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Abstract. We obtain spectral estimates for the iterations of Ruelle operator Lf+(a+ib)τ+(c+id)g

with two complex parameters and Hölder functions f, g generalizing the case Pr(f) = 0 studied in
[9]. As an application we prove a sharp large deviation theorem concerning exponentially shrinking
intervals which improves the result in [8].

1. Introduction

Let M be a C2 complete Riemannian manifold, let ϕt : M −→ M (t ∈ R) be a C2 flow on M
and let ϕt : M −→ M be a C2 weak mixing Axiom A flow ([5], [7]). Let Λ be a basic set for ϕt,
that is, Λ is a compact locally maximal invariant subset of M and ϕt is hyperbolic and transitive
on Λ.

As in [9], we will use a symbolic coding of the flow on Λ provided by a a fixed Markov family
{Ri}k

i=1. More precisely, we consider a Markov family of pseudo-rectangles Ri = [Ui, Si] = {[x, y] :
x ∈ Ui, y ∈ Si} (see section 2 for more details). Denote by P : R = ∪k

i=1Ri −→ R the related
Poincaré map, by τ(x) > 0 the first return time function on R, and by σ : U = ∪k

i=1Ui −→ U

the shift map given by σ = π(U) ◦ P, where π(U) : R −→ U is the projection along stable leaves.
The flow ϕt on Λ is naturally related to the suspension flow στ

t on the suspension space Rτ (see
section 2 for details). There exists a natural semi-conjugacy projection π(x, t) : Rτ −→ Λ which is
one-to-one on a residual set (see [2]). For x ∈ R set

τn(x) := τ(x) + τ(σ(x)) + ...+ τ(σn−1(x)).

Given Hölder continuous functions F,G : Λ −→ R, define f, g : R −→ R by

f(x) =
∫ τ(x)

0
F (π(x, t))dt , g(x) =

∫ τ(x)

0
G(π(x, t))dt.

The main object of study in this paper are the Ruelle transfer operators of the form

Lf−sτ+zgv(x) =
∑
σy=x

ef(y)−sτ(y)+zg(y)v(y) , s, z ∈ C , x ∈ U,

depending on two complex parameters s and z. Under certain assumptions, strong spectral esti-
mates for such operators have been established in [9] and some significant applications to the study
of zeta functions depending on two complex parameters have been made. We denote by mH the
equilibrium state corresponding to H in Rτ and by µk the equilibrium state corresponding to k in
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R. More precisely,

Prσ(k) = h(σ, µk) +
∫

R
kdµk = sup

µ∈Mσ

{
h(σ, µ) +

∫
R
kdµ

}
,

Prστ (H) = h(σt
τ ,mH) +

∫
Rτ

HdmH = sup
m∈Mστ

{
h(σt

τ ,m) +
∫

Rτ

Hdm
}
,

where h(σ, µ) is the metric entropy of σ with respect to µ and h(σt
τ ,m) is the metric entropy of the

suspended flow σt
τ with respect to m. Let P = Prσ(f).

Let ‖h‖0 denote the standard sup norm of h on U . For |b| ≥ 1, and β > 0, as in [4], define the
norm ‖h‖β,b = ‖h‖∞ + |h|β

|b| on the space Cβ(U) of β-Hölder functions on U .
Our first aim in this paper is to prove the following theorem.

Theorem 1. Let ϕt : M −→ M satisfy the Standing Assumptions (see Sect. 4) over the basic set
Λ, and let 0 < β < α. Let R = {Ri}k

i=1 be a Markov family for ϕt over Λ as in section 2. Then for
any real-valued functions f, g ∈ Cα(Û) and any constants ε > 0 and B > 0 there exist constants
0 < ρ < 1, a0 > 0, b0 ≥ 1 and C = C(B, ε) > 0 such that if a, c ∈ R satisfy |a|, |c| ≤ a0 then

‖Lm
f−(a+ib)τ+(c+iw)gh‖β,b ≤ C ePm ρm |b|ε ‖h‖β,b (1.1)

for all h ∈ Cβ(U), all integers m ≥ 1 and all b, w ∈ R with |b| ≥ b0 and |w| ≤ B |b|.

In Theorem 5.1 in [9] the above estimate has been proved in the case P = 0 assuming |w| ≤ B |b|ν
for some constant ν ∈ (0, 1). The present results is significantly stronger. See also Remark 1 below.

In the proof of Theorem 1 we will use some arguments from the proof of Theorem 5.1 in [9]
with necessary modifications.

Remark 1. Notice that in Theorem 1 above we do not assume that pressure P of f is zero, unlike
what has been done in previous papers. This contributes the term ePm in the right-hand-side of
(1.1) which is significant especially in the case P < 0 which occurs in the applications concerning
large deviations (see Section 3). In previous papers the authors consider the case P = 0 and remark
that the general case follows from this. However a more careful argument shows that an estimate
of the form (1.1) does not follow immediately from a similar estimate1 with P = 0.

1Indeed, assume we have proved (1.1) in the case P = 0, and then deal with the general case using the standard

approach. Given a, b as in the theorem and h ∈ Fθ(bU), we have

(Lm
f−(a+ib)τh)(u) =

X
σm(v)=u

e(f−(a+ib)τ)m(v)h(v) = (Lm
f−(P+a+ib)τ (ePτm(v) h))(u). (1.2)

We can now apply (1.1) in the case P = 0 replacing h by ePτm(v) h. Since 0 < c ≤ τ(u) ≤ c1 for some constants

c and c1, assuming e.g. P ≤ 0 (the other case is similar), we get ‖ePτm

h‖∞ ≤ emPc‖h‖∞, and |ePτm

h|θ ≤
emPc |h|θ + |ePτm

|θ ‖h‖∞. Given u, v ∈ Ui we have (assuming e.g. ePτm(u) > ePτm(v))˛̨̨
ePτm(u) − ePτm(v)

˛̨̨
≤ ePτm(u) |Pτm(u)− Pτm(v)| ≤ |P | emPc

m−1X
j=0

Dθ(u, v)

θj
≤ Const

emPc

θm
Dθ(u, v).

Taking θ closer to 1 and replacing c by some c0 < c, we get |ePτm

|θ ≤ Const emPc0 . This implies

‖ePτm

h‖θ,b ≤ emPc‖h‖∞ +
1

|b|

“
emPc |h|θ + Const emPc0 ‖h‖∞

”
≤ Const emPc0 ‖h‖θ,b.

Combining the latter with (1.2) gives ‖Lm
f−(a+ib)τh‖θ,b ≤ C ρm ‖ePτm(v) h‖θ,b ≤ C emPc0 ρm ‖h‖θ,b. As one can see

this estimate is a bit worse than (1.1), since c > c0 > 0 (and also c1 in the case P > 0) can be rather small constants.
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Remark 2. In the proof of Theorem 2 in Section 3 we apply Theorem 1 with b = Cw for some
constant C > 0; then |w| = 1

C |b|. The relevant part of Theorem 5.1 in [9] assumes |w| ≤ B|b|ν for
some ν ∈ (0, 1) and this is clearly not sufficient for the proof of Theorem 2 below.

Let G be a Hölder function on Λ such that G > 0 everywhere on Λ. Consider a number

0 < a =
∫

Rτ

GdmF+ξ(a)G ∈
{∫

Rτ

GdmF+tG, t ∈ R
}
,

where ξ(a) is determined by the equation

dPrστ (F + tG)
dt

∣∣∣
t=ξ(a)

− a = 0.

Let 0 < ρ < 1 be the constant from Theorem 1, and let 0 < α0 = − log ρ
2 . Fix an arbitrary

0 < δ ≤ α0 and consider the sequence {δn}n∈N, where

δn = e−δn.

Set ga = g − τa. Then

gn
a (x) = gn(x)− τn(x)a =

∫ τn(x)

0
G(π(t, x))dt− τn(x)a.

Clearly the property
gn(x)
τn(x)

− a ∈
(
− δn
τn(x)

,
δn

τn(x)

)
,

is equivalent to
gn(x)− τn(x)a ∈ (−δn, δn).

On the other hand, since cn ≤ τn(x) ≤ c1n, ∀x ∈ R,∀n ∈ N with some constants 0 < c ≤ c1 for
every x, the interval

(
− δn

τn(x) ,
δn

τn(x)

)
is exponentially shrinking to 0 as n→∞. Let µ = µf be the

equilibrium state of f .
Our second problem concerns the analysis of the asymptotic of

µ{x : gn(x)− τn(x)a ∈ (−δn, δn)}, n→∞

and for a 6=
∫
Rτ GdmF we obtain a large deviation result. On the other hand, as in the previous

paper [8], we examine the measure of points x ∈ R for which the difference gn(x)
τn(x) − a stays in an

exponentially shrinking interval. Next we state two definitions from [6] and [14].

Definition 1. Two functions f1, f2 are called σ−independent if whenever there are constants
t1, t2 ∈ R such that t1f1 + t2f2 is cohomologous to a function in C(R : 2πZ) , we have t1 = t2 = 0.

For a function G ∈ Cβ(Rτ : R) consider the skew product flow SG
t on S1 ×Rτ defined by

SG
t (e2πiα, y) =

(
e2πi(α+

R t
0 G(ϕs

τ y)ds), σt
τ (y)

)
.

Definition 2. Let G ∈ Cβ(Rτ : R)). Then G and σt
τ are flow independent if the following condition

is satisfied: if t0, t1 ∈ R are constants such that the skew product flow SH
t with H = t0 + t1G is not

topologically ergodic, then t0 = t1 = 0.
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Notice that if G and σt
τ are flow independent, the flow σt

τ is topologically weak mixing and the
function G is not cohomologous to a constant function. This implies that the set{∫

Rτ

GdmF+tG, t ∈ R
}

has a non-empty interior and setting β(t) = Prστ (F + tG), one has

β′′(t) =
d2Prστ (F + tG)

dt2
= σ2

mF+tG
(G)

with

σ2
m(G) = lim

T→∞

1
T

{∫
Rτ

∫ T

0
G(σt

τ (y))dtdm− T

∫
Rτ

Gdm
}2

<∞.

Moreover, β′(ξ(a)) = a and ξ(a) is differentiable with ξ′(a) = 1
β′′(ξ(a)) > 0. Without loss of

generality by adding a constant, we may assume that Prστ (F ) = 0. Then mF and Prστ (F + tG)
don’t change and Prσ(f − Prστ (F )τ) = 0 yields Prσ(f) = 0. Introduce the rate function

γ(a) =: Prστ (F + ξ(a)G)− ξ(a)a.

Then
γ′(a) = β′(ξ(a))ξ′(a)− ξ′(a)a− ξ(a) = −ξ(a),

and γ(a) ≤ 0 is a concave function with strict maximum 0 at a =
∫
Rτ GdmF . In the following

we assume that G and σt
τ are flow independent, which guarantees that g(x) and τ(x) are σ−

independent. Consequently, the function ga = g − aτ is not cohomologous to a function in C(R :
2πZ), and this yields

d2Pr(f + tga)
dt2

∣∣∣
t=ξ(a)

= ω(a) > 0. (1.3)

From now on for simplicity of the notation we will write Pr instead of Prσ. Consider the rate
function

J(a) =: inf
t∈R
{Pr(f + t(g − τa)} = Pr(f + η(a)(g − τa)),

where η(a) is the unique real number such that

0 =
dPr(f + t(g − τa))

dt

∣∣∣
t=η(a)

=
∫

R
gdmf+η(a)(g−τa) − a

∫
R
τdmf+η(a)(g−τa).

Notice that

a =

∫
R

∫ τ(x)
0 G(π(x, t))dtdmf+η(a)ga∫

R τdmf+η(a)ga

=
∫

Rτ

G(π(x, t))dmF+η(a)(G−a)

=
∫

Rτ

G(π(x, t))dmF+η(a)G =
dPrστ (F + tG)

dt

∣∣∣
t=η(a)

.

Here we have used the fact that F + η(a)G and F + η(a)G− η(a)a have the same equilibrium state
in Rτ . Since dPrστ (F+tG)

dt is increasing, there exists an unique ξ(a) such that

dPrστ (F + ξ(a)G)
dt

= a,

therefore ξ(a) = η(a). Hence J(a) = Pr(f + ξ(a)(g − aτ)). In Section 2 we show that

J(a) = γ(a)
∫

R
τdµf+ξ(a)(g−aτ). (1.4)
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This implies J(a) ≤ 0 and J(a) = 0 if only if a =
∫
Rτ GdmF and ξ(a) = 0. We prove the

following large deviation result.

Theorem 2. Let the assumptions of Theorem 1 be satisfied. Assume that G : Λ −→ (0,∞) is a
Hölder continuous function for which there exists a Markov family R = {Ri}k

i=1 for the flow ϕt on
Λ such that G is constant on the stable leaves of all ”rectangular boxes”

Bi = {ϕt(x) : x ∈ Ri, 0 ≤ t ≤ τ(x)},
i = 1, . . . , k. Assume in addition that G and σt

τ are flow independent. Let 0 < ρ < 1 be the constant
in Theorem 1 and let δn = e−δn, 0 < δ ≤ − log ρ

2 . Then

µ{x : gn(x)− τn(x)a ∈ (−δn, δn)} ∼ 2δn√
2πω(a)n

enJ(a), n→∞. (1.5)

A similar result for the measure of points x ∈ R for which the difference

1
n

∫ τn(x)

0
G(π(t, x))dt− p

stays in a exponentially shrinking interval has been obtained in [8] under the conditions that G
is a Lipschitz function on Λ and Lip G

min G < µ0 with a suitable positive constant µ0. In the present
paper we improve the result in [8] assuming G only Hölder. Moreover, here one examines a more
natural difference 1

τn(x)

∫ τn(x)
0 G(π(t, x))dt − a. This progress is essentially based on the spectral

estimates for the Ruelle operator with two complex parameters established in Theorem 1. A further
improvement will be the analysis of the asymptotic of

µ
{
x :

1
T

∫ T

0
G(π(t, x))dt− a ∈

(
−e

δT

T
,
e−δT

T

)}
, δ > 0,

as T → +∞ and this is an interesting open problem. On the other hand, the case when the interval(
− eδT

T , e−δT

T

)
is replaced by an interval

(
α
T ,

β
T

)
, α < β, has been studied in [14]. Comparing (1.5)

with Theorem 1 in [14], one observes that in the case we deal with the variable tending to +∞ by
a scaling can take the form Tn = n

∫
R τdµτ+ξ(a)(g−aτ). Setting

ω(a) =
1

C2(a)
β′′(ξ(a))

∫
R
τdµτ+ξ(a)(g−aτ), C(a) 6= 0,

one may write the leading term in (1.5) as

2δnC(a)√
2πβ′′(ξ(a))Tn

eTnγ(a)

which modulo the constant C(a) is similar to the asymptotic in [14] with Tn →∞, where the rate
function is precisely γ(a).

Remark 3. The result stated in Theorem 2 holds if we assume that G is non-lattice and g and τ
are σ−independent. The condition G > 0 is not a restriction since we can replace G by G+C > 0
for some large constant C > 0. Then a =

∫
Rτ GdmF + C, and the asymptotic (1.5) is independent

on the constant C. The assumption that G is constant on stable leaves of rectangular boxes Bi is
significant, however it seems difficult to remove when very sensitive asymptotics such as (1.5) are
obtained. For ”standard” large deviation results, this assumption is not necessary, since one can use
Sinai’s Lemma (see e.g. Proposition 1.2 in [7]) to replace an arbitrary Hölder G by a cohomologous
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function which is constant on stable leaves. In [14] and [11], where instead of (−e−δn, e−δn) the
authors deal with significantly larger intervals, however still smaller than (−c/n, c/n) for a constant
c > 0, claims have been made that the general case of Hölder functions on two-sided shifts is easily
derived from the one for one-sided shifts. However in both papers there are no proofs of these claims.
For sharp estimates similar to (1.5), it is tempting to believe that such claims would be difficult to
justify.

2. Preliminaries

As in section 1, let ϕt : M −→ M be a C2 Axiom A flow on a Riemannian manifold M , and
let Λ be a basic set for ϕt. The restriction of the flow on Λ is a hyperbolic flow [7]. For any x ∈M
let W s

ε (x),W u
ε (x) be the local stable and unstable manifolds through x, respectively (see [2], [5],

[7]). When M is compact and M itself is a basic set, ϕt is called an Anosov flow. It follows from
the hyperbolicity of Λ that if ε0 > 0 is sufficiently small, there exists ε1 > 0 such that if x, y ∈ Λ
and d(x, y) < ε1, then W s

ε0(x) and ϕ[−ε0,ε0](W u
ε0(y)) intersect at exactly one point [x, y] ∈ Λ (cf.

[5]). That is, there exists a unique t ∈ [−ε0, ε0] such that ϕt([x, y]) ∈ W u
ε0(y). Setting ∆(x, y) = t,

defines the so called temporal distance function.
We will use the set-up and some arguments from [12] and [9]. As in these papers, fix a (pseudo)

Markov family R = {Ri}k
i=1 of pseudo-rectangles Ri = [Ui, Si] = {[x, y] : x ∈ Ui, y ∈ Si}. Set

R = ∪k
i=1Ri, U = ∪k

i=1Ui. Consider the Poincaré map P : R −→ R, defined by P(x) = ϕτ(x)(x) ∈ R,
where τ(x) > 0 is the smallest positive time with ϕτ(x)(x) ∈ R (first return time function). The
shift map σ : U −→ U is given by σ = π(U) ◦P, where π(U) : R −→ U is the projection along stable
leaves.

The hyperbolicity of the flow on Λ implies the existence of constants c0 ∈ (0, 1] and γ1 > γ0 > 1
such that

c0γ
m
0 d(u1, u2) ≤ d(σm(u1), σm(u2)) ≤

γm
1

c0
d(u1, u2) (2.1)

whenever σj(u1) and σj(u2) belong to the same Uij for all j = 0, 1 . . . ,m.
Define a k × k matrix A = {A(i, j)}k

i,j=1 by

A(i, j) =

{
1 if P(IntRi) ∩ IntRj 6= ∅,
0 otherwise.

It is possible to construct a Markov family R so that A is irreducible and aperiodic (see [2]).
Consider the suspension space Rτ = {(x, t) ∈ R×R : 0 ≤ t ≤ τ(x)}/ ∼, where by ∼ we identify

the points (x, τ(x)) and (σx, 0). The corresponding suspension flow is defined by στ
t (x, s) = (x, s+t)

on Rτ taking into account the identification ∼ . For a Hölder continuous function f on R, the
topological pressure Pr(f) with respect to σ is defined as

Pr(f) = sup
m∈Mσ

{
h(σ,m) +

∫
fdm

}
,

whereMσ denotes the space of all σ-invariant Borel probability measures and h(σ,m) is the entropy
of σ with respect to m. We say that f and g are cohomologous and we denote this by f ∼ g if there
exists a continuous function w such that f = g + w ◦ σ − w.

The proof of (1.4) follows from the following computation:

γ(a) = Prστ (F + ξ(a)G)− ξ(a)a = h(στ ,mF+ξ(a)G) +
∫

Rτ

(F + ξ(a)G− ξ(a)a)dmF+ξ(a)G
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= h(στ ,mF+ξ(a)G−ξ(a)a) +
∫

Rτ

(F + ξ(a)G− ξ(a)a)dmF+ξ(a)G−ξ(a)a

=
h(σ, µf+ξ(a)(g−aτ))∫
R τdµf+ξ(a)(g−aτ)

+

∫
R(f + ξ(a)(g − aτ))dµf+ξ(a)(g−aτ)∫

R τdµf+ξ(a)(g−aτ)

=
Pr(f + ξ(a)(g − aτ))∫

R τdµf+ξ(a)(g−aτ)
=

J(a)∫
R τdµf+ξ(a)(g−aτ)

.

3. Proof of Theorem 2

In this section we prove Theorem 2 exploiting the spectral estimates obtained in Theorem 1.
We work under the assumptions of Theorem 2, in particular, G is constant on stable leaves of
rectangular boxes Bi for a certain Markov family R = {Ri}k

i=1. Then the function g(x) depends
only on x ∈ U.

We may replace f by a Hölder function f̃ depending only on x ∈ U so that with some Hölder
function z(x) we have

f(x) = f̃(x) + z(σ(x))− z(x).

Therefore for all t ∈ R we have Pr(f + t(g − aτ)) = Pr(f̃ + t(g − aτ)) and µf = µf̃ . Below we use
again the notation f assuming that f(x) depends only on x ∈ U.

We will examine the sequence

ρ(n) =
∫

U
χn(gn

a (x)) dµ , (3.1)

where χ ∈ C∞0 (R : R+) is a fixed cut-off function and

χn(t) = χ(δ−1
n t) , x ∈ R . (3.2)

Proposition 1. Under the assumptions of Theorem 2 we have the asymptotic

ρ(n) ∼ δn√
2πω(a)n

(∫
χ(t)dt

)
enJ(a), n→∞. (3.3)

Proof. The Ruelle operator Lf+ξ(a)ga
has a simple eigenvalue

λa = ePr(f+ξ(a)ga) = eJ(a),

and so for all sufficiently small u ∈ C the operator Lf+(ξ(a)+iu)ga
has a simple eigenvalue ePr(f+(ξ(a)+iu)ga)

and the rest of the spectrum of Lf+(ξ(a)+iu)ga
is contained in a disk of radius θλa with some

0 < θ < 1. Note that
d2Pr(f + (ξ(a) + iu))ga)

d2u

∣∣∣
u=0

= −ω(a) < 0.

Clearly for the Fourier transform χ̂n of χn we get χ̂n(u) = δnχ̂(δnu). Set ωn(y) = e−ξ(a)yχn(y).
Since Pr(f) = 0, the Ruelle operator Lf has a simple eigenvalues 1 and the adjoint operator L∗f
satisfies

L∗fµ = µ,

where we denote µ = µf as in Section 1.
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Using this property and applying the Fourier transform, we have

ρ(n) =
1
2π

∫ ∞

−∞

(∫
eiugn

a (x)dµ(x)
)
χ̂n(u)du

=
1
2π

∫ ∞

−∞

(∫
e(ξ(a)+iu)gn

a (x)dµ(x)
)
ω̂n(u)du

=
1
2π

∫ ∞

−∞

(∫
Ln

f+(ξ(a)+iu)ga
1(x)dµ(x)

)
ω̂n(u)du

=
δn
2π

∫ ∞

−∞

(∫
Ln

f+(ξ(a)+iu)ga
1(x) dµ(x)

)
χ̂(δn(u− iξ(a)))du.

By Taylor expansion for small |u| one gets

ePr(f+(ξ(a)+iu)ga) = λa

(
1− ω(a)

2
u2 +O(|u|3)

)
.

We choose ε0 > 0 sufficiently small and changing the coordinates on (−ε0, ε0) by u =
√

2v√
ω(a)

, we

write

I1(n) =
δn√

2ω(a)π
λn

a

∫ ε1

−ε1

(
(1− v2 + iQ(v))n(1 +O(v))(χ̂(−iδnξ(a)) +O(δnv))

)
dv + δnO(λn

aθ
n)

with ε1 =
√

ω(a)
2 ε0 and real valued function Q(v) = O(|v|3). The analysis of the asymptotic of this

integral is given in section 4.1 in [11]. The leading term has the form

δn√
2ω(a)π

χ̂(0)λn
a

∫ ε1

−ε1

(1− v2)ndv =
δnλ

n
a√

2ω(a)π
χ̂(0)

√
π

n
+ δnO

(λn
a

n

)
, n→∞.

Thus we deduce

I1(n) ∼ δn√
2πω(a)n

(∫
χ(t)dt

)
enJ(a) +O

(δnenJ(a)

n

)
. (3.4)

Next consider the integral

I2(n) =
δn
2π

∫
ε0<|u|≤ c

a

(∫
Ln

f+(ξ(a)+iu)ga
1(x)dµ(x)

)
χ̂(δn(u− iξ(a)))du

with c� 1 sufficiently large. Since ga is non-lattice, for 0 < ε0 ≤ |u| ≤ c
a the operator Lf+(ξ(a)+iu)ga

has no eigenvalues λ with |λ| = λa and the spectral radius of Lf+(ξ(a)+iu)ga
is strictly less than λa.

Thus, there exists α = α(a, c), 0 < α < 1, such that for n ≥ N(a, c) we have

‖Ln
f+(ξ(a)+iu)ga

‖ ≤ αnλn
a . (3.5)

On the other hand,

|χ̂(δn(u− iξ(a)))| ≤ Ck
ec0δn|ξ(a)|

δk
n|u|k

, |u| ≥ ε0, ∀k ∈ N , (3.6)

with c0 > 0 depending on the support of χ. Applying (3.5) and (3.6) with k = 0, for large n we get

I2(n) = O
(δnenJ(a)

n

)
.
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Now consider

I3(n) =
δn
2π

∫
|u|> c

a

(∫
Ln

f+(ξ(a)+iu)ga
1(x)dµ(x)

)
χ̂(δn(u− iξ(a)))du .

We are going to use the spectral estimates established in Theorem 1 for the Ruelle operator

Lf−a(ξ(a)+iu)τ+(ξ(a)+iu)g = Lf+ξ(a)(g−aτ)−iauτ+iug.

Then |u| ≤ 1
|a| |au| and for sufficiently large |u| ≥ c

a and for every ε > 0 we are in situation to apply
the spectral estimates ∥∥∥Ln

f−ξ(a)(g−aτ)−iauτ+iug1
∥∥∥
∞

≤ Cεe
nPr(f+ξ(a)(g−aτ))ρn|au|ε, 0 < ρ < 1, |au| ≥ c, n ∈ N. (3.7)

Fix 0 < ε ≤ 1/2 and apply the estimate (3.6) with k = 2 and (3.7) for ε. This gives

|I3(n)| ≤ δnλ
n
aAεe

c0δn|ξ(a)| ρ
n|a|ε

δ2n

∫
|u|> c

a

|u|ε−2du = Dδnλ
n
a

(ρn

δ2n

)
.

Recall that we have the condition
0 < δ ≤ α0 ≤ − log ρ

2
and one deduces the inequality

n log ρ+ 2δn− log n ≤ 0,
which leads to

ρn

δ2n
≤ 1
n
, n ≥ 1 .

Thus, we conclude that

I3(n) = O
(δnenJ(a)

n

)
.

Consequently,

ρ(n) = I1(n) + I2(n) + I3(n) =
δn√

2πω(a)n

(∫
χ(t)dt

)
enJ(a)

(
1 +O(1/

√
n)
)
, n→∞

and this completes the proof of Proposition 1.

To establish Theorem 2, as in [11], [8], we approximate the characteristic function 1[−1,1] of the
interval [−1, 1] by cut-off functions.

4. Ruelle operators – definitions and assumptions

Assume as in Sect. 1 that ϕt : M −→M is a C2 weak mixing Axiom A flow and Λ be a basic
set for ϕt. Here we work under the same assumptions as these in [9]. One of these is:

(LNIC): There exist z0 ∈ Λ, ε0 > 0 and θ0 > 0 such that for any ε ∈ (0, ε0], any ẑ ∈ Λ∩W u
ε (z0) and

any tangent vector η ∈ Eu(ẑ) to Λ at ẑ with ‖η‖ = 1 there exist z̃ ∈ Λ∩W u
ε (ẑ), ỹ1, ỹ2 ∈ Λ∩W s

ε (z̃)
with ỹ1 6= ỹ2, δ = δ(z̃, ỹ1, ỹ2) > 0 and ε′ = ε′(z̃, ỹ1, ỹ2) ∈ (0, ε] such that

|∆(expu
z (v), πỹ1(z))−∆(expu

z (v), πỹ2(z))| ≥ δ ‖v‖
for all z ∈W u

ε′ (z̃)∩Λ and v ∈ Eu(z; ε′) with expu
z (v) ∈ Λ and 〈 v

‖v‖ , ηz〉 ≥ θ0, where ηz is the parallel
translate of η along the geodesic in W u

ε0(z0) from ẑ to z.
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The above condition may seem complicated at a first glance, however a careful look at it shows
that it is just a rather natural non-integrability condition.

Given x ∈ Λ, T > 0 and δ ∈ (0, ε] set

Bu
T (x, δ) = {y ∈W u

ε (x) : d(ϕt(x), ϕt(y)) ≤ δ , 0 ≤ t ≤ T}.
We will say that ϕt has a regular distortion along unstable manifolds over the basic set Λ if

there exists a constant ε0 > 0 with the following properties:

(a) For any 0 < δ ≤ ε ≤ ε0 there exists a constant R = R(δ, ε) > 0 such that

diam(Λ ∩Bu
T (z, ε)) ≤ R diam(Λ ∩Bu

T (z, δ))

for any z ∈ Λ and any T > 0.

(b) For any ε ∈ (0, ε0] and any ρ ∈ (0, 1) there exists δ ∈ (0, ε] such that for any z ∈ Λ and any
T > 0 we have diam(Λ ∩Bu

T (z, δ)) ≤ ρ diam(Λ ∩Bu
T (z, ε)).

In this paper we work under the following Standing Assumptions:

(A) ϕt has Lipschitz local holonomy maps over Λ,

(B) the local non-integrability condition (LNIC) holds for ϕt on Λ,

(C) ϕt has a regular distortion along unstable manifolds over the basic set Λ.

A rather large class of examples satisfying the conditions (A) – (C) is provided by imposing
the following pinching condition:

(P): There exist constants C > 0 and β ≥ α > 0 such that for every x ∈M we have
1
C
eαx t ‖u‖ ≤ ‖dϕt(x) · u‖ ≤ C eβx t ‖u‖ , u ∈ Eu(x) , t > 0

for some constants αx, βx > 0 with α ≤ αx ≤ βx ≤ β and 2αx − βx ≥ α for all x ∈M .

We should note that (P) holds for geodesic flows on manifolds of strictly negative sectional
curvature satisfying the so called 1

4 -pinching condition. (P) always holds when dim(M) = 3.

Simplifying Assumptions: ϕt is a C2 contact Anosov flow satisfying the condition (P).

By [13], the pinching condition (P) implies that ϕt has Lipschitz local holonomy maps and
regular distortion along unstable manifolds. This and Proposition 6.1 in [13] show that:

the Simplifying Assumptions imply the Standing Assumptions.

Throughout we work under the Standing Assumptions. In what follows we will use
arguments similar to those in section 4 in [9], however technically they will be more complicated,
since the numbers of parameters involved will increase. E.g. where we had functions fat, hat, etc.,
depending on two parameters, now we have to deal with functions fatc, hatc, etc., depending on
three parameters. While some of the arguments we use here are almost the same as corresponding
arguments in [9] (and we omit them), there are others that require more significant modification
and we do them in some detail.

Let R = {Ri}k
i=1 be a fixed Markov family for the flow φt on Λ consisting of rectangles

Ri = [Ui, Si] and let U = ∪k
i=1Ui (see section 2). Then (2.1) hold for some constants c0 ∈ (0, 1] and

γ1 > γ0 > 1. Let Û be the set of those points x ∈ U such that Pm(x) is not a boundary point of a
rectangle for any integer m. In a similar way define R̂.
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Fix a number α > 0 and two real-valued functions f and g in Cα(Û). Let P = Pf be
the unique real number so that Pr(f − P τ) = 0, where Pr is the topological pressure with respect
to σ. For any t ∈ R with t ≥ 1, let ft be the average of f over balls in U of radius 1/t obtained
as follows: fix an arbitrary extension f ∈ Cα(V ) (with the same Hölder constant), where V is an
open neighborhood of U in M , and then take the averages in question. Then ft ∈ C∞(V ) and:

(a) ‖f − ft‖∞ ≤ |f |α/tα ;
(b) Lip(ft) ≤ Const ‖f‖∞t ;
(c) For any β ∈ (0, α) we have |f − ft|β ≤ 2 |f |α/tα−β.

Let G : Λ −→ R be a fixed α-Hölder function which is constant on the stable leaves
of all ”rectangular boxes” Bi = {ϕt(x) : x ∈ Ri, 0 ≤ t ≤ τ(x)}, i = 1, . . . , k.

Given a large parameter t > 0, define Gt as above, so that Gt is again constant on the stable
leaves of all rectangular boxes Bi and

(a′) ‖G−Gt‖∞ ≤ |G|α/tα ;
(b′) Lip(Gt) ≤ Const ‖G‖∞t ;
(c′) For any β ∈ (0, α) we have |G−Gt|β ≤ 2 |G|α/tα−β.
In particular, for some constant C0 > 0 we have Lip(Gt) ≤ C0t.

Then define gt : R −→ R by

gt(x) =
∫ τ(x)

0
Gt(π(x, s)) ds. (4.1)

Clearly gt is α-Hölder and constant on stable leaves, so we can regard gt as a function on U . Thus,
gt ∈ Cα(U).

Let λ0 > 0 be the largest eigenvalue of Lf , i.e. λ0 = eP , and let ν̂0 be the (unique) probability
measure on U with L∗f ν̂0 = λ0 ν̂0. Fix a corresponding (positive) eigenfunction h0 ∈ Ĉα(U) such
that

∫
U h0 dν̂0 = 1. Then dν0 = h0 dν̂0 defines a σ-invariant probability measure ν0 on U . Setting

f (0) = f + lnh0(u)− lnh0(σ(u))− lnλ0,

we have L∗
f (0)ν0 = ν0, i.e.

∫
U
Lf (0)H dν0 =

∫
U
H dν0 for any H ∈ C(U) and Lf (0)1 = 1.

Given real numbers a, c and t (with |a| + 1
|t| small and c ∈ I), denote by λatc the largest

eigenvalue of Lft−aτ+cgt on CLip(U) and by hatc the corresponding (positive) eigenfunction such that∫
U hatc dνatc = 1, where ν̂atc is the unique probability measure on U with L∗ft−a τ+cgt

ν̂atc = λatc ν̂atc.
Setting dνatc = hatc dν̂atc defines a σ-invariant probability measure νatc on U .

Given θ ∈ (0, 1), consider the metric dθ on Û defined by dθ(x, x) = 0 and dθ(x, y) = θm, where
m is the largest integer such that x 6= y belong to the same cylinder of length m. Taking θ ∈ (0, 1)
sufficiently close to 1 and β ∈ (0, α) sufficiently close to 0 we have (d(x, y))α ≤ Const dθ(x, y) and
dθ(x, y) ≤ Const (d(x, y))β for all x, y ∈ Û . In what follows we assume that θ and β satisfy these
assumptions.

By the properties of the approximations ft and gt stated above, there exists a constant C0 > 0,
depending on f and α but independent of β, such that

‖[ft − aτ + cg]− f‖β ≤ C0 [|a|+ |c|+ 1/tα−β] (4.2)

for all |a|, |c| ≤ 1 and t ≥ 1. Next, the analyticity of pressure and the eigenfunction projection
corresponding to the maximal eigenvalue λatc = ePr(ft−aτ+cgt) of the Ruelle operator Lft−aτ+cgt on
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Cβ(U) (cf. e.g. Ch. 3 in [7] or Appendix 1 in [6]) that there exists a constant a0 > 0 such that,
taking C0 > 0 sufficiently large, we have

|Pr(ft−aτ + cgt)−P | ≤ C0

(
|a|+ |c|+ 1

tα−β

)
, ‖hatc−h0‖β ≤ C0

(
|a|+ |c|+ 1

tα−β

)
(4.3)

for |a|, |c| ≤ a0 and 1/t ≤ a0. We take C0 > 0 and a0 > 0 so that

λ0/C0 ≤ λatc ≤ C0 λ0,

‖ft‖∞ ≤ C0 and 1/C0 ≤ hatc(u) ≤ C0 for all u ∈ U and all |a|, |c|, 1/t ≤ a0.
Given real numbers a, c and t with |a|, |c|, 1/t ≤ a0 consider the functions

fatc = ft − aτ + cgt + lnhatc − ln(hatc ◦ σ)− lnλatc

and the operators Matc = Lfatc : C(U) −→ C(U). One checks that Matc 1 = 1.
Taking the constant C0 > 0 sufficiently large, we may assume that

‖fatc − f (0)‖β ≤ C0

[
|a|+ |c|+ 1

tα−β

]
, |a|, |c|, 1/t ≤ a0. (4.4)

The proof of the following lemma is given in [9] when c = 0. In the case with three parameters
the proof is almost the same, so we omit it.

Lemma 1. Taking the constant a0 > 0 sufficiently small, there exists a constant T ′ > 0 such that
for all a, t, c ∈ R with |a|, |c| ≤ a0 and t ≥ 1/a0 we have hatc ∈ CLip(Û) and Lip(hatc) ≤ T ′t.

Consequently, assuming a0 > 0 is chosen sufficiently small, there exists a constant T > 0
(depending on |f |α and a0) such that

‖fatc‖∞ ≤ T , ‖gt‖∞ ≤ T , Lip(hatc) ≤ T t , Lip(fatc) ≤ T t (4.5)

for |a|, |c|, 1/t ≤ a0. In what follows we assume that a0, C0, T ≥ max{ ‖τ‖0 , Lip(τ|bU ) } 1 < γ0 <

γ1 are fixed constants with (2.1) and (4.2) – (4.5).

Next, Ruelle operators of the form Lf−sτ+zg, where s = a + ib and z = c + iw, a, b, c, w ∈ R,
and |a|, |c| ≤ a0 for some constant a0 > 0, will be studied approximating them by Ruelle operators
of the form

Labtz = Lfatc−i bτ+zgt : Cα(Û) −→ Cα(Û).

Since fatc − ibτ + zgt is Lipschitz, the operators Labtz preserve each of the spaces Cα′(Û) for
0 < α′ ≤ 1 including the space CLip(Û) of Lipschitz functions h : Û −→ C. For such h we will
denote by Lip(h) the Lipschitz constant of h. For |b| ≥ 1, define the norm ‖.‖Lip,b on CLip(Û) by

‖h‖Lip,b = ‖h‖0 + Lip(h)
|b| . Recall the norm ‖h‖β,b = ‖h‖∞ + |h|β

|b| on Cβ(U) defined in section 1.
The main step in proving Theorem 1 is the following.

Theorem 3. Under the assumptions in Theorem 1 there exist constants 0 < ρ < 1, a0 > 0, b0 ≥ 1,
A0 > 0 and C = C(B, ε) > 0 such that if a, c ∈ R satisfy |a|, |c| ≤ a0, then

‖Lm
fatc−ibτ+(c+iw)gt

h‖Lip,b ≤ C ρm ‖h‖Lip,b

for all h ∈ CLip(Û), all integers m ≥ 1 and all b, w, t ∈ R with |b| ≥ b0, teA0t ≤ |b| and |w| ≤ B |b|.
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Throughout we work under the Standing Assumptions made above and with fixed real-valued
functions f, g ∈ Cα(Û) as in section 1, where α > 0 is a fixed number. Another fixed number
β ∈ (0, α) will be used later.

Assuming that all rectangles Ri are sufficiently small we have diam(Ui) < 1 for all i. Recall the
metric D on Û defined in [12]: D(x, y) = min{diam(C) : x, y ∈ C , C a cylinder contained in Ui}
if x, y ∈ Ui for some i = 1, . . . , k, and D(x, y) = 1 otherwise. As shown in [12], d(x, y) ≤ D(x, y)
for x, y ∈ Ûi for some i, and for any cylinder C in U the characteristic function χbC of Ĉ on Û is

Lipschitz with respect to D and LipD(χbC) ≤ 1/diam(C). Let CLip
D (Û) be the space of all Lipschitz

functions h : Û −→ C with respect to the metric D and let LipD(h) be the Lipschitz constant of h
with respect to D.

Given A > 0, denote by KA(Û) the set of all functions h ∈ C
Lip
D (Û) such that h > 0 and

|h(u)−h(u′)|
h(u′) ≤ AD(u, u′) for all u, u′ ∈ Û that belong to the same Ûi for some i = 1, . . . , k. For

h ∈ KA(Û) we have | lnh(u) − lnh(v)| ≤ A D(u, v) and so e−A D(u,v) ≤ h(u)
h(v) ≤ eA D(u,v) for all

u, v ∈ Ûi, i = 1, . . . , k.
Fix an arbitrary constant γ̂ with 1 < γ̂ < γ0. The following lemma is similar to Lemma

5.2 in [9], hoverer some technical details are different, so we sketch its proof in the Appendix.

Lemma 2. Assuming a0 > 0 is chosen sufficiently small, there exists a constant A0 > 0 such that
for all a, c, t ∈ R with |a|, |c| ≤ a0 and t ≥ 1 the following hold:

(a) If H ∈ KQ(Û) for some Q > 0, then

|(Mm
atcH)(u)− (Mm

atcH)(u′)|
(Mm

atcH)(u′)
≤ A0

[
Q

γ̂m
+ eA0t t

]
D(u, u′)

for all m ≥ 1 and all u, u′ ∈ Ui, i = 1, . . . , k.

(b) If the functions h and H on Û and Q > 0 are such that H > 0 on Û and

|h(v)− h(v′)| ≤ tQH(v′)D(v, v′)

for any v, v′ ∈ Ûi, i = 1, . . . , k, then for any integer m ≥ 1 and any b, w ∈ R with |b|, |w| ≥ 1, for
z = c+ iw we have

|Lm
abtzh(u)− Lm

abtzh(u
′)| ≤ A0

(
tQ

γ̂m
(Mm

atcH)(u′) + (|b|+ eA0tt+ t|w|)(Mm
atc|h|)(u′)

)
D(u, u′)

whenever u, u′ ∈ Ûi for some i = 1, . . . , k. In particular, if eA0tt ≤ |b| and |w| ≤ B|b| for some
constant B > 0, then

|Lm
abtzh(u)− Lm

abtzh(u
′)| ≤ A1

(
tQ

γ̂m
(Mm

atcH)(u′) + t |b|(Mm
atc|h|)(u′)

)
D(u, u′).

for some constant A1 > 0, depending on B.

From now on we will assume that a0 and A0 are fixed with the properties in Lemma
2 above and a, b, c, w, t ∈ R are such that |a|, |c| ≤ a0, |b|, t, |w| ≥ 1 and |w| ≤ B|b|. As before,
set z = c+ id.

As in [9], we need the entire set-up and notation from section 4 in [12], so we will now recall
some of it.
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Following section 4 in [12], fix an arbitrary point z0 ∈ Λ and constants ε0 > 0 and θ0 ∈
(0, 1) with the properties described in (LNIC). Assume that z0 ∈ IntΛ(U1), U1 ⊂ Λ ∩W u

ε0(z0)
and S1 ⊂ Λ ∩W s

ε0(z0). Fix an arbitrary constant θ1 such that 0 < θ0 < θ1 < 1 .
Next, fix an arbitrary orthonormal basis e1, . . . , en in Eu(z0) and a C1 parameterization r(s) =

expu
z0

(s), s ∈ V ′0 , of a small neighborhood W0 of z0 in W u
ε0(z0) such that V ′0 is a convex compact

neighborhood of 0 in Rn ≈ span(e1, . . . , en) = Eu(z0). Then r(0) = z0 and ∂
∂si
r(s)|s=0 = ei for

all i = 1, . . . , n. Set U ′0 = W0 ∩ Λ. Shrinking W0 (and therefore V ′0 as well) if necessary, we may
assume that U ′0 ⊂ IntΛ(U1) and

∣∣∣〈 ∂r
∂si

(s), ∂r
∂sj

(s)
〉
− δij

∣∣∣ is uniformly small for all i, j = 1, . . . , n and

s ∈ V ′0 , so that 1
2〈ξ, η〉 ≤ 〈 dr(s) · ξ , dr(s) · η 〉 ≤ 2 〈ξ, η〉 for all ξ, η ∈ Eu(z0) and s ∈ V ′0 , and

1
2 ‖s− s′‖ ≤ d(r(s), r(s′)) ≤ 2 ‖s− s′‖ for all s, s′ ∈ V ′0 .

Definitions ([12]): (a) For a cylinder C ⊂ U ′0 and a unit vector ξ ∈ Eu(z0) we will say that
a separation by a ξ-plane occurs in C if there exist u, v ∈ C with d(u, v) ≥ 1

2 diam(C) such that〈
r−1(v)−r−1(u)
‖r−1(v)−r−1(u)‖ , ξ

〉
≥ θ1 .

Let Sξ be the family of all cylinders C contained in U ′0 such that a separation by an ξ-plane
occurs in C.

(b) Given an open subset V of U ′0 which is a finite union of open cylinders and δ > 0, let
C1, . . . , Cp (p = p(δ) ≥ 1) be the family of maximal closed cylinders in V with diam(Cj) ≤ δ. For
any unit vector ξ ∈ Eu(z0) set M (δ)

ξ (V ) = ∪{Cj : Cj ∈ Sξ , 1 ≤ j ≤ p} .

In what follows we will construct, amongst other things, a sequence of unit vectors ξ1, ξ2, . . . , ξj0 ∈
Eu(z0). For each ` = 1, . . . , j0 set R` = {η ∈ Sn−1 : 〈η, ξ`〉 ≥ θ0}. For t ∈ R and s ∈ Eu(z0) set
Iη,tg(s) = g(s+t η)−g(s)

t , t 6= 0 (increment of g in the direction of η).

Lemma 3. ([12]) There exist integers 1 ≤ n1 ≤ N0 and `0 ≥ 1, a sequence of unit vectors
η1, η2, . . . , η`0 ∈ Eu(z0) and a non-empty open subset U0 of U ′0 which is a finite union of open
cylinders of length n1 such that setting U = σn1(U0) we have:

(a) For any integer N ≥ N0 there exist Lipschitz maps v(`)
1 , v

(`)
2 : U −→ U (` = 1, . . . , `0) such

that σN (v(`)
i (x)) = x for all x ∈ U and v

(`)
i (U) is a finite union of open cylinders of length N

(i = 1, 2; ` = 1, 2, . . . , `0).
(b) There exists a constant δ̂ > 0 such that for all ` = 1, . . . , `0, s ∈ r−1(U0), 0 < |h| ≤ δ̂ and

η ∈ R` with s+ h η ∈ r−1(U0 ∩ Λ) we have[
Iη,h

(
τN (v(`)

2 (r̃(·)))− τN (v(`)
1 (r̃(·)))

)]
(s) ≥ δ̂

2
.

(c) We have v(`)
i (U)

⋂
v

(`′)
i′ (U) = ∅ whenever (i, `) 6= (i′, `′).

(d) For any open cylinder V in U0 there exists a constant δ′ = δ′(V ) > 0 such that

V ⊂M (δ)
η1

(V ) ∪M (δ)
η2

(V ) ∪ . . . ∪M (δ)
η`0

(V )

for all δ ∈ (0, δ′].

Fix U0 and U with the properties described in Lemma 3; then U = U .
Set δ̂ = min

1≤`≤`0
δ̂j , n0 = max

1≤`≤`0
m`, and fix an arbitrary point ẑ0 ∈ U (`0)

0 ∩ Û .
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Fix integers 1 ≤ n1 ≤ N0 and `0 ≥ 1, unit vectors η1, η2, . . . , η`0 ∈ Eu(z0) and a non-empty open
subset U0 of W0 with the properties described in Lemma 3. By the choice of U0, σn1 : U0 −→ U is
one-to-one and has an inverse map ψ : U −→ U0, which is Lipschitz.

Next, assume thatB > 1, β ∈ (0, α) and E ≥ max
{

4A0 , BC1 ,
2A0 T
γ−1

}
are fixed constants,

where A0 ≥ 1 is the constant from Lemma 2 and C1 is the constant from the proof of Lemma 2 in
the Appendix. Fix an integer N ≥ N0 such that

γ̂N ≥ max
{

6A0 ,
200 γn1

1 A0

c20
,

512 γn1
1 E

c0 δ̂ ρ

}
. (4.6)

We will also assume now that the parameter t = t(a0, N) > 1 is fixed with

a0 ≤
1

tα−β
≤ 2a0 , t ≤ c0δ̂ργ̂

N

500Eγn1
1

. (4.7)

(Part of this condition will be needed for the proof of Theorem 1.) Clearly the above requires
to assume that a0 = a0(N) satisfies a1/(α−β)

0 ≤ t. Some other conditions on the small parameter
a0 = a0(N) > 0 will be imposed later. We will also need to choose

b0 ≥ teA0t.

Let the parameters b, w ∈ R be so that |w| ≤ B |b| and |b|, |w| ≥ b0.
Next, fix maps v(`)

i : U −→ U (` = 1, . . . , `0, i = 1, 2) with the properties (a), (b), (c) and (d)

in Lemma 3. In particular, (c) gives v(`)
i (U) ∩ v(`′)

i′ (U) = ∅ for all (i, `) 6= (i′, `′).
Since U0 is a finite union of open cylinders, it follows from Lemma 3(d) that there exist a

constant δ′ = δ′(U0) > 0 such that M (δ)
η1 (U0) ∪ . . . ∪M (δ)

η`0
(U0) ⊃ U0 for all δ ∈ (0, δ′]. Fix δ′ with

this property. Set

ε1 = min
{

1
32C0

, c1 ,
1

4E
,

1

δ̂ ρp0+2
,
c0r0
γn1

1

,
c20(γ − 1)
16Tγn1

1

}
.

We will also assume that b0 is chosen so that ε1
b0
≤ δ′.

Let Cm (1 ≤ m ≤ p) be the family of maximal closed cylinders contained in U0 with diam(Cm) ≤
ε1
|b| such that U0 ⊂ ∪p

j=mCm and U0 = ∪p
m=1Cm. As in [13],

ρ
ε1
|b|
≤ diam(Cm) ≤ ε1

|b|
, 1 ≤ m ≤ p . (4.8)

Fix an integer q0 ≥ 1 such that 32ρq0−1 < θ1 − θ0, i.e. θ0 < θ1 − 32 ρq0−1. Next, let D1, . . . ,Dq

be the list of all closed cylinders contained in U0 that are subcylinders of co-length p0 q0 of some
Cm (1 ≤ m ≤ p). Then U0 = C1 ∪ . . . ∪ Cp = D1 ∪ . . . ∪ Dq. Moreover,

ρp0 q0+1 · ε1
|b|
≤ diam(Dj) ≤ ρq0 · ε1

|b|
, 1 ≤ j ≤ q.

Given j = 1, . . . , q, ` = 1, . . . , `0 and i = 1, 2, set D̂j = Dj ∩ Û , Zj = σn1(D̂j), Ẑj = Zj ∩ Û ,

X
(`)
i,j = v

(`)
i (Ẑj), and X̂

(`)
i,j = X

(`)
i,j ∩ Û . It then follows that Dj = ψ(Zj), and U = ∪q

j=1Zj .

Moreover, σN−n1(v(`)
i (x)) = ψ(x) for all x ∈ U , and all X(`)

i,j are cylinders such that X(`)
i,j ∩X

(`′)
i′,j′ = ∅

whenever (i, j, `) 6= (i′, j′, `′), and diam(X(`)
i,j ) ≥ c0 ρ

p0 q0+1

γN
1

· ε1
|b|

for all i = 1, 2, j = 1, . . . , q and
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` = 1, . . . , `0. The characteristic function ω(`)
i,j = χ bX(`)

i,j

: Û −→ [0, 1] of X̂(`)
i,j belongs to CLip

D (Û) and

LipD(X(`)
i,j ) ≤ 1/diam(X(`)

i,j ). Set

µ0 = µ0(N) = min

{
1
4
,
c0 ρ

p0q0+2 ε1

4 γN
1

,
1

4 e2TN
sin2

(
δ̂ ρ ε1
256

) }
.

Let J be a subset of the set Ξ = { (i, j, `) : 1 ≤ i ≤ 2 , 1 ≤ j ≤ q , 1 ≤ ` ≤ `0 }. Define the
function ω = ωJ : Û −→ [0, 1] by

ω = 1− µ0

∑
(i,j,`)∈J

ω
(`)
i,j .

Clearly ω ∈ CLip
D (Û) and 1−µ0 ≤ ω(u) ≤ 1 for any u ∈ Û . Moreover, LipD(ω) ≤ Γ = 2µ0 γN

1

c0 ρp0q0+2 · |b|ε1
.

Next, define the contraction operator N = NJ(a, b, t, c) : CLip
D (Û) −→ C

Lip
D (Û) by

(Nh) = MN
atc(ωJ · h).

Using Lemma 2 above, the proof of the following lemma is very similar to that of Lemma 5.6
in [12] and we omit it.

Lemma 4. Under the above conditions for N and µ the following hold :
(a) Nh ∈ KE|b|(Û) for any h ∈ KE|b|(Û);

(b) If h ∈ C
Lip
D (Û) and H ∈ KE|b|(Û) are such that |h(v) − h(v′)| ≤ E t |b|H(v′)D(v, v′) for

any v, v′ ∈ Uj, j = 1, . . . , k and |h| ≤ H on Û and, then for any i = 1, . . . , k and any u, u′ ∈ Ûi we
have |(LN

abtzh)(u)− (LN
abtzh)(u

′)| ≤ E t |b| (NH)(u′)D(u, u′).

Definition. A subset J of Ξ will be called dense if for any m = 1, . . . , p there exists (i, j, `) ∈ J
such that Dj ⊂ Cm.

Denote by J = J(a, b, z) the set of all dense subsets J of Ξ.
Although the operator N here is different, the proof of the following lemma is very similar to

that of Lemma 5.8 in [12] and we omit it.

Lemma 5. Given the number N , there exist ρ2 = ρ2(N) ∈ (0, 1) and a0 = a0(N) > 0 such that∫
bU (NJH)2dν ≤ ρ2

∫
bU H2dν

whenever |a|, |c| ≤ a0, t ≥ 1/a0, J is dense and H ∈ KE|b|(Û).

Until the end of this section we will assume that h,H ∈ C
Lip
D (Û) are fixed functions such

that
H ∈ KE|b|(Û) , |h(u)| ≤ H(u) , u ∈ Û , (4.9)

and
|h(u)− h(u′)| ≤ E t |b|H(u′)D(u, u′) whenever u, u′ ∈ Ûi , i = 1, . . . , k . (4.10)
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Let again z = c+ iw. Define the functions χ(i)
` : Û −→ C (` = 1, . . . , j0, i = 1, 2) by

χ
(1)
` (u) =

∣∣∣e(fN
atc−ibτN+iwgN

t )(v
(`)
1 (u))h(v(`)

1 (u)) + e(f
N
atc−ibτN+iwgN

t )(v
(`)
2 (u))h(v(`)

2 (u))
∣∣∣

(1− µ)ef
N
atc(v

(`)
1 (u))H(v(`)

1 (u)) + ef
N
atc(v

(`)
2 (u))H(v(`)

2 (u))
,

χ
(2)
` (u) =

∣∣∣e(fN
atc−ibτN+iwgN

t )(v
(`)
1 (u))h(v(`)

1 (u)) + e(f
N
atc−ibτN+iwgN

t )(v
(`)
2 (u))h(v(`)

2 (u))
∣∣∣

ef
N
atc(v

(`)
1 (u))H(v(`)

1 (u)) + (1− µ)ef
N
atc(v

(`)
2 (u))H(v(`)

2 (u))
,

and set
γ`(u) = |b| [τN (v(`)

2 (u))− τN (v(`)
1 (u))].

for all u ∈ Û .

Definitions ([12]) We will say that the cylinders Dj and Dj′ are adjacent if they are subcylinders of
the same Cm for some m. If Dj and Dj′ are contained in Cm for some m and for some ` = 1, . . . , `0
there exist u ∈ Dj and v ∈ Dj′ such that d(u, v) ≥ 1

2 diam(Cm) and
〈

r−1(v)−r−1(u)
‖r−1(v)−r−1(u)‖ , η`

〉
≥ θ1 we

will say that Dj and Dj′ are η`-separable in Cm.

As a consequence of Lemma 3(b) one gets the following whose proof is almost the same as that
of Lemma 5.9 in [12], so we omit it.

Lemma 6. Let j, j′ ∈ {1, 2, . . . , q} be such that Dj and Dj′ are contained in Cm and are η`-separable
in Cm for some m = 1, . . . , p and ` = 1, . . . , `0 . Then |γ`(u)− γ`(u′)| ≥ Ac2 ε1 for all u ∈ Ẑj and

u′ ∈ Ẑj′, where c2 = δ̂ ρ
16 .

The following lemma is the analogue of Lemma 5.10 in [12] and represents the main step in
proving Theorem 1.

Lemma 7. Assume |b| ≥ b0 for some sufficiently large b0 > 0, |a|, |c| ≤ a0, and let |w| ≤ B|b|.
Then for any j = 1, . . . , q there exist i ∈ {1, 2}, j′ ∈ {1, . . . , q} and ` ∈ {1, . . . , `0} such that Dj

and Dj′ are adjacent and χ(i)
` (u) ≤ 1 for all u ∈ Ẑj′.

To prove this we need the following lemma which is the analogue of Lemma 14 in [4] and its
proof is very similar, so we omit it.

Lemma 8. If h and H satisfy (4.9)-(4.10), then for any j = 1, . . . , q, i = 1, 2 and ` = 1, . . . , `0 we
have:

(a) 1
2 ≤

H(v
(`)
i (u′))

H(v
(`)
i (u′′))

≤ 2 for all u′, u′′ ∈ Ẑj;

(b) Either for all u ∈ Ẑj we have |h(v(`)
i (u))| ≤ 3

4H(v(`)
i (u)), or |h(v(`)

i (u))| ≥ 1
4H(v(`)

i (u)) for
all u ∈ Ẑj.

Sketch of proof of Lemma 7. We use a modification of the proof of Lemma 5.10 in [12].
Given j = 1, . . . , q, let m = 1, . . . , p be such that Dj ⊂ Cm. As in [12] we find j′, j′′ = 1, . . . , q

such that Dj′ ,Dj′′ ⊂ Cm and Dj′ and Dj′′ are η`-separable in Cm.
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Fix `, j′ and j′′ with the above properties, and set Ẑ = Ẑj∪Ẑj′∪Ẑj′′ . If there exist t ∈ {j, j′, j′′}
and i = 1, 2 such that the first alternative in Lemma 8(b) holds for Ẑt, ` and i, then µ ≤ 1/4 implies
χ

(i)
` (u) ≤ 1 for any u ∈ Ẑt.

Assume that for every t ∈ {j, j′, j′′} and every i = 1, 2 the second alternative in Lemma 8(b)
holds for Ẑt, ` and i, i.e. |h(v(`)

i (u))| ≥ 1
4 H(v(`)

i (u)), u ∈ Ẑ.
Since ψ(Ẑ) = D̂j∪D̂j′∪D̂j′′ ⊂ Cm, given u, u′ ∈ Ẑ we have σN−n1(v(`)

i (u)), σN−n1(v(`)
i (u′)) ∈ Cm.

Moreover, C′ = v
(`)
i (σn1(Cm)) is a cylinder with diam(C′) ≤ ε1

c0 γ
N−n1
0 |b|

. Now the estimate (6.2) in

the Appendix below implies |gN
t (v(`)

i (u)) − gN
t (v(`)

i (u′))| ≤ C1tε1
c0 γ

N−n1
0 |b|

. Assume for example that

ecg
N
t (v

(`)
i (u))|h(v(`)

i (u))| ≥ ecg
N
t (v

(`)
i (u))|h(v(`)

i (u′))|. Then2

|ezgN
t (v

(`)
i (u))h(v(`)

i (u))− ezgN
t (v

(`)
i (u′))h(v(`)

i (u′))|

min{|ezgN
t (v

(`)
i (u))h(v(`)

i (u))|, |ezgN
t (v

(`)
i (u′))h(v(`)

i (u′))|}

≤ |ezgN
t (v

(`)
i (u)) − ezgN

t (v
(`)
i (u′))|

ecg
N
t (v

(`)
i (u′))

+
ecg

N
t (v

(`)
i (u))|h(v(`)

i (u))− h(v(`)
i (u′))|

ecg
N
t (v

(`)
i (u′))|h(v(`)

i (u′))|

≤ |ezgN
t (v

(`)
i (u)) − ezgN

t (v
(`)
i (u′))|

ecg
N
t (v

(`)
i (u′))

+
ec(g

N
t (v

(`)
i (u′))−gN

t (v
(`)
i (u′)))E|b|H(v(`)

i (u′))

|h(v(`)
i (u′))|

D(v(`)
i (u), v(`)

i (u′))

≤ |ecgN
t (v

(`)
i (u)) − ecg

N
t (v

(`)
i (u′))|

ecg
N
t (v

(`)
i (u′))

+ |eiwgN
t (v

(`)
i (u)) − eiwgN

t (v
(`)
i (u′))|+ 4E|b|e2a0NT diam(C′)

≤ (eC1tC1t+ |w|C1t)D(v(`)
i (u), v(`)

i (u′)) + 4E|b|e2Na0T γn1ε1
c0γN

≤ (B +A0)γn1ε1
c0γN

+
4Eγn1ε1

c0(e−2a0Tγ0)N
<

π

12

assuming a0 > 0 is chosen sufficiently small and N sufficiently large. So, the angle between the
complex numbers ezgN

t (v
(`)
i (u)h(v(`)

i (u)) and ezgN
t (v

(`)
i (u′)h(v(`)

i (u′)) (regarded as vectors in R2) is
< π/6. In particular, for each i = 1, 2 we can choose a real continuous function θi(u), u ∈ Ẑ, with
values in [0, π/6] and a constant λi such that

ezgN
t (v

(`)
i (u))h(v(`)

i (u)) = ei(λi+θi(u))ecg
N
t (v

(`)
i (u))|h(v(`)

i (u))|

for all u ∈ Ẑ. Fix an arbitrary u0 ∈ Ẑ and set λ = γ`(u0). Replacing e.g λ2 by λ2 + 2mπ for some
integer m, we may assume that |λ2− λ1 + λ| ≤ π. Using the above, θ ≤ 2 sin θ for θ ∈ [0, π/6], and
some elementary geometry yields |θi(u)− θi(u′)| ≤ 2 sin |θi(u)− θi(u′)| < c2ε1

8 .

The difference between the arguments of the complex numbers ei b τN (v
(`)
1 (u))ezgN

t (v
(`)
1 (u)h(v(`)

1 (u))

and ei b τN (v
(`)
2 (u))ezgN

t (v
(`)
2 (u)h(v(`)

2 (u)) is given by the function

Γ(`)(u) = [b τN (v(`)
2 (u))+θ2(u)+λ2]−[b τN (v(`)

1 (u))+θ1(u)+λ1] = (λ2−λ1)+γ`(u)+(θ2(u)−θ1(u)) .

2Using some estimates as in the proof of Lemma 2(b) in the Appendix below and ‖cgN
t ‖0 ≤ a0NT by (4.5).
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Given u′ ∈ Ẑj′ and u′′ ∈ Ẑj′′ , since D̂j′ and D̂j′′ are contained in Cm and are η`-separable in Cm, it
follows from Lemma 6 and the above that

|Γ(`)(u′)− Γ(`)(u′′)| ≥ |γ`(u′)− γ`(u′′)| − |θ1(u′)− θ1(u′′)| − |θ2(u′)− θ2(u′′)| ≥
c2ε1
2

.

Thus, |Γ(`)(u′) − Γ(`)(u′′)| ≥ c2
2 ε1 for all u′ ∈ Ẑj′ and u′′ ∈ Ẑj′′ . Hence either |Γ(`)(u′)| ≥ c2

4 ε1 for
all u′ ∈ Ẑj′ or |Γ(`)(u′′)| ≥ c2

4 ε1 for all u′′ ∈ Ẑj′′ .
Assume for example that |Γ(`)(u)| ≥ c2

4 ε1 for all u ∈ Ẑj′ . Since Ẑ ⊂ σn1(Cm), as in [12] we have
for any u ∈ Ẑ we get |Γ`(u)| < 3π

2 . Thus, c2
4 ε1 ≤ |Γ(`)(u)| < 3π

2 for all u ∈ Ẑj′ . Now as in [4] (see
also [12]) one shows that χ(1)

` (u) ≤ 1 and χ(2)
` (u) ≤ 1 for all u ∈ Ẑj′ .

Parts (a) and (b) of the following lemma can be proved in the same way as the corresponding
parts of Lemma 5.3 in [12], while part (c) follows from Lemma 4(b).

Lemma 9. There exist a positive integer N and constants ρ̂ = ρ̂(N) ∈ (0, 1), a0 = a0(N) > 0,
b0 = b0(N) > 0 and E ≥ 1 such that for every a, b, c, t ≥ 1, w ∈ R with |a|, |c| ≤ a0, |b| ≥ b0 such
that |w| ≤ B|b|, there exists a finite family {NJ}J∈J of operators

NJ = NJ(a, b, t, c) : CLip
D (Û) −→ C

Lip
D (Û),

where J = J(a, b, t, c), with the following properties:
(a) The operators NJ preserve the cone KE|b|(Û) ;

(b) For all H ∈ KE|b|(Û) and J ∈ J we have
∫

bU (NJH)2 dν0 ≤ ρ̂

∫
bU H2 dν0.

(c) If h,H ∈ CLip
D (Û) are such that H ∈ KE|b|(Û), |h(u)| ≤ H(u) for all u ∈ Û and

|h(u)− h(u′)| ≤ Et|b|H(u′)D(u, u′)

whenever u, u′ ∈ Ûi for some i = 1, . . . , k, then there exists J ∈ J such that |LN
abtzh(u)| ≤ (NJH)(u)

for all u ∈ Û and for z = c+ iw we have

|(LN
abtzh)(u)− (LN

abtzh)(u
′)| ≤ E t |b|(NJH)(u′)D(u, u′)

whenever u, u′ ∈ Ûi for some i = 1, . . . , k.

Proof of Lemma 9. Set ρ̂ = 1− ε2.
Let a ∈ R and b, w ∈ R be such that |a| ≤ a0 and |w| ≤ B|b|, |b|, |w| ≥ b0, and let J ∈ J(a, b).

Then (a) follows from Lemma 4(a), while (b) follows from Lemma 5.
To check (c), assume that h,H ∈ CLip

D (Û) satisfy (4.9) and (4.10). Now define the subset J of
J(a, b) in the following way. First, include in J all (1, j, `) ∈ Ξ such that χ(1)

` (u) ≤ 1 for all u ∈ Ẑj .
Then for any j = 1, . . . , q and ` = 1, . . . , `0 include (2, j, `) in J if and only if (1, j, `) has not been
included in J (that is, χ(1)

` (u) > 1 for some u ∈ Ẑj) and χ(2)
` (u) ≤ 1 for all u ∈ Ẑj . It follows from

Lemma 7 that J is dense.
Consider the operator N = NJ(a, b) : CLip

D (Û) −→ C
Lip
D (Û). Then Lemma 4(b) implies

|(LN
abtz h)(u)− (LN

abtzh)(u
′)| ≤ E t |b|(N H)(u′)D(u, u′)

whenever u, u′ ∈ Ûi for some i = 1, . . . , k. So, it remains to show that∣∣(LN
abtzh)(u)

∣∣ ≤ (NH)(u) , u ∈ Û . (4.11)
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Let u ∈ Û . If u /∈ Ẑj for any (i, j, `) ∈ J , then ω(v) = 1 whenever σNv = u (since v ∈ X
(`)
i,j

implies u = σNv ∈ Zj). Hence∣∣(LN
abtzh)(u)

∣∣ = ∣∣∣∣∣ ∑
σNv=u

e(f
N
atc−ibτN+iwgN

t )(v)h(v)

∣∣∣∣∣ ≤ (MN
atc(ωH))(u) = (NH)(u).

Assume that u ∈ Ẑj for some (i, j, `) ∈ J . We will consider the case i = 1; the case i = 2 is
similar. (Notice that by the definition of J , we cannot have both (1, j, `) and (2, j, `) in J .) Then
χ

(1)
` (u) ≤ 1, and therefore

∣∣(LN
abtzh)(u)

∣∣ ≤

∣∣∣∣∣∣∣
∑

σNv=u, v 6=v
(`)
1 (u),v

(`)
2 (u)

e(f
N
atc−ibτN+iwgN

t )(v)h(v)

∣∣∣∣∣∣∣
+
∣∣∣e(fN

atc−ibτN+iwgN
t )(v

(`)
1 (u))h(v(`)

1 (u)) + e(f
N
atc−ibτN+iwgN

t )(v
(`)
2 (u))h(v(`)

2 (u))
∣∣∣

≤
∑

σNv=u, v 6=v
(`)
1 (u),v

(`)
2 (u)

ef
N
atc(v)|h(v)|

+
[
(1− µ)ef

N
atc(v

(`)
1 (u))H(v(`)

1 (u)) + ef
N
atc(v

(`)
2 (u))H(v(`)

2 (u))
]
.

Since (1, j, `) ∈ J and (2, j, `) /∈ J , the definition of the function ω gives ω(v(`)
1 (u)) ≥ 1− µ and

ω(v(`)
2 (u)) = 1. This and (4.9) imply∣∣(LN

abtzh)(u)
∣∣ ≤

∑
σNv=u, v 6=v1(u),v2(u)

ef
N
atc(v)ω(v)H(v)

+
[
ef

N
atc(v1(u))ω(v1(u))H(v1(u)) + ef

N
atc(v2(u))ω(v2(u))H(v2(u))

]
= (NH)(u) ,

which proves (4.11).

5. Proofs of Theorems

Proof of Theorem 3. We use an argument from [4].
Let B > 0 be a constant. Let N , ρ̂, a0, w0 and E be as in Lemma 9. Given a, b, c, w, t ∈ R with

|a| ≤ a0, |b| ≥ b0, |w| ≤ B|b|, let {NJ}J∈J be a finite family of operators having the properties (a),
(b) and (c) in Lemma 9.

Let h ∈ CLip(U) be such that ‖h‖Lip,b ≤ 1. Then |h(u)| ≤ 1 for all u ∈ U and Lip(h) ≤ |b|.
Thus, for any u, v ∈ Ûi. i = 1, . . . , k, we have |h(u)− h(v)| ≤ |b| d(u, v) ≤ |b|D(u, v), so LipD(h) ≤
|b|. Set h(m) = LmN

abtzh. Define the sequence of functions {H(m)} recursively by H(0) = 1 and
H(m+1) = NJmH

(m), where Jm ∈ J is chosen by induction so that the conclusions of Lemma 9(c)
are satisfied with h = h(m), H = H(m) and J = Jm.

Since H(0) ∈ KE|b|(U), it follows that H(m) ∈ KE|b|(U) for all m ≥ 0. Moreover, for h(0) = h

we clearly have |h(0)| ≤ H(0) and

|h(0(u)− h(0)(u′)| ≤ |b| d(u, u′) ≤ Et|b|H(0)(u′)D(u, u′)

whenever u, u′ ∈ Ûi for some i = 1, . . . , k. Now Lemma 9(c) implies that h(m) and H(m) satisfy
similar conditions for all m ≥ 0. In particular, |h(m)| ≤ H(m) on Û for all m.
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Using an induction on m and property (b) in Lemma 9, we get∫
bU (H(m))2 dν ≤ ρ̂

∫
bU (H(m−1))2 dν ≤ ρ̂m.

Hence ∫
U
|LmN

abtzh|2 dν =
∫

bU |LmN
abtzh|2 dν =

∫
bU |h(m)|2 dν ≤

∫
bU (H(m))2 dν ≤ ρ̂m

for all m ≥ 1. This proves the theorem.

As in [4] and [12] we need the following lemma whose proof is the same.

Lemma 10. Let β ∈ (0, α). There exists a constants A1 > 0 such that for all a, b, c, t, w ∈ R with
|a|, |c|, 1/|b|, 1/t ≤ a0 such that |w| ≤ B|b|, and all positive integers m and all h ∈ Cβ(U) we have

|Lm
abtzh(u)− Lm

abtzh(u
′)| ≤ A1

[
|h|β
γ̂mβ

+ |b| (Mm
atc|h|)(u′)

]
(d(u, u′))β

for all u, u′ ∈ Ui.

We will derive Theorem 1 from Theorem 3 and Lemma 10 above.

Proof of Theorem 1. We essentially repeat the proofs of Corollaries 2 and 3 in [4] (see also the
Appendix in [9]).

Let ε > 0, B > 0 and β ∈ (0, α). Take ρ ∈ (0, 1), a0 > 0, b0 > 0, A0 > 0 and N as in Theorem
2. We will assume that ρ ≥ 1

γ0
. Let a, b, c, w ∈ R be such that |a|, |c| ≤ a0 and |b| ≥ b0. Let t > 0

be such that 1/tα−β ≤ a0. Assume that |w| ≤ B|b| and set z = c+ iw.
First, as in [4] one derives from Theorem 2 and Lemma 14 (approximating functions h ∈ Cβ(Û)

by Lipschitz functions) that there exist constants C6 > 0 and ρ3 ∈ (0, 1) such that

‖Ln
abtzh‖β,b ≤ C6|b|ερn

3 , n ≥ 0, (5.1)

for all h ∈ Cβ(Û).
Next, given h ∈ Cβ(Û), we have Ln

abtz(h/hatc) = 1
λn

atc hatc
Lft−s τ+z gth, where again s = a + ib

and z = c+ iw, so by (4.3) and (4.4) we get

‖Ln
ft−sτ+zgt

h‖β,b ≤ λn
atc‖hatc Ln

abtz(h/hatc)‖β,b

≤ Constλn
0 (e3C0a0ρ3)n|b|ε ‖h/hatc‖β,b ≤ Constλn

0 ρ
n
4 |b|ε ‖h‖β,b ,

where λatc ≤ e3C0a0λ0 and ρ3e
3C0a0 = ρ4 < 1, provided a0 > 0 is small enough.

We will now approximate Lf−sτ+zg by Lft−sτ+cgt in two steps. First, the above implies

‖Ln
f−sτ+cg+iwgt

h‖β,w =
∥∥∥Ln

ft−sτ+zgt

(
e(f

n−fn
t )+c(gn−gn

t )h
)∥∥∥

β,b
≤ C λn

0 ρ
n
4 |b|ε

∥∥∥e(fn−fn
t )+c(gn−gn

t )h
∥∥∥

β,b
.

for some constant C > 0. Choosing C appropriately, we have ‖f − ft‖0 ≤ C a0 and |f − ft|β ≤
C/tα−β ≤ C, so ‖fn − fn

t ‖0 ≤ n ‖f − ft|0 ≤ C na0, and similarly |fn − fn
t |β ≤ C na0. Similar

estimates hold for gn − gn
t . Thus, ‖e(fn−fn

t )+c(gn−gn
t )h‖0 ≤ eC na0‖h‖0, and

|e(fn−fn
t )+c(gn−gn

t )h|β ≤ ‖e(fn−fn
t )+c(gn−gn

t )‖0 |h|β + |e(fn−fn
t )+c(gn−gn

t )|β ‖h‖∞
≤ eC na0 |h|β + eC na0 |(fn − fn

t ) + c(gn − gn
t )|β ‖h‖∞ ≤ C neC na0 ‖h‖β,
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replacing C by a larger constant where necessary. Combining this with the previous estimate gives
‖e(fn−fn

t )+c(gn−gn
t )h‖β,b ≤ C neC na0 ‖h‖β, so

‖Ln
f−sτ+cg+iwgt

h‖β,b ≤ C λn
0 ρ

n
4 |b|ε n eC na0 ‖h‖β,b.

Taking a0 > 0 sufficiently small, we may assume that ρ4 e
C a0 < 1. Now take an arbitrary ρ5 with

ρ4 e
C a0 < ρ5 < 1. Then we can take the constant C7 > 0 so large that nρn

4 e
Cna0 ≤ C7ρ

n
5 for all

integers n ≥ 1. This gives ‖Ln
f−sτ+cg+iwgt

h‖β,b ≤ C7 λ
n
0 ρ

n
5 |b|ε ‖h‖β,b for all n ≥ 0. Using the latter

we can write

‖Ln
f−sτ+zgh‖β,b =

∥∥∥Ln
f−sτ+cg+iwgt

(
eiw(gn−gn

t )h
)∥∥∥

β,b
≤ C7 λ

n
0 ρ

n
5 |b|ε

∥∥∥eiw(gn−gn
t )h
∥∥∥

β,b
.

We have ‖eiw(gn−gn
t )h‖0 = ‖h‖0, |g − gt|β ≤ Const/tα−β ≤ 1 (if t > 1 is sufficiently large), so

|eiw(gn−gn
t )h|β ≤ ‖eiw(gn−gn

t )‖0 |h|β + |eiw(gn−gn
t )|β ‖h‖0 ≤ |h|β + |w| |gn − gn

t |β ‖h‖0. (5.2)

and therefore ‖eiw(gn−gn
t )h‖β,b = ‖eiw(gn−gn

t )h‖0 + |w|
|b| |e

iw(gn−gn
t )h|β ≤ 2Bn‖h‖β,b. This yields

‖Ln
f−sτ+zgh‖β,b ≤ C8 λ

n
0 ρ

n
5 |b|ε n ‖h‖β,b. Choosing ρ6 with ρ5 < ρ6 < 1 and taking the constant

C9 > C8 sufficiently large, we get ‖Ln
f−sτ+zgh‖β,b ≤ C9 λ

n
0 ρ

n
6 |b|ε ‖h‖β,b for all integers n ≥ 0.

6. Appendix: Proof of Lemma 2

(a) Let u, u′ ∈ Ûi for some i = 1, . . . , k and let m ≥ 1 be an integer. For any v ∈ Û with
σm(v) = u, denote by v′ = v′(v) the unique v′ ∈ Û in the cylinder of length m containing v such
that σm(v′) = u′. Then

|fm
atc(v)− fm

atc(v
′)| ≤

m−1∑
j=0

|fatc(σj(v))− fatc(σj(v′))| ≤ Tt

c0 (γ0 − 1)
d(u, u′) ≤ C1 tD(u, u′) (6.1)

for some constant C1 > 0. Similarly,

|gm
t (v)− gm

t (v′)| ≤ C1 tD(u, u′). (6.2)

If D(u, u′) = diam(C′) for some cylinder C′ = C[im+1, . . . , ip],then v, v′(v) ∈ C′′ = C[i0, i1, . . . , ip]
for some cylinder C′′ with σm(C′′) = C′, so D(v, v′) ≤ diam(C′′) ≤ 1

c0 γm
0

diam(C′) = D(u,u′)
c0 γm

0
.

We have

|(Mm
atcH)(u)− (Mm

atcH)(u′)|
Mm

atcH(u′)
=

∣∣∣∣∣ ∑
σmv=u

ef
m
atc(v)+cgm

t (v)H(v)−
∑

σmv=u

ef
m
atc(v

′)+cgm
t (v′)H(v′)

∣∣∣∣∣
Mm

atcH(u′)

≤

∣∣∣∣∣ ∑
σmv=u

ef
m
atc(v)+cgm

t (v) (H(v)−H(v′))

∣∣∣∣∣
Mm

atcH(u′)
+

∑
σmv=u

∣∣∣efm
atc(v)+cgm

t (v) − ef
m
atc(v

′)+cgm
t (v′)

∣∣∣ H(v′)

Mm
atcH(u′)

≤

∑
σmv=u

ef
m
atc(v)+cgm

t (v)QH(v′)D(v, v′)

Mm
atcH(u′)

+

∑
σmv=u

∣∣∣e[fm
atc(v)+cgm

t (v)]−[fm
atc(v

′)+cgm
t (v′)] − 1

∣∣∣ efm
atc(v

′)+cgm
t (v′)H(v′)

Mm
atcH(u′)

.
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By (6.1) and (6.2), |fm
atc(v) + cgm

t (v)] − [fm
atc(v

′) + cgm
t (v′)| ≤ 2C1tD(u, u′) ≤ 2C1t, which implies∣∣∣e[fm

atc(v)+cgm
t (v)]−[fm

atc(v
′)+cgm

t (v′)] − 1
∣∣∣ ≤ e2C1t2C1tD(u, u′). A more precise estimate follows from

(4.4) and (4.5):

|fm
atc(v) + cgm

t (v)]− [fm
atc(v

′) + cgm
t (v′)|

≤ |fm
t (v)− fm

t (v)|+ |P − a| |τm(v)− τm(v′)|+ |(hatc(v)− hatc(u))− (hatc(v′)− hatc(u′)|
+a0|gm

t (v)− gm
t (v′)|

≤ 2m‖ft − f (0)‖0 + |(f (0))m(v)− (f (0))m(v′)|+ ConstD(u, u′) + 4C0 + 2ma0‖gt − g‖0

≤ ConstD(u, u′) + C2ma0 ≤ C2 + C2ma0

for some constant C2 > 0. Assume a0 > 0 is chosen so that eC2a0 < γ0/γ̂. Then

|(Mm
atcH)(u)− (Mm

atcH)(u′)|
Mm

atcH(u′)

≤ QD(u, u′)
c0γm

∑
σmv=u

e[f
m
atc(v)+cgm

t (v)]−[fm
atc(v

′)+cgm
t (v′)]ef

m
atc(v

′)+cgm
t (v′)H(v′)

Mm
atcH(u′)

+e2C1t

∑
σmv=u

2C1t e
fm

atc(v
′(v))H(v′(v))

Mm
atcH(u′)

≤ eC2 eC2ma0
QD(u, u′)
c0γm

+ 2C1te
2C1tD(u, u′) ≤ A0

[
Q

γ̂m
+ eA0t t

]
D(u, u′),

for some constant A0 > 0 independent of a, c, t, m and Q.

(b) Let m ≥ 1 be an integer and u, u′ ∈ Ûi for some i = 1, . . . , k. Using the notation v′ = v′(v)
and the constant C2 > 0 from part (a) above, where σmv = u and σmv′ = u′, and some of the
estimates from the proof of part (a), we get

|Lm
abtzh(u)− Lm

abtzh(u
′)|

=

∣∣∣∣∣ ∑
σmv=u

(
ef

m
atc(v)+cgm

t (v)−ibτm(v)+iwgm
t (v) h(v)− ef

m
atc(v

′)+cgm
t (v′)−ibτm(v′)+iwgm

t (v′) h(v′)
)∣∣∣∣∣

≤

∣∣∣∣∣ ∑
σmv=u

ef
m
atc(v)+cgm

t (v)−ibτm(v)+iwgm
t (v) [h(v)− h(v′)]

∣∣∣∣∣
+
∑

σmv=u

∣∣∣efm
atc(v)+cgm

t (v) − ef
m
at (v

′)+cgm
t (v′)

∣∣∣ |h(v′)|
+
∑

σmv=u

∣∣∣e−ibτm(v)+iwgm
t (v) − e−ibτm(v′)−iwgm

t (v′)
∣∣∣ efm

atc(v
′)+cgm

t (v′)|h(v′)|

≤
∑

σmv=u

ef
m
atc(v)+cgm

t (v) |h(v)− h(v′)|

+
∑

σmv=u

∣∣∣e[fm
atc(v)+cgm

t (v)]−[fm
atc(v

′)+cgm
t (v′)] − 1

∣∣∣ efm
atc(v

′)+cgm
t (v′) |h(v′)|

+
∑

σmv=u

(
|b| |τm(v)− τm(v′)|+ |w| |gm

t (v)− gm
t (v′)|

)
ef

m
atc(v

′)+cgm
t (v′)|h(v′)|.
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Using the constants C1, C2 > 0 from the proof of part (a) and eC2a0 < γ0/γ̂ we get∑
σmv=u

ef
m
atc(v)+cgm

t (v) |h(v)− h(v′)| ≤ eC2 eC2ma0
tQD(u, u′)

c0γm
0

∑
σmv=u

ef
m
atc(v

′)+cgm
t (v′)H(v′)

≤ eC2tQ

c0γ̂m
(Mm

atcH)(u′)D(u, u′).

This, implies

|Lm
abtzh(u)− Lm

abtzh(u
′)| ≤ eC2tQ

c0γ̂m
(Mm

atcH)(u′)D(u, u′) + e2C1t2C1tD(u, u′) (Mm
atc|h|)(u′)

+ (Const |b|+ |w|C1 t)D(u, u′)

Thus, taking the constant A0 > 0 sufficiently large we get

|(LN
abtzh)(u)− (LN

abtzh)(u
′)| ≤ A0

(
tQ

γ̂m
(Mm

atcH)(u′) + (|b|+ eA0tt+ t|w|)(Mm
atc|h|)(u′)

)
D(u, u′),

which proves the assertion.
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