny/2

√
λn

+

∫ λny

λny/2

≤ 1√
2

∫ λny/2

√
λn

sin2 w

w2
dw +

4
√
y

λ2ny
2

∫ λny

λny/2

1√
y − w/λn

dw

≤ 1√
2

∫ ∞
√
λn

sin2 w

w2
dw +

4
√

2

λny
< η.

Consequently,

An
√
π(1− η)− 2

An√
π

(1 + η)η ≤ Hn

(
y +

1√
λn

)
e

2√
λn

∫ √λn
−
√
λn

sin2 w

w2

y√
y − w/λn

dw

and for large n with a constant C4 > 0 independent on n we obtain

An
√
π(1− C4η)e

− 2√
λn

π + η
≤ An

√
π(1− C4η)e

− 2√
λn∫√λn

−
√
λn

sin2 w
w2

y√
y−w/λn

dw
≤ H

(
y +

1√
λn

)
.

This estimate implies a lower bound for y ≥ n+ 1√
λn
− q. Changing q by q + 1, we

obtain a lower bound for y ≥ n− q. �

Obviously Proposition 5.1 follows from Lemma 5.5.

For functions which are not monotonic we prove the following

Proposition 5.6. Let gn(t) ∈ C1([0,∞[;R+), n ∈ N, be nonnegative functions
such that

max
0≤t≤1

gn(t) ≤ B0, |g′n(t)| ≤ B1
et√
t
, t ≥ 1, ∀n ∈ N, (5.13)

with constants B0 > 0, B1 > 0 independent of n. Assume that for any n ∈ N the
Laplace transforms

Fn(s) =

∫ ∞
0

e−stgn(t)dt
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are analytic for Re s > 1 and have the same properties as in Proposition 5.1. Then
for any fixed q ≥ 0 and any 0 < η � 1 there exists n0(η) ∈ N such that for t ≥ n−q
and n ≥ n0(η) + q we have

Ane
t

√
πt

(1− η) < gn(t) <
Ane

t

√
πt

(1 + η). (5.14)

Proof. Replacing the function gn(t) by g̃n(t) = gn(t)
√
t, we can assume that

Fn(s) =

∫ ∞
0

e−st√
t
g̃n(t)dt

has the representation (5.1). On the other hand,

gn(t) =

∫ t

1

g′n(σ)dσ + gn(1) ≤ B0 +B1

∫ t

1

eσ√
σ
dσ < B0 +B1e

t, t ≥ 1, ∀n ∈ N.

Therefore

|g̃′n(t)| =
∣∣∣gn(t)

2
√
t

+
√
tg′n(t)

∣∣∣ ≤ B3e
t, t ≥ 1, ∀n ∈ N (5.15)

with a constant B3 > 0 independent on n. Below we denote g̃n(t) again by gn(t)
and we assume that |g′n(t)| ≤ B3e

t for t ≥ 1. We will repeat a part of the proof of
Proposition 5.1 and for simplicity we use the notations of this proof. Set Hn(y) =
gn(y)e−y and for s = 1 + ε+ it define

Kε,n(t) = Fn(s)− An√
s− 1

= AnKn(s) + Ln(s).

Since for Fn(s),Kn(s), Ln(s) we have the same assumptions as in Proposition 5.1,

we can apply Lemma 5.3. Thus for y ≥ n − q, λn = e
1
2µ0n and n ≥ n0(η) + q we

obtain the estimate (5.10).
Because Hn(y) ≥ 0 to get an upper bound we use the inequality∫ √λn

−
√
λn

Hn

(
y − w

λn

) sin2 w

w2

√
y√

y − w/λn
dw < An

√
π(1 + η). (5.16)

Clearly, for −
√
λn ≤ w ≤

√
λn one has

Hn

(
y − w

λn

)
≥ gn(y − w

λn
)e
−y− 1√

λn

= Hn(y)e
− 1√

λn +
(
gn(y − w

λn
)− gn(y)

)
e
−y− 1√

λn .

By Taylor expansion write

gn

(
y − w

λn

)
− gn(y) = − w

λn
g′n

(
y − θw

λn

)
, 0 < θ < 1,

hence for −
√
λn ≤ w ≤

√
λn we deduce

|gn
(
y − w

λn

)
− gn(y)| ≤ B3√

λn
e
y+ 1√

λn ,

where we have used the estimate (5.15). Thus we obtain

Hn

(
y − w

λn

)
≥ Hn(y)e

− 1√
λn − B3√

λn
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and for y ≥ n− q and large n we conclude that

Hn(y) ≤ An
√
π(1 + η)e

1√
λn∫√λn

−
√
λn

sin2 w
w2

√
y√

y− w
λn

dw
+

B3√
λn
e

1√
λn

≤ An
√
π(1 + η)2

π − η
+Anη ≤

An√
π

(1 + C5η)

with C5 > 0 independent of n. This implies the upper bound in (5.14).
Passing to the lower bound, we repeat the argument of Lemma 5.5 and we are

going to find an upper bound for∫ √λn
−
√
λn

Hn

(
y − w√

λn

) sin2 w

w2

√
y√

y − w/λn
dw.

As above, by Taylor expansion for −
√
λn ≤ w ≤

√
λn and large n one deduces

Hn

(
y − w√

λn

)
≤ gn(y − w√

λn
)e
−y+ 1√

λn

≤ Hn(y)e
1√
λn +

B3√
λn
e

2√
λn ,

and we obtain easily the lower bound in (5.14). This completes the proof. �

As a preparation for the proof of the estimate (5.13) we establish the following

Lemma 5.7. Let ω(t) ∈ C1([0,∞[) be a nonnegative function such that for a fixed
0 < ν0 ≤ µ0/4 we have the estimate

|ω′(t)| ≤ D1
e(1+ν0)t√

t
, ∀t ≥ t0 > 1. (5.17)

Assume that the Laplace transform

Ω(s) =

∫ ∞
0

e−stω(t)dt

is analytic for Re s > 1. Assume that there exist A > 0, δ0 > 0,M > 0 such that
Ω(s) has a representation

Ω(s) =
A√
s− 1

+K(s), (5.18)

where K(s) is a function which is analytic for Re s > 1 and K(s) satisfies the same
assumptions as K1(s) in Proposition 5.1. Then there exists a constant D0 > 0 such
that

ω(t) ≤ D0
et√
t
, ∀t ≥ t0. (5.19)

Proof. We follow the proof of Proposition 5.6. First we replace the function ω(t)
by ω̃(t) =

√
tω(t) and for the Laplace transform∫ ∞

0

e−st√
t
ω̃(t)dt

we have the representation (5.1) with K(s) instead of Kn(s), Ln(s) = 0 and

|ω̃′(t)| ≤ C2e
(1+ν0)t. We denote below ω̃(t) by ω(t). We set H(y) = ω(y)

ey , K0(t) =
limε↘0K(1 + ε+ it) and prove the following
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Lemma 5.8. There exist y0 > 1 and A1 > 0 independent on y such that for
y ≥ y0, λ(y) = exp(1

2µ0y) we have∣∣∣ ∫ 2λ(y)

−2λ(y)
K0(t)

(
1− |t|

2λ(y)

)√
yeitydt

∣∣∣ ≤ A1.

The proof is a repetition of that of Lemma 5.3 and we omit the details.
We return to the proof of Lemma 5.7. For y ≥ y0 and λ(y) = exp( 1

2µ0y) we
deduce ∫ √λ(y)

−
√
λ(y)

H
(
y − w

λ(y)

) sin2 w

w2

√
y√

y − w/λ(y)
dw < A

√
π +A1.

It is important to estimate for −
√
λ(y) ≤ w ≤

√
λ(y) and 0 < θ < 1 the term∣∣∣ω(y − w

λ(y)

)
− ω(y)

∣∣∣ =
∣∣∣ w

λ(y)
ω′
(
y − θw

λ(y)

)∣∣∣ ≤ D1e
(y+

1+ν0√
λ(y)

)
e(ν0−

1
2µ0)y.

Since 0 < ν0 ≤ µ0/4, for large y we may bound the right hand side of the last in-
equality by cey with a small constant c > 0 independent on y and D1. Consequently,
as in the proof of Proposition 5.6, one obtains

H
(
y − w

λ(y)

)
≥ H(y)e

− 1√
λ(y) −B3

with a constant B3 > 0 independent on y and D1 and we complete the proof as in
Proposition 5.6. �

Remark 5.9. Notice that our proof shows that the constant D0 > 0 can be chosen
independently of D1 by taking t ≥ t1 > t0 and t1 sufficiently large in (5.19).

6. Asymptotic of ρn(T )

In the section we use the notations of the previous sections. It is more convenient
to study the function

gn(T ) = εne
(−γ(a)+1)T ρn(T ) = εne

(−γ(a)+1)T

∫
Rτ
qn(GT − aT )(y)dmF (y)

=
ε2n
2π
e(−γ(a)+1)T

∫
R

(∫
Rτ

ez (G−a)
T (y) dmF (y)

)
χ̂(εnω) dω.

Recall that εn = e−εn, z = ξ(a) + iω, a ∈ J b ΓG, qn(t) = eξ(a)tχ(t/εn). We take
0 < ε ≤ µ0/8, µ0 being the constant in Proposition 4.2. We extend gn(T ) as 0 for
T < 0 and we wish to apply Proposition 5.6 for gn(T ). We are going to check the
assumptions of Proposition 5.6, where

An =
C(a)χ̂(0)√
2β′′(ξ(a))

ε2n, ∀n ∈ N,

with C(a) > 0 determined below. Clearly, gn(T ) is a nonnegative function. The
Laplace transform of gn(T ) becomes

Fn(s) =
ε2n
2π

∫ ∞
0

e−(s+γ(a)−1)T
∫
R

(∫
Rτ

ez (G−a)
T (y) dmF (y)

)
χ̂(εnω) dωdT
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and by Proposition 4.1 (i) for Re s > 1 the function Fn(s) is analytic. Next we
write the integral with respect to ω as a sum∫

R
(...) =

∫
|ω|≤ε0

+

∫
ε0<|ω|≤M

+

∫
|ω|≥M

,

where ε0 > 0 and M > 0 are the constants introduced in the proof of Proposition
4.2. The corresponding decomposition of Fn(s) will be a sum Fn(s) = F1,n(s) +
F2,n(s) + F3,n(s). Notice that the factor χ̂(εnω) is not involved in the integration
with respect to y and T and in the analysis of Fk,n(s), k = 1, 2 we will have a
coefficient ε2n implying the factor An = O(ε2n). Moreover, in the Laplace transform
Z(s, ω, a) we must replace s by s + γ(a) − 1. According to Proposition 4.2, the
functions F2,n(s) are analytic for 1− µ0 ≤ Re s, µ0 > 0 and

lim
δ↘0

F2,n(1 + δ + it) = ε2nf2,n(1 + it)

with f2,n(1 + it) ∈ W 1,1
loc (R). For |t| ≤ M the function |f2,n(1 + it)|, |f ′2,n(1 + it)|

are clearly uniformly bounded with respect to n, while for |t| ≥ M we have an
analytic continuation f2(s) for 1− µ0 ≤ Re s ≤ 1 + δ0. In the latter case we apply
the estimate (4.6) with 0 < ν < 1 uniformly with respect to n (see the case 2 in
the proof of Proposition 4.2). Since∫

ε0≤|ω|≤M
|χ̂(εnω)|dω ≤M sup

ξ∈R
|χ̂(ξ)|, ∀n ∈ N,

with a constant C2(ν) > 0 independent of n, we obtain

|f2,n(s)| ≤ C2(ν)(1 + | Im s|ν). (6.1)

Thus the term F2,n(s) contributes to AnKn(s) in (5.1).

Passing to the analysis of F3,n(s), we apply the same argument based on the
estimate (4.6). According to Proposition 4.2, F3,n(s) is analytic for 1 − µ0 ≤
Re s ≤ 1 + δ0. In this case we have an infinite integral with respect to ω and we will
exploit the factor ε2n to estimate it. By using (4.6) with 0 < ν < 1, we must treat

ε2n

∫
|ω|≥M

(
1 + | Im s|ν + |ω|ν

)
|χ̂(εnω)|dω.

The Fourier transform of χ ∈ C∞0 (R) satisfies

|χ̂(εnω)| ≤ D2(1 + |εnω|)−2

with a constant D2 > 0 independent on εn and ω. By a change of variable εnω = ξ
we get a convergent integral with respect to ξ and with a constant C3(ν) > 0
independent on n we deduce the estimate

|F3,n(t)| ≤ C3(ν)ε1−νn (1 + | Im s|ν) ≤ C3(ν)(1 + | Im s|ν). (6.2)

Therefore, F3,n(s) contributes to the term Ln(s) in (5.1) and we cannot get a coef-
ficient An.

It remains to study the behaviour of F1,n(s). Here there are no problems with
the convergence of the integral with respect to ω and we gain the factor ε2n. For
ε0 ≤ | Im s| the Laplace transform F1,n(s) has no singularities and as above we
obtain a contribution to AnKn(s) in (5.1). Let U2 = {s ∈ C, ω ∈ R : |s − γ(a)| ≤
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µ0, |ω| ≤ ε0}. Recall that for (s, ω) ∈ U2 the function Z(s, ω, a) (independent on n)
has a pole s(ω, a) and

Z(s+ γ(a)− 1, ω, a) =
( B3(s(ω, a), ω, a)∫

τdνfa−s(ω,a)τ+iωg

) 1

s+ γ(a)− 1− s(ω, a)
+ J5(s, ω, a)

with a function J5(s, ω, a) analytic in s and real analytic in ω. Here we may repeat
without any change the argument in Section 5 in [20]. Applying the Morse lemma
to the function Re s(ω, a), there exists a function y = y(ω, a) defined for |ω| ≤ ε0
such that

Re s(ω, a) = γ(a)− y2.
Therefore the analysis is reduced to the integral

ε2n
2π

∫ ε0

−ε0

B3

(
γ(a)− y2(ω, a) + iq(ω, a), ω, a

)
s− 1 + y2(ω, a) + iq(ω, a)

χ̂(εnω)dω,

where (see Lemma 3 in [20]) q(ω, a) = Im s(ω, a) is such that q(0, a) = ∂q
∂ω (0, a) =

∂2q
∂ω2 (0, a) = 0, and

∂2

∂ω2
Re s(0, a) = −σ2(mF+ξ(a)G) = −β′′(ξ(a)) < 0

with β(ξ) and ξ(a) introduced in Section 1.

Next the analysis follows that in Section 3 in [8] without any change. After a
change of variable ω = ω(y, a) the integral has the representation

ε2nC(a)

π

χ̂(0)√
2β′′(ξ(a))

[∫ y(ε0,a)

−y(ε0,a)

1

s− 1 + y2
dy

−
∫ y(ε0,a)

−y(ε0,a)

iQ(y, a)

(s− 1 + y2 + iQ(y, a))(s− 1 + y2)
dy
]

+
ε2n
2π

√
2√

β′′(ξ(a))

∫ y(ε0,a)

−y(ε0,a)

P (y)

s− 1 + y2 + iQ(y, a)
dy,

where

C(a) =
1

(
∫
τdµ)2

B3(γ(a), 0, a),

P (y) is a complex valued function such that P (0) = 0 and Q(y, a) is real valued
odd function with respect to y such that Q(0, a) = Q′y(0, a) = Q′′yy(0, a) = 0. Here
B3(γ(a), 0, a) is given by (4.1) and we have used that

∂y

∂ω
(0, a) =

(√
−1

2

∂2

∂ω2
Re s(ω, a)

)∣∣∣
ω=0

=
β′′(ξ(a))√

2

combined with the Taylor expansions for the functions Re s(ω, a), Im s(ω, a) and
χ̂(εnω) around ω = 0. In particular,

χ̂(εnω) = χ̂(0) + εnω(y, a)χ̂′(0) +O(ε2nω
2(y, a)).

The first term in the above representation yields the singularity An√
s−1 plus more

regular terms, where

An =
C(a)χ̂(0)√

2β′′(ξ(a)
ε2n.
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The dependence on n is caused by the coefficient ε2n involved in An. Finally, we
obtain

F1,n(s) =
An√
s− 1

+Anω1,n(s)

and for | Im s| ≤ ε0 we have uniform with respect to n bounds for the L1(−ε0, ε0)
norms of f1,n(1 + it) and f ′1,n(1 + it). Summing the analysis of Fk,n(s), k = 1, 2, 3,
we get the representation (5.1).

Our purpose is to apply Proposition 5.6 for the functions gn(t). To do this, we
need to estimate the derivative

g′n(t) = εn(−γ(a) + 1)e(−γ(a)+1)t

∫
Rτ
qn(Gt − at)(y)dmF (y)

+εne
(−γ(a)+1)tξ(a)

∫
Rτ
qn(Gt − at)(y)(G(στt (y))− a)dmF (y)

+e(−γ(a)+1)t

∫
Rτ
eξ(a)(G

t(y)−at)χ′
(Gt − at

εn

)
(y)(G(στt (y)− a)dmF (y). (6.3)

We can choose a function 0 ≤ ψ(t) ∈ C∞0 (R) such that ψ(t) = M1 > 0 for t ∈
supp χ( t

εn
), where the constant M1 (independent of n) is chosen so that

max
t∈R

χ(t) + max
t∈R
|χ′(t)| < M1.

Then for every fixed compact J b ΓG and a ∈ J there exists a constant C(J) > 0
independent of n and a such that

|g′n(t)| ≤ C(J)e(−γ(a)+1)t

∫
Rτ
eξ(a)(G

t−at)ψ(Gt − at)(y)dmF (y) = C(J)Ψ(t).

Notice that C(J) depends on ξ(a), a and the maximum of G(w), but C(J) is inde-
pendent of M1. The problem is reduced to an estimate of Ψ(t). For the nonnegative
function Ψ(t) we wish to apply Lemma 5.7. Consider the Laplace transform

Y (s) =

∫ ∞
0

e−stΨ(t)dt

for Re s > 1 and its limit as Re s↘ 1. The analysis is completely the same as that

of Fn(s), where the function χ̂n(ω) must be replaced by ψ̂(ω) which is independent
on n. Therefore with some constant A > 0 one deduces the representation

Y (s) =
A√
s− 1

+ P (s)

with function P (s) having the properties of K(s) mentioned in Lemma 5.7. To
satisfy the condition (5.17), first as above we obtain an upper bound

|Ψ′(t)| ≤ C1(J)e(−γ(a)+1)t

∫
Rτ
eξ(a)(G

t−at)ψ1(Gt − at)(y)dmF (y) = C1(J)Ψ1(t),

(6.4)
where 0 ≤ ψ1(t) ∈ C∞0 (R) is such that for t ∈ supp ψ(t) we have

ψ1(t) ≥ max
t∈R

ψ(t) + max
t∈R
|ψ′(t)|.
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We repeat this procedure once more and with a function 0 ≤ ψ2(t) ∈ C∞0 (R) and
constant C2(J) one arranges the bound

|Ψ′1(t)| ≤ C2(J)e(−γ(a)+1)t

∫
Rτ
eξ(a)(G

t−at)ψ2(Gt − at)(y)dmF (y) = C2(J)Ψ2(t).

Now the analysis in Section 4 shows that the Laplace transforms∫ ∞
0

e−stΨk(t)dt, k = 1, 2,

are analytic for Re s > 1. Therefore the integral∫ ∞
0

e−stΨ′1(t)dt

is absolutely convergent for Re s > 1, and for s = 1 + δ > 1 we have∫ ∞
0

e−stΨ′1(t)dt =
[
e−stΨ1(t)

]∞
0

+ s

∫ ∞
0

e−stΨ1(t)dt,

hence for every δ > 0 we have limt→∞ e−(1+δ)tΨ1(t) = 0. This estimate combined
with (6.4) implies a bound

|Ψ′(t)| ≤ CδC1(J)
e(1+δ)t√

t
, t ≥ 1

and we are in position to apply Lemma 5.7 for the function Ψ(t). The statement of
Lemma 5.7 yields the estimate (5.19) for Ψ(t) with a constant D0 > 0 independent
on n, Cδ, C1(J), C2(J) and we obtain

|g′n(t)| ≤ D0C(J)
et√
t
, ∀t ≥ t0, ∀n ∈ N. (6.5)

Following Remark 5.9, we may take t0 > 1 large to guarantee the independence of
D0.

On the other hand, it is clear that we may estimate max0≤t≤1 gn(t) uniformly
with respect to n and a ∈ J. Thus we can apply Proposition 5.6 for gn(t). We
cancel the coefficients εn and et in the estimates for gn(t) and one concludes that
for fixed q ≥ 0, T ≥ n− q and any 0 < η � 1 there exists n0(η) ∈ N such that for
n ≥ n0(η) + q we have

εnC(a)
∫
χ(t)dt√

2πTβ′′(ξ(a)
eγ(a)T (1− η) ≤ ρn(T ) ≤

εnC(a)
∫
χ(t)dt√

2πTβ′′(ξ(a)
eγ(a)T (1 + η). (6.6)

It is easy to see that if one examines the function

ρ̃n(T ) =

∫
U

χ
( (GT − aT )(y)

εn

)
dmF (y),

then for fixed q ≥ 0 and any 0 < η � 1 there exists n0(y) ∈ N such that for
n ≥ n0(η) + q we get

εnC(a)
∫
χ(t)dt√

2πTβ′′(ξ(a)
eγ(a)T (1− η) ≤ ρ̃n(T ) ≤

εnC(a)
∫
χ(t)dt√

2πTβ′′(ξ(a)
eγ(a)T (1 + η). (6.7)

since the Fourier transform εnχ̂(εnω) must be replaced by the Fourier transform
εnχ̂(εn(ω − iξ(a)) and∫

e−εnξ(a)tχ(t)dt =

∫
χ(t)dt+O(εn).
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Approximating the characteristic function 1[−1,1](t) by cut-off functions χ±(t) ∈
C∞0 (R; [0, 1]) such that

χ−(t) ≤ 1[−1,1](t) ≤ χ+(t),

we obtain for T ≥ n− q, n ≥ n0(η)+ q the estimates (1.1) and this proves Theorem
1.3.

It is worth noting that the derivatives χ′+(t) may increase for −1 − δ ≤ t ≤ −1
and 1 ≤ t ≤ 1 + δ, but this is not important for the estimate (6.5) since we may
arrange D0 to be independent of the derivatives χ′+(t) choosing t ≥ t1. This reflects
in the choice of n0(η) in (6.5). The same observation holds for the derivative χ′−(t)
in −1 ≤ t ≤ 1− δ and 1− δ ≤ t ≤ 1.

Now it is easy to pass to the analysis of the intervals
(
− e
−εT

T , e
−εT

T

)
. In fact,

let q = 1, 0 < η � 1 and n0(η) ∈ N be as above. Let T ≥ n0(η) + 1 and
let N(η) ≥ n0(η) + 1 be chosen so that N(η) ≤ T ≤ N(η) + 1. Obviously, we

have
(
−e−ε(N(η)+1), e−ε(N(η)+1)

)
⊂
(
−e−εT , e−εT

)
⊂
(
−e−εN(η), e−εN(η)

)
. Now

we may examine

ζ(T ; a) = mF

{
w ∈ Rτ :

∫ T

0

G(στt (w)dt− aT ∈
(
−e−εT , e−εT

)}
.

For T ≥ n0(η) + 1 we deduce the estimates

2e−εT e−εC(a)√
2πTβ′′(ξ(a)

eγ(a)T (1− η) ≤ 2e−ε(N(η)+1)C(a)√
2πTβ′′(ξ(a)

eγ(a)T (1− η) ≤ ζ(T ; a), (6.8)

ζ(T ; a) ≤ 2e−εN(η)C(a)√
2πTβ′′(ξ(a)

eγ(a)T (1 + η) ≤ 2eεe−εTC(a)√
2πTβ′′(ξ(a)

eγ(a)T (1 + η). (6.9)

To obtain (6.8), we exploit T ≥ [N(η) + 1] − 1, while for (6.9) we use T ≥ N(η).
These estimates prove the statement of Theorem 1.4.

Appendix

Proof of Proposition 2.2. In what follows we will denote global generic constants
by C > 0 and c > 0.

(a) We will first show that G̃ is constant on stable leaves of Rτ . Let ξ, η ∈ Rτ
be on the same stable leaf of Rτ . Thus, ξ = π(x, t), η = π(y, t) for some x, y ∈ Ri
with πU (x) = πU (y) = z ∈ Ui and some t ∈ [0, τ(x)). Then τ(y) = τ(x) = τ(z).
Moreover, s = τ(Pn+1(x)) = τ(Pn+1(y)) and also s = τ(Pn(πU (P(y))). Finally,

πU (P(x)) = πU (P(y)). Using all these in the definition of G̃, gives G̃(x, t) = G̃(y, t).
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To prove (2.6), write

h(x)− h(P(x)) =

∞∑
n=0

[g(Pn(x))− g(Pn(πU (x)))]

−
∞∑
n=0

[g(Pn(P(x)))− g(Pn(πU (P(x))))]

= g(x)− g(πU (x)) +

∞∑
n=1

[g(Pn(x))− g(Pn(πU (x)))]

−
∞∑
n=0

[g(Pn(P(x)))− g(Pn(πU (P(x))))] (A.1)

= g(x)− g(πU (x)) +

∞∑
n=0

[
g(Pn+1(x))− g(Pn+1(πU (x)))

]
−
∞∑
n=0

[g(Pn(P(x)))− g(Pn(πU (P(x))))]

= g(x)−

[
g(πU (x)) +

∞∑
n=0

(
g(Pn+1(πU (x)))− g(Pn(πU (P(x))))

)]
.

Next, for every x ∈ R̂, using the change of variable t 7→ s = t τ(Pn+1(x))/τ(x)
in some of the integrals below, we get

g̃(x) =

∫ τ(x)

0

G̃(x, t) dt =

∫ τ(x)

0

G(πU (x), t) dt

+

∞∑
n=0

[

∫ τ(x)

0

G(Pn+1(πU (x))), t τ(Pn+1(x))/τ(x)) dt

−
∫ τ(x)

0

G(Pn(πU (P(x))), t τ(Pn+1(x))/τ(x)) dt]

= g(πU (x)) +

∞∑
n=0

[

∫ τ(Pn+1(x))

0

G(Pn+1(πU (x))), s) ds

−
∫ τ(Pn+1(x))

0

G(Pn(πU (P(x))), s) ds]

= g(πU (x)) +

∞∑
n=0

(
g(Pn+1(πU (x)))− g(Pn(πU (P(x))))

)
.

This and (A.1) imply h(x)− h(P(x)) = g(x)− g̃(x), thus proving (2.6).

It remains to prove that G̃ and h are β-Hölder on R̂τ and R̂ respectively, for
some β > 0.

Let x 6= y belong to some Ri ∩ R̂ and let 0 ≤ t < τ(x) and 0 ≤ t′ < τ(y). We

may assume τ(x) ≤ τ(y). We have to estimate |G̃(x, t) − G̃(y, t′)|. We will first

estimate |G̃(x, t)− G̃(y, t)|.
Set x̃ = πU (x) and ỹ = πU (y) and s = t τ(Pn+1(x))/τ(x). Then d(x̃, ỹ) ≤

C(d(x, y))α for some global constant C > 0.



SHARP LARGE DEVIATIONS 37

Let 2m (or 2m+ 1) be the maximal positive integer so that Pj(x),Pj(y) belong
to the same rectangle Rij for j = 0, 1, . . . , 2m− 1. Then by (2.2),

c ≤ d(P2m(x),P2m(y)) ≤ (c/c0)γ2m1 (d(x, y))α,

so d(x, y) ≥ c

γ
2m/α
1

, and therefore

(d(x, y))αα
′/2 ≥ c

γα
′m

1

=
c

(ργ)m
>

c

γm
. (A.2)

For any integer n = 0, 1, . . . ,m− 1, using (2.2) and the latter, we get

d(Pn+1(x̃),Pn+1(ỹ)) ≤ d(P2m(x̃),P2m(ỹ))

c0γ2m−n
≤ C

γ2m−n

≤ C

γm−n
· 1

γm
≤ C

γm−n
· (d(x, y))αα

′/2. (A.3)

We will now estimate |G̃(x, t)− G̃(y, t)|. We have

|G̃(x, t)− G̃(y, t)| ≤ |G(x̃, t)−G(ỹ, t)|+
m−1∑
n=0

∣∣G(Pn+1(x̃)), s)−G(Pn+1(ỹ)), s)
∣∣

+

m−1∑
n=0

|G(Pn(πU (P(x))), s)−G(Pn(πU (P(x))), s)|

+

∞∑
n=m

∣∣G(Pn+1(πU (x))), s)−G(Pn(πU (P(x))), s)
∣∣

+

∞∑
n=m

∣∣G(Pn+1(πU (y))), s)−G(Pn(πU (P(y))), s)
∣∣

= I + II + III + IV + V.

Clearly, I ≤ |G|α(d(x̃, ỹ))α ≤ C |G|α (d(x, y))α
2

.
Next,

II =

m−1∑
n=0

∣∣G(Pn+1(x̃)), s)−G(Pn+1(ỹ), s)
∣∣

≤
m−1∑
n=0

|G|α
(

C

γm−n
· (d(x, y))αα

′/2

)α
≤ C |G|α (d(x, y))β .

Similarly, III ≤ C |G|α (d(x, y))β .
Since P(πU (x)) and πU (P(x)) are on the same stable leaf of some rectangle, it

follows from (2.3) that∣∣G(Pn+1(πU (x))), s)−G(Pn(πU (P(x))), s)
∣∣

≤ |G|α (d(Pn+1(πU (x))),Pn(πU (P(x)))α ≤ C |G|α
1

γαn
.

This and (A.2) yield

IV ≤ C |G|α
∞∑
n=m

1

γαn
≤ C |G|α

1

γαm
≤ C |G|α (d(x, y))α

2α′/2C |G|α (d(x, y))β .
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In a similar way we obtain V ≤ C |G|α (d(x, y))β . Thus,

|G̃(x, t)− G̃(y, t)| ≤ C |G|α (d(x, y))β .

An estimate of the form |G̃(y, t) − G̃(y, t′)| ≤ C|G|α |t − t′|β can be obtained

rather easily, and we leave the details to the reader. This proves that G̃ is β-Hölder
and |G̃|β ≤ |G|α.

The proof that h is also β-Hölder is very similar to the above, in fact it is easier.
We leave the details to the reader.

(b) The proof that H is β-Hölder is very similar to the proof above that G̃ is
β-Hölder. We leave the details to the reader.

To establish (2.9), replace H(x, t) in the integral in (2.9) by the right-hand-side
of (2.8) and use the change of variable t 7→ s = t τ(Pn(x))/τ(x). What we obtain
in this way is the right-hand-side of (2.5). This proves (2.9).

Finally, to establish (2.10), write:

H(x, t)−H(P(x), t τ(P(x))/τ(x))

=

∞∑
n=0

[G(Pn(x), t τ(Pn(x))/τ(x))−G(Pn(πU (x)), t τ(Pn(x))/τ(x))]

−
∞∑
n=0

[
G(Pn+1(x), t τ(Pn+1(x))/τ(x))−G(Pn(πU (P(x))), t τ(Pn+1(x))/τ(x))

]
= G(x, t)−G(πU (x), t)

+

∞∑
n=1

[G(Pn(x), t τ(Pn(x))/τ(x))−G(Pn(πU (x)), t τ(Pn(x))/τ(x))]

−
∞∑
n=0

[
G(Pn+1(x), t τ(Pn+1(x))/τ(x))−G(Pn(πU (P(x))), t τ(Pn+1(x))/τ(x))

]
= G(x, t)−G(πU (x), t)

+

∞∑
n=0

[
G(Pn+1(x), t τ(Pn+1(x))/τ(x))−G(Pn+1(πU (x)), t τ(Pn+1(x))/τ(x))

]
−
∞∑
n=0

[
G(Pn+1(x), t τ(Pn+1(x))/τ(x))−G(Pn(πU (P(x))), t τ(Pn+1(x))/τ(x))

]
= G(x, t)− ( G(πU (x), t) +

∞∑
n=0

[G(Pn+1(πU (x)), t τ(Pn+1(x))/τ(x))

−G(Pn(πU (P(x))), t τ(Pn+1(x))/τ(x))] )

= G(x, t)− G̃(x, t).

This proves (2.10).

Acknowledgment. Thanks are due to the referee for his useful comments and
suggestions.
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