Algèbre 4 - Devoir surveillé

Corrections

Tous les anneaux considérés ci-dessous sont commutatifs. Si a et b sont des éléments d'un anneau A, on note $\langle a,b \rangle$ l'idéal engendré par a et b.

Questions de cours

1. Soient A un anneau, $a,b \in A$. Rappeler la définition de $\operatorname{pgcd}(a,b)$. On dit que $d = \operatorname{pgcd}(a,b)$ si $d \mid a,d \mid b$ et pour tout d' vérifiant $d' \mid a,d' \mid b$ on a $d' \mid d$.

Dans la suite on suppose que l'anneau A est principal.

2. Montrer l'existence de $\operatorname{pgcd}(a,b)$ pour tout $a,b\in A$. Montrer aussi que $\operatorname{pgcd}(a,b)$ peut s'écrire sous la forme au+bv, où $u,v\in A$.

Puisque A est anneau principal, on a $\langle a,b\rangle=\langle d\rangle$ pour un certain $d\in A$. Une vérification immédiate montre que $d=\operatorname{pgcd}(a,b)$. Puisque $d\in\langle a,b\rangle$, on a d=au+bv avec certains $u,v\in A$.

3. Démontrer le "théorème de Gauss" : si $a,b,c\in A$ vérifient

$$a \mid bc$$
, $\operatorname{pgcd}(a, b) = 1$,

alors $a \mid c$.

L'hypothèse $\operatorname{pgcd}(a,b)=1$ implique 1=au+bv avec certains $u,v\in A$, d'où c=acu+bcv. L'hypothèse $a\mid bc$ implique que $a\mid (acu+bcv)$, d'où le résultat.

4. Soit \mathbb{F}_3 le corps à 3 éléments. L'anneau $\mathbb{F}_3[t]$ est-il principal?

Oui : l'anneau de polynômes sur un corps est euclidien, donc principal.

5. Pour $f(t)=t^2+t+1\in\mathbb{F}_3[t]$ et $g(t)=t^3+t+1\in\mathbb{F}_3[t]$ déterminer $\operatorname{pgcd}\big(f(t),g(t)\big)$ et l'exprimer sous la forme f(t)u(t)+g(t)v(t) avec $u(t),v(t)\in\mathbb{F}_3[t]$.

En utilisant la division euclidienne on trouve

$$pgcd(f(t), g(t)) = t - 1 = f(t) - (t - 1)g(t).$$

Exercice 1 Soit n un entier naturel, $n \ge 2$, et soient K_1, \ldots, K_n des corps. On considère l'anneau $A = K_1 \times \ldots \times K_n$.

1. L'anneau A est-il intègre?

Non:
$$(1,0,0,\ldots,0)\cdot(0,1,0,\ldots,0)=(0,0,\ldots,0)=0_A$$
.

2. Soit S un sous-ensemble de $\{1,\ldots,n\}$. On pose

$$I_S = \{(a_1, \dots, a_n) \in A : a_i = 0 \text{ pour } i \in S\}.$$

Montrer que I_S est un idéal de A.

Supposons que $\mathbf{a}=(a_1,\ldots,a_n)$ et $\mathbf{b}=(b_1,\ldots,b_n)$ appartiennent à I_S , ce qui signifie que

$$a_i = b_i = 0 \qquad (i \in S).$$

Ceci implique que

$$a_i - b_i = 0 \qquad (i \in S),$$

ce qui montre que $\mathbf{a} - \mathbf{b} = (a_1 - b_1, \dots, a_n - b_n) \in I_S$.

De même, si $\mathbf{c} = (c_1, \dots, c_n) \in A$, alors

$$a_i c_i = 0 \qquad (i \in S),$$

ce qui montre que $\mathbf{ac} \in I_S$. L'ensemble I_S est donc idéal.

3. Soit I un idéal de A. Est-il vrai que $I = I_S$ pour un certain $S \subset \{1, \dots, n\}$?

Oui : montrons que $I=I_S$ où

$$S = \{i \in \{1, ..., n\} : a_i = 0 \text{ pour tout } (a_1, ..., a_n) \in I\}.$$

Il est claire que $I \subset I_S$. Pour montrer que $I_S \subset I$, posons

$$e_i = (0, \dots, 0, 1, 0 \dots 0)$$

(1 sur la *i*-ième position, et 0 sur les autres positions) et montrons tout d'abord que $e_i \in I$ pour tout $i \notin S$. Pour le voir, remarquons que, si $i \notin S$ alors il existe $\mathbf{a} = (a_1, \dots, a_n) \in I$ avec $a_i \neq 0$. Posons

$$\mathbf{b} = (0, \dots, 0, a_i^{-1}, 0 \dots 0) \in I$$

Alors $e_i = \mathbf{ab} \in I$.

Puis, tout $\mathbf{a} \in A$ s'exprime comme

$$\mathbf{a} = \sum_{1 \le i \le n} \mathbf{a} e_i.$$

Si $\mathbf{a} \in I_S$ alors $\mathbf{a}e_i = 0_A$ pour $i \in S$ et on obtient

$$\mathbf{a} = \sum_{i \notin S} \mathbf{a} e_i \in I,$$

ce qui montre que $I_S \subset I$.

4. L'anneau A n'admet-il qu'un nombre fini d'idéaux? Si la réponse est « oui », déterminer ce nombre.

Par la question précédente tout idéal de A est de la forme I_S , et il est clair que $I_S \neq I_{S'}$ pour $S \neq S'$. Ceci montre que les idéaux de A sont en bijection avec les sous-ensembles de $\{1,\ldots,n\}$. Puisque le nombre de ces derniers est 2^n , l'anneau A admet exactement 2^n idéaux.

5. Est-il vrai que tout idéal de A est principal?

Oui : montrons que l'idéal I_S est engendré par $\varepsilon_S = (\varepsilon_1, \dots, \varepsilon_n)$, où $\varepsilon_i = 0$ pour $i \in S$ et $\varepsilon_i = 1$ pour $i \notin S$. Il est clair que $\varepsilon_S \in I_S$, ce qui montre que $\langle \varepsilon_S \rangle \subset I_S$. D'autre part, $\varepsilon_S = \sum_{i \notin S} e_i$, et, comme on a vu tout à l'heure, tout $\mathbf{a} \in I_S$ vérifie

$$\mathbf{a} = \sum_{i \notin S} \mathbf{a} e_i = \mathbf{a} \varepsilon_S \in \langle \varepsilon_S \rangle,$$

ce qui montre que $I_S \subset \langle \varepsilon_S \rangle$.

Exercice 2 On considère l'ensemble $\mathbb{Z}[\sqrt{2}]$ des nombres réels de la forme $x+y\sqrt{2}$ avec $x,y\in\mathbb{Z}$:

$$\mathbb{Z}[\sqrt{2}] = \{x + y\sqrt{2} : x, y \in \mathbb{Z}\}.$$

1. Montrer que $\mathbb{Z}[\sqrt{2}]$ (muni des lois habituelles) est un anneau.

Il faut montrer que pour $z_1, z_2 \in \mathbb{Z}[\sqrt{2}]$ on a $z_1 - z_2, z_1 z_2 \in \mathbb{Z}[\sqrt{2}]$. En écrivant $z_i = x_i + y_i \sqrt{2}$ avec $x_i, y_i \in \mathbb{Z}$, on obtient

$$z_1 - z_2 = (x_1 - y_1) + (x_2 - y_2)\sqrt{2} \in \mathbb{Z}[\sqrt{2}], \qquad z_1 z_2 = (x_1 x_2 + 2y_1 y_2) + (x_1 y_2 + y_1 x_1)\sqrt{2} \in \mathbb{Z}[\sqrt{2}].$$

2. Montrer que tout $z \in \mathbb{Z}[\sqrt{2}]$ s'écrit de façon unique sous la forme $x + y\sqrt{2}$ avec $x, y \in \mathbb{Z}$.

Supposons que $z=x_1+y_1\sqrt{2}=x_2+y_2\sqrt{2}$ avec $x_i,y_i\in\mathbb{Z}$ et montrons que $x_1=x_2$ et $y_1=y_2$. Si $y_1\neq y_2$ alors $\sqrt{2}=\frac{x_1-x_2}{y_2-y_1}\in\mathbb{Q}$, ce qui n'est pas possible. On a donc $y_1=y_2$ et $x_1=z-y_1\sqrt{2}=z-y_2\sqrt{2}=x_2$.

- 3. Pour $z=x+y\sqrt{2}\in\mathbb{Z}[\sqrt{2}]$ on définit *le conjugué* de z par $\bar{z}=x-y\sqrt{2}$. (Attention : ce n'est pas la conjugaison complexe!)
 - (a) Montrer que $z \mapsto \bar{z}$ définit un automorphisme de l'anneau $\mathbb{Z}[\sqrt{2}]$.

L'application $z\mapsto \bar z$ est sa propre réciproque : $\bar z=z$. In particulier, elle est inversible, donc bijective. Une vérification immédiate montre que $\overline{z_1+z_2}=\bar z_1+\bar z_2$ et $\overline{z_1z_2}=\bar z_1\bar z_2$; autrement dit, l'application $z\mapsto \bar z$ est morphisme d'anneaux. Comme elle est bijective, c'est un automorphisme.

- (b) Montrer que $z\bar{z} \in \mathbb{Z}$ pour tout $z \in \mathbb{Z}[\sqrt{2}]$. Pour $z = x + y\sqrt{2}$ on a $z\bar{z} = x^2 - 2y^2 \in \mathbb{Z}$.
- $\begin{array}{ll} \text{(c)} \ \ \mathsf{Montrer} \ \mathsf{que} \ z \in \mathbb{Z}[\sqrt{2}]^\times \ \mathsf{si} \ \mathsf{et} \ \mathsf{seulement} \ \mathsf{si} \ z\bar{z} \in \{1,-1\}. \\ \mathrm{Si} \ z\bar{z} = \varepsilon \in \{1,-1\} \ \mathsf{alors} \ z^{-1} = \varepsilon \bar{z}, \ \mathsf{d'où} \ z \ \mathsf{est} \ \mathsf{inversible}. \end{array}$ Réciproquement, si z est inversible alors $(z\bar{z}) \cdot (z^{-1}\bar{z}^{-1}) = (zz^{-1}) \cdot \overline{(zz^{-1})} = 1\bar{1} = 1$. Ceci montre que $z\bar{z} \mid 1$, autrement dit $z\bar{z} \in \{1, -1\}$.
- (d) Vérifier que $1 + \sqrt{2} \in \mathbb{Z}[\sqrt{2}]^{\times}$. Le groupe $\mathbb{Z}[\sqrt{2}]^{\times}$ est-il fini ou infini? On a $(1+\sqrt{2})^{-1}=-1+\sqrt{2}\in\mathbb{Z}[\sqrt{2}]$, ce qui montre que $1+\sqrt{2}\in\mathbb{Z}[\sqrt{2}]^{\times}$. Le groupe $\mathbb{Z}[\sqrt{2}]^{\times}$ est infini, parce qu'il contient l'ensemble infini $\{(1+\sqrt{2})^n: n\in\mathbb{Z}\}.$
- 4. On va montrer que le groupe multiplicatif $\mathbb{Z}[\sqrt{2}]^{\times}$ est engendré par $\theta=1+\sqrt{2}$ et -1. Autrement

$$\mathbb{Z}[\sqrt{2}]^{\times} = \{ \pm \theta^m : m \in \mathbb{Z} \}. \tag{1}$$

(a) Montrer que pour $z = x + y\sqrt{2}$ on a

$$x = \frac{z + \bar{z}}{2}, \qquad y = \frac{z - \bar{z}}{2\sqrt{2}}.$$
 (2)

C'est évident.

(b) Soit $z \in \mathbb{Z}[\sqrt{2}]^{\times}$ vérifiant $1 \le z < \theta$. Montrer que z = 1. Puisque $z \ge 1$ et $|z\bar{z}| = 1$ (voir question 3c), on a $-1 \le \bar{z} \le 1$. En utilisant (2), on trouve

$$x=\frac{z+\bar{z}}{2}\geq\frac{1-1}{2}=0, \qquad x=\frac{z+\bar{z}}{2}<\frac{\theta+1}{2}<1,8.$$
 Puisque $x\in\mathbb{Z}$, ceci implique que $x\in\{0,1\}$. De la même façon on montre que

$$0 \le y \le \frac{\theta+1}{2\sqrt{2}} < 1, 3,$$

d'où $y \in \{0,1\}$. On trouve que $z \in \{0,1,\sqrt{2},1+\sqrt{2}\}$. Puisque z est inversible et vérifie $1 \le z < \theta$, la seule possibilité est z=1.

- (c) Soit $\eta \in \mathbb{Z}[\sqrt{2}]^{\times}$. Montrer que $|\eta| = \theta^m$ pour un certain $m \in \mathbb{Z}$. Posons $m = \left| \frac{\ln |\eta|}{\ln \theta} \right|$. Alors $0 \le \frac{\ln |\eta|}{\ln \theta} - m < 1$, d'où $1 \le |\eta| \theta^{-m} < \theta$. Par la question précédente on a $|\eta|\theta^{-m} = 1.$
- (d) Conclure.

On vient de montrer que tout $\eta \in \mathbb{Z}[\sqrt{2}]^{\times}$ vérifie $|\eta| = \theta^m$ pour un certain $m \in \mathbb{Z}$. Puisque $\eta \in \mathbb{R}$, ceci implique que $\eta = \pm \theta^m$, ce qui démontre (1).

Exercice 3

1. Soient p un nombre premier et \mathbb{F}_p le corps à p éléments. Montrer que les anneaux $\mathbb{Z}[t]/\langle t^3+2t+p,t^2+2\rangle$ et $\mathbb{F}_p[t]/\langle t^2+2\rangle$ sont isomorphes.

On utilise la propriété générale suivante. Soient A un anneau, I et J des idéaux de A et \bar{J} l'image de J dans A/I. Alors

$$A/(I+J) \cong (A/I)/\bar{J}. \tag{3}$$

(Pour la démontrer on considère les morphismes naturels $A \to A/I \to (A/I)/\bar{J}$ et on montre que le noyau du morphisme composé est I + J.)

Dans notre cas $A = \mathbb{Z}[t]$. Puisque $t^3 + 2t + p = p + t(t^2 + 2)$, on a

$$\langle t^3 + 2t + p, t^2 + 2 \rangle = \langle p, t^2 + 2 \rangle = I + J, \qquad I = \langle p \rangle, \quad J = \langle t^2 + 2 \rangle,$$

et donc $A/I = \mathbb{F}_p[t]$ et $\bar{J} = \langle t^2 + 2 \rangle$, ce qui achève le résultat.

2. Montrer que l'anneau $\mathbb{R}[t,u]/\langle t^3+2t+u,t^2+2\rangle$ est isomorphe à \mathbb{C} . De même, $A = \mathbb{R}[t, u]$,

$$\langle t^3 + 2t + u, t^2 + 2 \rangle = \langle u, t^2 + 2 \rangle = I + J, \qquad I = \langle u \rangle, \quad J = \langle t^2 + 2 \rangle,$$

et donc $A/I = \mathbb{R}[t]$ et $\bar{J} = \langle t^2 + 2 \rangle$, ce qui démontre que

$$\mathbb{R}[t, u]/\langle t^3 + 2t + u, t^2 + 2 \rangle \cong \mathbb{R}[t]/\langle t^2 + 2 \rangle.$$

Puis, le morphisme $\mathbb{R}[t] \to \mathbb{C}$ défini par $t \mapsto \sqrt{-2}$ est surjectif et son noyau est $\langle t^2 + 2 \rangle$, ce qui démontre que $\mathbb{R}[t]/\langle t^2 + 2 \rangle \cong \mathbb{C}.$