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Abstract. We study the localization of the interior transmission eigenvalues
(ITEs) in the case when the domain is the unit ball {x ∈ Rd : |x| ≤ 1}, d ≥ 2,
and the coefficients cj(x), j = 1, 2, and the indices of refraction nj(x), j =
1, 2, are constants near the boundary |x| = 1. We prove that in this case
the eigenvalue-free region obtained in [17] for strictly concave domains can be
significantly improved. In particular, if cj(x), nj(x), j = 1, 2 are constants for
|x| ≤ 1, we show that all (ITEs) lie in a strip |Im λ| ≤ C.

1. Introduction and statement of the result. Let Ω ⊂ Rd, d ≥ 2, be a
bounded, connected domain with a C∞ smooth boundary Γ = ∂Ω. A complex
number λ 6= 0 with Reλ ≥ 0 will be called interior transmission eigenvalue (ITE) if
the following problem has a non-trivial solution:

(
∇c1(x)∇+ λ2n1(x)

)
u1 = 0 in Ω,(

∇c2(x)∇+ λ2n2(x)
)
u2 = 0 in Ω,

u1 = u2, c1∂νu1 = c2∂νu2 on Γ,
(1.1)

where ν denotes the Euclidean unit inner normal to Γ and cj(x), nj(x) ∈ C∞(Ω),
j = 1, 2, are strictly positive real-valued functions.

The (ITEs) were first studied by Kirsch [7] and by Colton and Monk [2] in the
context of inverse scattering problems. It was shown that the real (ITEs) correspond
to the frequencies for which the reconstruction algorithm in inverse scattering based
on the so-called linear sampling methods breaks down. This subject attracted the
attention of many researchers and the number of publications devoted to the (ITEs)
considerably increased in the recent ten years. The reader may consult the survey
[?] for a complete list of references and historical remarks.

It is well-known (e.g. see [15]) that there exists a closed non-symmetric operator,
A, associated in a natural way to the problem (1.1), such that the possible (ITEs)
can be considered as the eigenvalues of A. The analysis of the (ITEs) leads to the
following three problems:
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(A) Prove the discreteness of the spectrum of A in C;
(B) Find eigenvalue-free regions in C;
(C) Establish a Weyl formula for the counting function of all (ITEs)

N(r) = #{λj is (ITE), |λj | ≤ r}.
Note that the problem (A) is now relatively well studied (see [9], [14], [11], [4] and
the references therein). In fact, the problem (A) is reduced to that one of showing
that the resolvent of A is meromorphic with residues of finite rank. On the other
hand, this is true (see [15]) if the inverse of the operator T (λ) introduced in Section
4 is meromorphic. The latter fact can be proved if the parametrix of the operator
T (λ) constructed in the deep elliptic zone is invertible.

The problems (B) and (C) are more difficult, and they are of some interest for
the numerical analysis of the (ITEs). In this direction it is interesting to find an
optimal eigenvalue-free region and a Weyl formula with optimal remainder (see [12],
[5], [13], [8] and the references therein). In a recent work [15] the authors showed
that (B) and (C) are closely related each other, and a larger eigenvalue-free region
leads to a Weyl asymptotics with a smaller remainder term. More precisely, we
proved that the remainder in the Weyl formula is Oε(rd−κ+ε), ∀ 0 < ε � 1, where
0 < κ ≤ 1 is such that there are no (ITEs) in{

λ ∈ C : Reλ ≥ 1, |Imλ| ≥ C (Reλ)1−κ
}
.

We conjecture that the optimal value of κ must be κ = 1.
The present paper is devoted to the problem (B). More precisely, we are interested

in finding as small as possible neighborhoods of the real axis containing all (ITEs).
The first result of this type was obtained in [6] assuming n1(x) > 1 in Ω̄ and
n2(x) ≡ 1, c1(x) ≡ c2(x) ≡ 1. For domains Ω with arbitrary geometry, it has been
shown in [16] that under the condition (isotropic case)

c1(x) ≡ c2(x), ∂νc1(x) ≡ ∂νc2(x), n1(x) 6= n2(x) on Γ, (1.2)

or the condition (anisotropic case)

(c1(x)− c2(x))(c1(x)n1(x)− c2(x)n2(x)) < 0 on Γ, (1.3)

there are no (ITEs) in the region{
λ ∈ C : Reλ ≥ 1, |Imλ| ≥ Cε (Reλ)

1
2+ε
}
, ∀ 0 < ε� 1.

The localization of the (ITEs) has been recently studied in [17] in the case when
the boundary Γ is strictly concave with respect to both Riemannian metrics

d∑
k=1

nj(x)
cj(x)

dx2
k, j = 1, 2.

Under the conditions (1.2) or (1.3) it has been proved in [17] that there are no
(ITEs) in the region

{λ ∈ C : Reλ ≥ 1, |Imλ| ≥ Cε (Reλ)ε} , ∀ 0 < ε� 1. (1.4)

The approach in [16] and [17] is based on the construction of a semi-classical
parametrix near the boundary for the problem{

(h2∇c(x)∇+ zn(x))u = 0 in Ω,
u = f on Γ,

(1.5)
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where 0 < h� 1 is a semi-classical parameter and z ∈ C with Rez = 1. For domains
with arbitrary geometry the parametrix construction for (1.5) works for |Im z| ≥
h1/2−ε, 0 < ε � 1, while for strictly concave domains, by a more complicated
construction, one can cover the region |Im z| ≥ h1−ε. It is a challenging problem to
construct a semi-classical parametrix for (1.5) when |Im z| ≥ Ch, C � 1 being a
constant.

The purpose of the present paper is to improve the eigenvalue-free region (1.4) in
the case when the domain is the unit ball in Rd, d ≥ 2. Given a parameter 0 < δ � 1,
denote Ω(δ) = {x ∈ Ω : dist(x,Γ) ≤ δ}. Our main result is the following

Theorem 1.1. Let Ω = {x ∈ Rd : |x| ≤ 1}, d ≥ 2, and suppose that there is a
constant 0 < δ0 � 1 such that the functions cj(x), nj(x), j = 1, 2, are constants in
Ω(δ0). Assume also either the condition (1.2) or the condition (1.3). Then, there is
a constant C > 0 such that there are no (ITEs) in the region

{λ ∈ C : Reλ ≥ 1, |Im λ| ≥ C log (Re λ+ 1)}. (1.6)

If in addition the functions cj, nj, j = 1, 2, are constants everywhere in Ω, then
there are no (ITEs) in a larger region of the form

{λ ∈ C : Reλ ≥ 1, |Imλ| ≥ C} . (1.7)

Remark 1. The eigenvalue-free region (1.6) is still valid if we add a compact cav-
ity K ⊂ Ω and consider the equation (1.1) in Ω \ K with Dirichlet condition on
∂K. Indeed, the only fact we need is the coercivity of the corresponding Dirichlet
realization (see the operator GD in Section 3), and this is used only in the proof of
Lemma 3.4 below.

Remark 2. It is clear from the proof that the fact that the boundary Γ is a sphere
is not essential. In other words, the eigenvalue-free regions (1.6) and (1.7) are still
valid for any Riemannian manifold Ω = (0, 1)×Γ with metric g = dr2 + r2σ, where
r ∈ (0, 1), and (Γ, σ) is an arbitrary (d−1)-dimensional Riemannian manifold with-
out boundary, the metric σ being independent of r.

In the isotropic case when cj ≡ 1, j = 1, 2 and n1 ≡ 1, n2 6= 1 is constant, the
eigenvalue-free region (1.7) has been established in the one-dimensional case Ω =
{x ∈ R : |x| ≤ 1} (see [14], [11]). Moreover, the case of the ball {x ∈ Rd : |x| ≤
1}, d = 2, 3, and radial refraction indices have been studied in [9], [3], [4], where
spherical symmetric eigenfunctions depending only on the radial variable r = |x|
has been considered. For example, the analysis of such eigenfunctions in R3 leads
to the following one-dimensional problem

u′′ + 2
ru
′ + λ2n(r)u = 0, 0 < r < 1,

v′′ + 2
rv
′ + λ2v = 0, 0 < r < 1,

u(1) = v(1), u′(1) = v′(1),
(1.8)

where n(r) is a strictly positive function. Among other things, it was shown in [4]
that if n(1) = 1 and n′(1) or n′′(1) is non-zero, then there may exist infinitely many
complex eigenvalues of the problem (1.8) lying outside any strip parallel to the real
axis. This example shows that in the isotropic case the condition n(1) 6= 1 (resp.
(1.2)) is important to have an eigenvalue-free region like (1.7). It also follows from
the analysis in [9] (see Sections 3 and 4) that when n = Const and

√
n is a rational

number belonging to the interval (1, 2), then there exists a sequence of (ITEs),
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λk = αk + β, k = 0, 1, 2, ..., with some constants α > 0 and β ∈ C, Imβ 6= 0.
This example shows that the eigenvalue-free region (1.7) is sharp and cannot be
improved in general.

To study all (ITEs) and all eigenfunctions, however, one has to consider a family
of infinitely many one-dimensional problems. Such an analysis is carried out in [11]
in the isotropic case when the domain is the ball {x ∈ Rd : |x| ≤ 1}, d ≥ 1, and

c1 ≡ c2 ≡ 1, n1 ≡ 1, n2 ≡ γ2 = Const 6= 1.

In this case the (ITEs) are the zeros in C of the family of functions

Fν(λ) = γJν(λ)J ′ν(γλ)− Jν(γλ)J ′ν(λ), ν = l + d/2− 1, l = 0, 1, 2, ...,

where Jν denotes the Bessel function of order ν. It has been proved in [11] that there
are infinitely many real (ITEs) whose counting function has a Weyl asymptotics.
When d = 1 a Weyl asymptotics for the counting function of all (ITEs) is also
obtained.

To prove Theorem 1.1 we follow the same strategy as in [16], [17], which consists
of deriving the eigenvalue-free region from some approximation properties of the
interior Dirichlet-to-Neumann (DN) map. In our case we have to approximate the
DN map

N0(λ) : Hs+1(Γ) → Hs(Γ)
for the domain Ω = {x ∈ Rd : |x| ≤ 1} defined by

N0(λ)f := λ−1∂νu|Γ,
where ν is the unit inner normal to Γ = ∂Ω and u solves the equation{ (

∆ + λ2
)
u = 0 in Ω,

u = f on Γ,

∆ being the negative Euclidean Laplacian. Recall that the interior DN map is
a meromorphic operator-valued function with poles lying on the positive real axis.
Thus, the eigenvalue-free region turns out to be the region in which the DN map can
be approximated by a simpler operator of the form f(∆Γ), where f is a complex-
valued function and ∆Γ denotes the negative Laplace-Beltrami operator on the
boundary Γ equipped with the Riemannian metric induced by the Euclidean one.
With such an approximation in hands, the problem of proving the eigenvalue-free
region is transformed into the much simpler one of inverting complex-valued func-
tions, which in turn is done using the conditions (1.2) or (1.3) (see Section 4).
Therefore, a large portion of the present paper is devoted to the study of the inte-
rior DN map N0(λ) using the Bessel functions. Thus, instead of a parametrix we
have an exact formula of the DN map (see Theorem 3.1 and its proof). Then we
use the asymptotic expansions of the Bessel functions in terms of the Airy function
to get the desired approximation (see Theorems 2.1 and 3.1). Of course, we cannot
proceed in this way when the coefficients are supposed to be constants only in a
neighborhood of the boundary. In this latter case we show that the DN map can be
approximated by the DN map associated to the corresponding problem with con-
stant coefficients everywhere and for which we have an explicit expression in terms
of the Bessel functions (see Lemma 3.4).

We expect that the eigenvalue-free regions (1.6) and (1.7) are still true for more
general domains, but this is hard to prove because the available semi-classical
parametrix constructions for the DN map lead to the existence of smaller regions
(see [16], [17]).
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2. Some properties of the Bessel functions. We begin this section by recalling
some basic properties of the Bessel functions Jν(z) of real order ν ≥ 0 (e.g. see
[10]). The function Jν(z) satisfies the equation(

∂2
z + z−1∂z + 1− (ν/z)2

)
u(z) = 0.

Then the function bν(z) = z1/2Jν(z) satisfies the equation

∂2
zv +

(
1− ν2 − 1/4

z2

)
v = 0.

For z ∈ C with Re z > 0, Im z 6= 0, and an integer k ≥ 0, set

ψν(z) =
J ′ν(z)
Jν(z)

, η(k)
ν (z) =

J
(k)
ν (κz)
Jν(z)

,

where J (k)
ν (z) = dkJν(z)

dzk and 0 < κ < 1 is a parameter independent of z and ν.
Clearly, the functions η(k)

ν (z) depend on κ but for simplicity of the notations we
will omit to note this. Set also ρ(z) =

√
z2 − 1 with Re ρ > 0. Our goal in this

section is to prove the following

Theorem 2.1. For every 0 < δ � 1, there are positive constants Cδ, C ′δ and δ1
such that for Reλ ≥ Cδ, C ′δ ≤ |Imλ| ≤ δ1Reλ, ν ≥ 0, we have the estimate

(1 + ν/|λ|) |ψν(λ)− ρ(ν/λ)| ≤ δ. (2.1)

There exist also positive constants C, C ′, C1, C2 and δ1 independent of ν but
depending on κ such that for Reλ ≥ C1, C2 ≤ |Imλ| ≤ δ1Reλ, ν ≥ 0, we have the
estimate

(1 + ν/|λ|)2|η(0)
ν (λ)|+ |η(1)

ν (λ)|+ |η(2)
ν (λ)| ≤ C ′|λ|1/3e−C|Im λ|. (2.2)

Proof. We will consider several cases.
Case 1. 0 ≤ ν ≤ C0 with some constant C0 > 0. We have 2Jν(λ) = H+

ν (λ) +
H−

ν (λ), where H±
ν (λ) are the Hankel functions 1 having the asymptotic expansions

(see (4.03) and (4.04), p.238 in [10])

H±
ν (λ) =

(
2
πλ

)1/2

e±iλq±ν (λ),

q±ν (λ) = e±i(−νπ/2−π/4)
∞∑

s=0

(
±i
λ

)s

As(ν), (2.3)

where all As(ν) are real, A0(ν) = 1, A1(ν) = 4ν2−1
8 . Moreover, q±1/2(λ) = ±i. All

derivatives of q±ν (ν) have asymptotic expansions obtained by differentiating (2.3).
Without loss of generality, we may suppose that Imλ > 0. For ν 6= 1/2 we have∣∣∣∣q+ν (λ)
q−ν (λ)

∣∣∣∣ = 1 +O(|λ|−1),
∣∣∣∣ (q+ν )′(λ)
(q−ν )′(λ)

∣∣∣∣ = 1 +O(|λ|−1),
∣∣∣∣ (q−ν )′(λ)
(q−ν )(λ)

∣∣∣∣ = O(|λ|−2),

∣∣∣∣1 + e2iλ q
+
ν (λ)
q−ν (λ)

∣∣∣∣ ≥ 1− e−2Im λ

∣∣∣∣q+ν (λ)
q−ν (λ)

∣∣∣∣ ≥ 1− 3
2
e−2Im λ ≥ 1

2
,

1H±ν (λ) are the Hankel functions of first and second kind
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provided |λ| and Imλ are taken large enough. We can write the function ψν as
follows

ψν(λ) + (2λ)−1 = i
eiλq+ν (λ)− e−iλq−ν (λ)
eiλq+ν (λ) + e−iλq−ν (λ)

+
eiλ(q+ν )′(λ) + e−iλ(q−ν )′(λ)
eiλq+ν (λ) + e−iλq−ν (λ)

.

By using the above inequalities, we get

|ψν(λ) + i| ≤ C|λ|−1 + Ce−2Im λ. (2.4)

Since in this case ρ(ν/λ) = −i + O(|λ|−2), the estimate (2.1) follows from (2.4).
The estimate (2.2) for |η(0)

ν (λ)| follows in the same way from the formula

Jν(κλ)
Jν(λ)

= κ−1/2 e
iκλq+ν (κλ) + e−iκλq−ν (κλ)
eiλq+ν (λ) + e−iλq−ν (λ)

.

Indeed, as above, one can easily see that η(0)
ν (λ) = O

(
e−(1−κ)Im λ

)
.

Case 2. ν � 1. We set z = λ/ν. Then 1/ν � |Im z| � Re z. In this case
we will use the asymptotic expansions of the Bessel functions in terms of the Airy
function Ai(σ). Recall first that Ai(σ) has the expansion

Ai(σ) = σ−1/4e−
2
3 σ3/2

∞∑
`=0

β` σ
−3`/2 (2.5)

for |σ| � 1, σ ∈ Λε := {σ ∈ C : |arg σ| ≤ π − ε}, 0 < ε � 1, where β` are real
numbers and the fractional powers of σ take their principal values. The expansion
(2.5) implies

F (σ) :=
Ai′(σ)
Ai(σ)

= −σ1/2
∞∑

`=0

β̃` σ
−3`/2, (2.6)

where β̃0 = 1, β̃1 = 1/4. The behavior of the function F in C \ Λε is more
complicated and is given by the following

Lemma 2.2. For σ ∈ C \ Λε, Im σ 6= 0, we have the bounds

|F (σ)| ≤ C|σ|1/2 + C|Imσ|−1, (2.7)

|Ai(σ)| ≤ C〈σ〉−1/4e
2
3 |Re σ3/2|, (2.8)

|Ai(σ)|−1 ≤ C〈σ〉−1/4
(
|σ|1/2 + |Imσ|−1

)
e−

2
3 |Re σ3/2|, (2.9)

where we have used the notation 〈σ〉 = (1 + |σ|2)1/2, For σ ∈ C \ Λε, |σ| � 1,
|Reσ3/2| � 1, we have the bound∣∣∣∣F (σ) + σ1/2 +

1
4σ

∣∣∣∣ ≤ C|σ|1/2e−|Re σ3/2|. (2.10)

Proof. The bound (2.7) is proved in [17] (see Lemma 3.1). To prove the other
bounds, we will use that Ai(−σ) = Ai+(σ) + Ai−(σ), where

Ai±(σ) = e±πi/3Ai
(
σe±πi/3

)
.

By (2.5), for | arg σ| ≤ ε, |σ| � 1, we have

Ai±(σ) = σ−1/4e±i 2
3 σ3/2

a±(σ), a±(σ) =
∞∑

`=0

β±` σ−3`/2 (2.11)
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with |β±` | = |β`|. In particular, this implies

|Ai±(σ)| ≤ C〈σ〉−1/4e∓
2
3 Im σ3/2

, |Ai′±(σ)| ≤ C〈σ〉1/4e∓
2
3 Im σ3/2

. (2.12)

Since |Imσ3/2| = |Re (−σ)3/2|, we get (2.8) from (2.12). The bound (2.9) follows
from (2.7), (2.12) and the identity

Ai(−σ)−1 = c±F (−σ)Ai±(σ) + c̃±Ai′±(σ), (2.13)

where c± and c̃± are some constants. To prove (2.10), observe that, if | arg σ| ≤ ε,
Imσ > 0, we have Imσ3/2 > 0, and we can write

−F (−σ) + iσ1/2 +
1
4σ

= 2iσ1/2 ei 2
3 σ3/2

a+(σ)
ei 2

3 σ3/2
a+(σ) + e−i 2

3 σ3/2
a−(σ)

+
ei 2

3 σ3/2
a′+(σ) + e−i 2

3 σ3/2
a′−(σ)

ei 2
3 σ3/2

a+(σ) + e−i 2
3 σ3/2

a−(σ)
. (2.14)

The above expansions imply∣∣∣∣a−(σ)
a+(σ)

∣∣∣∣ = 1 +O(|σ|−1),
∣∣∣∣a′−(σ)
a′+(σ)

∣∣∣∣ = 1 +O(|σ|−1),
∣∣∣∣a′+(σ)
a+(σ)

∣∣∣∣ = O(|σ|−1).

Therefore in this case (2.10) follows from (2.14) after making a change of variables
σ → −σ and using that if | arg σ| ≤ ε, Imσ > 0, then −σ ∈ C \ Λε and (−σ)1/2 =
−iσ1/2. The analysis of the case Imσ < 0 is similar.

Define the functions ϕ(z) and ζ(z) by

ϕ =
2
3
ζ3/2 = ln

1 + (1− z2)1/2

z
− (1− z2)1/2, | arg z| < π,

where the branches take their principal values when z ∈ (0, 1), ϕ, ζ ∈ (0,+∞), and
are continuous elsewhere. It is well-known (e.g. see pages 420-422 of [10]) that the
function ζ(z) is holomorphic for | arg z| < π, ζ(z) takes real values for z ∈ (0,+∞),
and ζ(z) = 21/3(1 − z) + O(|1 − z|2) in a neighborhood of z = 1. Moreover,
ζ(z) → −∞ as z → +∞ and ζ(z) → +∞ as z → 0+. The first derivatives of ϕ(z)
and ζ(z) satisfy

ζ(z)1/2ζ ′(z) = ϕ′(z) = − (1− z2)1/2

z
. (2.15)

One can easily see that for 0 < ±Im z � Re z we have

Reϕ′(z) < 0, ±Imϕ′(z) > 0. (2.16)

In particular, this implies that the function ρ defined above satisfies

ρ

(
1
z

)
=

(1− z2)1/2

z
. (2.17)

Given parameters 0 < δ, δ1 � 1, set

Θ1(δ, δ1) =
{
Re z ≥ 1 + δ2, 0 < |Im z| ≤ δ1Re z

}
,

Θ2(δ, δ1) =
{
0 < Re z ≤ 1− δ2, 0 < |Im z| ≤ δ1Re z

}
,

Θ0(δ, δ1) =
{
1− δ2 ≤ Re z ≤ 1 + δ2, 0 < |Im z| ≤ δ1Re z

}
.

The next lemma is more or less well-known and follows from the properties of
the functions ϕ and ζ studied in [10]. We will sketch the proof for the sake of
completeness.
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Lemma 2.3. For every 0 < δ � 1 there is δ1 = δ1(δ) > 0 such that the following
properties hold: For z ∈ Θ1(δ, δ1) we have | arg ζ(z)| = π −O(δ), and

2|ζ(z)|1/2|Im ζ(z)| ≥ |Reϕ(z)| ≥ C|Im z| (2.18)

with a constant C > 0 depending on δ. For z ∈ Θ2(δ, δ1) we have | arg ζ(z)| = O(δ).
For z ∈ Θ0(δ, δ1) we have

|Im ζ(z)| ≥ |Im z|. (2.19)

Proof. We will use the formula

ϕ(z)−ϕ(Re z) =
∫ 1

0

d

dτ
ϕ(Re z+ iτ Im z)dτ = iIm z

∫ 1

0

ϕ′(Re z+ iτ Im z)dτ. (2.20)

Let z ∈ Θ1(δ, δ1). Then

Reϕ(Re z) = 0, Imϕ(Re z) ≥ CδRe z.

In this case we also have

ϕ′(Re z + iτ Im z) = Oδ(1)

and, in view of (2.16), if ±Im z > 0,

±Imϕ′(Re z + iτ Im z) ≥ Cδ −Oδ(δ1) ≥ Cδ/2 > 0

provided δ1 is taken small enough. Thus, by (2.20) we get

−Reϕ(z) ≥ Cδ|Im z|,

±Imϕ(z) ≥ (Cδ −Oδ(δ1))Re z ≥ 2−1CδRe z, ±Im z > 0.

This yields Re (∓iϕ(z)) > 0, ±Im (∓iϕ(z)) > 0, and hence 0 < ± arg(∓iϕ(z)) =
Oδ(δ1) = O(δ) if δ1 is small enough. Since

ϕ =
2
3
ζ3/2 = ±i2

3
(−ζ)3/2,

we have

0 < ± arg(−ζ(z)) =
2
3

arg(∓iϕ(z)) = O(δ)

and

|Reϕ(z)| = 2
3

∣∣∣Im (−ζ(z))3/2
∣∣∣ = |Im ζ(z)||ζ(z)|1/2(1 +O(δ)).

Let z ∈ Θ2(δ, δ1). Then

Imϕ(Re z) = 0, Reϕ(Re z) ≥ Cδ > 0,

Imϕ′(Re z + iτ Im z) = Oδ(1),

−Reϕ′(Re z + iτ Im z) ≥ (Cδ −Oδ(δ1))(Re z)−1 ≥ 2−1Cδ(Re z)−1,

provided δ1 is taken small enough. Therefore, by (2.20) we get

|Imϕ(z)| ≤ Cδ
|Im z|
Re z

= Oδ(δ1),

Reϕ(z) = Reϕ(Re z) +Oδ(|Im z|) ≥ Cδ −Oδ(δ1) ≥ Cδ/2.

Hence, argϕ(z) = Oδ(δ1) = O(δ), which yields

arg ζ(z) =
2
3

argϕ(z) = O(δ).
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Let z ∈ Θ0(δ, δ1). Then we have ζ ′(z) = −21/3 + O(|1 − z|) at z = 1. To prove
(2.19) we will use the formula

ζ(z)− ζ(Re z) =
∫ 1

0

d

dτ
ζ(Re z + iτ Im z)dτ = iIm z

∫ 1

0

ζ ′(Re z + iτ Im z)dτ

= −i21/3Im z(1 +O(δ)). (2.21)
Since Im ζ(Re z) = 0, we deduce from (2.21),

Im ζ(z) = −21/3Im z(1 +O(δ))

which clearly implies (2.19).

For | arg z| ≤ ε, ν → +∞, we have the expansion (see [10], (10.18), p.423 and
more generally (9.02), p.418)

Jν(νz) = 21/2ν−1/3

(
ζ

1− z2

)1/4 (
Ai(ν2/3ζ)A(ζ) + ν−4/3Ai′(ν2/3ζ)B(ζ) + E1(ν, ζ)

)
,

where

A(ζ) =
M∑

s=0

As(ζ)
ν2s

, B(ζ) =
M∑

s=0

Bs(ζ)
ν2s

,

for every integer M � 1, where the functions As(ζ), Bs(ζ) are smooth and bounded
with their derivatives, A0(ζ) = 1, Bs(ζ) = O(〈ζ〉−1/2). The error term satisfies the
bounds (see [10], (10.19), p.423 and (9.03), p.418 together with the notations on
p.415) ∣∣∂`

ζE1(ν, ζ)
∣∣ ≤ CMν−2M 〈ζ〉(`−1)/4e

2ν
3 |Re ϕ(z)|, ` = 0, 1. (2.22)

We will derive now a similar expansion for the first derivative of Jν . To this end,
observe first that by (2.15) we have(

ζ

1− z2

)1/4

ζ ′(z) = −1
z

(
ζ

1− z2

)−1/4

,

∂

∂z

(
ζ

1− z2

)1/4

= −1
z

(
ζ

1− z2

)−1/4

φ(z),

where

φ(z) =
1
4ζ
− ζ1/2z2

2(1− z2)3/2
.

Since |ζ| ∼ |z| as |z| → ∞, |ζ| ∼ log(|z|−1) as |z| → 0, ζ(z) = 21/3(1−z)+O(|1−z|2)
as z → 1, we have

ζ−1/2

(
φ(z)− 1

4ζ

)
=


Oε(|z|2−ε), ∀0 < ε� 1, |z| → 0,
O(〈ζ〉−1), |z| → ∞,
O(|ζ|−3/2), z → 1.

Differentiating the expansion of Jν above with respect to the variable z and using
that Ai′′(σ) = σAi(σ), we get

z(Jν)′(νz) = −21/2ν−2/3

(
ζ

1− z2

)−1/4

×
(
Ai′(ν2/3ζ)C(ζ) + ν−2/3Ai(ν2/3ζ)D(ζ) + E2(ν, ζ)

)
,

where

C = A+ ν−2(∂ζB + φB), D = ∂ζA+ φA+ ζB, E2 = ν−2/3(∂ζE1 + φE1).
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Then we have the identity

ψν(νz)− (1− z2)1/2

z

= −
(

(1− z2)1/2

z

)
Φ(ζ)(1 + P1(ζ)) + P2(ζ) + P3(ζ)

1 +Q1(ζ) + ν−1/3ζ−1/2F (ν2/3ζ)Q2(ζ) +Q3(ζ)
,

where
Φ(ζ) = ν−1/3ζ−1/2F (ν2/3ζ) + 1 + (4νζ3/2)−1,

Q1(ζ) = A(ζ)− 1 = O(ν−2),
Q2(ζ) = ν−1ζ1/2B(ζ) = O(ν−1w(ζ)1/2),

Q3(ζ) = E1(ν, ζ)Ai(ν2/3ζ)−1,

P1(ζ) = C(ζ)− 1 + ν−1ζ1/2B(ζ)
= A(ζ)− 1 + ν−1ζ1/2B(ζ) + ν−2(∂ζB(ζ) + φB(ζ)) = O(ν−1),

P2(ζ) =
(
1 + (4νζ3/2)−1

)
(A− C)− (4νζ3/2)−1A

−
(
1 + (4νζ3/2)−1

)
Q2 + ν−1ζ−1/2D

= ν−2
(
1 + (4νζ3/2)−1

)
(∂ζB(ζ) + φB(ζ))− (4νζ3/2)−1(A(ζ)− 1)

−ν−1(4νζ3/2)−1ζ1/2B(ζ) + ν−1ζ−1/2(∂ζA(ζ) + φ(A(ζ)− 1))

+ν−1ζ−1/2
(
φ− (4ζ)−1

)
= O

(
ν−1w(ζ)−3/2w(z)2−ε

)
+O

(
ν−2

)
,

P3(ζ) = ν−1/3
(
ζ−1/2E2(ν, ζ) + E1(ν, ζ)

)
Ai(ν2/3ζ)−1

= ν−1
(
ζ−1/2(∂ζE1(ν, ζ) + φE1(ν, ζ)) + ν1/3E1(ν, ζ)

)
Ai(ν2/3ζ)−1

uniformly for |ζ| ≥ ν−1, where w(σ) = |σ|/〈σ〉. We will consider now three cases.
a) z ∈ Θ1(δ, δ1). Then |ζ| ≥ Cδ > 0, and by Lemma 2.3 we have | arg ζ(z)| =

π −O(δ) and |Im z| � ν−1 implies ν|Reϕ(z)| � 1. Therefore, in this case we can
use the estimates (2.9), (2.10) and (2.18) to obtain

|Ai(ν2/3ζ)|−1 ≤ Cν1/6|ζ|1/4e−
2ν
3 |Re ϕ(z)|, (2.23)

|Φ(ζ)| ≤ Ce−ν|Re ϕ(z)|. (2.24)
b) z ∈ Θ2(δ, δ1). Then |ζ| ≥ Cδ > 0, and by Lemma 2.3 we have | arg ζ(z)| =

O(δ). Hence in this case we can use the expansions (2.5) and (2.6) to obtain

|Ai(ν2/3ζ)|−1 ≤ Cν1/6|ζ|1/4e−
2ν
3 |Re ϕ(z)|, (2.25)

|Φ(ζ)| ≤ Cν−2. (2.26)
c) z ∈ Θ0(δ, δ1). Then we have

ν−1 ≤ |Im z| ≤ |z − 1| ≤ |ζ| ≤ 2|z − 1| ≤ 2δ2

and by (2.19), |Im ζ| ≥ |Im z|. Note also that in view of the expansions (2.5) and
(2.6), the bounds (2.7) and (2.9) hold for all σ ∈ C \ (−∞, 0). Using this fact
together with (2.19) we obtain in this case

|Ai(ν2/3ζ)|−1 ≤ Cν1/3e−
2ν
3 |Re ϕ(z)|, (2.27)∣∣∣ν−1/3ζ−1/2F (ν2/3ζ)

∣∣∣ ≤ C + C|ζ|−1/2(ν|Im ζ|)−1

≤ C + Cw(ζ)−1/2(ν|Im z|)−1 (2.28)
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and
|Φ(ζ)| ≤ C + C|ζ|−1/2(ν|Im ζ|)−1 + (4ν|ζ|3/2)−1

≤ C + Cw(ζ)−1/2(ν|Im z|)−1 + Cν−1w(ζ)−3/2. (2.29)
It follows from the above bounds that in all three cases we have, for |Im z| � ν−1,

ν−1/3|ζ|−1/2|F (ν2/3ζ)| ≤ Cw(ζ)−1/2, (2.30)

|Ai(ν2/3ζ)|−1 ≤ Cν1/3〈ζ〉1/4e−
2ν
3 |Re ϕ(z)|. (2.31)

In view of (2.8) we also have

|Ai(ν2/3ζ)| ≤ C〈ζ〉−1/4e
2ν
3 |Re ϕ(z)|. (2.32)

By (2.22) and (2.31), we get, for |Im z| � ν−1,

|P3(ζ)|+ |Q3(ζ)| ≤ CMν−2M+1. (2.33)

By (2.30) and (2.33), for |Im z| � ν−1 and ν large enough, we get(
1 +

1
|z|

) ∣∣∣∣ψν(νz)− (1− z2)1/2

z

∣∣∣∣
≤ 2
w(z)

∣∣∣∣ (1− z2)1/2

z

∣∣∣∣ (|Φ(ζ)|+ C̃ν−1w(z)2−εw(ζ)−3/2 + C̃ν−2
)

≤ 4w(ζ)1/2w(z)−2
(
|Φ(ζ)|+ C̃ν−1w(z)2−εw(ζ)−3/2 + C̃ν−2

)
≤ 4w(ζ)1/2w(z)−2 |Φ(ζ)|+ 4C̃ν−1w(z)−εw(ζ)−1 + 4C̃ν−2w(z)−2.

Taking into account that w(z) ∼ 1, w(ζ) ∼ 1, |Reϕ(z)| ≥ C|Im z| in case a),
w(ζ) ∼ 1, w(z) ∼ |z|, |z| � ν−1 in case b), and w(z) ∼ 1, w(ζ) ∼ |ζ| ≤ 2δ2,
|ζ| ≥ |Im z| in case c), we deduce from the above estimate combined with (2.24),
(2.26) and (2.29), (

1 +
1
|z|

) ∣∣∣∣ψν(νz)− (1− z2)1/2

z

∣∣∣∣
≤

 Cδe
−Cδν|Im z| + Cδν

−1, in case a),
Cδ(ν|z|)−2 + Cε,δν

−1+ε, in case b),
Cδ + Cδ(ν|Im z|)−1, in case c),

(2.34)

where the constant C > 0 is independent of δ. Now, we can make the LHS of (2.34)
less than (C + 1)δ by taking ν|Im z| and ν large enough. This implies (2.1) in view
of (2.17) after making the change (C + 1)δ → δ.

Given 0 < κ < 1, define the functions ϕκ(z) and ζκ(z) by ϕκ(z) = ϕ(κz) and
ζκ(z) = ζ(κz). To bound the function η(0)

ν (νz), we write it in the form

η(0)
ν (νz) =

Ai
(
ν2/3ζκ

)
Ai
(
ν2/3ζ

)
(
1 +Q1(ζκ) + ν−1/3ζ

−1/2
κ F (ν2/3ζκ)Q2(ζκ) +Q3(ζκ)

)
(
1 +Q1(ζ) + ν−1/3ζ−1/2F (ν2/3ζ)Q2(ζ) +Q3(ζ)

) .

As above, using (2.30)-(2.33), we have, for ν � 1, |Im z| � ν−1,

|η(0)
ν (νz)| ≤ 2

∣∣∣∣∣Ai
(
ν2/3ζκ

)
Ai
(
ν2/3ζ

) ∣∣∣∣∣ ≤ Cν1/3

(
〈ζ〉
〈ζκ〉

)1/4

e−
2ν
3 Re(ϕκ(z)−ϕ(z))

≤ Cν1/3

(
〈ϕ〉
〈ϕκ〉

)1/6

e−
2ν
3 Re(ϕκ(z)−ϕ(z)). (2.35)



12 VESSELIN PETKOV AND GEORGI VODEV

On the other hand, in view of (2.15), we have the formula

ϕκ(z)− ϕ(z) = −
∫ 1

κ

ϕτ (z)
dτ

dτ = −z
∫ 1

κ

ϕ′(τz)dτ =
∫ 1

κ

√
1− (τz)2 dτ. (2.36)

It follows from (2.36) that

|ϕκ(z)− ϕ(z)| ≤ C1〈z〉
which in turn implies

〈ϕ〉
〈ϕκ〉

≤ 1 + C2
〈z〉
〈ϕκ〉

≤ C3 (2.37)

since 〈ϕκ〉 ∼ κ|z| as |z| → +∞. Set Θj := Θj(δ, δ1), j = 0, 1, 2, for some fixed,
sufficiently small constants δ, δ1 > 0. It is easy to see that

Re
√

1− (τz)2 ≥
{
C|Im z|, z ∈ Θ1 ∪Θ0,
C, z ∈ Θ2,

for all κ ≤ τ ≤ 1, with a constant C > 0 independent of z and τ . Hence, by (2.36),

Re (ϕκ(z)− ϕ(z)) ≥

{
C̃|Im z|, z ∈ Θ1 ∪Θ0,

C̃, z ∈ Θ2,
(2.38)

with a constant C̃ > 0 independent of z. By (2.35), (2.37) and (2.38), we conclude

|η(0)
ν (νz)| ≤

{
C ′ν1/3e−Cν|Im z|, z ∈ Θ1 ∪Θ0,
C ′e−Cν , z ∈ Θ2,

(2.39)

with constants C,C ′ > 0 independent of z and ν. In particular, (2.39) implies(
1 +

1
|z|

)2

|η(0)
ν (νz)| ≤ C ′′(ν|z|)1/3e−Cν|Im z|

for all z such that ν−1 � |Im z| � Re z, which is the desired bound (2.2) for
|η(0)

ν (λ)|. In view of the formula η(1)
ν (λ) = ψν(κλ)η(0)

ν (λ), the bound for |η(1)
ν (λ)| fol-

lows from that one for |η(0)
ν (λ)| and the fact that (2.1) implies the bound |ψν(κλ)| ≤

C(1 + ν/|λ|). We can bound |η(2)
ν (λ)| similarly because of the formula

η(2)
ν (λ) = η(0)

ν (λ)
(( ν

κλ

)2

− 1− (κλ)−1ψν(κλ)
)
.

3. Some properties of the interior Dirichlet-to-Neumann map. Let Ω =
{x ∈ Rd : |x| ≤ 1}, Γ = ∂Ω, and let λ ∈ C with 1 � |Imλ| � Reλ. Given a
function f ∈ Hs+1(Γ), let u solve the problem{ (

∆ + λ2
)
u = 0 in Ω,

u = f on Γ, (3.1)

where ∆ is the negative Euclidean Laplacian. We define the interior Dirichlet-to-
Neumann (DN) map

N0(λ) : Hs+1(Γ) → Hs(Γ)
by

N0(λ)f := λ−1∂νu|Γ,
ν being the unit inner normal to Γ. Let ∆Γ be the negative Laplace-Beltrami
operator on the boundary Γ equipped with the Riemannian metric induced by the
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Euclidean one. In what follows we will denote byH1
sc(Γ) the Sobolev space equipped

with the semi-classical norm

‖f‖H1
sc(Γ) = ‖(I − |λ|−2∆Γ)1/2f‖L2(Γ),

where I denotes the identity. For σ ≥ 0, set

ρ0(σ) =

√√√√(σ +
(
d− 2

2

)2
)
λ−2 − 1 with Re ρ0 > 0.

Theorem 3.1. For every 0 < δ � 1, independent of λ, there are positive constants
Cδ, C̃δ and δ1 = δ1(δ) such that for Reλ ≥ C̃δ, Cδ ≤ |Imλ| ≤ δ1Reλ, we have the
estimate ∥∥∥∥N0(λ) + ρ0(−∆Γ)− d− 2

2λ
I

∥∥∥∥
L2(Γ)→H1

sc(Γ)

≤ δ. (3.2)

Proof. We will express the DN map in terms of the Bessel functions. If r = |x| is
the radial variable, we have

r
d−1
2 ∆r−

d−1
2 = ∂2

r +
∆Γ − (d− 1)(d− 3)/4

r2
. (3.3)

Let {µ2
j} be the eigenvalues of −∆Γ repeated with their multiplicities and let {ej},

‖ej‖ = 1, be the corresponding eigenfunctions, that is, −∆Γej = µ2
jej . Denote by

〈·, ·〉 and ‖ · ‖ the scalar product and the norm in L2(Γ). If the functions u and f
satisfy equation (3.1), we write

f =
∑

j

fjej , fj = 〈f, ej〉, ‖f‖2 =
∑

j

|fj |2,

u =
∑

j

uj(r)ej , uj(r) = 〈u(r, ·), ej(·)〉.

In view of (3.3), wj(r) = r
d−1
2 uj(r) and fj satisfy the equation{ (

∂2
r − (ν2

j − 1/4)r−2 + λ2
)
wj = 0 in (0, 1),

wj = fj at r = 1,
(3.4)

where

νj =

√
µ2

j +
(
d− 2

2

)2

.

The solution of (3.4) is given by the formula

wj(r) =
bνj (rλ)
bνj (λ)

fj = r1/2 Jνj
(rλ)

Jνj (λ)
fj ,

where bν and Jν are the functions introduced in the previous section. Hence

uj(r) = r−
d−2
2
Jνj (rλ)
Jνj

(λ)
fj .

Since ∂νu|Γ = −∂ru|r=1, we have

N0(λ)f = −
∑

j

λ−1∂ruj |r=1fj =
∑

j

(
−ψνj (λ) +

d− 2
2λ

)
fj ,
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where ψν(λ) = J ′ν(λ)/Jν(λ). This implies∥∥∥∥(I − |λ|−2∆Γ

)1/2
(
N0(λ) + ρ0(−∆Γ)− d− 2

2λ
I

)
f

∥∥∥∥2

L2(Γ)

=
∑

j

(
1 + |λ|−2µ2

j

) ∣∣ψνj (λ)− ρ0(µ2
j )
∣∣2 |fj |2

≤ sup
ν≥0

(
1 + |λ|−2ν2

)
|ψν(λ)− ρ(ν/λ)|2 ‖f‖2, (3.5)

where the function ρ is as in the previous section. Now (3.2) follows from (3.5) and
Theorem 2.1.

Let 0 < κ1 < κ2 < 1 be constants and let φ(r) ∈ C∞0 ([κ1, κ2]). Then the function
χ(x) = φ(|x|) vanishes near Γ. Given an integer k ≥ 0, denote by Hk

r,sc(Ω) the space
equipped with the semi-classical norm

‖u‖Hk
r,sc(Ω) =

k∑
`=0

|λ|−`‖∂`
ru‖L2(Ω),

where r = |x| is the radial variable. It is easy to see that the estimate (2.2) implies
the following

Lemma 3.2. There exist positive constants C and C̃ such that the solution u of
the problem (3.1) satisfies the estimate

‖χu‖H2
r,sc(Ω) ≤ C̃|λ|1/3e−C|Im λ|‖f‖L2(Γ). (3.6)

We will now study the DN map in a more general situation. Let c(x), n(x) ∈
C∞(Ω) be strictly positive functions and define the DN map associated to these
functions by

N (λ)f := λ−1∂νu|Γ,
where u is the solution to the problem{ (

∇c(x)∇+ n(x)λ2
)
u = 0 in Ω,

u = f on Γ. (3.7)

We suppose that there exist a constant 0 < δ0 � 1 and positive constants c̃ and ñ
such that c(x) = c̃, n(x) = ñ in Ω(δ0). Set

ρ̃(σ) =

√√√√(σ +
(
d− 2

2

)2
)
λ−2 − ñ/c̃ with Re ρ̃ > 0.

Theorem 3.3. For every 0 < δ � 1, independent of λ, there are positive constants
Cδ, C̃δ and δ1 = δ1(δ) such that for Reλ ≥ C̃δ, Cδ log |λ| ≤ |Imλ| ≤ δ1Reλ, we
have the estimate ∥∥∥∥N (λ) + ρ̃(−∆Γ)− d− 2

2λ
I

∥∥∥∥
L2(Γ)→H1

sc(Γ)

≤ δ. (3.8)

Proof. We will compare N (λ) with the DN map Ñ (λ) defined by

Ñ (λ)f := λ−1∂νu|Γ,
where u is the solution of the problem{ (

c̃∆ + ñλ2
)
u = 0 in Ω,

u = f on Γ. (3.9)
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Clearly, we have

Ñ (λ) =
(
ñ

c̃

)−1/2

N0

(
λ

(
ñ

c̃

)1/2
)
.

In other words, the estimate (3.2) holds true with N0 and ρ0 replaced by Ñ and ρ̃,
respectively. Therefore, one can easily see that Theorem 3.3 follows from Theorem
3.1 and the following

Lemma 3.4. There exist positive constants C and C̃ such that we have the estimate

‖N (λ)− Ñ (λ)‖L2(Γ)→H1
sc(Γ) ≤ C̃|λ|3e−C|Im λ|. (3.10)

Proof. Denote by GD and G̃D the Dirichlet self-adjoint realizations of the opera-
tors −n−1∇c∇ and −ñ−1c̃∆ on the Hilbert spaces L2(Ω, n(x)dx) and L2(Ω, dx),
respectively. Let χ1 be a smooth function depending only on the radial variable
such that χ1 = 1 in Ω(δ0/3), χ1 = 0 in Ω \Ω(δ0/2). Let u1 be the solution to (3.7)
and u2 the solution to (3.9), u1 = u2 = f on Γ. We have u1 − χ1u2 = 0 on Γ and

U :=
(
n−1∇c∇+ λ2

)
χ1u2 =

(
ñ−1c̃∆ + λ2

)
χ1u2

= −ñ−1c̃(G̃D − λ2)−1(n−1c̃∆ + λ2)[∆, χ1]u2

= −
(
ñ−1c̃

)2
(G̃D − λ2)−1V,

where V = [∆, [∆, χ1]]u2. Hence

u1 − χ1u2 = (GD − λ2)−1U

which implies
N (λ)f − Ñ (λ)f = λ−1γ∂ν(GD − λ2)−1U, (3.11)

where γ denotes the restriction on Γ. By (3.11) we obtain

‖N (λ)f − Ñ (λ)f‖H1
sc(Γ) ≤ O(|λ|−1)

∥∥γ∂ν(GD − λ2)−1
∥∥

H2(Ω)→H1
sc(Γ)

×
∥∥∥(G̃D − λ2)−1

∥∥∥
L2(Ω)→H2(Ω)

‖V ‖L2(Ω), (3.12)

where the Sobolev space H2(Ω) is equipped with the usual norm. Now we will
use the fact that the norm in H1

sc(Γ) is bounded from above by the usual norm in
H1(Γ). Thus, by the trace theorem and the coercivity of GD and G̃D we have∥∥γ∂ν(GD − λ2)−1

∥∥
H2(Ω)→H1

sc(Γ)
≤ O(1)

∥∥γ∂ν(GD − λ2)−1
∥∥

H2(Ω)→H1(Γ)

≤ O(1)
∥∥(GD − λ2)−1

∥∥
H2(Ω)→H3(Ω)

≤ O(1)
∥∥(GD − λ2)−1

∥∥
L2(Ω)→H1(Ω)

≤ O(1) (3.13)

and ∥∥∥(G̃D − λ2)−1
∥∥∥

L2(Ω)→H2(Ω)

≤ O(1) +O(|λ|2)
∥∥∥(G̃D − λ2)−1

∥∥∥
L2(Ω)→L2(Ω)

≤ O(|λ|). (3.14)

On the other hand, it is easy to see that the function V is of the form

V =
2∑

`=0

a`(r)∂`
r(χ2u2),
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where χ2 is a smooth function depending only on the radial variable such that
χ2 = 1 on supp[∆, χ1], χ2 = 0 in Ω(δ0/4). Hence, by Lemma 3.2,

‖V ‖L2(Ω) ≤ O(|λ|2)‖χ2u2‖H2
r,sc(Ω) ≤ O(|λ|7/3)e−C|Im λ|‖f‖L2(Γ) (3.15)

with a new constant C > 0. Now (3.10) follows from (3.12)-(3.15).

4. Eigenvalue-free regions. In this section we derive Theorem 1.1 from Theo-
rems 3.1 and 3.3. Let cj(x), nj(x) ∈ C∞(Ω), j = 1, 2, be strictly positive functions
such that cj(x) = c̃j , nj(x) = ñj in Ω(δ0), where c̃j , ñj are positive constants
satisfying either the condition

c̃1 = c̃2, ñ1 6= ñ2, (4.1)

or the condition
(c̃1 − c̃2)(c̃1ñ1 − c̃2ñ2) < 0. (4.2)

Denote by Nj(λ) the DN map associated to the pair (cj , nj) defined in Section 3
and introduce the operator

T (λ) = c̃1N1(λ)− c̃2N2(λ).

Clearly, to prove Theorem 1.1 one has to show that, under the conditions (4.1) or
(4.2), T (λ)f = 0 implies f = 0 for λ ∈ Λ`, ` = 1, 2, where

Λ1 = {λ ∈ C : Reλ� 1, 1 � |Imλ| � Reλ}
when the functions cj , nj are constants in Ω,

Λ2 = {λ ∈ C : Reλ� 1, log(Reλ) � |Imλ| � Reλ}
when the functions cj , nj are constants in Ω(δ0), only. Denote by ρ̃j , j = 1, 2, the
functions obtained by replacing the pair (c, n) by (cj , nj) in the definition of the
function ρ̃ introduced in Section 3. If T (λ)f = 0, λ ∈ Λ`, ` = 1, 2, by Theorems 3.1
and 3.3, respectively, we have for all δ > 0,∥∥∥(1− |λ|−2∆Γ)1/2 (ρ̃1(−∆Γ)− ρ̃2(−∆Γ)) f

∥∥∥
L2(Γ)

≤ δ‖f‖L2(Γ) (4.3)

if (4.1) holds, and

‖(c̃1ρ̃1(−∆Γ)− c̃2ρ̃2(−∆Γ))f‖L2(Γ) ≤ δ‖f‖L2(Γ) (4.4)

if (4.2) holds. On the other hand, we have

g(σ) := c̃1ρ̃1(σ)− c̃2ρ̃2(σ) =
(c̃21 − c̃22)

(
σ +

(
d−2
2

)2)
λ−2 − (c̃1ñ1 − c̃2ñ2)

c̃1ρ̃1 + c̃2ρ̃2
.

Hence, under the above conditions, g(σ) 6= 0, ∀σ ≥ 0, and we have the bound

|g(σ)|−1 ≤ C

〈
σ

|λ|2

〉k/2

, (4.5)

where k = 1 if (4.1) holds and k = −1 if (4.2) holds. This implies that the operator

(1− |λ|−2∆Γ)−k/2g(−∆Γ)−1

is bounded on L2(Γ) uniformly in λ. Therefore, in both cases by (4.3) and (4.4) we
conclude

‖f‖L2(Γ) ≤ Cδ‖f‖L2(Γ), ∀δ > 0, λ ∈ Λ`, (4.6)
with a constant C > 0 independent of δ. Hence, taking δ small enough, we deduce
from (4.6) that ‖f‖ = 0, which is the desired result.
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