
CAUCHY PROBLEM FOR HYPERBOLIC OPERATORS WITH TRIPLE

EFFECTIVE CHARACTERISTICS ON THE INITIAL PLANE

TATSUO NISHITANI AND VESSELIN PETKOV

Abstract. We study the Cauchy problem for effectively hyperbolic operators P with triple char-
acteristics points lying on the initial plane t = 0. Under some conditions on the principal symbol
of P one proves that the Cauchy problem for P in [0, T ]×Ω ⊂ Rn+1 is well posed for every choice
of lower order terms. Our results improves those in [11] since we do not assume the condition (E)
of [11] to be satisfied.

1. Introduction

In this paper we study the Cauchy problem for a differential operator

P (t, x,Dt, Dx) =
∑

k+|α|≤3

ck,α(t, x)D
k
tD

α
x , Dt = −i∂t, Dxj = −i∂xj

of order 3 with smooth coefficients ck,α(t, x), t ∈ R, x ∈ Ω ⊂ Rn, c3,0 ≡ 1. Denote by

p(t, x, τ, ξ) =
∑

k+|α|=3

ck,α(t, x)τ
kξα = τ3 + q1(t, x, ξ)τ

2 + q2(t, x, ξ)τ + q3(t, x, ξ)

the principal symbol of P . Throughout the paper we work with symbols s(t, x, ξ) ∈ Sm
1,0(Ω×Rn) of

pseudo-differential operators which depend smoothly on t ∈ [0, T ] and we use the Weyl quantization
(see [3])

s(t, x,D)u = (Opw(s)u)(t, x) = (2π)−n

∫ ∫
ei⟨x−y,ξ⟩s

(
t,
x+ y

2
, ξ
)
u(t, y)dydξ.

We will use the notation Sm
0,1 for the class of symbols (see [3]) and we abbreviate Sm

1,0 to Sm and

Opw(s) to Op(s).
With a real symbol φ ∈ S0

1,0 one can write

P = (Dt −Op(φ)⟨D⟩)3 +Op(a)⟨D⟩(Dt −Op(φ)⟨D⟩)2 −Op(b)⟨D⟩2(Dt −Op(φ)⟨D⟩)

+Op(c)⟨D⟩3 −
2∑

j=0

Op(bj)⟨D⟩j(Dt −Op(φ)⟨D⟩)2−j (1.1)

which is a differential operator in t. Here the symbols a, b, c ∈ S0
1,0 coincide with

q1⟨ξ⟩−1 + 3φ, −
(
q2⟨ξ⟩−2 + 2φq1⟨ξ⟩−1 + 3φ2

)
, q3⟨ξ⟩−3 + φq2⟨ξ⟩−2 + φ2⟨ξ⟩−1 + φ3,

respectively, bj ∈ S0
1,0, j = 0, 1, 2 (see [3]), and ⟨D⟩ has symbol ⟨ξ⟩ = (1 + |ξ|2)1/2.
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First we assume that the principal symbol

p(t, x, τ, ξ) = (τ − φ⟨ξ⟩)3 + a⟨ξ⟩(τ − φ⟨ξ⟩)2 − b⟨ξ⟩2(τ − φ⟨ξ⟩) + c⟨ξ⟩3 (1.2)

is hyperbolic, that is the roots of equation p = 0 with respect to τ are real for (t, x, ξ) ∈ [0, T ] ×
Ω × Rn, where Ω ⊂ Rn is an open set. Recall that an operator is effectively hyperbolic if the
fundamental matrix Fp(z) of the principal symbol p has two non-vanishing eigenvalues ±µ(z) at
every critical point z of p, where dp(z) = 0. An effectively hyperbolic operator in [0, T ] × Ω may
have triple characteristics only for t = 0 or t = T (see [4, Lemma 8.1]). Second we assume that p has
triple characteristic points only on t = 0 and P is effectively hyperbolic at every triple characteristic
points ρ = (0, x, τ, ξ) which is equivalent (see [4, Lemma 8.1]) to the condition

∂2p

∂t∂τ
(ρ) < 0.

Consequently, at a triple characteristic point ρ0 = (0, x0, 0, ξ0), assuming φ(0, x0, ξ0) = 0, we have
bt(0, x0, ξ0) > 0. Moreover, at ρ0 we have a(0, x0, ξ0) = b(0, x0, ξ0) = c(0, x0, ξ0) = 0.

Our purpose is to study the Cauchy problem for such P and to prove that under some condi-
tions on p this problem is well posed for every choice of lower order terms (see [11] for the definition
of well posed Cauchy problem). This property is called strong hyperbolicity and the effective hyper-
bolicity of P is a necessary condition for it (see [4, Theorem 3]). For operators having only double
characteristics every effectively hyperbolic operator is strongly hyperbolic and we refer to [9] for
the references and related works. The conjecture is that effectively hyperbolic operators with triple
characteristic points on t = 0 are strongly hyperbolic (see [4], [6], [1], [11]). On the other hand, for
some class of hyperbolic operators with triple characteristics the above conjecture has been proved
in [6], [1], [11], but the general case is still an open problem.

In [11] the strong hyperbolicity was established under the condition (E) saying that for some
δ > 0 and small t ≥ 0 we have the lower bound

∆

⟨ξ⟩6
≥ δt

( ∆0

⟨ξ⟩2
)2
, (x, ξ) ∈ Ω× Rn.

Here ∆ ∈ S6 is the discriminant of the equation p = 0 with respect to τ , while ∆0 ∈ S2 is the
discriminant of the equation ∂p

∂τ = 0 with respect to τ. In [11] it was introduced also a weaker
condition (H) saying that with some constant δ > 0 and small t ≥ 0 we have

∆

⟨ξ⟩6
≥ δt2

∆0

⟨ξ⟩2
, (x, ξ) ∈ Ω× Rn.

We can consider a microlocal version of the conditions (E) and (H) assuming that the above
inequalities hold for (t, x, ξ), t ≥ 0, in a small conic neighborhood W0 of every triple characteristic
point (0, x0, ξ0). The purpose of this paper is to study operators with triple characteristics on the
plane t = 0 and our main results are stated in Theorem 4.1 and Corollary 4.5. They improve the
results in [11] and show that we have a strong hyperbolicity for some operators for which (E) is
not satisfied, but (H) holds. In particular, we cover the case of operators whose principal symbol
p admits a microlocal factorization with one smooth root under the condition that there are no
double characteristic points of p converging to a triple characteristic point (0, x, 0, ξ) (see Example
1.1).
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Concerning the symbols a(t, x, ξ), b(t, x, ξ), c(t, x, ξ), we assume the existence of δ1 > 0 such
that

b(t, x, ξ) ≥ δ1t,

c = O(b2), ⟨ξ⟩α∂αξ ∂βx c = O(b), |α+ β| = 1, ⟨ξ⟩α∂αξ ∂βx c = O(
√
b), |α+ β| = 2,

∂tc = O(b), ⟨ξ⟩α∂αξ ∂βx (ac) = O(
√
b), |α+ β| = 3.

(1.3)

It is clear that the condition (1.3) are satisfied if

b(t, x, ξ) ≥ δ1t, ⟨ξ⟩α∂γt ∂αξ ∂βx c = O
(
b2−|α+β|/2−|γ|) for |α+ β + γ| ≤ 3, γ = 0, 1. (1.4)

In fact, we assume a slightly weaker microlocal conditions formulated in (3.11) and Theorem 4.1.

Below we present two examples of effectively hyperbolic operators with triple characteristics on
t = 0 satisfying the above assumptions.

Example 1.1. Assume c ≡ 0. Then the symbol p becomes p = ((τ − φ⟨ξ⟩)2 + a⟨ξ⟩(τ − φ⟨ξ⟩) −
b⟨ξ⟩2)(τ −φ⟨ξ⟩). Let ρ = (0, x0, φ(0, x0, ξ0)⟨ξ0⟩, ξ0), be a triple characteristic point. For small t > 0
we have b(t, x0, ξ0) > 0. If for some (y, η) sufficiently close to (x0, ξ0) we have b(0, y, η) < 0, then
there exists z = (t∗, x∗, ξ∗) with t∗ > 0 such that b(z) = 0 and the equation (τ − φ⟨ξ⟩)2 + a⟨ξ⟩(τ −
φ⟨ξ⟩) − b⟨ξ⟩2 = 0 has a root φ(z)⟨ξ∗⟩ for z. This implies the existence of a double characteristic
point (t∗, x∗, φ(z)⟨ξ∗⟩, ξ∗) of p. We exclude this possibility, assuming b(0, x, ξ) ≥ 0 for (x, ξ) close
to (x0, ξ0).

Remark 1.1. For the operator in Example 1.1, the discriminant of the equation p = 0 has the
form ∆ = b2(a2 + 4b)⟨ξ⟩6, while ∆0 = 4(a2 + 3b)⟨ξ⟩2. Therefore the condition (E) is reduced to

b2(a2 + 4b) ≥ δt(a2 + 3b)2.

If b = O(t), this inequality yields b2a2 + 4b3 ≥ δta4 and hence a2 ≤ O(t2)/δt = O(t) which is not
satisfied in any small neighborhood of a triple characteristic point (0, x0, φ(0, x0, ξ0)⟨ξ0⟩, ξ0), unless
a(0, x, ξ) = 0 for all (0, x, ξ) close to the point (0, x0, ξ0). On the other hand, the inequality

b2(a2 + 4b) ≥ δt2(a2 + 3b)

obviously holds (b ≥ δ1t is assumed), hence (H) is satisfied.

The Example 1.1 covers the case when the principal symbol p admits a factorization

p = (τ2 + 2d(t, x, ξ)τ + f(t, x, ξ))(τ − λ(t, x, ξ))

with C∞ smooth real root λ(t, x, ξ) and p has not double characteristic points in a neighborhood
of (0, x0, ξ0). In fact, we may write

p =
(
(τ − λ)2 + 2(λ+ d)(τ − λ) + λ2 + 2dλ+ f

)
(τ − λ)

and taking φ = λ⟨ξ⟩−1 we reduce the symbol to Example 1.1. Notice that effectively hyperbolic
operators with principal symbols admitting above factorization have been studied by V. Ivrii in [6]
who proved the strong hyperbolicity constructing parametrix. Here we present another proof based
on energy estimates with weight t−N , assuming P strictly hyperbolic for small t > 0.

Example 1.2. Consider the operator with principal symbol

p = τ3 − (t+ α(x, ξ))⟨ξ⟩2τ − (t2b2 + tb1 + b0)⟨ξ⟩3,
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where α, b0, b1, b2 are zero order pseudo-differential operators and α ≥ 0. This class of operators
has been studied in [11] under the condition (E). We write p as follows

p = (τ + b1⟨ξ⟩)3 − 3b1⟨ξ⟩(τ + b1⟨ξ⟩)2 −
(
t+ α− 3b21

)
⟨ξ⟩2(τ + b1⟨ξ⟩)

−
[
t2b2 + b0 − b1α+ b31

]
⟨ξ⟩3.

Choosing φ = −b1(t, x, ξ) one reduces the symbol p to the form (1.2) with a = −3b1, b = t + α −
3b21, c = −(t2b2 + b0 − b1α+ b31). If α ≥ 3b21, b0 = b1α− b31, the condition (1.4) is satisfied, while for
α = 3b21, b0 = b1α − b31 the condition (E) is not satisfied for b1, unless b1(0, x, ξ) ≡ 0. It is easy to
see that with the above choice of b0 and b1, the condition (H) holds.

Notice that if ρ = (t, x, τ, ξ) with t > 0 is a double characteristic point for p, one has ∆(ρ) = 0
and ∆0(ρ) > 0. Therefore the condition (H) is not satisfied and the analysis of this case is a difficult
open problem. The proofs in this work are based on energy estimates with weight t−N with N ≫ 1
leading to estimates with big loss of regularity. This phenomenon is typical for effectively hyperbolic
operators with multiple characteristics (see [4], [6], [1], [11]).

We follow the approach in [11] reducing the problem to the one for first order pseudo-differential
system. In Section 2 we construct a symmetrizer S for the principal symbol of the system following
a general result (see Lemma 2.1) which has independent interest. Moreover, detS = 1

27∆ and under

our assumptions one shows that detS ≥ δb2(a2+4b), δ > 0. Therefore ∆ ≥ εt2(a2+4b), ε > 0, and
in general the condition (E) is not satisfied. This leads to difficulties in Section 3, where a more fine
analysis of the matrix pseudo-differential operators is needed. As in [11] a detailed examination
of the sharp G̊arding inequality for matrix pseudo-differential operators with nonnegative definite
symbols plays a crucial role in the analysis. In Section 4 we show that the microlocal conditions
(1.3) are sufficient for the energy estimates in Theorems 4.1 and 4.2.

2. Symmetrizer

First we recall a general result concerning the existence of a symmetrizer. Let p(ζ) = ζm +
a1ζ

m−1 + · · · + am be a monic hyperbolic polynomial of degree m and let q(ζ) = p′(ζ). Here
aj(t, x, ξ) depend on (t, x, ξ) but we omit this in the notations below. Let

hp,q(ζ, ζ̄) =
p(ζ)q(ζ̄)− p(ζ̄)q(ζ)

ζ − ζ̄
=

m∑
i,j=1

hijζ
i−1ζ̄j−1

be the Bézout form of p and q. It is well known that the matrix H = (hij) is nonnegative definite
(see for example [5]).

Consider the Sylvester matrix Ap corresponding to p(ζ) which has the form

Ap =


0 1 · · · 0
...

...
. . .

0 0 · · · 1
−am −am−1 · · · −a1

 .

One has the following result [10] and for the sake of completeness we present the proof.

Lemma 2.1. ([10, Lemma 2.3.1]) H symmetrizes Ap and detH = ∆2 where ∆ is the difference-
product of the roots of p(τ) = 0.
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Proof. We first treat the case when p(ζ) is a strictly hyperbolic polynomial. Let λj , j = 1, . . . ,m
be the different roots of the equation p(ζ) = 0. Write p(ζ) =

∏m
j=1(ζ − λj) and set

σℓ,k =
∑

1≤j1<···<jℓ≤m,jp ̸=k

λj1 · · ·λjℓ .

Since p′(ζ) =
∑m

k=1

∏m
j=1,j ̸=k(ζ − λj) =

∑m
i=1(−1)m−iσm−i,kζ

i−1 it is easy to see

hij =

m∑
k=1

(−1)i+jσm−i,kσj−1,k.

Denote by R the Vandermonde’s matrix having the form

R =


1 1 · · · 1
λ1 λ2 · · · λm
...

...
. . .

...
λm−1
1 λm−1

2 · · · λm−1
m

 .

Since λi ̸= λj , i ̸= j, the matrix R is invertible and |detR| = |∆|. It is clear that

ApR = R

 λ1
. . .

λm

 .

Denote by coR = (rij) the cofactor matrix of R and by ∆(λ1, . . . , λk) the difference-product of
λ1, . . . , λk. It is easily seen that rij is divisible by ∆i = ∆(λ1, . . . , λi−1, λi+1, . . . , λm), hence

rij = cij(λ1, . . . , λi−1, λi+1, . . . , λm)∆i. (2.1)

Since rij and ∆i are alternating polynomials in (λ1, . . . , λi−1, λi+1, . . . , λm) of degree m(m−1)/2−
j + 1 and (m− 1)(m− 2)/2 respectively, then cij is a symmetric polynomial of degree

m− j = m(m− 1)/2− j + 1− (m− 1)(m− 2)/2.

Therefore cij is a polynomial in fundamental symmetric polynomials of (λ1, . . . , λi−1, λi+1, . . . , λm).
Noting that ∆i is of degree m− 2 and rij (j ̸= m) is of degree m− 1 respectively with respect to
λℓ (ℓ ̸= i), one concludes that cij is of degree 1 with respect to λℓ (ℓ ̸= i) which proves that

cij = (−1)i+jσm−j,i. (2.2)

Thus denoting C = (cij) we have tCC = (hij) = H. In particular, this shows that the symmetric
matrix H is nonnegative definite as it was mentioned above.

Set D = diag (∆1, . . . ,∆m) and note that D is invertible. Moreover it follows from (2.1) that
C = D−1(coR) = (detR)D−1R−1 and hence

CApC
−1 = D−1(R−1ApR)D.

It is clear that CApC
−1 is a diagonal matrix because both R−1ApR and D are diagonal matrices.

Then CApC
−1 = tC−1 tAp

tC yields tCCAp = tAp
tCC which proves that HAp is symmetric. From

C = (detR)D−1R−1 it follows that

C = diag
(
±

∏
k ̸=1

(λi − λk),±
∏
k ̸=2

(λi − λk), . . . ,±
∏
k ̸=m

(λi − λk)
)
R−1
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and hence |detC| = |
∏m

j=1

∏m
k ̸=j(λk−λj)|/|∆| = |∆|. Consequently, detH = ∆2 and this completes

the proof for strictly hyperbolic polynomial p(ζ).
Passing to the general case, introduce the polynomial

pε(ζ) =
(
1 + ε

∂

∂ζ

)m−1
p(ζ), ε ̸= 0.

According to [12], pε(ζ) is strictly hyperbolic and let Hε = tCεCε be the symmetrizer for Apε

constructed above. Obviously, as ε→ 0, we have Apε → Ap since the coefficients of pε(ζ) go to the
ones of p(ζ). The roots of p(ζ) depend continuously on the coefficients and this yields λj,ε → λj ,
λj,ε being the roots of pε(ζ) = 0. The equalities (2.2) imply Cε → C and passing to the limit ε→ 0,
we obtain the result. □

Note that H is different from the Leray’s symmetrizer ([7]) since if B is the Leray’s symmetrizer,

then detB = ∆2(m−1). Now consider

Ãp =


−a1 −a2 · · · −am
1 0 · · · 0
...

. . .
. . .

0 · · · 1 0

 .

Corollary 2.1. Let J = (δi,m+1−j), where δij is the Kronecker’s delta. Then H̃ = JH tJ sym-

metrizes Ãp and det H̃ = ∆2.

Proof. Since Ãp = JAp
tJ and tJJ = I the proof is immediate. □

With U = t
(
(Dt−Op(φ)⟨D⟩)2u, ⟨D⟩(Dt−Op(φ)⟨D⟩)u, ⟨D⟩2u

)
the equation Pu = f is reduced

DtU = Op(φ)⟨D⟩U + (Op(A)⟨D⟩+Op(B))U + F, (2.3)

where F = t(f, 0, 0) and

A(t, x, ξ) =

 −a b −c
1 0 0
0 1 0

 , B(t, x, ξ) =

 b11 b11 b13
0 b22 0
0 0 b33

 ,

where bij ∈ S0
1,0.

Introduce

S(t, x, ξ) =
1

3

 3 2a −b
2a 2(a2 + b) −ab− 3c

−b −ab− 3c b2 − 2ac


which is a representation matrix (conjugated by J in Corollary 2.1) of the Bézout form of p(τ) =
τ3 + aτ2 − bτ + c and p′(τ) (see for example [5], [8]). Therefore S symmetrizes A so that

S(t, x, ξ)A(t, x, ξ) =
1

3

 −a 2b −3c
2b ab− 3c −2ac
−3c −2ac bc

 . (2.4)

Note that when c = 0 one has

S0(t, x, ξ) =
1

3

 3 2a −b
2a 2(a2 + b) −ab
−b −ab b2
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and hence

detS0(t, x, ξ) =
1

27
b2(a2 + 4b).

.

Lemma 2.2. There exist ε̄ > 0 and δ > 0 such that

detS ≥ δb2(a2 + b)

if |ac| ≤ ε̄ b2 and |c| ≤ ε̄ b3/2.

Proof. Note that

detS = detS0 +
1

27

{
− 4a3c− 18abc− 27c2}.

Since

|a3c| ≤ ε̄ b2a2, |abc| ≤ ε̄ b3, |c2| ≤ ε̄2 b3

choosing ε̄ = 1/50 for instance, the assertion is clear. □

Lemma 2.3. There exist ε̄ > 0 and ε1 > 0 such that

S(t, x, ξ) ≫ ε1t

 1 0 0
0 1 0
0 0 b

 = ε1tJ,

provided |ac| ≤ ε̄ b2 and |c| ≤ ε̄ b3/2.

Proof. Since

3S − ε1tJ =

 3− ε1t 2a −b
2a 2a2 + 2b− ε1t −ab− 3c
−b −ab− 3c b2 − ε1tb− 2ac

 ,

one obtains

det (3S − ε1tJ) = det 3S + ε1O
(
b2(b+ a2)

)
.

Indeed

(3− ε1t)(2a
2 + 2b− ε1t)(b

2 − ε1tb− 2ac) = 3(2a2 + 2b)(b2 − 2ac) + ε1O
(
tb(b+ a2)

)
,

b2(2a2 + 2b− ε1t) = b2(2a2 + 2b) + ε1O
(
tb(b+ a2)

)
,

4a2(b2 − ε1tb− 2ac) = 4a2(b2 − 2ac) + ε1O
(
tba2

)
,

(3− ε1t)(ab+ 3c)2 = 3(ab+ 3c)2 + ε1O
(
tb2).

Noting b ≥ δ1t, one gets the above representation and we deduce det(3S − ε1tJ) ≥ 0 for small ε1.
In the same way one treats the principal minors of order 2. For example

(3− ε1t)(2a
2 + 2b− ε1t)− 4a2 = 2a2 + 6b− ε1t(2a

2 + 2b) + ε21t
2 ≥ 2(a2 + b)(1− ε1t) ≥ 0,

(3− ε1t)(b
2 − ε1tb− 2ac)− b2 = 2b2 − 6ac− ε1t(b

2 − 2ac+ 3b) + ε21t
2b

≥ b2 − 4ac− 3ε1tb+ (b2 − 2ac)(1− ε1t)

≥ (1− 4ε̄)b2 − 3ε1tb+ (1− 2ε̄)(1− ε1t)b
2 ≥ 0,
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(2a2 + 2b− ε1t)(b
2 − ε1tb− 2ac)− (ab+ 3c)2 ≥ a2b2 + 2b3 − 10abc− 9c2 − 4a3c

−3ε1tb
2 + 2ε1tac− 2ε1tba

2

≥ (1− 4ε̄)a2b2 + (2− 10ε̄− 9ε̄2)b3 − (3ε1 + 2ε1ε̄)tb
2 − 2ε1tba

2 ≥ 0

since all terms involving ε1t can be compensated by a2b2 + 2b3. □

Lemma 2.4. Assume ⟨ξ⟩αc(α)(β) = O(
√
b) for |α+ β| = 2 and ⟨ξ⟩α(ac)(α)(β) = O(

√
b) for |α+ β| = 3.

There exists C > 0 such that for U ∈ C∞(Rt : C
∞
0 (Rn)) we have

Re(Op(S)U,U) ≥ ε1t
( 2∑
j=1

∥Uj∥2 + (Op(b)U3, U3)
)
− Ct−1∥⟨D⟩−1U∥2.

Proof. We will follow the argument of [11, Section 3] and we use the notation ∂αξ D
β
xQ = Q

(α)
(β).

Recall that we have the representation

QF −Op(Q) = Op
( ∑

2≤|α+β|≤3

ψα,β(ξ)Q
(α)
(β)

)
+Op(R) (2.5)

with R ∈ S−2
1/2,0 and real symbols ψα,β ∈ S(|α|−|β|)/2, where QF is the Friedrichs part of Q (see [11,

Appendix], [2]) and hence (QFU,U) ≥ 0.
Notice that b is real, hence (Op(b)U3, U3) = Re (Op(b)U3, U3). Setting Q = S − 2ε1tJ, we have

Re (Op(S)U,U) = Re (Op(Q)U,U) + 2ε1t
( 2∑
j=1

∥Uj∥2 + (Op(b)U3, U3)
)
,

and it is enough to prove

∣∣Re(Op
( ∑
2≤|α+β|≤3

ψαβQ
(α)
(β)

)
U,U)

∣∣ ≤ ε1t
( 2∑
j=1

∥Uj∥2 + (Op(b)U3, U3)
)
+ Cε−1

1 t−1∥⟨D⟩−1U∥2. (2.6)

Indeed if this is true, then we have

Re(Op(Q)U,U) ≥ (QFU,U)− ε1t
( 2∑
j=1

∥Uj∥2 + (Op(b)U3, U3)
)

−Cε−1
1 t−1∥⟨D⟩−1U∥2 − C∥⟨D⟩−1U∥2

≥ −ε1t
( 2∑
j=1

∥Uj∥2 + (Op(b)U3, U3)
)
− Cε−1

1 t−1∥⟨D⟩−1U∥2.

Thus we conclude the assertion.
To prove (2.6), consider Re(Op(ψαβQ

(α)
(β))U,U) with |α+β| = 2. Setting g = b2− εtb− 2ac, one

has

Q
(α)
(β) =

 0 S−|α| S−|α|

S−|α| S−|α| S−|α|

S−|α| S−|α| g
(α)
(β)

 .
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Here and below Sm denotes some symbol in the class Sm. This yields

ψαβQ
(α)
(β) =

 0 S−1 S−1

S−1 S−1 S−1

S−1 S−1 ψαβg
(α)
(β)


and hence

|(Op(ψαβQ
(α)
(β))U,U)| ≤ ε1t

2∑
j=1

∥Uj∥2 + Cε−1
1 t−1∥⟨D⟩−1U∥2

+|Re
(
Op

(
ψαβg

(α)
(β)

)
U3, U3

)
|.

Let T = ψαβg
(α)
(β)⟨ξ⟩. Then ψαβg

(α)
(β) = Re (T#⟨ξ⟩−1) + S−2 and

Re (Op(ψαβg
(α)
(β))U3, U3) ≤ ε1t∥Op(T )U3∥2 + Cε−1

1 t−1∥⟨D⟩−1U3∥2.

Note that ∥Op(T )U3∥2 = (Op(T#T )U3, U3) and T#T = T 2 + S−2. Therefore there exists C > 0
such that

T 2 ≤ Cb

because ⟨ξ⟩αc(α)(β) = O(
√
b) and ⟨ξ⟩α

(
b(b − ε1t)

)(α)

(β)
= O(

√
b) and b ≥ δt. Applying the Fefferman-

Phong inequality for the operator with symbol Cb− T 2, one proves the assertion.

For the case |α+ β| = 3 with T1 = ψαβg
(α)
(β)⟨ξ⟩

3/2 we have the inequality

T 2
1 ≤ Cb

with some C > 0. Indeed, ⟨ξ⟩α(ac)(α)(β) = O(
√
b) and ⟨ξ⟩α

(
b(b − ε1t)

)(α)

(β)
= O(

√
b). Repeating the

above argument, we complete the proof. □

Corollary 2.2. Let S̃ = S + λ t−1⟨ξ⟩−2I. Then there exists λ0 > 0 such that for λ ≥ λ0 we have

Re(Op(S̃)U,U) = Re(Op(S)U,U) + λt−1∥⟨D⟩−1U∥2

≥ ε1t
( 2∑
j=1

∥Uj∥2 + (Op (b)U3, U3)
)
+ (λ/2)t−1∥⟨D⟩−1U∥2.

Corollary 2.3. There exist δ2 > 0 and λ0 > 0 such that

Re(Op(S̃)U,U) ≥ δ2t
2∥U∥2 + (λ/2)t−1∥⟨D⟩−1U∥2, λ ≥ λ0.

Proof. Since there exists δ1 > 0 such that b ≥ δ1t from the Fefferman-Phong inequality for the
scalar symbol b− δ1t one deduces

(Op (b)U3, U3) ≥ δ1t∥U3∥2 − C∥⟨D⟩−1U3∥2

which proves the assertion thanks to Corollary 2.2. □
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3. Energy estimates

Consider the energy (t−Ne−γtOp(S̃)U,U), where (·, ·) is the L2(Rn) inner product and N > 0,
γ > 0 are positive parameters. Then one has

∂t(t
−Ne−γtOp(S̃)U,U) = −N(t−N−1e−γtOp(S̃)U,U)− γ(t−Ne−γtOp(S̃)U,U)

+(t−Ne−γtOp(∂tS)U,U)− λ(N + 1)t−N−2e−γt∥⟨D⟩−1U∥2 − λγt−N−1e−γt∥⟨D⟩−1U∥2

−2Im (t−Ne−γtOp(S̃)(φ⟨D⟩+Op(A)⟨D⟩+Op(B))U,U))− 2Im(t−Ne−γtOp(S̃)F,U).

(3.1)

Consider S#A#⟨ξ⟩ − ⟨ξ⟩#A∗#S. Note that

S#A = SA+
∑

|α+β|=1

(−1)|β|

2i
S
(α)
(β)A

(β)
(α) +

∑
|α+β|=2

· · ·+ S−3.

Writing S = (sij) one has

∑
|α+β|=2

· · · =
∑

|α+β|=2

· · ·
(
s
(α)
ij(β)

) −a(β)(α) b
(β)
(α) −c(β)(α)

0 0 0
0 0 0

 =

 S−2 S−2 O(
√
b)S−2

S−2 S−2 O(
√
b)S−2

S−2 S−2 O(
√
b)S−2

 ,

because c
(β)
(α) = O(

√
b) for |α+ β| = 2. Then

(S#A)#⟨ξ⟩ = (SA)#⟨ξ⟩+
( ∑

|α+β|=1

· · ·
)
#⟨ξ⟩+

 S−1 S−1 O(
√
b)S−1

S−1 S−1 O(
√
b)S−1

S−1 S−1 O(
√
b)S−1

+ S−2.

Denoting the third term on the right-hand side by K2, repeating the same arguments as before, it
is easy to see

|((Op(K2) + Op(S−2))U,U)| ≤ C
(
∥⟨D⟩−1U∥2 +

2∑
j=1

∥Uj∥2 + (Op(b)U3, U3)
)
. (3.2)

Now we turn to the term with |α+ β| = 1. Note

S
(α)
(β)A

(β)
(α) =

(
s
(α)
ij(β)

) −a(β)(α) b
(β)
(α) −c(β)(α)

0 0 0
0 0 0

 =

 S−1 S−1 O(
√
b)S−1

S−1 S−1 O(
√
b)S−1

O(
√
b)S−1 O(

√
b)S−1 O(b)S−1

 ,

since c
(β)
(α) = O(

√
b) and b

(α)
(β) = O(

√
b) for |α+ β| = 1 and hence

( ∑
|α+β|=1

· · ·
)
#⟨ξ⟩ =

 S0 S0 O(
√
b)S0 + S−1

S0 S0 O(
√
b)S0 + S−1

O(
√
b)S0 + S−1 O(

√
b)S0 + S−1 O(b)S0 +O(

√
b)S−1 + S−2

 = K1.

The same arguments proves

|(Op(K1)U,U)| ≤ C
(
∥⟨D⟩−1U∥2 +

2∑
j=1

∥Uj∥2 + (Op(b)U3, U3)
)
.
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Consider A∗#S. We have the representation

A∗#S = A∗S +
∑

|α+β|=1

(−1)|β|

2i
(A∗)

(α)
(β)S

(β)
(α) +

∑
|α+β|=2

· · ·+ S−3 = A∗S + K̃.

Repeating similar arguments, one gets

|(Op(⟨ξ⟩#K̃)U,U)| ≤ C
(
∥⟨D⟩−1U∥2 +

2∑
j=1

∥Uj∥2 + (Op(b)U3, U3)
)
.

Since A∗S = SA, taking (2.4) into account, we see

(SA)#⟨ξ⟩ − ⟨ξ⟩#(A∗S) = (SA)#⟨ξ⟩ − ⟨ξ⟩#(SA)

=

 S0 S0 O(
√
b)S0 + S−1

S0 S0 O(
√
b)S0 + S−1

O(
√
b)S0 + S−1 O(

√
b)S0 + S−1 O(b)S0 +O(

√
b)S−1 + S−2

 .

Summarizing the above estimates, we obtain the following

Lemma 3.5. Assume ⟨ξ⟩αc(α)(β) = O(
√
b) for |α+ β| ≤ 2. There is C > 0 such that

|(Op(S#A#⟨ξ⟩ − ⟨ξ⟩#A∗#S)U,U)| ≤ C
( 2∑
j=1

∥Uj∥2 + (Op(b)U3, U3) + ∥⟨D⟩−1U∥2
)
.

Consider S#φ#⟨ξ⟩ − ⟨ξ⟩#φ#S, where φ ∈ S0 is scalar. Recall

S#φ = φS +
∑

|α+β|=1

(−1)|β|

2i
S
(α)
(β)φ

(β)
(α) +

∑
|α+β|=2

· · ·+ S−3.

For |α+ β| = 2 one has

S
(α)
(β)φ

(β)
(α) =

 S−2 S−2 S−2

S−2 S−2 S−2

S−2 S−2 O(
√
b)S−2


and hence

(S#φ)#⟨ξ⟩ = (φS)#⟨ξ⟩+
( ∑

|α+β|=1

· · ·
)
#⟨ξ⟩+

 S−1 S−1 S−1

S−1 S−1 S−1

S−1 S−1 O(
√
b)S−1 + S−2

+ S−2.

Denoting the third term on the right-hand side byK2, we have the same estimate as (3.2). Similarly
one has

⟨ξ⟩#(φ#S) = ⟨ξ⟩#(φS) + ⟨ξ⟩#
( ∑

|α+β|=1

· · ·
)
+

 S−1 S−1 S−1

S−1 S−1 S−1

S−1 S−1 O(
√
b)S−1 + S−2

+ S−2

Consider the term with |α+ β| = 1 and observe that

S
(α)
(β)φ

(β)
(α) =

 S−1 S−1 O(
√
b)S−1

S−1 S−1 O(
√
b)S−1

O(
√
b)S−1 O(

√
b)S−1 g

(α)
(β)φ

(β)
(α)
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with g = b2 − 2ac. Therefore

⟨ξ⟩#(S
(α)
(β)φ

(β)
(α)) =

 S0 S0 O(
√
b)S0 + S−1

S0 S0 O(
√
b)S−1 + S−1

O(
√
b)S0 + S−1 O(

√
b)S0 + S−1 O(b)S0 +O(

√
b)S−1 + S−2

 (3.3)

because c
(α)
(β) = O(b) for |α+ β| = 1 and then

|(Op(⟨ξ⟩#(S
(α)
(β)φ

(β)
(α)))U,U)| ≤ C

( 2∑
j=1

∥Uj∥2 + (Op(b)U3, U3) + ∥⟨D⟩−1U∥2
)
.

Similar arguments are applied to |(Op(φ
(α)
(β)S

(β)
(α))U,U)|. Finally, since

⟨ξ⟩#(φS)− (φS)#⟨ξ⟩ =

 S0 S0 O(
√
b)S0 + S−1

S0 S0 O(
√
b)S−1 + S−1

O(
√
b)S0 + S−1 O(

√
b)S0 + S−1 O(b)S0 +O(

√
b)S−1 + S−2

 ,

we obtain

Lemma 3.6. Assume ⟨ξ⟩αc(α)(β) = O(b) for |α+ β| = 1 and ⟨ξ⟩αc(α)(β) = O(
√
b) for |α+ β| = 2. Then

there exists C > 0 such that

|(Op(S#φ#⟨ξ⟩ − ⟨ξ⟩#φ#S)U,U)| ≤ C
( 2∑
j=1

∥Uj∥2 + (Op(b)U3, U3) + ∥⟨D⟩−1U∥2
)
.

Combining Lemmas 3.5, 3.6 and Corollary 2.2, one concludes that for sufficiently large N1 > 0
we have

−N1(Op(S̃)U,U)− 2tIm (Op(S)(Op(φ)⟨D⟩+Op(A)⟨D⟩)U,U)

≤ (−N1ε1 + 2C)t
( 2∑
j=1

∥Uj∥2 + (Op(b)U3, U3)
)
+ (−N1(λ/2)t

−1 + 2Ct)∥⟨D⟩−1U∥2 ≤ 0
(3.4)

Now we pass to the analysis of the term involving ∂tS.

Lemma 3.7. Assume ∂tc = O(b). For ε > 0 sufficiently small we have

S ≫ εt∂tS.

Proof. Since ∂tc = O(b), one has

3S − εt∂tS =

 3 2a+ εO(t) −b+ εO(t)
2a+ εO(t) 2a2 + 2b+ εO(t) −ab− 3c+ εO(at) + εO(bt)
−b+ εO(t) −ab− 3c+ εO(at) + εO(bt) b2 − 2ac+ εO(bt)

 .

It is not difficult to see that

det (3S − εt ∂tS) = det 3S + εO
(
b2(b+ a2)

)
because t = O(b). □
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Lemma 3.8. Assume ∂tc = O(b), ⟨ξ⟩αc(α)(β) = O(
√
b) for |α + β| = 2 and ⟨ξ⟩α(ac)(α)(β) = O(

√
b) for

|α+ β| = 3. There exist ε > 0 and C > 0 such that for U ∈ C∞(Rt : C
∞
0 (Rn)) we have

Re(Op(S − εt ∂tS)U,U) ≥ −εt
( 2∑
j=1

∥Uj∥2 + (Op(b)U3, U3)
)
− Ct−1ε−1∥⟨D⟩−1U∥2. (3.5)

Proof. Denoting Q = S − 2εt ∂tS, it suffices to prove

∣∣Re(Op
( ∑
2≤|α+β|≤3

ψαβQ
(α)
(β)

)
U,U)

∣∣ ≤ εt
( 2∑
j=1

∥Uj∥2 + (Op(b)U3, U3)
)
+ Cε−1t−1∥⟨D⟩−1U∥2. (3.6)

Consider Re
(
Op

(
ψαβQ

(α)
(β)

)
U,U

)
with |α+ β| = 2. Note that

ψαβQ
(α)
(β) =

 0 S−1 S−1

S−1 S−1 S−1

S−1 S−1 ψαβ

(
g
(α)
(β) − εt (∂tg)

(α)
(β)

)
 ,

where g = b2 − 2ac. Consequently, one deduce

|(Op(ψαβQ
(α)
(β))U,U)| ≤ εt

2∑
j=1

∥Uj∥2 + Cε−1t−1∥⟨D⟩−1U∥2

+|Re (Op(ψαβ(g
(α)
(β) − εt(∂tg)

(α)
(β)))U3, U3)|.

Setting

T = ψαβ

(
g
(α)
(β) − εt(∂tg)

(α)
(β)

)
⟨ξ⟩ ∈ S0,

we obtain Re
(
ψαβ

(
g
(α)
(β) − εt(∂tg)

(α)
(β)

))
= T#⟨ξ⟩−1 + S−2. Therefore

Re
(
Op

(
ψαβ(g

(α)
(β) − εt(∂tg)

(α)
(β)

)
U3, U3) ≤ εt∥Op(T )U3∥2 + Cε−1t−1∥⟨D⟩−1U3∥2

Note that ∥Op(T )U3∥2 = (Op(T#T )U3, U3) and T#T = T 2 + S−2. There is C > 0 such that

T 2 ≤ Cb

because t = O(b) and ⟨ξ⟩αc(α)(β) = O(
√
b) so that Cb− T 2 ≥ 0. Then applying the Fefferman-Phong

inequality, we prove the assertion. Let |α+ β| = 3 then with T1 =
(
ψαβ

(
g
(α)
(β) − εt(∂tg)

(α)
(β)

))
#⟨ξ⟩3/2

T 2
1 ≤ Cb

with some C > 0 since t = O(b) and ⟨ξ⟩α(ac)(α)(β) = O(
√
b) and the proof is similar. □

From (3.5) setting N2 = ε−1 and dividing by ε, one deduces

Re(Op(−N2S + t∂tS)U,U) ≤ t
( 2∑
j=1

∥Uj∥2 + (Op(b)U3, U3)
)
+ Ct−1ε−2∥⟨D⟩−1U∥2
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and applying Corollary 2.2, this implies

−(N2 +N3)Re(Op(S̃)U,U) + tRe(Op(∂tS)U,U)

≤ (−N3ε1 + 1)t
( 2∑
j=1

∥Uj∥2 + (Op(b)U3, U3)
)
+ t−1(Cε−2 −N3λ)∥⟨D⟩−1∥2.

(3.7)

Fixing ε and N2, we choose N3 sufficiently large and we arrange the right hand side of the above
inequality to be negative.

Next we turn to the analysis of 2Im(Op(S̃)Op(B)U,U). Recall that (Op(S̃)U,U) ≫ 0 by Corol-
lary 2.3. Consequently,

2|(Op(S̃)Op(B)U,U)| ≤ N−1/2(tOp(S̃)Op(B)U,Op(B)U) +N1/2(t−1Op(S̃)U,U)

= N−1/2(tOp(B∗)Op(S̃)Op(B)U,U) +N1/2(t−1Op(S̃)U,U)

≤ N−1/2(t−1t2Op(B∗)Op(S)Op(B)U,U) +N1/2(t−1Op(S̃)U,U) + C2λN
−1/2∥⟨D⟩−1U∥2.

(3.8)

Lemma 3.9. There exists N4 > 0 depending on T and B such that for 0 ≤ t ≤ T and any ε > 0
there exists Dε > 0 such that

Re
(
Op(N4S − t2B∗SB)U,U

)
≥ −εt(

2∑
j=1

∥Uj∥2 + (cU3, U3))−Dεt
−1∥⟨D⟩−1U∥2.

Proof. Recall

3S − εt2B∗SB =

 3 + εO(t2) 2a+ εO(t2) −b+ εO(t2)
2a+ εO(t2) 2(a2 + b) + εO(t2) −ab− 3c+ εO(t2)
−b+ εO(t2) −ab− 3c+ εO(t2) b2 − 2ac+ εO(t2)


which proves 3S − εt2B∗SB ≫ 0 with some ε = ε(T ) > 0. To justify this, notice that the terms
εO(t2b), εO(t2c), εO(t2a2), εO(t4a) can be absorbed by detS because b ≥ δ1t. For example,

εt4|a| ≤ 1

2
ε(t5 + t3a2) ≤ Cεtb2(a2 + b).

Choosing ε(T ) small enough, we obtain the result. Then the rest of the proof is just a repetition
of the proof of Lemma 3.8. □

According to Lemma 3.9 and (3.8), one has

2|(Op(S̃)Op(B)U,U)| ≤ 2N
1/2
4 t−1(Op(S̃)U,U) + εt(

2∑
j=1

∥Uj∥2 + (Op(b)U3, U3))

−N1/2
4 λt−2∥⟨D⟩−1U∥2 +Dεt

−1∥⟨D⟩−1U∥2 + C2λN
−1/2
4 ∥⟨D⟩−1U∥2.

(3.9)
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Combining the estimates (3.4), (3.7), (3.9), it follows that

∂tRe(t
−Ne−γtOp(S̃)U,U) ≤ −2Im(t−Ne−γtOp(S̃)F,U)

−(N −N1 −N2 −N3 − 2N
1/2
4 )t−N−1e−γtRe(Op(S̃)U,U)

+
[
Cε − λ

(
N + 1 +N

1/2
4 − λCε−1

)]
t−N−2e−γt∥⟨D⟩−1U∥2

+εt−Ne−γt
( 2∑
j=1

∥Uj∥2 + (Op(b)U3, U3)
)

−(γ −Dε − C1λ− CtλN
−1/2
4 )t−N−1e−γt∥⟨D⟩−1U∥2.

Note that

2|(t−Ne−γtOp(S̃)F,U)| ≤ 2(t−N+1e−γtOp(S̃)F, F )1/2(t−N−1e−γtOp(S̃)U,U)1/2

≤ (t−N+1e−γtOp(S̃)F, F ) + (t−N−1e−γtOp(S̃)U,U).

Denote N∗ = N1 +N2 +N3 + 2N
1/2
2 + 2 and we choose 0 < ε ≤ ε1. We fix ε and λ > 2Cε. Next

we fix N4 so that

N
1/2
4 > λCε−1 + 1.

Then the term with t−N−2e−γt∥⟨D⟩−1U∥2 is absorbed. Finally we choose N > N∗ and γ such that

γ −Dε − C1λ− CλN
−1/2
4 T ≥ 0. Then we have

∂tRe(t
−Ne−γtOp(S̃)U,U) ≤ (t−N+1e−γtOp(S̃)F, F )− (N −N∗)Re (t−N−1e−γtOp(S̃)U,U). (3.10)

Integrating (3.10) in τ from ε > 0 to t and taking Corollary 2.3 into account, one obtains

Proposition 3.1. Assume that

b ≥ δ1t, |ac| ≤ ε̄ b2, |c| ≤ ε̄ b3/2,

⟨ξ⟩αc(α)(β) = O
(
b
)

for |α+ β| = 1, ⟨ξ⟩αc(α)(β) = O
(√
b
)

for |α+ β| = 2,

⟨ξ⟩α(ac)(α)(β) = O
(√
b
)
, |α+ β| = 3, ∂tc = O

(
b
) (3.11)

hold globally where ε̄ is given in Lemmas 2.2 and 2.3. Then there exist δ2 > 0, γ0 > 0, N ∈ N and
C > 0 such that for γ ≥ γ0 and 0 < ε ≤ t ≤ T we have for any U ∈ C∞(Rt : C

∞
0 (Rn))

δ2t
−N+2e−γt∥U(t)∥2 + δ2(N −N∗)

∫ t

ε
τ−N+1e−γτ∥U(τ)∥2dτ

≤ Cε−N−1e−γε∥U(ε)∥2 +
∫ t

ε
τ−N+1e−γτ (Op(S̃)F (τ), F (τ))dτ.

4. Microlocal energy estimates

First we prove the following

Lemma 4.10. Assume that (1.3) is satisfied in [0, T ] × W̃ where W̃ is a conic neighborhood of

(x0, ξ0). Then there exist extensions ã(t, x, ξ) ∈ S0, b̃(t, x, ξ) ∈ S0 and c̃(t, x, ξ) ∈ S0 of a, b and c
such that (3.11) holds globally.
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Proof. Assume that (1.3) is satisfied in [0, T ]×W̃ . Choose conic neighborhoods U , V , W of (x0, ξ0)

such that U ⋐ V ⋐ W ⋐ W̃ . Take 0 ≤ χ(x, ξ) ∈ S0, 0 ≤ χ̃(x, ξ) ∈ S0 such that χ = 1 on V and
χ = 0 outside W and χ̃ = 0 on U and χ̃ = 1 outside V . Choosing W and T small one can assume
that χb is small as we please in [0, T ]×R2n because b(0, x0, ξ0) = 0. We define the extensions of a,
b, c by

ã = χa, b̃ = χ2b+Mχ̃, c̃ = χ3c

where M > 0 is a positive constant which we will choose below. Note that

|ãc̃| = χ4|ac| ≤ C|a|χ4b2 ≤ ε̄(χ2b)2 ≤ ε̄ b̃2,

|c̃| = χ3|c| ≤ Cχ3b2 = Cb1/2(χ2b)3/2 ≤ ε̄ b̃3/2

taking a(0, x0, ξ0) = 0, b(0, x0, ξ0) = 0 into account and choosing W small.

If (x, ξ) ∈ V then b̃(t, x, ξ) = b+Mχ̃ ≥ δ1t and if (x, ξ) is outside V then b̃(t, x, ξ) = χ2b+M ≥
δ1t for [0, T ]× R2n choosing M so that M ≥ δ1T . Thus we have

b̃(t, x, ξ) ≥ δ1t (t, x, ξ) ∈ [0, T ]× R2n.

We turn to estimate derivatives of c̃ and ãc̃. For |α+ β| = 1 it is clear that

⟨ξ⟩|α|
∣∣c̃(α)(β)

∣∣ = ⟨ξ⟩|α|
∣∣(χ3c)

(α)
(β)

∣∣ ≤ C(χ2b2 + χ3b) ≤ C1χ
2b ≤ C1b̃.

Similarly for |α+ β| = 2 one sees

⟨ξ⟩|α|
∣∣(χ3c)

(α)
(β)

∣∣ ≤ C(χb2 + χ2b+ χ3
√
b) ≤ C1χ

√
b = C1(χ

2b)1/2 ≤ C1b̃
1/2.

For |α+ β| = 3, taking ⟨ξ⟩α(ac)(α)(β) = O(
√
b) into account, one has

⟨ξ⟩|α|
∣∣(ãc̃)(α)(β)

∣∣ = ⟨ξ⟩|α|
∣∣(χ4ac)

(α)
(β)

∣∣
≤ C(χb2 + χ2b+ χ3

√
b+ χ4

√
b) ≤ C1χ

√
b ≤ C1b̃

1/2.

Since |∂tc̃| = |χ3∂tc| ≤ Cχ3b ≤ Cb̃ is obvious the proof is complete. □

Remark 4.2. In the proof of Lemma 4.10 replacing b̃ by χ2b+Mχ̃+M ′χ0(ξ) where χ0(ξ) ∈ C∞
0 (Rn)

which is 1 near ξ = 0 and M ′ > 0 is a suitable positive constant it suffices to assume that (1.3) is

satisfied in [0, T ]× W̃ for |ξ| ≥ 1.

Let V ⋐ V1 ⋐ Ω and u ∈ C∞(Rt : C∞
0 (V )) Let {χα} be a finite partition of unity with

χα(x, ξ) ∈ S0 so that ∑
α

χ2
α(x, ξ) = χ2(x),

where χ(x) = 1 on V and suppχ ⊂ V1. We can suppose that suppχα ⊂ V1. We repeat the
argument in [11, Section 4], studying a system

DtUα = (Op(φ)⟨D⟩+Op(A)⟨D⟩+Op(B))Uα + Fα

with Uα = t
(
(Dt−Op(φ)⟨D⟩)2χαu, ⟨D⟩(Dt−Op(φ)⟨D⟩)χαu, ⟨D⟩2χαu). One extends the coefficients

a, b, c and φ outside the support of χα and one can assume that (3.11) are satisfied globally. Thus
we obtain the following
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Theorem 4.1. Let Y ⋐ Ω. Assume that for every point (x0, ξ0) ∈ T ∗Ω \ {0} there exist a conic
neighborhood W ⊂ T ∗Ω \ {0} and T (x0, ξ0) > 0 such that the estimates (3.11) are satisfied for
0 ≤ t ≤ T (x0, ξ0) and (x, ξ) ∈ W . Then there exist c > 0, T0 > 0, γ0 > 0, C > 0 and N ∈ N such
that for γ ≥ γ0, 0 < ε < t ≤ T0 we have for any U ∈ C∞(Rt : C

∞
0 (Y ))

c t−N+2e−γt∥U(t)∥2 + c

∫ t

ε
τ−N+1e−γτ∥U(τ)∥2dτ

≤ Cε−N−1e−γε∥U(ε)∥2 + C

∫ t

ε
τ−N+1e−γτ∥f(τ)∥2dτ.

(4.1)

Corollary 4.4. Let Y ⋐ Ω. Assume that for every point (x0, ξ0) ∈ T ∗Ω \ {0} there exist a conic
neighborhood W ⊂ T ∗Ω \ {0} and T (x0, ξ0) > 0 such that the estimates (1.3) are satisfied for
0 ≤ t ≤ T (x0, ξ0) and (x, ξ) ∈W . Then the same assertion as in Theorem 4.1 holds.

The same argument can be applied for the adjoint operator P ∗. With

V = t
(
(Dt −Op(φ)⟨D⟩)2v, ⟨D⟩(Dt −Op(φ)⟨D⟩)v, ⟨D⟩2v

)
the equation P ∗v = g is reduced to

DtV = Op(φ)⟨D⟩V + (Op(A)⟨D⟩+Op(B̃))V +G, (4.2)

with G = t(g, 0, 0). Here the principal symbol is the same, while the lower order terms change. To
study the Cauchy problem for P ∗ in 0 < t < T with initial data on t = T one considers

−∂t(tNeγtOp(S̃)V, V ) = −N(tN−1eγtOp(S̃)V, V )− γ(tNeγtOp(S̃)V, V )

−(tNeγtOp(∂tS)V, V )− λ(N − 1)tN−2eγt∥⟨D⟩−1U∥2 − λγtN−1eγt∥⟨D⟩−1U∥2

+2Im (tNeγt(Op(S̃)(Op(φ)⟨D⟩+Op(A)⟨D⟩+Op(B̃))V, V )) + 2Im(tNeγtOp(S̃)G,V ).

(4.3)

Repeating the argument of Section 3, one obtains the following

Theorem 4.2. Let Y ⋐ Ω. Assume that for every point (x0, ξ0) ∈ T ∗Ω \ {0} there exist a conic
neighborhood W ⊂ T ∗Ω \ {0} and T (x0, ξ0) > 0 such that the estimates (3.11) are satisfied for
0 ≤ t ≤ T (x0, ξ0) and (x, ξ) ∈ W . Then there exist c > 0, T0 > 0, γ0 > 0, C > 0 and N ∈ N such
that for γ ≥ γ0, 0 < ε < t ≤ T0 we have for any V ∈ C∞(Rt : C

∞
0 (Y ))

c tN+2eγt∥V (t)∥2 + c

∫ T0

t
τN+1eγτ∥V (τ)∥2dτ

≤ CTN−1
0 eγT0∥V (T0)∥2 + C

∫ T0

t
τN+1eγτ∥g(τ)∥2dτ.

(4.4)

Following the argument in [11], we may absorb the weight τ−N and obtain energy estimates
with a loss of derivatives. For the sake of completeness we recall this argument. Consider Pu = f
for u ∈ C∞(Rt : C

∞
0 (Rn)). Assume u(ε, x) = ut(ε, x) = utt(ε, x) = 0. Differentiating Pu = f with

respect to t, we determine the functions Dj
tu(ε, x) = uj(x) ∈ C∞

0 (Rn) and set

uM (t, x) =
M∑
j=0

1

j!
uj(x)(i(t− ε))j , 0 < ε ≤ t ≤ T0.

Therefore w = u− uM ∈ C∞(Rt : C
∞
0 (Rn)) satisfies Pw = fM with

Dj
t fM (ε, x) = 0, j = 0, 1, . . . ,M − 3, Dj

tw(ε, x) = 0, j = 0, 1, . . . ,M.
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Consequently, from Theorem 4.1 one deduce the existence of N ∈ N and C > 0 such that for ε > 0,
and a solution u ∈ C∞([ε, T0]× C∞

0 (Y )) to the equation Pu = f with

u(ε, x) = ut(ε, x) = utt(ε, x) = 0

we have ∑
j+|α|≤2

∫ t

ε
∥∂jt ∂αxu(s, x)∥ds ≤ C

∫ t

ε
∥

∑
j+|α|≤N

∂jt ∂
α
xPu(s, x)∥ds, (4.5)

where C is independent of ε. We can obtain a similar estimates for higher order derivatives.

Note that under the assumptions of Theorem 4.1 the symbol p is strictly hyperbolic for 0 < t ≤
T0 with some T0 > 0. Indeed the fact that p is strictly hyperbolic for 0 < t ≤ T0, is equivalent to
∆ > 0 for 0 < t ≤ T0, ∆ being the discriminant of the equation p = 0 with respect to τ . On the
other hand, ∆ = 27 detS (see also Corollary 2.1) and detS > 0 for t > 0 by Lemma 2.2. Therefore
applying the estimate (4.5) and repeating the argument in [3, Theorem 23.4.5] one can find Z ⋐ Ω
and T ∗ > 0 such that for f ∈ C∞

0 ([0, T0] × Ω) there exists u ∈ C∞
0 ([0, T0] × Ω) satisfying Pu = f

in [0, T ∗] × Z. The local uniqueness of the solution of the Cauchy problem for P can be obtained
taking into account Theorem 4.2 for the adjoint operator P ∗ and using the argument of [3, Theorem
23.4.5]. We leave the details to the reader.

Finally, we deduce

Corollary 4.5. Under the assumptions of Theorem 4.1 the Cauchy problem for P is C∞ well posed
in [0, T ∗]× Z for all lower order terms.
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