ABSENCE OF EMBEDDED EIGENVALUES FOR HAMILTONIAN WITH
CROSSED MAGNETIC AND ELECTRIC FIELDS

MOUEZ DIMASSI, MASAKI KAWAMOTO AND VESSELIN PETKOV

ABSTRACT. In the presence of the homogeneous electric field E and the homogeneous perpendicular
magnetic field B, the classical trajectory of a quantum particle on R? moves with drift velocity o
which is perpendicular to the electric and magnetic fields. For such Hamiltonians the absence of
the embedded eigenvalues of perturbed Hamiltonian has been conjectured. In this paper one proves
this conjecture for the perturbations V(z,y) which have sufficiently small support in direction of
drift velocity.

1. INTRODUCTION

We consider the quantum dynamics on the plane R? in the presence of a homogeneous constant
electric field which lies on this plane and a constant magnetic field which is perpendicular to this
plane. Therefore the quantum system can be described by the following magnetic Stark Hamiltonian
acting on L?(R?)

2m 2m

where Dy = —idx, Dy = —idy, X = (X,Y) € R?2, m > 0, ¢ # 0 are the position, the mass and
the charge of a quantum particle and E = E = (E1, Es) # (0,0), B = (0,0, B), B # 0 stand for the
electric field and the magnetic field, respectively. Next V: R? — R is the multiplication operator by
V(X). We assume that V(X) is bounded and decays as |X| — oo. Under some decaying conditions
for the potential V', in [5] and [1] it was established that

o(Hps — V) =04c(Hps — V) =R, 0ess(Hrs) = R.

Here 0(L), 04c(L), 0css(L), opp(L) denote the spectrum, the absolutely continuous spectrum, the
essential spectrum and the point spectrum, respectively, of the operator L. In the physical literature
it was conjectured that o,,(Hrg) = (). This property has been proved in the following cases:

1 B_\* 1 B _\?
HL5::<D)(+2Y> +(Dy—2X> —qF - X4V,

(D) [gE|> — qE - VV > 0 for all X € R? (see [4]),
(IT) |gE)| is sufficiently large [1] or sufficiently small [4].
Moreover, it was shown in [5] that

(IIT) There exists Ry > 0 such that op,(Hrs) N ((—oo, —Ro| U R, oo)) = () and, moreover, there

exist at most a finite number of eigenvalues with finite multiplicities.

In particular, (II) implies that if eigenvalues exist, then |¢F| is not small as well as not large. This
condition seems very strange and it is natural to show that for any |¢F|, Hrs has no eigenvalues.

Key words and phrases. Crossed magnetic and electric fields, Embedded eigenvalues.
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The absence of point spectrum of Hyg is an open and challenging problem. There are two major
difficulties in the investigation of this problem. If we consider the operator Hy = Hpg — V, first Hy
has double characteristics and second the electric and magnetic fields are not decreasing as | X| — oo.
Consequently, even for Hy it is quite difficult to obtain weighted estimates for the resolvent

| (X)) (Hy — X — £ie) L (X) 72|, s > 1/2, |\ > 1

uniformly with respect to € # 0. In the literature there are a lot of works treating weighted resolvent
estimates for the perturbations of the Laplacian. Recently the proof of suitable Carleman estimates
led to several important results. We cite only some recent works [16], [17], [18], [8], where the
reader may find other references. However, in these papers some decay of the potentials is assumed
and this plays a crucial role in the analysis. Studying Hy, we cannot treat Hy as a perturbation
of —A since electromagnetic potentials do not decrease in X but increase quadratically. Usually,
a Hamiltonian with quadratic potential may have only bound states. Nevertheless, the presence
of electric potential ¢F - X implies that Hy has only a continuous spectrum. In this direction the
Hamiltonian Hy is an exceptional model in quantum physics. In the case with a potential V, it is
natural to consider Hy as an unperturbed operator and to obtain resolvent estimates for Hy.
We examine the situation when the support of V(X,Y") in direction of drift velocity

o = (EQ/B, —El/B)

is sufficiently small. Passing to new coordinates (x,y), this means that the support of V(x,y) has
small support with respect to y (see Assumption 1.1 below). We do not impose conditions on |¢E|.

Concerning the velocity «, notice that according to Proposition 4.4 in Adachi-Kawamoto [1], we
have the estimate

s—tlim x(?B%a - X < eit)p(Hpg)e Hes =,
—00

where y is the characteristic function such that x(s < a) =1if s < a and x(s < a) =0if s > q,
¢ € C°(R) and ¢; > 0 is a suitable constant. This proposition shows that the quantum particle
described by this system undergo a uniform linear motion in direction «. By using this proposition,
Kawamoto [12] characterized the space LZP(H 1s) of all eigenstates of Hyg, as follows:

2 . —itH _
Y€ L,,(Hps) & Rh_]f}go ig}g Hx(R <la-X|)e™ LS¢HL2(R2) =0.

Hence the norms of the eigenfunctions over the region |a - X| > R goes to 0 as R — oo, it is
expected that the behavior of the potential in direction perpendicular to @ must be negligible for
the existence of eigenvalues. It is easy to see that

o (- X)? + |¢E|*(¢B - X)? = [X]?, a-qE=0,
(see §1 of [12]) which implies that the direction « is perpendicular to ¢E.

In the following up to the end of the paper for simplicity we assume m = 1/2,B = 1,q = 1.
Introduce the change of variables

|Elx = —E - X, laly = —a - X, (1.1)
hence
i1 X + EY —Ey X + FY D Fixz + Eoy v Fox — Ehy
T=——""= Y= —"= = T 0= = T 0=
E| |E] E| E
and
E E E E
Ox = ——-0p — —0,, Oy = ——0p + —0,.

Bl |E] Bl |E]
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By using these variables, the Hamiltonian Hg is reduced to

1)\?2 1\?
Hrg = (Dm + 2y> + (Dy — 2w> +|E|z+ V(z,y)

and with the unitary transform ¢®¥%/2, we have
e Hpse™2 = (Dy +y)* + Dy + | Elz + V (z,y).

The potential V' changes but we will denote again the new potential by V' (z,y). Throughout this
paper we assume |E| =1 and consider the reduced Hamiltonians

H = H() =+ V,
Hy = (D +y)* + D} +x,
actingon 2 (H) = 2 (Hy) C L*(R?). In the exposition we will use the notation (r) = (1+72)1/2 r =
(22 + y*)Y/? and similar notation for (z), (y).
The purpose of this paper is to study two problems:
(A) Estimates for the resolvent (r)™° (Hy — A —iv) =1 (r) ™ for |]A| > 1, v > 0 and & > 0.

(B) Absence of eigenvalues of the operator H.

The problem (A) is examined in Section 3 and we prove the estimate
1(r)~° (Ho = A = i)™ (1) || 2y 2 < Cov A4, (1.2)

where 0 < § < 2,0 < v <1 and |\ > 1. For § = 2 we obtain the optimal decay O(|A\|~1/2).
The proof of Proposition 3.1 is based on a representation of operator 0 established in [1]. It
seems that this is the first result where we have an estimate of the resolvent of Hy as |A| — oo.
For operators with magnetic and electric potentials having some decay a similar result with bound
O(|A|=%/?) and constant C' > 0 uniform with respect to v > 0 has been obtain by Vodev [16]. For
Stark Hamiltonian without magnetic field estimates of the resolvent are given in [2]. Concerning
Hypg, it is an open problem to improve (1.2) with a constant independent of v > 0.

The problem (B) is studied under the assumption
Assumption 1.1. We have V(z,y), 0,V (x,y) € C(R?) and there exists ng > 0 such that
supp(V) C {(z,y) € R? : —mp <y < M} - (1.3)
Moreover, the potential V (z,y) satisfies the estimates

sup (z)*° |V (2,y)| < Ao, sup (2) |[Va(z,y)| < A1, (1.4)
z,yER z,y€ER

with constants s > 1/2, A > 0,k =0,1.
Remark 1.2. Under Assumption 1.1, it is easy to prove that the operators
V(H+i)™ (H-49)"10,V)(H+i)™!

are compact ones.
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Our goal is to prove the absence of embedded eigenvalues of H, when V' satisfies (1.3) with small
1o. To examine the non-existence of eigenvalues of H, first we prove in Proposition 4.2 that without
any assumption on the support of V' there exist Ry > 0, Ry > 0 independent of the support of V
such that

opp(H)ﬂ((—oo, “Ri1) U (Ro, oo)) — 0.

This statement is more precise than the result in [5], where the dependence of the support of V' was
implicit. Moreover, in contrast to [5], the constants Rj, Ry are explicitly given and we have

Ri = Ci + |[V||ze=, Ry = Ol {x) (y) Vallie,

where C7 > 0,C5 > 0 are independent of 79 and V. We see that the eigenvalues-free region
depends only on the amplitudes Ag, A1. The argument in Section 4 is based on Lemmas 2.2, 2.3
and 2.7. and we show that with a suitable weight ¢(x) > 0 one has the estimates

V(@) (D +y)(H = A= i)"Yl pap2 < C (N2,

H\/so(%)Dy(H A= i) Mlpan e < C N2,

with constant C' > 0 independent of A. In the literature such type of estimates with A = 0
have been used without a weight \/p(x). However we show in Appendix A that the operators
(Dy+y)(H —i)"', Dy(H —i)~! are unbounded (see Remark 2.4). We expect that the properties of
these operators as well as Appendix A will be useful for further analysis.

Obviously, if V satisfies Assumption 1.1 with s > 3/4, then V satisfies (1.4) with s < 3/4. Next in
the exposition without loss of generality we assume that 1/2 < s < 3/4. Fixing R = max{ Ry, Ry} >
0, we establish a Mourre type estimate for the operator Hy. More precisely, setting v = 2s—1 < 1/2,
there exists a constant C'r, independent of 79 such that

sup
AE[—R,R],v>0

< CR,’Y:
L2—12

\yI*WF(%) ()T (Ho = A iv) T ) T WF(now -

(1.5)

where F(t) € C§°(R : [0, 1]) is a cut-off function such that F'(t) =1 for |t| < 1, F(t) = 0 for [t| > 2
(see Proposition 5.2). It is well known that Hy has no eigenvalues in R, however the above estimate
for the resolvent of Hy is non-trivial. Since Hy has only continuous spectrum, the starting point is
the Mourre estimate (5.1). Since 7 < 1/2, the weight |y|~” is integrable around 0 and this plays an
essential role.

Our main result is the following
Theorem 1.3. Let V' satisfy the Assumption 1.1, v = 2s — 1 and let Cr > 0 be the constant in
(1.5). Assume that
ngWCRmAO = CRymo < 1. (1.6)
Then the operator H has no embedded eigenvalues.
The condition (1.6) does not imply the smallness of the potential, it is not related to ¢|E| as well
as to the cases (I) and (II). In fact, given a potential satisfying Assumption 1.1, one can choose

the constant 79 small enough in function of Ay and Cg, to obtain that there are no embedded
eigenvalues of H.

Our result may be generalized to cover the case when the support of V is included in a strip
{(z,y) € R? : |y — B] < no} with fixed 8 > 0. Also, we can consider potentials having some
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singularities for |z| 4 |y| < K. These generalizations need some technical modifications, but the
idea of the proof is the same. For simplicity of the exposition we are not going to treat them.

Considering the case 19 — 0, one can choose Ag large enough and such a case is closely related to
the one where the potential is a delta function. When the potential V' is a delta function, there are
interesting results due to Hauge-van Leeuwen [10], Gyger-Martin [9] concerning the non-existence
of embedded eigenvalues. Finally, notice that the absence of embedded eigenvalues is important for
the analysis of the resonances widths (see [6], [7]) .

Setting s = 1/2 + ~/2, the proof of Theorem 1.3 is based on the equality
17 F () ()7 (= i) Dl = T E () () (o = A= i) 7D+l
0 0

f|y|_7F(%) (@)™ (Hy — X — iv) " W(H — X\ —iv) Dy +i| v >0,0<~y<1/2,

where A € R and F (n%) is a cut-off function equal to 1 for |y| < np.
By the condition of V, we have V = |y|=>F(y/no) - |y|>*V and for 17(2)703,7” () V|| pee =
CRq~mo < 1 we may estimate

BRN

— E) —s S| .,1‘
sup H|y\ F( ()" (H—=AX—1iv) " |Dgy + 1] v S Togon

Me[-R,R],v>0 Mo

If v € L*(R?) is an eigenfunction of H with eigenvalues A € [~R, R], we show in the Appendix
B that D, € L? and one obtains easily a contradiction with the above estimate. Following this
approach, one needs to establish uniform estimate (1.5). To cover more general cases of potentials,
it is necessary to obtain estimate similar to (1.5) with more general weights and this is an interesting
open problem.

The plan of the paper is as follows. In Section 2 we prove some preliminary results including
Lemma 2.3, Lemma 2.7 and Proposition 2.9 which are used in the next sections. In Section 3 we
examine the estimates of the resolvent of Hy. The absence of large eigenvalues of H is studied in
Section 4. Mourre type estimates are proved in Section 5 and Theorem 1.3 is established in Section
6. In the Appendix A and B we prove some technical results. Finally, notice that we use the
Assumption 1.1 for the support of V (z,y) with respect to y only in Section 6. The results in other
sections concerning H hold without any restriction on the support of V.

2. PRELIMINARIES
In this section we prove some lemmas which are necessary for the exposition. Throughout this
section to the end of this paper, ||| 22 and ||-[| 5(;2(g2)) are denoted as || - || and (-,-) denotes
the inner product on L?(R?). Also we denote by Z (A) the domain of the operator A. We write

ri=+/22 +y2 and () = (14 -2)/2,

Lemma 2.1 (Interpolation Theorem). Let A and B be positive selfadjoint operators on L?(R?) and
let T be a bounded operator on L*(R?). Assume that with constants ag, Bo, a1, 81 > 0 and Co, Cy > 0
we have

| AT B

< 007

HA(“TBBl <y
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Then for all 0 < 0" < 1, setting agr = ag(1 — 0") + 10" and By = Bo(1 — 0') + 510', one has

Proof. We can find the proof of this lemma for example in §6 in Isozaki [11]. We will give a sketch
of the proof based on the Hadamard’s three line theorem. Recall this theorem.

Let f(z) be an analytic function on Qp:={z =2z +iy: 0 <z < 1,—00 < y < oo} which is bounded
onQp:={z=x+iy: 0<x<1,—00<y< oo} Then if one has

sup [ f(iy)| < Mo,
—oo<y<oo

sup [f(1+1y)| < My,
—oo<Yy<oo

then for all 0 < x < 1 we have the estimate

sup | f(z +iy)| < M3~ MY,
—oo<y<oo

Let u,v € L?(R?), and let E(+), Ep(-) be the spectral decompositions of A and B, respectively.
Let I C R be some bounded interval. Define

£(2) = (EA(I)AO‘ZTBBZEB(I)U,U) ,

where a, := (a1 — ag)z + ag and B, := (1 — Bo)z + Bo. Then f(z) is an analytic function on
0 < Rez < 1 which is continuous and bounded on 0 < Rez < 1 and for all y € R one gives

[f ()| < Collulllloll,  [£(1+iy)] < Crlfullllv].
By the theorem above, for all 0 < 6’ < 1, we get
£ < G~ CF Jullllv])-
Since Cy, C1 are independent of I, by taking I — R, one completes the proof of Lemma 2.1. O

Introduce a positive function p(z) € C*°(R) such that for some fixed a > 1 we have p(z) =
—1 2 < —a, p(z) = 22,2z > a.

Lemma 2.2. For f € 2 ( ) we have
[ A@ (D4 1 + 10,1 dwdy < OO + 1117, (21)
Proof. Consider for f € C§° (RQ) the integral

' /W (o = )V dedy = // (1H0f1? + (07 = 22p + o) 1| dwdy

—2// Dy +y) 1> + |Dy fI? )dwdy

Here we have used that by integration by parts one obtains

—Re // » +9)°f)of + pf(Ds + y)Qf} drdy = // ~2p|(Da + ) f* + 9" ] )dﬂcdy
and similarly one transforms the integral with Dg f- Clearly with a constant Cy > 0, one has

p* —2xp+p" < Co,

hence

2 ([ o) (1Ds +) 112 + 1D, ) dody < CollHafI? + IF17) < CalIHIE +1171P)
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Since H is a closed operator, for every f € & (H) there exists a sequence of functions f, € C§°(R?)
such that f, — f, Hf, — Hf in L?. Taking the limit n — oo, we obtain the result. ]

The above Lemma is analogous to Lemma 1 in [15] for Stark Hamiltonian.

Consider a function 0 < ¢(z) < A defined by
tan~'(z —a+7/4), z>a,

p(x) = § p1(2), —a<r<a

1

-1

where 2 < ¢1(2) < 1, |z < a is a smooth function so that ¢(z) € C3(R) and ¢'(z) > 0 for all
z e R.

z < —a,

Lemma 2.3. We have the estimates

| @ e+ -a—i?| | <ow, (2:2)

L2—1L2

< C (N2 (2.3)

12(4 oy a1
HQO ) Dy(H = A —1) ‘L2—>L2_

with a constant C = Cy > 0 independent of \.

Proof. By using the resolvent equality
(H=X—i)t=Hy-A—i) L= (Hy— A=) 'V(H-X—i)"1,

it is sufficient to prove the estimates with H replaced by Hy. We apply the unitary operator e
giving a shift x — x 4+ A, and obtain

oADa ¢1/2($)(D$ 4 y)efi)\Dz oADx (Ho — ) — i)qeﬂ'wz
— 12w+ N~ 2(@) (02 (@) (D + ) (Ho — ) 7).

iIAD,

On the other hand,
< C.

12 e
|2 @) (s + ) =)
In fact, we apply (2.1) replacing H by Hy and choose f = (Hy — i)~ 'g. This yields

102 @)(Da + y) (Ho — i) gll? < € (I1Ho(Ho — i)~ gl + l(Ho — 1) "g]12) < Cullgll®.

It remains to prove the estimate

plz+N)p~ (@) < Ca(1+[A)) (2.4)

with Cy = Cs(a) > 0 independent of \. For x > —2a the function p~!(z) is bounded by a constant
B, depending on a and p(z+ ) < A, hence we have (2.4) . We are going to study the case z < —2a.
We have three subcases: (i) [\| < a, z < —2aq, (ii) |A| > a, —2|\| <z < —2aq, (iii) |A| > a, x < =2|A|.

Clearly, in the subcase (i) one has x + A < —2a + |A| < —a and ¢(z + \)p~ () = |I2f)|\| 2+ 2|)‘|

In the subcase (ii) we have p~!(z) = |z| < 2|A|. In the subcase (iii) we have x +\ < —|A| < —a and

o(x+N)p~Hz) = i E‘)\‘ <1+ | |, Thus we obtain (2.4). For D, we apply the same argument. [J

Remark 2.4. The presence of the factor ©'/?(z) in the estimates (2.2), (2.3) is important for
the boundedness of these operators. In fact, the domain 2 (H) is not included in the domains
9 Dz +vy), 2(Dy) and both operators (D, +y)(H — i)', Dy(H —i)~! are unbounded. We prove
this property in Appendiz A.

Remark 2.5. It is clear that the estimates (2.2), (2.3) hold with ¢(z) replaced by (z)™*.
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Corollary 2.6. For every 0 < v <1 we have the estimate

(@ Py - a=07|  < o (2.5)

L2—[2

Proof. Writing (D) = jgi)i)i(Dy + i), we deduce that (2.5) holds with v = 1. Next we apply the

interpolation Lemma 2.1 between

1{2)° (Dy)" (@)° (H = A =) ! < 1

and
(@)D (@) (= A= i) < c 2

Notice that we have

which implies

(¢'(@)'/? < Cav/p(2),

hence the estimates (2.2), (2.3) hold with ¢(x) replaced by ¢'(z).
For the eigenfunctions of H we need a more precise result.

Lemma 2.7. Let v and X be an eigenfunction and eigenvalue of H. Moreover, suppose that
||| = 1. Then we have the estimates

|Ve@ . +yye| <o, (2.6)

|Ve@ VD, < o () (2.7)
with C' = Cy > 0 independent of ¢ and \ and the support of V.

Proof. By a direct calculus we obtain a representation for the commutator
0= (i[H, ¢(2)(Ds +y) + (Da + y)p(w)] 4,0
= ((4Ds + )¢ @)Dy + ) + 4p(@) Dy — p(2)(1 + Vi) + 20" (2)) 6, 1).
Hence we have
|VE@D. + | <+ o@Dyl

where the constant C; > 0 depends only on ¢(z) and ||V ||fe.
Applying Lemma 2.3, one deduces

lo(@) Dyl < VA" (@) Dy(H = A — i)~ || < Ca (W)

and

| Vo@D, + o < cs 2.
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Now we pass to the analysis of the estimate containing D,. In a similar way one has

0= <z [H, Dyo(x)e(y) + ¢(y)e(z)Dyl 1, 1/1)
— (4D, pla)¢ )D, — 20(x)e" (). 0)

+ 4Re((Ds + )¢/ (2)(y) Dy, ) = 21m (Dyp()p(w)d, V)
— 2Im (o (x)@(y) Dy, Vi)

> 4H\/MDWH2
RV
-l V)

Applying the estimates

| Ve @D +ypw| < catn,
|Ve@Dy|| < Call @)™ Dyl < Call V@) Dyl < Ca (N2,

we obtain the result. O

It is obvious that the estimates (2.6) and (2.7) hold with \/¢/(z) and \/¢/(y) replaced by (z)~*
and (y}fl, respectively.

Remark 2.8. Notice that by Lemma 2.2, we obtain
() V2 (Dot y)e e I, (1) V2 Dyp e 12, o € 7 (H).

Let He,, be the space generated by the eigenfunctions of H. By the closed graph theorem the operators
<’I“>71/2 (Dy +y) and <r>71/2 D, are bounded as operators from He, to L*(R?). Therefore for every
etgenfunction ¢ of H we have the estimate

1)~ (Dg +y)wll + || (r) "2 Dy || < B, (2.8)

where B > 0 is independent of 1. However, the constant B in general could depend on the support
of V.

Let F'(t) € C§°(R) be a function such that 0 < F(t) <1, F(t) =1 for |t| < 1, F(t) = 0 for [t| > 2.
For ¢ > 0 define F,(t) = F(%).

Proposition 2.9. Let 0 <y < 1/2, 5 €R and 0 < ny < 1. Then the operator

[y = Bl Fo (y = B)(a) 2 (1)
1s bounded and its bound is independent of ng and .

Proof. First consider the case = 0. Let f(t) € C5°(R) be a function such that f(t) =1 for [t| < 2.
Then f(t)F,,(t) = F,,(t) and for any ¢ € C§°(R?), it is enough to prove that

A= |ly ) @) 7 (1) o < el

with a constant C, dependent of vy but independent of 7y. By simple calculation one has
A< |l sy ) o
< |lyl= (D

(D) Fl)a) 2 ()

y) HL2(Ry)_>L2(Ry)
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Here we apply the fractional Sobolev inequality (see, e.g., Stein-Weiss [14] and Yafaev [19])

™l g,y < €5 || (D272

L2(Ry)
forue 2 ((D;)V/Q) C L?(R?). Then A can be estimated by
A< G DY Fly) )™ ()77 4l
On the other hand, the norms of the operators
[0 @ )|, L
|t @2 )|, s

are bounded. In fact, we write (H —i)™! = (Hg — i)~ — (Ho — i) 'V(H — 4)~! and one applies
Corollary 2.6 to estimate (z)~'/2D,(Hy — i)~'. Since (z) "1/ (Dy) (z)~1/* is selfadjoint, by using
the interpolation Lemma 2.1, we conclude that

| @ pwy |,

is bounded. Therefore A < C,||¢|| and we obtain the estimate.

< |[@ > (D) sty =7 (1 iy ()

Now consider the case when 3 # 0. We have

ly — B f(y — B){x) 2 (H)™
| |

L2—L?
— — — 2 —
< ly = BI7 D) oy |00 £l = By 27|
< |le=¥BPy|y|=7 (D, )7 PP DY _ /2 (fVY <
< e e 00 s s <o
noting that sup, |f'(y — B)| is independent of 3. O

3. ESTIMATES OF THE RESOLVENT OF H
In the section we establish a decay estimate for
If(Ho — A —iv) gl ooy

with v > 0 and |A| — oo. In [7] the case when f,g € C§°(R?) has been studied, while in [1] the
situation with f, g € LP(R?), p > 2 was examined. We prove the following more precise result which
has an independent interest.

Proposition 3.1. Consider the operator
MM v) = (1 (Hy—A—iv) " (r)°, 0< 6 <2,

where A € R, 0 < v < 1. Then for 0 <0 <1/2 and |\| > 1, there ezists a constant C = C () > 0
such that

—1 (|y(-0 -1 “aypyjo-1)2
150 0) e < v (A7 (L )T 4 (1w AP ) (3.1)
Proof. We consider only the case A > 0, since for A < 0 the proof is similar. Set

w = {te0,00) : [t—nr| <A}, meNU{0},
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and Q = ;7 wy. By the integral formula for the resolvent, we have

M2()\, I/) — <7‘>2/ e—it(Ho—)\—iZ/) <7‘>72 dt — Kl + K2
0

with

and

Ky =i (r)? / ¢mitH A=) (=2 gy
[0,00)\©2

_ -2 l i it —it(Ho—1iv) -2
=1i(r) /[o,oo)\Q B <dte e (ry~"dt

—2 —A—iv — t=(n+1)m—1""?
[(ry 2 et =xin) (ry=2] o,

I
> =
hE

0
/[0 o (r)y=2 e~ MHo= A=) (g i) (r) 2 dt.
,00

+
> = 3

For ¢ € L? one gets

||Kl¢|| < Z / <T‘>72 e—it(Ho—)\—iu) <’F>72 QZ)dt
n=0"'"wn L2(R?)
—2 _it(Ho—A—iv) .\ —2
< nzz;)/wn (ry“e 0 (r) gf)‘ L) dt
> nr4+A"? ) 9 t
< - — th
<3 el et
|| <T‘>—2 H%m ||¢HL2(R2) A0 —aA® 0 oo 61/)\*9 »
- v (6 —¢ ) Z_;e = QCW)\ 9l 22(r2)

< Cw A9l 22y
Here for 0 < v <1 we have used the elementary inequality 1 —e™"" > =% Next

- —2 “A—iv — =(n+1)7—A"°
D ()Pt 2] TN g

n=0

- - 3 —v((n+1)m—A~? —v(nm+A"?
<A 1” <T> 2||%00H¢||L2(R2)Z(6 ((n+1)m—A )+€ (nm+A ))

n=0

1
y

vA—?

(e 9]
1 a0 L 2e _ e
<2007 T gllpe Y e < O AT lélle < CrTIATH @l

n=0

and

<
L2

IH(r)~ !\2/0 et = 27| ()R

/ <T>72 e it(Ho—A~iv),, <T>72 dt v
[0,00)\02 A

1
A

11

(3.2)
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Therefore,
1Kl 2 ype < Cvm AT () 722+ AT Kl 2o (3.3)
with

K3 = / <r>_2 Hye Ho=A=w) <r>_2 dt.
[0,00)\$2

Now we estimate ||K3||r2_,r2. Let x = (z,y). By an application of the formula (4.6) in [1], we
have the following representation of the operator e~*H0 (For the operator Hyg in [1] one chooses
the constants g = B=1,m=1/2, w=2, E1=—-1, B, =0,v=0,v=w=2,0=m and Ey = 1)

(efitHoqs) (X) _ (efixy/QefitHLseixy/2¢) (X)

B 1

 4misin(t)

— 1
~drisin(t) Jge

/ efia(t)efixy/2€ib(t)-xefic(t)-A(x)efiw-A(xfc(t))ei(cot t) (xfc(t)7w)2/4eiw1w2/2¢(w)dw
R2

K(t,x,w)p(w)dw
with w = (w1, ws) € R?,

A(x) = (-y/2,2/2), a(t)= /Ot (b(s)* + 2b(s) - A(c(s))) ds
and b(t) = (b (), ba(t)), c(t) = (c1(t), ca(t)) with
bi(t) = —(sin(2t))/2, ba(t) = (1 — cos(2t))/2,
c1(t) = cos(2t), ealt) =t — sin(2t).

Simple calculation shows that

ca(t) _ Z% + Z&tt (x —c1(t) — w1)> K(t,x,w),

Yo K(t,x,w) =y (—iy +ibi(t) —i

2 2 2 2
2
¢ t4 tt
2K (13, w) = [ (=i +iby(e) — 2 202 0 0 —wn)) 4 (e x, W)
2 2 2 2 2
and
2
0, K (t,x,w)
2
t t1 t4

_ ((—ig+z’b2(t)+z‘612( ) +i%—l—iC02 (y—cz(t)—w2)> +i002 )K(t,x,w).

Thus we deduce
(1) HoK (t,x,w) (w)
= (1) (D} + 2yDs + y* + D} + z) K (t,x, w) (w)

7
= Z QLk(t’ X)K(t, X, W) QQ,k(ta W),
k=1

where for k =1,...,7 we have

Q1 x(t,x) = q1 k()M (%), Q2.(t, W) = g1 (t)mo k(W)
and
916Dz ()] < C(1+ ot t](1+8) + [cot t2(1+ £+ 1)),
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lm1 k() llLge < C; [Imaor(w)llLg < C.

Hence we have a smoothing effect

K30 L2 ey = C

7
/ (sint) e A=) / > 01kt X) K (t, %, W) Qa i(t, w)d(w)dwat
[0,00)\Q2 R? .5

L2(R2)
5 Qu(t) (00, 960) 0|

[0,00)\©2 =1 L2®2)
< —it(Hop—A—iv) .
<Cf ;HQM (63l e | (e Qu(t.)00)) (),
<C/[O ZHQM Moo Q2 (t, ) oo 191l L2 r2ye ™ dt

(n+1)7r A0

<CZ/ 9 e V! <1+)\9(1+t)~|—(sint)_2(1—|—t—|—t2)> 61| L2 re) dt

neN nT+A"
S CV71A9(1 + Vil + V72)||¢||L2(R2). (34)

Here we used an integration by parts for the term involving (sin¢)~2 combined with the fact that

for t € (nm 4+ A% (n+ 1)r — A7%) and A=Y < 7 one has a lower bound
|sint| = |sin(t — nx)| > [sin(A7%)| >
Taking together (3.2), (3.3) and (3.4), we get
1Mo 0) e < COPT (A 4+ (L4 AT 4+ (1w 2N,
Clearly
1Mo\ )l p2mype < v

and by Lemma 2.1 with A = B = (r}fl, T=(Ho—X—iv)™, ag=08 =2, a1 =B =0 and
0 =1—6/2, one deduces

5/2
IM5(0 ) s < (CONT2™ (A0 4 (L4 AT 4 (1w 2N

4. ABSENCE OF LARGE EMBEDDED EIGENVALUES

In this section we study the relation

opp(H) N ((_007 —Ry) U (Ry, OO)) = 0.

and we work without any assumption on the support of V. The absence of large eigenvalues has
been established by Dimassi-Petkov [5]. However, the fact that Ry, R2 > 0 do not depend on the
support of V' has not been proven in [5]. Here we establish this result and, moreover, we obtain
bounds for Ry, Rs.

In Appendix B we prove the following
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Proposition 4.1. Assume that we have
@) )V || < Ao, (2)2V = 0, (2)/2V, — 0, (y)Vi — 0 as (2% + %) — . (4.1)
Let 1) be an eigenfunction of H with eigenvalues \. Then Dy1p € L*(R?).

Proposition 4.2. Assume that V satisfies the conditions (4.1) and

sup | (z) (y) Va(2,y)| < A1
(z,y)€R?

Then there exist constants Ry > 0, Ry > 0 independent of no such that
o (H) 01 (=00, ~R1) U (R, 0) ) = 0.
Moreover, we have
Ry < (CaAl)s, R <C,+ Ao, (4.2)
where Cy > 0 is a constant depending on the choice of the function p(x) in Section 2 and a > 0.

Notice that in the case when V satisfies Assumption 1.1 the conditions of Proposition 4.2 are
fulfilled.

Proof. Let ¢ and A be an eigenfunction and an eigenvalue of H, respectively. Let ||[¢|| = 1 and let
|A| > 1. The operator D, is a conjugated operator for H in the sense of [13] and D, satisfies the
conditions (a)-(e) in [13] (see for more details Section 3 in [4]). In particular, the condition (c) in
[13] means that for ¥ € 2 (H) N 2 (D,) the symmetric form

(U, i[H, D,]¥) = i(H®, D, W) — i(D, ¥, HY)

is bounded from below and closable and we can define the self-adjoint operator [H, D,]° associated
to its closure ([13]). According to Proposition 4.1, we have v € 2 (H) N 2 (D,). Thus i[H, D]’
is well defined and 0 = (¢, i[H, D;]°¢) = ((1 + Vz)v,¢). Consequently,

0 = |(IH, Do), )] = 1= | ((0:V )6, )|

> 1= @) (1) BV Il () ()" 0| (4.3)
Let ¢(z) be the function introduced in Section 2. Obviously, with a constant ¢, > 0 one has
" (@)(¢' (@) 7] < ca, Vo ER. (4.4)
Recall that from Lemma 2.7 we have
V@' (@)(Ds +y)¢ll < LAY, V¢ (@)@ () Dyl < ColAFP/®. (4.5)

We need the following
Lemma 4.3. We have the equality

L) = V@ @ W) (Da + )61 + V& () (0 Dy |
— Im(¢" (@)(¢' (@) " VP @ W) (Da + 90, VI @) W)
~In((¢" () W) VI @I WD, VI @ W)Y
+ (VE@ )@ + V), Ve @) ) (4.6)

=A@, ¢ (2)¢' (y)¥).
Notice that by (4.5) all scalar products in (4.6) are well defined.
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Proof. Choose a sequence of functions f, € C§°(R?) such that f,, — ¢, Hf,, — H1 in L2. Clearly,
(H = N fn, @' (@)@ () fn) = (H — N, @' (2)9(y)¥) = 0.
By integration by parts, we will show that
U(fn) = (Hfn, ¢ ()¢ (y) f) (4.7)
which yields
(H = N fo, @' (@)@ (y) fn) = T(fn) = Mfns @' (@) (y) fu)-

To do this, we transform the term

(Dy +y)? fr + D fr, ' ()¢ () fn)-

First consider
(D2 fn, @' (2)¢' (1) fn) = (&' (1) Dy/ &' (@) Dy frr, /&' () )
= (V' (@)@ (Y) Dy fn, V&' ()¢ (y) Dy fn)
+i(" (W) (' W)V (@) (Y) Dy s V' () (y) fr)-
Second, by the same argument we get
(D2 +9)2 s @' @) W) = (& @D + WV W) (D + ) fas V& W)
= (V¢'(@)¢' W) (Dz +y) fr, V' (@) () (Do + y) fr)
+i(@" (@) (¢ () "'V (@) () (D + ) frs V&' ()9 (4) fr)-

Thus we obtain (4.7). We take the limit n — oo and deduce I'(f,) — I'(¢). Indeed, by Lemma 2.2
we have in L? the convergence

V@' (@) (Dz + y) fro = V@' (@) (Dz + y), V@' (@) Dyfrn — V' (2) Dyyp

and the function ¢'(z)z is bounded for all z € R. O
Applying (4.4) and (4.5), one has

‘ (so”(y)(d(y))_l\/ ¢ (2)¢ (y) Dy, \/ @’(w)w’(y)l/}) ‘

< ClIVe(@)¢ (W) Dyl < CIAP,
\wwmwmw* 7 (@) W) D+mw\/ur'ww}
< ClIVe(@)¢ (y)(Ds +y)o || < CINMA.

Consequently, from (4.6) one deduces

Ve @)@ ()] < CONP* + DA < CIATYA A 2 1

1{2) = y) Tl < CollV/ @' (2)¢ ()| < Cr|A| 7V

Going back to (4.3), we deduce that for || > (2C;41)® we have no eigenvalues of H.

hence

For A < 0 we have better result. For simplicity of notations denote

Ve’ Dy +y)Yll = By, V@' (@)@ () Dyl = Ba, |V ¢ (2)¢" (y)¥]| =



16 M. DIMASSI, M. KAWAMOTO AND V. PETKOV

Since — ||/ ¢’ ()¢’ (y)y|| > 0, the equality (4.6) implies
B} + B} = C3B1D = CsBaD + (Vi (@) ()@ + V)i Vo (@) )Y ) < —]AD?

with constants Cy > 0, C3 > 0 independent of A. Therefore,

<31 - %D)2 + (32 - 031))2 - (Cg + @)zﬂ < (Cy + Ag — |\|)D?

2 4 4
with a constant Cy > 0 depending on ¢(x) and independent of A. Consequently, one deduces
cz C
IAID? < (f + 5)92 4 (Ca + Ag)D? = (Cs + Ag)D?

If |\| > C5 + Ag, we have
¢’ (2)¢' ()v]l =0,
hence 1 = 0. g

5. MOURRE TYPE ESTIMATE FOR THE OPERATOR H

In this section we fix R > max{Rj, Ry}, where Ry, k = 1,2, are given by Proposition 4.2. The
following result follows from [13].

Proposition 5.1. There exists a constant Cr > 0 such that

sup  ||[[Dz+ B+ N Ho— AFiv) De+ B+i | o, 2 < Cre (5.1)
AE[—R,R],v>0

We have
i[Dy + B, Ho|] = 1.
As it was mentioned in the previous section, the conjugate operator D, + ( satisfies the conditions
(a)-(e) in [13] and the principal theorem in [13] implies the estimate (5.1).

Proposition 5.2. Let 0 < v < 1/2, s =1/2+~/2, 8 € R and A € [-R,R]. Then we have the
estimate

sup H|y - B|_7F770(y - B) <ZL‘>_S (Ho — AFiv)™® <x>_s Fno(y - By — 5|_7HL2—>L2 < CR»’Y
AE[—R,R],v>0
(5.2)
with a constant Cr, > 0 independent of no and 3.

Proof. For simplicity we treat the case § = 0. Define
Tro = | Dy + 4| Y(Ho — A Fiv) ' D, +i| 7.

We write
[yl ™ Fpo () () ™% (Ho — A F i) ™" (@)™ Fyo () |yl
= |y| 7 Fyy(y) (x)~° For(Ho)(Ho — A F iv) "' Far(Ho) (x)~° Fyy (y) |yl
+ 1yl Fag (y) (@) (1 = Fop(Ho))(Ho — A F iv) ™ ()™ Fyy (y)|y| 7
= hJu, 17 + Iz
with
I = |y[ 7" Fyo(y) (2) " Far(Ho)| Da + i
and

Iy == |y Fyo (y) () * (1 = F3R(Ho)) (Ho — A F iv) ™" {2) " F (y)]y| 7.
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First, we show that || I1||;2_,;2 < Ci,Ry-
To do this, one considers the product
I =Ll
with
L= [y Fy (y) ()~ Far(Ho)(Dy + 1),
Lo := (Dy +4) ' Dy +il.

Clearly, I 2 is a bounded operator.

Next we write
Ly = |yl Fyo(y) ()" (Dy + ) Far(Ho)
+ |yl Fyo (y) (2) " (Ho) ™ (Ho)” [Far(Ho), Dg] = J1 + Jo.
The term J; can be estimated by
[1y1 ™ Fi(y) (2)~* (Do +y + i) Far(Ho) || + [[lyI' 7 Fi(y) (@) Far(Ho)||
< C|(Dy)" Fily) (x) " (D +y + i) Far(Ho)|| + C1
< C|(Dy)" Fi(y) (x) ™" (Do +y + 1) (Ho + ) 7*|| + C1.
To handle the operator on the right hand side, write
(Dy)Y Fi(y) ()" (Dy +y + ) (Ho + 1)~
= (Dy)" Faly) ()" (Ho +0) " (@)™ (Do 4y +1)(Ho +4) ! (5.3)
+(Dy)" Fi(y) (x) " [(2) "2 (Do + y + 1), (Ho + )"V (Ho +1) .

According to (2.2), (2.3) and Corollary 2.6, the first term in right hans side of (5.3) is bounded.
For the second term one has

(D) Fi(y) ()2 [{2) /2 (Do +y +1), (Ho + 1)) (Ho +14) "
= (Dy)? Fi(y) ()" (Ho + i) [Ho, ()% (Do + y + )| (Ho + ) 2.
Clearly,
[Ho, (@) ~/* (D +y + )] (Ho + 1)~
=[(Do +9)* + D2+, (2) "> (Dy + 1) + i ()] (Ho + )2
= iz ()% (Dy + 1) (Ho + 1) 72/2 + By,
where By is a bounded operator. It remains to show that the operator
By = (z) N (D, +y)*(Ho — i)
is bounded. Set Q = (D, +y)* + Dj. Then
(D2 +y)*(Ho — )" = (D2 + 9)*(Q — )" + (Do +9)*(Q — i) 'w(Ho — i) .

The pseudo-ffiferential operator (D +y)?(Q —i)~! has symbol in SO(R?

(0.6 7])), hence it is bounded

(see [4]). Consequently, the operator
(@) (D +y)*Q i)

is also bounded since by composition of pseudo-differential operators its principal symbol is in

SO(]R‘({E i 77))' This implies that B; is bounded.
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To prove the boundedness of Jz, let §(z) € C§°(C) be an almost analytic continuation of g(s) =
F5R,(s) such that

9.9(z) = O(|[Im z|V), VN € N.
Consider the representation

Far(to) =+ [ 0.5(2)(Ho — 2)'L(dz),

where L(dz) is the Lebesgue measure on C. Therefore
, i 5 -
i\Fan(Ho). 2] = £ [ 0.(:)((Ho ), D] L(d:)
1 = . _ _
— 2 [ 0.5(2)(Ho )"t D)(Ho )7 L(d:)

1 _
. / 8.9(2)(Ho — 2)*L(d2).
s
On the other hand, the operator
Y177 Fog () ()™ (Ho) ™ = ()2 [y 7 Fyy () ()72 (Ho) ™
is bounded applying Proposition 2.9 with H replaced by Hy, while

» [ 8uae) o) (o - 2) L)
is trivially bounded. Combining the above estimates, one concludes that
HIl”L2—>L2 < Cl,Rﬁ'
Concerning Is, notice that for |A| < R by the spectral Theorem the operator
(Ho)" (1 — (F2r(Ho))*)(Ho — A F iv)~" (Ho)"
is bounded. Next one obtains the estimate

2
12l 22 < C|lyl™ Foo ) (@) (o) |
L2—[12

by applying once more Proposition 2.9. The case 8 # 0 can be treated by a similar argument. [J

< C2,R,'y

In the next section we need a modification of Proposition 5.2 when we have a product with a
right factor |D, + 4|1

Proposition 5.3. Let 0 <y <1/2, s =1/2+4+~/2, f € R. Then we have

sup H|y_5|_7Fno(y_5) <5B>_S (Ho _Aq:w)_”Dw"‘ﬂ_lHLz_)Lz < Bry (5.4)
Ae[_RvRLV>O

with constant Bg > 0 independent of no and (3.
Proof. We use the notations of the proof of Proposition 5.2. For 5 = 0 one has
[y~ o (y) (2)™* (Ho = AF iv) "' Dy +i| ™' = 1T, + 1,
where I; and Jp, are the same as in the proof of Proposition 5.2 and
Ty = [y g (y) ()" (1 = Fap(Ho))(Ho — AF iv) ™| Dy + .

Notice that the operator J; can be bounded by C3 g by a calculation similar to that used for I
in the proof of Proposition 5.2 and we leave the details to the reader. The case # # 0 is treated by
a similar argument. O



EMBEDDED EIGENVALUES 19

6. ABSENCE OF EMBEDDED EIGENVALUES FOR POTENTIALS WITH SMALL SUPPORT

In this section we prove Theorem 1.3.

Proof. Concerning Hp and 0 < v < 1/2, s = 1/2+ /2, we have the estimates (5.2) with 8 = 0 and
(5.4). For the operator H = Hy + V with supp V' C {(z,y) : |y| < no} write

(H—XA—iv)™ = (Hy— ) — iv)"! 1—V(H—A—w)*1} (6.1)
which yields
[yl ™7 Fo (y) () ™* (H = A —iv) "Dy + ]~
= |yl Fyo(y) (x)~* (Ho — A — iv) "Dy 4|

- [WFm () (@) (Ho = X — i)™ ()~ [y By ()| (@) IV
X |17 P 9) (@) 7" (H = A = i) 7D+ 7.

Therefore,
(74 [l P () (@)™ (Ho = A= i)™ (@) " [y 7 By ()| () V7))
Xy P (y) ()™ (H = A= iv) | Dy + ]!
= Jy|™" Fo () ()" (Ho — X — i)} Dy +[
Clearly,

@ w2V

(gc}lﬂ VHLOO(RQ) = CRym < 1, we deduce that the operator in

2 1
L2(R2)—L2(R?) =o'l ) HV”L‘X’(R?)'

Consequently, assuming 77(2)701%,7

the brackets () is invertible and

BRW

L L L I

IAN<LR,v>0

This estimate implies that H has no eigenvalues in [—R, R]. In fact, let ¢ be an eigenfunction of H
with eigenvalue A € [~R, R]. By Proposition 4.1 we know that D¢ € L?(R?), hence |D, + i) =
|Dy +i|(Dy +4) " (D 4 )¢ € L?(R?). Then we conclude that

U7 Fra) (&)™ (H = A= iv) "D 44Dy + il = [yl ™ Fyo(y) ()~ iv 15
If Foo (y)¥(z,y) = 0, then V(z,y)y(x,y) = 0 and ¢ will be an eigenfunction of Hy which is impossi-
ble. Thus |y| =7 F,, (y) (z)° 4 # 0 and as v \, 0 the L?(R?) norm of the function |y| ™7 F,, (y) (z) "° v~ ¢
is not bounded. We obtain a contradiction and the proof is complete. O

APPENDIX A

We prove in this Appendix the following

Lemma A.1. The operators
x(Ho—i)7Y, (De+y)*(Ho—4)"", (D)*(Ho—14)", k=1,2
are unbounded from L*(R?) into L?(R?).
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Proof. Set Uy = e'P+Py. We have
U N (Dy +y)Uh =y, UplaUs =z — Dy,
Combining this with the fact that U; commutes with D,, we get
U Dy + 9)F U (Do +y)? + D2z —d) Uy =4 (y* + D2+ — Dy — 1)
1 1 !
k .
=Y <y2+(Dy_2)2+$—4—1) :

Hence, applying the unitary transformation ¢®#/2, one deduces that (D +y)F(Ho+i)~! is unitarily
equivalent to

4

Next, we prove that L is unbounded from L?(R?) into L?(R?). Let ¢ € C§°(]1,2[;R) be a function
such that [ ¢(x)%dz = 1, and let ¥, (y) be the normalized eigenfunction of the harmonic oscillator
corresponding to A, = 2n + 1, that is

(D +y")¥a(y) = (20 + Du(y), [l = 1. (A1)
Set ¥, (x,y) = Yn(y)p(z + 2n + 1). Clearly,

1 -1
Lp =" <y2+D§—|—x——i> ::yk(B—i)_l.

1 \7!
Do) =y (204 1= 1 —i) Wl [l =1,

Therefore,
O}z +2n+1)

Lw2:/22 d/ dx
” 1 n” Ry wn(y) Yy R(ZL‘+27’L+%)2+1
On the support of p(x + 2n + 1) we have % <z+2n+ % <1+ %, hence
1 16
> —.
(x+2n+32)241 " 65

This yields

16 16
1Ll > 62 [ idy [ ot 2n+ e = G2 [ ety (42)

By using the Fourier transform F,_,, with respect to y, one obtains F(Dz +y?)F L= D% +n? and

1@ = lldn(m)]-
Thus we deduce that ¢, (n) is also a solution of (A.1) and ¢, (n) = ¥(n). Therefore
[ @)l = Imn ()l = llyn(y)]l-
Combining this with the obvious equality
2n + 1= (D) + y*)¥n, ¥n) = (05117 + lyeonll?,
we deduce that |y, |* = 2%, Consequently, (A.2) yields

16(2n + 1
1Law, |2 > 28T
130

Letting n — 0o, we conclude that L; is unbounded from L? into L?. On the other hand, from
I L1ul? = [(Lau, (B =)~ u)| < || Loul|||ull,



EMBEDDED EIGENVALUES 21

we deduce that Ly is also unbounded. This shows that (D, +y)*(Ho—4)"', k = 1,2 are unbounded.
Similar arguments show that z(Ho —)~! and (Dy)*(Ho — i)~! are unbounded. O

APPENDIX B

In this Appendix we establish Proposition 4.1.
Proof of Proposition 4.1 Let 1 be a normalized by ||1|| = 1. Suppose that

Dy ¢ L*(R?) (B.1)

and for € > 0, introduce the function f.(z) = In <1+<f<>x>) The operators F. = efe(Px) = %

and its inverse F~1 = e~ /(D) = 1+jj<f>m> are bounded. Therefore, F.¢p € L?(R?). The condition

(B.1) implies lime\ g || Fey)|| = oo. Let F, = Fy_¢ denotes the Fourier transform with respect to .
The dominated convergence theorem yields

tim [ [ Pt ) 7 g€ oy = Ty [ [ O F ) 6 ialE mdsy

- //Rz <€> (]:Iw)(f, y)g(&, y)dgdy,

for all g(&,y) € F(C§°(R?)). This implies

dxdy

li Je(De) h =0, VheCP(R?).
6{%//[@26 ¢($ay) (x’y)“Few” ’ 0 ( )
Consequently, the normalized function ¢, := % converges weakly to zero.

By using F- o F, = x+i(0, f.)(D.), and taking into account that F, commutes with the operator
H—x-V, we get

Y

Hpe=F.(H+i(0:f)(Dy) =V + F.'VF,) TEol = (A +i(0ufe)(Dy) +V — EVE g, (B.2)
€
Notice that the operators 7 +€%Dz> and 1i<£f)>z> are bounded from L? into L? uniformly with respect

to e € [0,1]. Since V, 0,V € L>(R?), the operator (D,)V (D,)~! is bounded. Hence,

_ D,) 1+ ¢e(Dy) 1 _ e(Dy)
FVF ! = < 1% = DNVI(D,) 1) 4 —2
¢ 1+ €e(Dy;) (Dy) 1+¢e(D,) (< V{De)™) 1+ €¢(Dy)
is uniformly bounded for € € [0, 1].

From now on we denote

v, (B.3)

K. :=i(0:f)(Dy) +V — F.VE L.
Let G(z,y) be a continuous function going to zero as (22 + y?) — co. It is well known that
¢(Dy) *(H +1) 71,

is a compact operator for every ¢ € C$°(R?) and all s > 0 (see for instance, [4]). Thus, by an
approximation argument, G(D,)~*(H + i)' is also compact. We claim that

G(Dg) ®pe converges strongly to zero as € \, 0. (B.4)
To prove this, we use (B.2). Write
G(Dy) e = G(Dy)™*(H +0) " (H +i)pe = G(Dy)™*(H +4) " (A +i + Ke) ge.
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Since (A + i+ K¢) is bounded uniformly for e € [0,1], and ¢, converges weakly to zero, it follows
from the compactness of G(D,)~*(H 41i)~! that the right hand side of the above equality converges
strongly to zero.

For t > 1, let x;(x) be an odd smooth function satisfying

z, 0 <x <,
xi(z) = (B.5)

2%, x> 2,
X,ﬁ’“) () = Ot~ *1) k> 1, and x}(z) > 0. Clearly, i[z, —x¢(D.)] = x}(D.) and
i im (2, =xe(Da)]@es pe) = (@e, pe)- (B.6)
Next, we claim that for every fixed € > 0 we have

Jim i([V, =xe(Da)lges pe) = =2 lim Tm(pe, x¢(D2)Vioe) = (Vape, e)- (B.7)
00 t—o0

First, it follows from (B.2) that h. := (Hy—1)¢p, is uniformly bounded in L? with respect to € € [0, 1].
On the other hand, Lemma 2.3 and the conditions (4.1) show that

D,V (Hy — i) he = Vo(Hy — 3) " the + V(Dy + ) (Ho — i) *he — yV (Hy — )" 'he € L2
Combining this with the fact that |x:(§) — ¢| < C[¢| (uniformly for ¢ > 1), we deduce

0l6) ~ OHA(E)] < Cle] [HA©) € L7, where H(€) = Furse (V(Ho — ) he) €):
Hence, the dominated convergence theorem yields

tlgrn xe(De)V (Hy — i) *he = Vo(Ho — i) Yhe = Vg, in L2,

and the proof of the claim is complete. Taking together (B.6), (B.7) and the equality [H, x;(Dy)] =
[z + V, x¢(Dz)], we obtain

lim i ([H, —x¢(Dz)] @e, pe) = (1 + Vi) e, pe)-

t——+o0

Now applying (B.4) with G = 9,V and s = 0, we deduce that

((1 +83;V) @6;906) > (BS)

1
2
for € small enough. To complete the proof, we will show that the left hand side of (B.8) is less than
i for € small enough. This leads to a contradiction.
Equation (B.2) implies
i ([H, =Xt(Dz)] pes pe) = i (Xt(Da) Hepe, o) — i (xt(Dx)pe, Hepe) (B.9)
=i (Xt(Da2) (A + Kc)@e; pe) = i (Xt (D )pe, (A + Ke)pe)
= —2Im (x¢(Dz) Kepe, @e) -

On the other hand, the inequality

xT

ve(@) (0:1.) (2) = m >0,

yields
Xt(Dx) (8xfe) (Dac) > 07
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in the sense of self-adjoint operators. Consequently,
—2Im (x¢(Dz) Kepe, Pe)
= —2Im (ix4(Ds)(0uf)(Dz) +V — FVF e, ¢c)

< 2Im (xe(Da) (FVE" = V) ¢, 0c) (B.10)
From (B.3), we have
1 1 1
FEVF_l_Vzi DAMNIDN Y- oy V(D1
€ 1—|—6<D$> (< a:> < $> ) 1+5<D:c> 1+6<D$> K :c>; ]< :c>
Therefore
. 1 »
tlggo(xt( o) (FVF ' =V) cpe,we) = (Dm (FVET V) %7@6)
D, B
= (m (D), V] (D) 1%%) (B.11)
is bounded uniformly for € € [0, 1]. Letting ¢ — oo, we deduce from (B.7), (B.10) and (B.11)
D, -
(1 +80:V) @e; o) < 21m<T<D> [(D,), V] (D) e, %) (B.12)

To complete the proof of Proposition 4.1, we apply the following

Lemma B.1. We have

nm(H;mpm[<Dx>,V]<Dr>—1%%> 0.

e—0

Proof. Write
D, (D), VI(Dy) ™ =((Da) D,V = DoV(Dy) ) (D)~

(Da)(Va + VD) = (Ve + VDo) (D) (D)

= [(D2), Val(Da) ™+ ((Da)V = V(D.)) Dat D)™
= [(Da), Va|(D x>71 + [(Da), V]Doc<Dx>71
and set
1 _ 1 _
L= oy WD VD)™ o= m({w@, VIDA(Da) 7).
Therefore,
Dz<D:c>_1806 = D:C<D:c>_l(H0 - Z) (HO - 7’)905
= (Ho — 1) ' Dy(Dy) 'he + (Ho — i) ' [Dyp(Dy) ™', 2] (Ho — i)' he.
Clearly, the operator [D,(D,)~ ! z] = (D,)~1(1 — <£§>2> is bounded and this implies that
D (D) Yoo = (Hy — i) the (B.13)

with i bounded in L? uniformly with respect to . Recall that the operator
(@) (D + y) (Ho — i)
is bounded by Lemma 2.3. By using this, one deduces that the operator
(Ho+i) 'V Dy (Hy—i) " = (Ho+) "'V {x)?(x) V2D, +y) (Ho — i)~ — (Ho+14) "' Vy(Ho—1) "
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is compact since V ()2 — 0, Vy — 0 as (22 +y?) — oo by conditions (4.1). To handle the operator
(D), we exploit the following representation
V{(Dq)(Ho i) ~! = V(Dy + )(Da)(Da + 1) (Ho — i)~
=V(Dy+i)(Ho — i) (Dy)(Dy + )"
+ V(D + ) (Ho — i) [{Da)(Da +4) 71 2] (Ho — 1) 7.

Obviously, the commutator [(D,)(D, +14)~!, z] is a bounded operator and (D, +i) = (Dy +y) —
(y —14). So as above we obtain that (Ho + i) 'V (D,)(Hy —i)~! is compact. In the same way we
show that the operators

(Ho+ 1) YWD, (Hy — i)™, (Ho+4) " Vu(D,) (Hg — i)t

are compact because Vy(x)'/2 — 0, V,y — 0 as (2 + y?) — oo according to conditions (4.1).
To deal with the operator L, write

(TP VoD )

1+e(Dy)
1

~ ((Ho+i)™

= (o D). Vil (D) e (Ho — i) .
(

(Ho + )7 (D), Val(D2) ™0z, e
eD,
(Da)(1+ &(Dw))

We have (Ho + i) 1[(D.), Va]|(Dy) ™t = (Ho + i) "1 ((D4) Ve (D) ™! — V,.). The analysis of the term
with V} is easy since (Hg + i)'V} is compact. For the other term we get

<Dx>71§05 = <Dx>71(Ho — i)flh6

S (Ho +14) " [(Da), Vil (D2) Lo, hg).

eD,

= (Hy — i) YDy) Yhe — (Ho — i)™ Do 1 (D00

5(Ho — i)~ 'he

and notice that (Ho + 1)~ *(D,)Vi(Ho —4)~! is compact.

Passing to the analysis of the operator Lo, we have [(D,), V] = (D, )V =V {(D,). For (D,)V D,(D,)~!
we repeat the above argument by using (B.13) and the fact that (Ho+1i)~1(D,)V (Ho—1i)~! is com-
pact since its adjoint (Ho + i)~V (D,)(Hy — i)~ is compact. On the other hand, applying (B.13)
once more, we have

V{(Dy)Dy(Dy) ' pe = V(Dy)(Ho — i) he.
The operator V(D,)(Hy — i)~! has been treated above and the proof is complete. O
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