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1 Introduction

In order to write the sketch of this course, I inspired myself from the notes
of two Master Courses I used to give in the last years in Bordeaux : ”Traite-
ment du Signal et Ondelettes” (for students in enginering) and ” Traitement
numérique et compression de données” (for students in pure mathematics or
computer science interested into cryptography, codes, and security of infor-
mation). I will try here to make some kind of synthesis of these two courses.

One could say that one of the major goals of this course is to propose a
panel of methods (most of them inspired by orthogonality ideas) which com-
bine Fourier analysis with wavelet or wavelet packets analysis (in order to
supply the disadvantages of one method with the advantages of the other)
towards the study of analogic or digital signals or images which are highly
non-stationary, that is do not look as finite sums

t— Z ax(t) cos(wgt) (t)

(to simplifiy), where the coefficient functions a; depend very moderately of
t. Clearly, it is well known that in order to code music for example, one
needs two parameters (and not one !), the ”time” parameter (horizontal
reading of the partition) and the ”frequency” parameter (vertical reading
of the partition) ; clearly, such a signal is not of the form (1) since there
are ”jumps” of frequencies everywhere. Most of the examples treated in the
course will come from geology, electrocardiography, or also from the crucial
problem of facing how could be decomposed the signals which are generated
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theoritically by the Navier-Stokes non linear system of differential equations
(in order to understand turbulence phenomena).

The MATLAB routines which will be used in this course have been writ-
ten taking essentially into account didactical aspects (not performances of
the algorithms) since I am not neither a numerical analyst or a computer
scientist ! They can be found (together with test-signals) on my web site :

https://www.math.u-bordeaux.fr/~ yger

2 Discrete Fourier Transform or cosine trans-
form

The Discrete Fourier Transform with order N is defined as the linear trans-
form from CV do C" :

DFTy : (s(1),...,s(N)) € CV¥ — [W]'y] o : |ecCV,
0<j,k<N-1 s(N)
Wy = exp(—2im/N).

The matrix of such a transform has the important property that

0<k,I<N—1 N 0<k,I<N—1

Such a matrix is nearly unitary and the unitary matrix

1
Ay = — [W};l]
VN 1<k,I<N
satisfies X* = Idy, which means that its eigenvalues are 1, —1, 4, —i (whatever

the value of N is). There happens to be an ambiguity in choosing a basis of
eigenvectors for the Discrete Fourier Transform.

On the C-vectorial space C" of digital signals with length N (coded in MAT-
LAB as s = [s(1), ..., s(N)]), equipped with the usual hermitian scalar prod-
uct

(1), - 2(V)], (1), )]} = 1 3 2() W)

J=1



(corresponding to the discretized version of energy) there is a peculiar or-
thonormal basis which is directly related to Ay, therefore to the Discrete
Fourier Transform with order N ; such a base is obtained taking the inverse
image of the canonical orthonormal basis e; = VN (8! )1<i<n, j = 1, ...,n, by
the inverse of the linear map Ay. The vectors of this base are the NV vectors

Uy =@, ..,ay "), oap:=Wk k=0,..,N—1.

Since Ay is unitary, transforming a digital signal [z(1), ..., z(N)] into Ay[z]
does not affect its energy

N L)

but it can drastically change its Shannon entropy, which is defined, given
some orthonormal basis B (here the base ey, ...,e,) and some digital signal
with energy 1, as

entr(z,B) = —— Z 1z(4)|? log, |xg<7)|2 (1)

if z(1),...,z(N) are the coordinates of z in the usual canonical basis

Note that this notion of entropy pairs the numerical value |z;>/N with
—log,(|z;|>/N), that is the number of digits which are necessary to rep-
resent N/|z;|* ; in some sense, it is an indicator of the complexity of the
signal : if there are many coefficients |z;|?/N all equivalently small, the en-
tropy will be much bigger than if there is just a few number of significative
coefficients ! For example, the entropy of Uy equals log, N while the entropy
of its image through Ay equals log, N/N ! Entropy being some indicator
for chaos (such a notion comes from thermodynamics), checking for a basis
B such that the entropy of some given information becomes minimal is a
quite important challenge prior compression, identification and transmission
of data. Comparing entropies when signals are expressed in different basis
and profiting from such comparison will be a leitmotive in this course.

Within such a frame, one should say that the Discrete Fourier Transform of
order N is the expected universal base change matrix (corresponding to the



minimisation of the entropy) for any digital N-signal with energy 1 of the

form
,
Z a; Uj )
j=1

where 7 is "small” compare to N.

Some quite important remark respect to the vectors Uy, k = 0,..., N — 1, is
the following : for any £ =0, ..., N — 1, the cyclic matrix

1 oy, a}zﬁva oz,]cv !
apf b1 an a2
By == :
o af ... oal '

has rank equal to 1 and its only non trivial vector space corresponds to the
eigenvalue N, with precisely eigenvector Uy.

When N is a power of two (N = 2?), the computation of the action of the Dis-
crete Fourier Transform can be realised with N log, N multiplications instead
of N2. This drastic improvement which is due to Cooley and Tuckey (1966)
intitiated the "numerical revolution”. Fourier transform which was before
a theoretical tool (think about its role in the Radon transform introduced
by J. Radon, together with inversion formulaes around 1917) became imme-
diately a powerful operational technique (the developpment of Cat-Scanner
theory and its variants for example, which is precisely based on the inversion
of Radon transform and the theory Radon developped around 1917, took
place about 70 years after Radon’s pionneer work). Cooley Tuckey algo-
rithm is based on the fact that to perform a 2¢ Transform, one needs to do
first two 247! tranforms and then combine the outputs of these transform
(u(0),...,u(2¢7t — 1)) and (v(0),...,v(2¢1 — 1) by computing the vectors

kl U(j)>_<1 1 ) <U(])>
[W2 ]OSk,lﬁl d (U(]) —\1 -1 i U(])
for j = 0,...,2¢° 1 —1 (this does not ”consume” any multiplication). The only
thing which is needed (in order to initiate the procedure) is a re-classification

of the input entries based on a re-indexation of the indices of the entries in
terms of reversing their digits when they are expressed in binary system.



Since Cooley-Tuckey, S. Winograd proposed clever algorithms based of the
Chinese Remainder Lemma in order to construct fast algorithms when is
factorized with powers of small prime numbers. All such algorithms are now
banal and used systematically as FET (Fast Fourier Transform) algorithms.

The key operational role of the Discrete Fourier Transform is the following :
if

P(X) = (k) X"
Q) = 3 kXt

are two polynomials (which in some sense ”codify” the digital data that are
[(0),...,z(N — 1)] and [y(0),...,y(N — 1)]), then a basic operation is the
one that consists in associating to this pair of polynomials (or to the pair
of corresponding digital data = and y) the digital output [2(0), ..., 2(N — 1)]
corresponding to the polynomial

(the input z and y being periodized with period N). This operation
(x,y) > z=xx*y

is the cyclic correlation and it will appear to be fundamental in the treatment
of information. Through the Discrete Fourier Transform, it becomes just
pointwise multiplication, namely

DFTylz # y](k) = DFTx[z](k) x DFTy[y](k)

for k =0,..., N — 1, and is therefore much simpler to handle !

The Discrete Fourier Transform can easily be transposed to multi-variate
analogs. Nevertheless, in image processing, one deals (for symmetry reasons,
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which are directly related to the fact that the transform must preserve syme-
tries, note that cos is a ”symetrization” of the exponential while sin does not
correspond as such a symetrization, but more at some kind of disymetriza-
tion !) also with the 2D- (N1, N;) Cosine Transform which transforms a real

~

image I(k1, ko) into the image I(q1,qo), where

- =t Tq1(2ky + 1) 7qo(2ks + 1)
I(qi,q2) =4 ) Y I(k1, ks) cos cos :
e e ] e

Such a transform refers to another orthogonal system for RY, the cosine
system, which is generated by the vectors

. mq(25 + 1)
Vg = <QCOS[T] . 1.
7=0,...,N—

Such a transform is the basic mathematical in standard versions of JPEG,
where the input image I (with size 2P x 2P, p > 3, is preliminary divided into
8 x 8 subimages, each subimage being transformed by the Discrete Cosine
Transform into some 8 x 8 matrix (where the compression process will be
performed) ; once such a ”cleaning” of the spectrum of the image has been
realized, 8 x 8 blocks (in the wave number domain) are treated via compres-
sion techniques and their size will be reduced ; after this is done for each
8 x 8 subimage of the spectrum of I, one recovers a compressed version of
thanks to the Inverse Discrete Cosine Transform.

Note that the orthogonal systems that lie behind the Discrete Fourier Trans-
form or the Discrete Cosine Transform are (if we transfer discrete problems
to continuous ones) respectively the orthonormal basis

{t_>\/1/762i7rk(t—a)/T’ kEZ}

{t—>\/2/7Tsin7r(k+1/j?)(t_a), kG]N}
as well as
{t—>\/2/7Tcos7T(k+1/7?)(t_a), kE]N}

m(k+1/2)(t — 24T

{t—>\/2/7Tcos T 2), kE]N}




for L?([a,a + T]) (with its usual scalar product corresponding to continuous
energy). We will refer to such orthonormal basis in this course in order to
understand the key relation between Discrete Fourier Transform, Discrete
Cosine Transform and stationary signals (in the deterministic sense).

3 Deterministic notion of ”stationarity” ; a-
bout sums of elementary harmonics

In the sequel, we will call deterministic analogic signal any locally integrable
function on the real line ; in fact, one should think always such a signal as
a distribution, since one needs to incorporate in this definition signals like
d(t — to), where ¢ denotes the Dirac mass ; nevetherless, such signals can be
approximated by functions (for example §(Z) ~ (1/€)xj—¢/2,¢/o[ for € << 1)
and we will treat them as functions. Digital deterministic signals will be
sequences of complex numbers indexed by Z.

A deterministic analogic signal is stationary (in the deterministic sense) if it
is in the closure of the C vectorial space generated by the

t — exp(iwt)

(such an ”atom” being called an elementary harmonic) respect to the ergodic
scalar product

T/2
(51, S2)erg = lim T/ s1(t)s2(t)dt .

T—o0 T/2
Any stationary signal can be expressed as
s~ 3 a,(s)e™V),
weA(s)
where A is a countable set (called the spectrum of s), the convergence of the
sum being in terms of the ergodic norm
tmsup & [ [s(o) 2t = |
im sup — s =
P T J-1/2

2
msup 7 [ sl

so that one has the Plancherel formula

Isllees = D law(s)*.



For such a signal, it is quite important to note that
(ti,t2) = (s(-+11), s +ta))erg = D law(s)e @ = Ry(ty — 1)
AEA(s)
and therefore depends only of ¢; — #,. Such a function R, is called the auto-
correlation function of s.

Let us point out another important point of view respect to the caracteriza-
tion of particular stationary analogic signals which can be expressed as

m
s :t— > ajexp(iwt),
j=1
where wy, ..., w, are real frequencies and ay, ..., a,, complex coefficients (the
modulus of a; is usually called the amplitude of s, the argument of a; as the
phase attached to the wave number w;). It comes back to Euler that such a
signal s obeys to a m-order differential equation with constant coefficients

(D™ — A D™ —...— A)[s] =0,
where D = d/dt and

X™ = A X = Ay = T](X = iwj)
j=1

If the situation is now discretized (with a normalized sampling step equal to
1), one can view the differential operator d/dt as the analogic corresponding
of (for example, there are other possible choices) of the operator

(x(k))e = ((k) — x(k — 1))x;

then, the discretized version of the analogic signal s obeys a difference equa-
tion of the form

s(k)=msk—1)+ -+ yms(k —m), (%)

which means that the digital signal (s(k)), ., is correlated with all the digital
signals (s(k — 1))g,..., (s(k —m))x, which appear to be " shifted versions” of
the original data s towards its past. As a matter of fact, such a correlation
relation as (%) controls (and in fact almost governs) the coherence of s ;
looking just for the frequency contend of s (and not for the search for the
coefficients a;, which has to be done in some further step) is equivalent to
looking for the optimal choice of parameters 71, ..., v, such that (%) ”almost”
holds, m being a priori fixed, which will appear as some stumbling block in
the procedure (nevertheless, there will be some way to turn around it !).
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4 Awutocorrelation of digital signals and ref-
erent algorithms

4.1 The notion of autocorrelation matrix

Let s = (s(k)),cz be a digital signal indexed by Z and N be some strictly
positive integer ; in order to introduce some way to "explore” the digital
signal s having in mind the idea that it may locally be expressed as the
discretized version of a finite sums of harmonics, we profit from one of the
two points of view we discussed in section 3 respect to the behavior of finite
sums of exponentials.

In this first subsection, we will focuse mainly of the ergodic point of view
(which was the first one we proposed in section 3). Therefore, it is natural
to introduce some quantity to measure the ”autocorrelation” of the digital
signal.

In order to do that, one needs to introduce an integer N which is chosen
intituively with the a prior: idea that the digital signal remains essentially
stationary on digital segments with length 2N — 1. Of course, such an hy-
pothesis is an a priori hypothesis, but we will see later in this course how
some kind of dichotomy argument may help towards the choice of N.

Once N has been choosen, the algorithmic procedure lies in the choice of two
”windows” :

e a temporal window g = [¢g(1), ..., g(IV)] such that g(1)+---+g(N) = N ;

e a spectral window h = [h(0),...,A(N — 1)], 0 < h(k) < 1, such that
h(k) = h(N — k) for k =0,1,...,[N/2] and h([N/2]) = 1.

The reason for the terminology used here will be more transparent later on.
Once g and h are choosen, one introduces naturally a fonction from Z to
My n(C) which is defined as

neZ — AUTOCORR,[s; 7]

1 [h(g))h N S
AT (Chjv (22) Z g()s(n+ 14+ q)s(n+ 1+ ¢) )
|| ||2 =1 0<q1,2<N—-1

Such a function is called windowed autocorrelation matricial function ; it
depends on the choice of g and h ; the standard choices are g = gy :=
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1,1,...,1] and h = hy := [1/N, ..., 1/N] ; another choice is g := [N, 0,0, ..., 0]
and h arbitrary (still with the restriction conditions imposed before).

For any n € Z, the hermitian matrix AUTOCORR,[s; n] has N complex
eigenvalues A;(n), ..., A\x(n), that for the sake of simplicity we will here sup-
pose such that

A ()] > a(n)[ > - > |An(n)].

(we decide to skip pathological values of n where this fails to happen). The
svd command (Singular Value Decomposition) in MATLAB provides (in
decreasing order) the modulus of the eigenvalues as well as corresponding
normalized (respect to the euclidean norm) eigenvectors vi(n), ..., vx(n) ; of
course, the search for such a basis of eigenvectors is only reliable when the
eigenvalues A;(n), ..., Ax(n) have distinct modulus, which we suppose here.

When g = [1,...,1] and h = [1/N,...,1/N], we will just write for the sake of
simplification AUTOCORRy, [s; n] = AUTOCORR [s; n]. One can notice
then that as soon as there exists integers £, ..., k,, between 0 and N — 1 and
complex coefficients a, x, (r =1, ...,m) such that

s(l+1) = Zan,krW—Nm Vie{n,..,n+2(N —-1)},

r=1

then, one has
1 m
AUTOCORR [s; n] = = 3 lan, |* B, -
r=1

As a consequence of the key properties of the By for any k£ € {0, ..., N -1},

we have, if Uy := (1, @, ---aakNil)’

'Uy  AUTOCORR [s; n] 0 U = 3 lan s | 6(k — ky) .

r=1

Coming back to the general situation where the temporal and frequential
window g and h are now arbitrary ones (still with the imposed constraints
g(1)+---+g(N) =N, 0 < h <1, h([N/2]) = 1, h(k) = h(N — k) for
k < [N/2]) the paragraph just above justifies the fact that, given N and the
two windows g and A, the function

(n, k) — 'U, @ AUTOCORR, 4, [s; n] ® Uy,
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may be called the N-Windowed Power Spectral Density of the signal s (rela-
tively to the choice of the temporal and frequential windows g and k). This
function will play an important role if we make the a prior: assumption that
the signal s remains stationary during time intervals with uniform lenght
equal approximatively to N (which of course is never true in practice, but
such an hypothesis is necessary to be assumed in order to draw conclusions
on the spectal content of the signal). If s is highly non stationary, even
locally, then of course, the study of the funtion

(n, ki, ko) — ‘Uy, « AUTOCORR, 1, [s; n] @ Uy,

would be much more adequate (though much more difficult to handle since
one represent as an image a fonction of two variables, not a function of three
variables).

A statistical information respect to the global spectral content of the digital
signal s is given by averaging the function

(n,k) — 'Uy @ AUTOCORR, , [s; n] @ Uy
as a function of n ; such averaging leads to a function
k € {0,..., N — 1} — mean,, [tUk e AUTOCORR, 4 [s; n] om]

This function of k is the Power Spectral Density of the signal (computed
respect to the Welch method) and the routine spectrum in MATLAB
realizes such a computation (taking in the simplest case g = [N,0,...,0]).
Its graph provides a statistical information on the frequency content of a
given signal (see the help of the command spectrum in MATLAB for
practical details). Note that only positive frequencies are kept so that, if
7 = 1 corresponds to the normalized rate of sampling, the range of potential
frequencies is [—m, 7] and that of positive frequencies is therefore [0, 7] (since
W = Wy* and 2k7 /N lies between 0 and 27 when k varies between 0 and
N —1). The spectrum command provides the value of the Power Spectral
Density on [0, 7] only.

4.2 The spectrogram ( Widowed Fourier Transform)

Clearly, the statistical information which is provided by the Power Spectral
Density does not take in account the time-frequency evolution of the signal.
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In order to take it into account, it is necessary to plot the image of the
two-variable function :

(n,k) — ‘Uy « AUTOCORR,;, [s; n] @ Uy,

instead of just its average in terms of n.

The simplest case is the case when g = [N,0,...,0] and A is arbitrary (but
fulfills the required conditions). In this case, the function

(n, k) — 'Uy @ AUTOCORR, 4, [s; n] @ Uy

equals

1N
(n, k) — NZ )s(n+ 1+ q) Wy

IIhII2

and the square root of it, that is the function

1N1

is called the Spectrogram of s, the complex valued function

(n, h(g)s(n+ 14 q)Wk
N||h||Z W

being the Widowed Discrete Fourier Transform of the digital signal s.

The spectrogram is a fundamental tool for example for speech processing ;
its concept fits with the concept of musical coding. It provides precise infor-
mation on the evolution of the spectrum of the signal as a function of the
time. Of course, one has to assume that the signal is essentially stationary
on any time interval with lenght N, therefore, appears the technical diffi-
culty of choosing N. Note also that we face here the first crucial stumbling
block of Fourier analysis : if N has to be chosen small (that is the evolution
of the spectrum as a function of the time is fast), the number of frequency
channels available is also equal to N (the Discrete Fourier Transform matrix
is a square matrix !), that is the resolution in frequency is bad ; on the other
hand, if N is large, the resolution in frequency is better, but the signal is not
stationary anymore on windows with length /V, so that the spectrogram does
not take into account all components of the information. Here of course, the
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empirical search for some kind of ”compromise” is crucial, as the examples
proposed in the course illustrate it.

The MATLAB routine wift provides the computation of the spectrogram,
which has then to be read as an image (the horizontal axis represents the
time evolution, the vertical axis from top to bottom the frequency range
between 0 and 7).

Note that, if s is the discretization of some analogic signal containing com-
ponents ¢ — e*®' with |w| > =, then we hit when we take the sampling
at the rate 7 = 1 the Undersampling Problem, which is the second crucial
stumbling block of Fourier Analysis. We will come back to this problem later
on in this course.

4.3 The MUSIC indicator of frequencies

There is another interesting way to profit from the information provided by
the function
(n,k) — Uy « AUTOCORR, 4, [s; n] @ Uy .

Let m be fixed between 1 and M (m is intuitively the number of frequen-
cies which we suppose are involved in the signal, even considered in the
moving window). Then, if [s(n + 1),...,s(n + N)] was really a linear com-
bination of some vectors Uy, ..., Uy, , then these vectors (once normalized)
would be the m eigenvectors vy (n), ..., v, (n) corresponding to the eigenvalues
A1(n), ...y Am(n) of the matrix AUTOCORR [s; n| (other eigenvectors would
correspond to the eigenvalue 0) and then one should have :

0if k= ky,.... b,
1__2‘% V| = {1ifk7ék1, k

ceey lum

Therefore, it is natural to consider as a potential indicator for the position
of frequencies the function

1
1= % 5 [, U]

(n, k) —

Such an indicator (constructed from the autocorrelation matrix built with
g =[1,...,1] and h which fulfills the required conditions to be a frequential
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window) is called a MUSIC indicator and we use the routine music3 in
MATLAB to compute it.

The use for such an indicator appears quite useful to separate freqencies that
could be close ; it provides cleaner versions of the spectrogram (but only
the support of the Power Spectral Density is figured, not the values of this
function).

4.4 The search for the optimal autoregressive filter

An autoregressive filter (AR filter) is a linear operator from the space of com-

plex sequences C% into itself which transforms (formally) the input sequence
(e(k))eq into the output sequence (s(k)),z, such that

e(n) =s(n) —ms(n —1) =+ = yms(n —m) ;

in order to compute the values of the output for any n > N, it is necessary
to fix initial values for s(Ny — 1), ..., s(Ng — m). The MATLAB routine fir
computes the action of such a filter on some input data once the parameters
vj, j = 1,...,m, are fixed, as well as the initial values s(Ny—1), ..., s(No—m).

Any discrete sum of exponentials satisfies a difference equation (as seen in
section 3). Therefore, a digital stationary signal can be interpreted as the
output through the action of such an autoregressive filter of a digital signal
(e(n)),cz which is completely decorrelated, that is, if the statistical mean of

(€(1))nez i

LS o
lim — e(k) =m,
N—ooco N k=—[N/2]
then N/2]
o (2 ifl=0
Jim =37 (e(k)—m)(e("f”)_m)—{oifz7é0.

Such a digital signal (e(k))y is called a white noise.

Then, given a digital signal s that one supposes stationary on the time in-
terval {1,..., N}, it is interesting to choose m << N and to look for the
parameters Yo,..., Ym such that

2 ) =0~ S yloth =)~
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is minimal. This happens to be a problem of minimization in the sense of
least squares ; one needs to look for the projection of the digital signal s on
the vectorial subspace generated by its shifted versions s(k —j), j = 1, ..., m,
and by the constant signal (1, ...,1). Such a problem can be solved provided
a certain Gram matrix (which one has to invert) is well conditionned. If
it happens not to be well conditionned, a simple trick to turn around the
difficulty is to add to the signal s a white noise (generated in MATLAB
with the routine random).

Once this is done, a candidate for the Power Spectral Density of s (considered
as stationary on {1,..., N} will be the function

2
Om

w— —iw —imw|2 ’
‘1_716 —-.-—fyme

where o2, is the residual variance, that is

2 — N-—m - o o e 2
Om_N(N—Qm—l)k:%H‘S(k) Yo ;vj(s(k 7) 70)‘,

Such a method appears to be quite used for example in studying biological
signals, where there happens to be a limited number of frequencies which
fluctuate in rather well separated ranges ; for example, signals involved in
the description of the cardiac rythm (the digital signal is then obtained taking
the distance from one peak to the next one in some electrocardiogram) are of
this form, in relation with the sympatico-vagal balance. For these reasons, it
is quite important to sketch it here. Note that there is an ambiguity related
to the choice of m ; theoretically, the function

2
m — o,

should be convex and its minimum corresponds to the optimal choice of m
(see the work of H. Akaike, "Fitting autoregressive models for prediction”,
Ann. Inst. Statist. Math. 21, 243-247, 1969, and G. Schwarz, ” Estimating
the dimension of a model”, Ann. Statist. 6, 461-464, 1978) ; nevertheless, this
is quite difficult to check in pratice and the choice of m is usually empirical.
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5 The ”chirp” model, the Wigner-Ville Trans-
form

As a step from Fourier analysis towards Wavelet analysis, we may introduce
another interesting dictionary of atoms than the atoms ¢ — exp(iwt) one
is interested in when dealing with the (even local) stationarity hypothesis ;
such atoms are the Gaussian chirps, of the form

t — exp(—a(t — 5)2 +1iP(t)),

where P is a polynomial with degree at most 2 with real coefficients, which
can be written P(t) = p(t —v)*> + 9, p,7,0 € R. We notice then that, for
T € R,

s(t—71/2)s(t +7/2) = exp ( — 2(1[(15 - B)* + 72/4]) x exp(2ip(t — v)7),

which means that, if ¢ is fixed, such a signal as an ”instantaneous frequency”
which is 2p(t — 7) (as a function of 7) ; it is this signal (function of 7) which
is stationary, not the original gaussian chirp.

The continous transform which then seems of interest then is the transform
1 _ .
(tw) = WV s, 55 t,0] = 2—/ s(t—7/2)s(t +7/2)e " dr .
T JR

This transform is the Wigner-Ville Transform and its discrete version trans-
form a signal s = [s(1), ..., s(/V)] into the image

N—1
k) = > s(n+D)s(n—HWx. (xx)
1=0

The routine wig0 under MATLAB will be used to generate the Discrete
Wigner-Ville Transform ; note that the signal s has been extended by 0
outside {1, ..., N} in order that computation (xx) is possible.

The fact that the Wigner-Ville Transform is quadratic (and non linear) ex-
plains why the images one obtains are blurred by some interference terms ;
in fact

WV [s1+ 89,81 + 823 t,w] = WV sy, 815 t,w]+ WV [se,so; t,w]

+%Re [/Rmsz(t—i-T/Q)e_iwdT :
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Such interference terms are oscillating ones, so that local averaging of the
image may help to attenuate then ; the routine wiglislh does this job on
our examples ; more subtile techniques (based on image processing, such that
the one which consists in reassigning the value obtained at a given pixel at
the local center of mass of the image close to this pixel) can be introduced,
which ameliorate the lisibility of the Wigner-Ville images (see the book of P.
Flandrin, Temps-fréquences, Hermes, Paris, 1993 and a method introduced
by F. Auger and P. Flandrin, IEEE Transactions on Signal Processing 43,5,
1068-1089, May 1995).

Despite the difficulties linked with its treatment, the Wigner-Ville Transform
(and the correlated ones) is a step from the analysis of stationary signals
towards the analysis of signals where evolution of frequencies is linear (as
function of the time). Note also that energy (hence orthogonality) is pre-
served in the following sense : if s1, sy € L?(R) are two analogic signals with
finite energy, then

2
1

/ s1(t)s2(t) dt‘ = —/ WV [s1, 515 t,w] WV [s9, s9; t,w] dtdw

R 2m JJRr?

(this is known as Moyal’s formula).

The Wigner-Ville Tranform realizes some intermediate step between Fourier
analysis and Wavelet analysis (which is based on the simultaneous analysis
in time ans scale, instead of time and frequency, and will be the next topic
developped in the course).

6 The pyramidal algorithm of Burt & Adel-
son ; the concept of multiresolution analy-
sis

6.1 Vision and pyramidal algorithm

Let (s(n),cz be a sequence of complex numbers ; one can also think it rep-
resents the graph of the piecewide linear function which interpolates these
values.

Imagine an observator looking at this graph from far away ; the observator
will get a synthetic view of the graph, for example, he will apprehend the
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digital signal R;[s] (R; for "résumé” or "summary”) defined as

Ry[s](k) = Z s(n)h(n — 2k),
net
where > h(n) =1 and ¥, h(2n) =3, h(2n + 1) = 1/2 corresponds to some

averaging of the initial date s ; the first condition imposed on h correspond
to the fact that each value R;[s|(k) needs to be an average of values of s
and the second one will be justified a bit later. Note that R[s] has to be
considered as a digital signal on 27, not on Z (there is change of scale since
the observator apprehends the digital signal from far away).

Once such a resumed digital signal R;[s] is stocked in memory, the observator
(this is now a brain effort) may reconstruct a blurred version of s, which is
obtained as the sequence 5 defined by :

5(n) = Z Ry[s](k)h(n — 2k);
keZ
this corresponds to a redistribution of the stocked information and the dif-
ference (d;[s|(n)),c; defined as
di[s]=s—3§
corresponds to the details of s at the scale 2° = 1, details that cannot be
catched by the process that leads to the blurred version s.
Note that the two operators

Rial)e > (X stihtn—20)

net
R :(u(k)) — <Zzu(k)h(n - 2k)>

are adjoints one to each other (as operators from [%(Z) into itself). It is
the redistribution phase which make natural the conditions Y, h(2k) =
>k h(2k + 1) mentionned above : at all point, the sum of the averaging
coefficients should be the same, that is here 1/2.

The procedure may be carried on, starting with R;[s], and the signal
d®[s] = Rufs] — Ris]
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corresponds to details of the digital signal s at the scale 2 ; of course dV) and
d® connot be added since they do not correspond to the same scaling of Z
(1 is the scale step for d¥), 2 the scale step for d®). Nevertheless, the list
d®,d? ... d™ Ryls] allows the iterative reconstruction of s thanks to the
action of the operators R* and the formula

Ri[s] = d®[s] + 2R*[Ry11[s]] -

Such an algorithm (which announces the concept of multiresolution analy-
sis) is called Pyramidal Algorithm because it compbines the two phases of
averaging and redistributing the information in some kind of pyramidal way
(draw a diagram to convince yourselves about it !).

Testing this algorithm for example on test-signals we used to illustrate the
spectrogram will be done in the course thanks to the routine commands
rpyramid (used for the phase of "stockage” wia dyadic compression of the
data) and dpyramid (used for the phase of redistribution of the infor-
mation) ; note that both programs are very simple to implement, taking
here for example h(l) = 0 for || > 2, h(0) = a, h(1) = h(-1) = 1/4,
h(2) = h(—2) = (1 — 2a)/4, where a is a parameter to be choosen between 0
and 1 (this model corresponds to averaging with an order 3 spline) ; we will
choose various values of a in the illustrations performed in the course.

6.2 An orthogonal variant : Franklin-Stromberg de-
composition

Another variant of the pyramidal algorithm is the quite useful (and also
quite naive) Franklin Decomposition Algorithm. The idea is to combine the
synthetic description of the vision process in the discrete context in two steps
as it is proposed by the pyramidal algorithm of Burt and Adelson with some
interpretation of discrete signals as obtained by sampling analogic ones. This
will happen to be a key idea later on, when we will have to understand how to
choose a multiresolution analysis in order to treat some discrete information.
In fact, a digital signal (s(n)),, appears as the sampled version of the analogic

signal
t—= Y s(n)A(t—n),

where
A :t— max(0,1— |t])
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is the basic (here just continuous) spline function ; assuming more regularity
a priori on the analogic model from which one assumes (s(n)),, is a sampled
version would lead to the choice of a spline of higher order instead of A ; let
us take here A which is the simplest choice.

If N = 29, a basis for the N +1-dimensional C-vectorial space V; 5 of analogic
signals s on [0, N] which have nodes at 0, ..., N is the collection of functions
Agp, n=0,..., N, where

N p(t) = max(0,1 — [t —n|) = A(t —n) Vt € [0, N].

Such a vectorial space corresponds to the N + 1-dimensional space of digital
signals with lenght N 4 1. In order to construct a ”blurred” version of such
a digital signal s = [s(1), ..., s(N + 1)], one can do the following :

N+1
e form the analogic signal S : ¢ € [0, N] = X s(j)A¢,j-1(t) ;
j=1

e project orthogonally S on the C-vectorial subspace of V; x which is
generated by the functions A;,, n =0,...,297", where

Ay, (t) = max(0,1 — [t/2 — n|) Vt € [0, N],

which gives an analogic signal R;[S]| which is piecewise linear with
nodes at 0,2, ....

The difference between S and such a blurred version S will correspond to the
details d;[s] of the pyramidal algorithm, but such details are viewed this time
as an analogic signal d;[S] on [0, N] (piecewise linear with nodes at 0, 1,...).
The procedure may be continued : one can project orthogonally R;[S] on
the C-vectorial space (with dimension 2¢°% + 1) of piecewise linear signals on
[0, N] with nodes at 0,4, ..., therefore obtain Ry[S], and form the difference
do[S] = R1[S] — R»[S], which is now a piecewise linear signal on [0, N] with
nodes at 0, 2, .... Finally, we get

S = dy[S] + da[S] + - - - + di[S] + Ri[S]

(we can continue as soon as k < ¢), which is an orthogonal decomposition of
the analogic signal S ; such an orthogonal decomposition can be also inter-
preted as a decomposition of s (we used capital letters for analogic signals, or-
dinary letters for digital signals), which is the digital signal [s(1), ..., s(N +1)]
which S interpolates on [0, N] at the points 0,1, ..., N.
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The same procedure can be carried with A replaced by a higher order elemen-
tary spline and it is known as the Franklin (or Strémberg) decomposition. It
contains in germ the fundamental idea of Discrete Multiresolution Analysis
that we will introduce next.

6.3 What is a Discrete Multiresolution Analysis, with its
father ?

The concept we will introduce now is due to Stéphane Mallat who introduced
it between 1980 and 1985, thus pursuing the renewal of the Haar analysis
Yves Meyer proposed introducing the notion of ”wavelet”.

The fundamental pair of objects to start with is a pair ((Vj)jez, ¢), where
the V;, j € Z are C-linear subspace of the space L?(R) of analogic signal s
with finite energy (that is such that [ |s(¢)|> dt < +00) which are embedded
one in each other, that is

V,cViyCc---cViccVyC---,
together with a well localized element ¢ € Vj such that :
e V;, j € Z, can be deduced from Vj by
Vi = {s € L*(R); s(2'(-)) € Vo}

(that means that going from Vj to V; means just changing the scale at
which informations are read : when j > 0, Vj is 1} scaled with the rate
7=21>1; when j <0, V;is V; scaled with the rate 7 =27 < 1) ;

e one has:

v, = {0}

Uvi = L*(R);

e the collection (¢(t — k)),cz = (¢o,k) ez is an Hilbert basis for Vj.

The function ¢ is called the father of the Discrete Multiresolution Analysis.
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Of course, it is not completely evident to produce examples of Discrete Mul-
tiresolution Analysis. Nevertheless, there are two simple models correspond-
ing to the simplest Discrete Multiresolution Analysis ; one is the more ele-
mentary model that could be imagined respect to time analysis of signal, the
second is again the more elementary model that could be imagined respect
to the analysis of signals based on the study of their frequency ranges.

The first model is the Haar model ; take Vj as the set of analogic signals with
finite energy which are almost everywhere constant on each interval |k, k+1],
the function ¢ being in this case ¢ = x[o,1-

The second model is the Shannon model : take V, as the set of analogic
signals s with finite energy such that the spectrum of s, that is the signal
(again with finite energy, equal to 27 times the energy of s)

w—)/ s(t)e ™ dt
R

has support included in [—m, 7] (that is is almost everywhere equal to zero
on the frequency domain | — oo, —7[U|m, +00[) ; in this case, the function ¢
is the function _
_ sin(7t)
t — sinc (7t) ' = ——=
mt
whose Fourier transform is precisely X[—z -

To give other examples, it is important to notice that the key ”cornerstone”
in such a pair ((V;);, ¢) is not really the father ¢ neither the sequence (V});,
but the 27-periodic function mg € L?(R/Z) which satisfies :

P(2w) =me(w)p(w)  VweR;

there exists such a function mg since w — @(2w) is the Fourier Transform
(in the analogic sense, that is the transform which associates to s € L%(R)
the limit, in L?(R), of the sequence of functions w — [~y s(t)e ™! dt) of
the function ¢ — (1/2)p(t/2), which is in Vj, therefore in V4, and can be

expressed as
—+00

(1/2)¢(t/2)= > 272h(k)p(t— k),

k=—00

with 3" |h(k)|?> < co ; the function my is defined as
k

1 —tkw
mo(w) = 7 > h(k)e™™.

keZ
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Examples. In the example of the Multiresolution Analysis of Haar,
1+ e )
= 5 :

in the example of the Multiresolution Analysis of Shannon,

mo(w)

mO(w) = X[-n/2,7/2] (w)
(periodized as a function with period 27).

Once my has been introduced, one can notice that the fact that the functions
t — ¢(t—k), k € Z, form an orthonormal system is equivalent to the fact
that one has the following identity

Z |P(w + 2/§7r)|2 =1,
keZ

which implies the relation
Imo(w)[? + [mo(w +7)|* =1 (t1)

on the frequency space ; note also that if we make the additional assumption
that @ is continuous at w = 0 (which we will do here), then

p(w) = ¢(0) x lim ]_Ilmo(w/Qj), (@)

(just iterating the formula @(w) = my(w/2)@(w/2)).

Note also that necesseraly p(w) # 0 (otherwise ¢ = 0 thanks to («), which
is absurd), then my(0) = 1 and mgy(7w) = 0.

It was a clever idea due to Ingrid Daubechies to realize that the construc-
tion could indeed be reversed, that is a Discrete Multiresolution Analysis
constructed from a given 27 periodic function mg € L?*(R/Z)

1 & -
mo(w) = = Y h(k)e
k=—00

satisfying
mo(W)]?+ |melw+7)>=1 VweR,

mo(0) = 1 (that is 3, h(k) = v/2) and the techninal condition :

de >0, Z |h(k)||k|¢ < +o0
keZ
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which ensures that the definition of the Riesz infinity product
o0
H (w/27)

is licit and provides an element in L?(R). In order to reconstruct the Discrete
Multiresolution Analysis from my, one reconstructs ¢ such as

mo(w/27),

H:jg

then V; (spanned by the p(t—k), k € Z), then finally the V; (s € V; meaning
that s(27(-)) € V).

What is essential is that for any value of N > 0, there is a unique trigono-
metric polynomial my o of the form

—zw zlw
mpy, = Z an,€e

which satisfies myo(0) = 1 and |myo(w)[* + |myo(w + 7)|* = 1 on the
whole frequency line. Such a trigonometric polynomial my generates the
Daubechies Discrete Multiresolution Analysis with order N. We will use in
this course the values N = 1 (this is the Haar analysis), N = 2 (when we
will refer to daub4 and N =4 (when we will refer to daub8).

Other Discrete Multiresolution Analysis were introduced by Gilles Lemarié,
taking as V| the C-vectorial spaces generated by translated of the basic spline
function of order p. Of course, here, the situation is somehow more involved
since the translates ¢(t — k), k¥ € Z, do not form usually an orthonormal
system. For example, for O-splines, with ¢(t) = A(t) = max(0,1 — |¢]), it
is not true. The function ¢ (let us take here A as an example) has to be
slightly changed in order to become a father for the Discrete Multiresolution
Analysis. In order to to that, we define A as

t)=> arAt —k)

keZ

where the 27-periodic function
w .
fiw— Z are” "k
k=0
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is such that 1

> |A(w + 2km)2
keZ

flw) =

it is therefore immediate to check that

S AW+ 2%kn)2 =1,
ke

which ensures that the collection (A(¢ — k)),cy is an orthonormal system. In
this particular case, f can be computed thanks to the Plancherel’s formula

and we have
3
flw) = V 2+ cosw’

the corresponding Discrete Multiresolution Analysis is the Franklin Discrete
Multiresolution Analysis.

Discrete Multiresolution Analysis constructed from vectorial spaces gener-
ated by elementary spline functions appear to be of interest when treating
for example sismic signals.

7 What to do with a Discrete Multiresolution
Analysis ?

7.1 The mother of the analysis

Let ((V});,¢) a Discrete Multiresolution Analysis as before and my, the 27-
periodic function such that

?(2w) = mo(w)P(w) ;

as we have seen, one can write

1 —ikw
mo(w) = 7 > h(k)e ™,

keZ

where (h(k) is some sequence in [*(Z).

25



If we set

() = D_ h(k)e(t — k),

ke
one can see that

o(t) = %@(tﬂ),

so that the list (¢(t — 2k)),, corresponds to the list

(Prp)e = 27 20(t/2 — k) ez

and therefore to the Hilbert basis for V; which is deduced from the Hilbert
basis (¢(t — k))g of Vy. Moreover, if

s =2 s(n)pon €V,

net
the orthogonal projection of s on Vi can be expressed as

Prafl = X | 3 st =20 1400

kez Lnez

=¥ lZ s(n)h(ni—mﬁﬂ o(t — 2K).

kez Lnez

Let now introduce the 27-periodic function m; deduced from myg setting

it T 9(k) ikw
my(w) = e TImyw+m) = e
keZ V2

where

g(k) = (=1)"h(1 — k).
Then, it is easy to check that the matrix

M(w) :=< mo(w) ma(w) )

mo(w + ) my(w+ )

is a unitary matrix for all values of w. If we define

0t) == glk)o(t — k),

keZ
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then the collection of functions (0(t — 2k)), ., is a basis for the orthogonal
complement W, of V; in V (Vo = V1 @1 W) and we have, for

s=)_5(n)pon €V,

nel

il = 3 | X st = 28] )

keZz Lnez

_y [z s(n)m]e(t k).

keZ Lnez

The function 9 € V_; which is defined (as ¢) by the identity

~

¥(2w) = ma (W) (w)

(¢ is such that 0(t) = (1/v/2)w(t/2)) is therefore such that for any j € Z,

the system ' .
(27702 = k), _,

is a Hilbert basis for the orthognal complement W; of V; in V;_; (V,_; =
V; @+ W;), so that, since

has as an Hilbert basis the basis

(27772 (t/27 — k)

G ke

which is obtained from the ”wavelet” 1) (note that ¢ has average 0 since
m1(0) = 0) dilating, contracting and translating it. Such a function ¢ is
called the mother of the multiresolution analysis and, given s € L?(R), the
list of coordinates of s in this basis is the list of wavelet coefficients of s.

7.2 The wavelet analysis a a discrete signal against a
Discrete Multiresolution Analysis

Let ((V});, ) be a Discrete Multiresolution Analysis and (h(k)),cz, (9(F)) ez
the sequences of coefficients of the two 27-periodic functions my and m;
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attached to it as described above. The illustrations in this course will
concern the case when the Discrete Multiresolution Analysis is the Ingrid
Daubechies’s one for respectively N = 2 (there are 4 parameters for g and
h, h(0),...,h(3), g(0), ..., g(3) to handle all computations) and N = 4 (there
are 8 parameters for g and h, h(0), ..., h(7), g(0), ..., g(7)).

Given a discrete signal (s(n)), indexed by Z, one makes the a priori assump-
tion that s is the sampled version at rate 1 of some analogic signal in 1},
namely the signal

it — Y s(n)p(t —n)

ne
the father ¢ of the analysis appears here, but in fact will never be explicited
(there is no need for that, at least in this simple classical approach !). The
list of wavelet coefficients ¢, 4, k € Z, is obtained as we have seen before as
the list of the coefficients

> s(n)g(n — 2k), kelZ.

nez

At the same time, we compute also the list of coordinates of the orthogonal
projection Pry; [S] expressed in the Hilbert basis (¢1,4),c5 ;5 this list corre-
sponds to the discrete signal

(S stoita=20) .

ned

Such a signal (R:[s](n)), is now treated as (s(n)), (except that the new scale
is now 2 = 2! instead of 1 = 2°). In order to compute the complementary
list (cok)gez Of wavelet coefficients of s, we note that this list corresponds to
the list

> Ri[s](n)g(n — 2k), keZ.

nez

And so on... We can continue that way and get the lists (¢;x), 7 = 1,..., N,
keZ.

In fact, there are two operators from [?(Z) into itself that play a crucial role :

R s (st~ (S st =2m)

nEZ
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D (sl (st =) |

nez

These operators have to be paired with their adjoints

B i (X it =20

keZ

D 5wl ~ (T ukiati=0) |

keZ

These two operators satisfy the Bézout identity

which controls the mecanism of reconstition. They are called mirror filters
i quadrature.

One can see the analogy between the algorithms being explicited here and
those appearing in the pyramidal algorithm of Burt & Adelson.

Note that the information corresponding to the sequence ¢, x, £ € Z, has to
be thought as an information as an information on 2Z, that corresponding
to the sequence cy;, £ € Z, as an information on 47, etc. So, in graphical
representation, we will keep track of this fact in order to represent each least
as an histogram with width depending of the first index j in ¢;.

Since the action of the operators R and D is usually numerically computed
in terms of Discrete Fourier Transforms, the input signal (s(n)), needs in
most of the practical algorithms to be a digital signal with lenght a power of
two.

The presence of a significative wavelet coefficient at a temporal point k27
reveals the presence (about this point) of some atom fitting with a copy of
some dilated (or contracted version) of the mother wavelet in the decompo-
sition of the signal. Therefore, ”accidents” of the signal are here taken into
account. Note that the frequency aspect is lost in this decomposition (apart
dealing expressely with a multi-resolution adapted to the frequency domain,
such as the Shannon decomposition) : the treatment of some discrete infor-
mation through a Discrete Multiresolution Analysis is a Time-Scale analysis,
not a Time-Frequency analysis as studied before in this course ! It may be
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a quite interesting complement to a Time Frequency analysis, performed as
described in section 4 of these notes.

We will try to correct this later on introducing some more subtil decom-
position, namely the Wavelet Packets Analysis, in order to bring back the
frequential aspect in the picture.

But, prior to do that, we will extend the concept of Discrete Multiresolution
Analysis to the problem of treating images.

7.3 The wavelet decomposition of an image

Let ((Vj);,¢) be a Discrete Multiresolution Analysis and ¢ be the mother
wavelet ; note as (¢, x)r the orthonormal basis of V; deduced from the or-
thonormal basis (¢(t — k))r = (@o)r through the relations

oin(t) =27p(t/2 — k), je€Z,kel.

Let (¢;x)r be the orthonormal basis of W, (the orthogonal complement of
Vi in Vj_q, i.e. Vi_y = V; @~ W;) defined as

in(t) =2792p(t)20 — k), jE€Z,kel.

For any j in Z, V; x Vj; is the orthogonal sum :
Vi x Vi = (Vi1 x Vip1) & (Wiga x Vi) @ (Vi X Wiga) @ (Wi x W) -

Given a digital image I in V; x V}, its projection on Vj1; X Vj4; corresponds
to a resumed version on this image ; its orthogonal projection on W, X
Vj41 should be an image putting in evidence the "horizontal” details of the
image at the scale 27, since the first coordinate space is W;y; and the first
index in the matrix corresponding to the digital image is the line index ; its
orthogonal projection on V1 x W, should be an image putting in evidence
the "vertical” details of the image at the scale 27, since the second coordinate
space is W;;1 and the second index in the matrix corresponding to the digital
image is the column index ; finally, its orthogonal projection on Wj,; x Wji,
should be an image putting in evidence the ”oblic” details of the image at
the scale 27,
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The decomposition algorithm for a given image (with size 29 x 27) goes then
as follows. The image is thought as the analogic image

2¢-129—1

T :(z,y)— kX_: kz_: I (K1, ko) ok, () ok, (Y) -

This analogic image is orthogonally projected of the four subspaces V; x Vi,
Wi x Vi, Vi x Wi and Wy x Wy ; in fact, one just compute the four digital
images corresponding respectively :

e to the list of coordinates of Pry, «1; (Z) in the orthonormal basis
(@1, () 01,3 (U) )k 2 5

e to the list of coordinates of Pryy, xy; (Z) in the orthonormal basis
(V1,0 () P12 (U)o 5

e to the list of coordinates of Pry, «w, (Z) in the orthonormal basis
(1,0 () V1k5 (U)o s 5

e to the list of coordinates of Pryy, xw, (Z) in the orthonormal basis
(V11 ()12 () s s -

Each of these lists corresponds to a 297! x 297! image and the digital image
I is thus decomposed in four digital images, the image corresponding to the
resumed version (that is the projection of Z on V; x V}) being at the top left.
Such digital images are computed directly using the formulaes in section
7 (for Pry,[S] and Pry,[S]), in terms of the lists (h(k)),.; and (g(k)),cz
involved in the Fourier expansion of my and m;.

The procedure can be continued, starting now from the 277! x 2¢=! image
corresponding to the projection of I on V; x V. This image can be splitted
in four 2972 x 2972 images corresponding to the splitting of V; x V; as the
orthogonal sum of Vo x Vo, Wy x Vi, Vo x Wy, Wy x Wy, and so on ... This
decomposition algorithm can be tested (with the Daubechies Multiresolution
Analysis corresponding N = 4) thanks to the command daub8_2d.
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When we iterate this procedure, we compute in fact the coordinates of the
analogic image 7 in a new orthonormal basis, which is formed by the functions

(Win(@) 01 W)kis  (Pik@)VuWkes  Win(@Wrs,  7=1,2,...

These coordinates are the wavelet coefficients of the analogic image 7 €
Vo X Vo (and by extension the wavelet coefficients of the digital image I to
which I has been associated).

Of course, the digital image I can be reconstructed from the resumed ver-
sion corresponding to the projection on Vy x Vi and the list of all wavelet
coefficients corresponding to values of j between 1 and N. Therefore, some
compression (eliminination of non significative coefficients for example) can
be performed after the decomposition and a compressed image thus restau-
red.

Nevertheless, it is important to point out that wavelet coefficients are the
coordinates of the image Z (associated to the digital image I) in some very
peculiar orthonormal basis. In the next section, we will enrich the set of pos-
sible orthonormal basis in which the decomposition is possible (and indicate
how to pick up one such that the Shannon entropy of the image is minimal).

It is also noticable also that neither ¢ nor ¢ appear in the iterative compu-
tations which lead to the decomposition of the digital image I ; of course, ¢
is indirectly there since it governs the choice of the analogic image Z which
is associated to I and which is in fact the image being decomposed in the
process.

7.4 Different basis to decompose a digital signal re-
spect to a multi-resolution analysis

Let again consider a Discrete Multiresolution Analysis ((V});, ), together
with the two digital signals (h(k)), and (g(k))x which govern the expressions
of the 2m-periodic functions my and m; associated to the multiresolution
analysis.

Let us make here a crucial remark : consider a vectorial space U which is
generated by the shifted versions (£(¢ — k)) of a given function £ such that
the collection (£(t — k)) is an orthonormal basis of U. Such is the case for
U =V, (with a rescaling of Z and £ = ¢, ) but also for U = W (still with a
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rescaling of Z, with £ = 1;). Consider the two functions

n(t) = > h(k)&(t —k)

keZ

T(t) = Y g(k)Et—k).

ke

Then, one can show (under the conditions on mq and m,) that if Uy denotes
the subspace of U which is generated by the functions ¢t — n(t — 2k), k € Z,
and U; the subspace of U which is generated by the functions ¢t — 7(¢t — 2k),
k € Z, then U can be split as

U=U&' U,
and moreover the collections
{t > nt—-2k); kelZ} , {t—>7{t—-2k);kel}

are respectively orthonormal basis of Uy and Uy, so that the procedure puts
at our disposal two distinct orthonormal basis B and B of U :

e the original basis B := (t — £(t — k))x one was starting with ;

e the basis B one obtains by concatening the two orthonormal systems
{t > n(t—2k); k€ Z}and {t - 7(t —2k); k € Z}.

Moreover, if

s =Y s(k)E(t— k),

k
the coordinate of s along t — n(t — 2k), k € Z, is

> s(n)h(n — 2k)
ne’
while the coordinate of s along t — 7(t — 2k), k € Z, is
> s(n)g(n — 2k).
ned

One recovers here the formulaes involved in the search for wavelet coeffi-
cients ; nevertheless the point of view is different since U can be taken as V;
as well as W; (U was just taken as V}, j = 0, ..., in the wavelet decomposition
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of a digital signal). So, there is here some new idea one should indeed take
advantage of.

Let us now explain how can be treated a digital signal with length N = 29
(continued by 0 outside the interval {1,..., N}. One associates to the signal
s the analogic signal (which is in V})

S :t— ) s(n)e(t—n).

ned

The space U =V}, can be decomposed as U = Uy &+ U, (here in fact Vj =
V11 W;) and one can compute the two lists of coefficients (with length 29-1)
e, k=1,...,2  and di, k = 1,...,2971, corresponding to the coordinates
of the orthogonal projections of S respectively on Uy and U; (equipped with
their adequate orthonormal basis deduced from the basis (¢(t — k)); of U =
Vo). Then one compares the Shannon entropies of S

29

Entr (S, B) = — ) |s(k)|*log, |s(k)|*

k=1
and
_ 29-1 2¢-1
Entr (S, B) := = > |rx[*log, [re[* = D |di|* logy |dx|* .
k=1 k=1

Now, we are in either one of the two situations :
o if
Entr (S, B) < Entr (S, B),
there is no need to pursue the decomposition procedure and it stops
here ; the basis (¢(t—Fk))y is considered as an optimal one in terms of the

entropy criterion (minimizing the entropy). The wavelet decomposition
may be interesting for itself, but not respect to minimizing the entropy ;

o if
Entr (S, B) > Entr (S, B),
then the basis B is more interesting than the basis B ; the decomposition
is justified and one may continue, starting now with U = Uy and U = U,
in order to decide whether a splitting of Uy or U; is necessary or not

respect to the search for a basis in which the entropy of S is minimal,
etc.
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The algorithm above, which is basically due to Ronald Coifman and Victor
Wickerhauser, is known as the Split and Merge Algorithm. It leads to the
construction of an orthonormal basis of V in which the Shannon entropy
of the analogic signal S corresponding to s is minimal. The basis itself
is composed by atoms which look like packets of wavelets (this is why the
decomposition itself is called the Wavelet Packet Decomposition).

The routines wpack4 and wpack8 provide the construction of the decom-
position in the optimal basis (with the Daubechies Multiresolution Analysis
corresponding respectively to N =2 and N = 4).

The procedure may of course been extended to the decomposition of digital
images in most convenient orthonormal basis.

7.5 Some applications of the Wavelet Packets decom-
position

We just propose here five applications of the Split and Merge algorithm ; of
course, this list of potential applications is far from being exhaustive !

Compression of data

First, the search for an optimal basis (respect to the problem of the mini-
mization of entropy) is interesting if one wants to compress the digital signal.
This is done just by eliminating coordinates of the signal expressed in the op-
timal basis (such coordinates are given trough the decomposition algorithm)
which have an absolute value below a certain a prior: fixed value. It is of
course more intelligent to make the compression once the signal is expressed
in the optimal basis ! Then, of course, a compressed version of the signal may
be reconstructed from preserved coefficients. Note that in the decomposition
process, nor in the reconstruction process, the explicit functions ¢ and
never appear evidently (only the sequences (h(k)), and (g(k))x attached to
mg and m; are involved) ; of course, @ is present since it governs the choice
of the analogic signal S which is treated.

Classification of data

Given a Discrete Multiresolution Anlysis, the Split and Merge algorithm ap-
plied on digital signals with length N = 27 (or digital images with size 27 x 27)
generates a finite number of possible orthonormal basis.

The search for an optimal basis may be used also for classicication ; different
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signals may be classified in terms of the particular basis which is the best
adapted to them (in the sense, the entropy is minimal) ; one can even refine
the classification using different Discrete Multiresolution Analysis. For ex-
ample, this technique was introduced for the classification of finger prints by
the FBI.

Signature of a digital image and watermarking

Putting a signature on an image in order one could authentify it is an in-
teresting challenge in cryptography ; of course, the major difficulty is that
the signature needs to be undetectable by standard techniques and robust
to filtering, compression, etc., all constraints being in general impossible to
fulfill at the same time !

The Split and Merge algorithm provides some approach to this problem : the
signature is put on a certain component of the decomposition of the image
in some peculiar orthonormal basis from the family of basis the Split and
Merge algorithm provides us. Then, the "key” is the algorithmic decision
procedure (for example a comparaison of entropy criterion for a particular
choice of entropy —non necesseraly the Shannon entropy— or another kind of
criterion to be defined in some algorithmic way) which leads to a specific
basis extracted from this family ; the signature is put on certain vectors
from this peculiar basis. Of course, in order to detect the signature and then
authentify the image, it is necessary to know the key.

Analysis of the correlation between data

In order to illustrate this application, we will focuse on an example of poten-
tial application taken from sismology.

Let s = (s1,892,83) be a vector of 3 digital signals corresponding to the
registration in three directions (West-East, South-North, vertical) of a sismic
event.

It happens to be quite important in sismology to be able to detect in such a
sismic wave the components that propagate horizontally (the P-waves) and
the ones that propagate vertically (the S-waves) and know in particular the
instant of arrival of these waves (there may be successive ones, of course).

In order to do that, one can construct a digital signal, which is the polariza-
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tion function of the sismic wave ; to the instant ¢, one associate the quantity

| Malsl)
n[s))

where \i[s](t) > Ao[s](t) > A3[s](t) are the 3 eigenvalues of the positive sym-
metric matrix M () corresponding to the instantaneous correlation matrix of
(s1, 2, s3) near the instant . A peak of this function should materialize the
instant of arrival of a P-wave. The points where f(t¢) achieves a maximum
correspond to the instants where the sismic wave is polarized and thus mark
the instants of arrival of P-waves.

ft) =

Instead of using f (and in order to reinforce the information about polariza-
tion), one can consider

FoN A2[%’](75))
fio=11(1- 243
where the o; = (0j1,...,0;3) are such that 0;,0,2,0;3 are components of
respectively of sy, so, s3 in the optimal basis (respect to some Multiresolution
Analysis and entropy criterion) in which the three signals can be decomposed
when these components correspond to the same label in the Split and Merge
decomposition tree and analyze the local peaks of this function.

8 Continuous time-scale analysis

8.1 The Continuous Wavelet Tranform (CW'T)

Orthogonal decomposition of informations may have some inherent defects :
it makes fragile the treatment of the information through its decomposition
(changing some component in the decomposition may change drastically the
whole information). It happens in many situations that it is quite impor-
tant to profit from the redundancy of the information, thus to obtain more
robust decompositions ready for the treatment of the information (compres-
sion, separation signal-noise, watermarking,...) This is the reason why we
introduce here a continuous transform, the CWT-Transform. The defect of
such a transform (on the opposite of what happens to transforms leading to
orthogonal decompositions such as in section 7) is the fact that it provides
too much information at the same time, without any organization method
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to treat it | We will try to correct that in section 9 when introducing the
Matching Pursuit algorithm.

The basic ”atom” involved in such a redundant decomposition will be some
”wavelet” 1) with finite energy such that 1 vanishes at w = 0, more precisely

/ 7‘w(w)‘2dw < 400.
R |w]

The fact that the Fourier Transform of the atom v vanishes at w = 0 indi-
cates that convolution with ) can be interpreted as pass-band filtering (low
frequencies of signals are cut through convolution with ). Of course, the
more ¢ vanishes at w = 0, the more this pass-band filtering property in en-
hanced ; when % is in the Schwartz space S(R) (the space of of C* functions
which decrease to zero at infinity faster than any [t|~" for any N, as well
as all their derivatives), the fact that 1Z vanishes at the order ¢ + 1 € IN*
at w = 0 (that is is such that all derivatives of ¥ or order less than ¢ are
zero at w = 0) is equivalent to the fact that ¢ is orthogonal to polynomial
functions with degree less than ¢. Such is the case for example when v is the
q + 1-th derivative of the Gaussian function ¢ — (27) Y2 exp(—t?/2). We
will use models of such kind later on. The ideal situation (respect to this
pass-band filtering property) takes place when the Fourier transform of the
wavelet is identically zero near w = 0 ; such is the Gabor wavelet (which is
the fundamental tool in Gabor analysis) where

~

(W) = exp(—(w — wo)*/2),

with wy := 5.33644 being chosen such the ratio between the two first local
maxima of ¢ on [0,4o00[ equals 1/2 ; note that the Gabor wavelet is the
modulated gaussian

t— exp(—t?/2 + iwot) .

1
V2r
The Fourier transform of the Gabor wavelet being not exactly zero at w = 0,

it was corrected by J. Morlet who introduced the Morlet wavelet with Fourier
transform

w — exp(—(w — wp)?/2) — exp(—w; /2) exp(—w?/2) .
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The Continuous Wawvelet Transform corresponding to any such wavelet i is
the map which transforms an analogic signal s € L*(R) into the analogic
image

(a,5) €]0, 400 xR — CWT [s;a, 5] = % [ sl —o1/a dr.

Note that the atom

£ %w((t —b)/a)

is a contracted or dilated version of the ”wavelet” 1) which is translated from
t = 0 to the point ¢ = b (it is also normalized in order to keep the same
energy). So that the Continuous Wavelet Transform appears as the test
for the correlation of the information against a ”dictionary” built from a
reference wavelet which is either contracted or dilated, then translated, on
the whole time interval. It follows from Plancherel’s formula that

CWTy [s;a,b] = \2/—3 /Ré\(w)ﬁ(aw) e™ dw,

which means that numerical computations are made thanks to DFT algo-
rithm. The MATLAB routines cwt and gaussq (when the wavelet is the
g-derivative of a the standard gaussian) provide the numerical computation
starting with a digital signal s with length N = 29. The scale axis is equipped
with a logarithmic scaling : there are ¢ — 1 dyadic octaves (scale between
272 and 27',..., scale between 279 and 279!) which are each divided in m
"voices” (note the analogy with the vocabular used in music coding) ; we
assume here that the digital signal is rated at the scale 277 (one could as well
have decided to fix the smaller scale at 1).

The Continuous Wavelet Transformation can be easily inverted, provided the
Fourier transform of the wavelet satisfies

[By, e BEOR - o) < boe.

jwl wl

The inversion formula is

_ | (= b)/a) dadb
5= C(v) hLIZn /aG[e,A] /be[—T,T] CWT s;0,0) a? va '’

e—0tT, A, T— 400
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this follows from the inversion formula for the Fourier Transform from L*(R)
into itself which is given as

1 T
s=— lim 3(w)e™0) duw
2r 12 J.T
T—+o0

So the inverse CW'T is as easy to realize as the transform itself. The M AT-
LAB routine which does the job is icwtg. Be careful that the inversion
formula does not hold for digital signals which are constant (such a signal
does not have a finite energy !) so it is secure to take the mean value of
the digital signal equal to zero in order to apply the Continuous Wavelet
Transform and its inversion (in fact, the inversion formula holds numerically
when tested on the space of digital signals with mean value equal to zero).

The fact that such a redundant transform can be easily inverted may be of
interest respect to compression of data or steganography (we will develop
applied examples in these directions in the course). Since the transformation
is highly redundant, a modification of the signal through a modification of
its Continuous Wavelet Transform resists to the treatment of the signal by
standard techniques (compression, filtering, etc.) and thus may be of interest.
Note also that there is much more freedom in chosing the wavelet than it
happens to be for the construction of a Discrete Multiresolution Analysis.
Nevertheless, it is interesting to compare on examples the results of Discrete
(thus orthogonal) and Continuous (thus redundant) wavelet decompositions.

We will brievely describe in the subsequent sub-sections three important
applications of Continous Wavelet Transform.

8.2 Multifractal analysis

Singularities of an analogic signal can be ”classified” thanks to the local
Lipschitz exponent ; such an exponent is defined as the largest positive real
number (o) such that, for ¢,,¢, in some infinitesimal neighborhood of ¢,

f(t1) = fta)| < K(to)|ts — to|7) .

40



If ¢ is an integer and « € [0, 1], the point £, is called a point of ¢+« regularity
if s is g-times differentiable at t; and the local Lipschitz exponent is ¢ + « at
to.

Some information respect to the classification of real points in terms of their
regularity respect to some anlogic signal s can be derived from the analysis
of the positive images

(a,b) = |CWTy [s;a,b]|

where 9,41, ¢ = 0,1, ..., is the ¢ + 1-derivative of a Gaussian. Since ;41
is orthogonal to polynomial functions of degree less than ¢ (that is to the
Taylor polynomial of degree ¢ of s if s is ¢-times differentiable at %), it follows
that the Continuous Wavelet Transform isolates and enhances the error term
in Taylor-Young formula at ¢ = ¢y, so that, if there exists an interval I(y)
containing ¢y and some € > 0 such that, for any a €]0, ¢[, the signal

b— [CWTy,, [5;a,t]

do not present any local maximum in /, then the point £, is a point of (-
regularity with 8 > m, which means that the singularity at ¢, is a gentle one
(the more ¢ for which this happens is large, the more ”gentle” the singularity
is, so that when ¢ increases, there are less and less singularities to be seen).

Moreover, if there is a conic sector {a €]0, €[, |b —to| < C(to)a} such that all
points where horizontal sections of the image (a,b) = |CWT,, [s; a, b]| admit
a local maximum remain in this cone when they are close to (0,b), then all
points near ty (except tg itself) are S-regular points, with 8 > m. The point
to itself is a point of y-regularity for some 7 € [0, +m][ if

|ICWTy [s;a,b)| < K(ty)a™t'/?

along all descending curves connecting points which are in the cone and where
local maxima of horizontal sections are achieved (for some uniform constant

K(ty) > 0).
Therefore, the study of maxima of horizontal sections of the image
(a,b) = |CWTy [s;a,b]|

(and the behavior of ”descending” curves connecting the points where such
maxima are achieved) is an important tool for the classification of singular-
ities (and what is called the multi-fractal analysis). It has been extensively
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developped by mathematicians (S. Jaffard and Y. Meyer) as well as by physi-
cists (A. Arnéodo). It is also an important tool to analyse the coherence of
an analogic signal in terms of the scale level at which it is analysed ; this will
happen to be also an interesting tool for noise extraction keeping track of the
singularities of the signal (which is usually something quite hard to do !).

8.3 Separation signal-noise

Any deterministic analogic signal obeys to some deterministic coherence
which reflects either in time-frequency analysis when the signal is station-
ary or at least piecewise stationary or in time-scale analysis when the signal
has some fractal or multifractal structure. It is usually paired (when trans-
mitted or even measured) with a stochastic error (a noise) which obeys to
some stochastic coherence.

Being able to separate noise and signal without eliminating significative com-
ponents of the signal (corresponding either to high-frequency components or
to details referent to a small scale) is a delicate challenge. The standard
technique of filtering (which consists in the action on the signal of a low-pass
filter) ”cuts” high frequency components and therefore the noise ; but it may
also eliminate significative components of the signal itself !

Let us explain here shortly how Continuous Wavelet Transform may help to
such separation, assuming for the sake of simplicity that the noise is a white
noise, that is a stochastic process with mean 0 and autocorrelation function
(t,s) — E[X;X,] = 025(t — s), where § is the Dirac mass at the origin ; of
course, we will deal only with digital signals, so that our process will be a
discrete process (X,),cz, all alea X, being in the same L*(Q2, T, P), where
(Q, T, P) is the reference probability space.

If s is a deterministic signal in L?*(R) and B = (B;)r a white noise with
variance o2 (as described above), then one has, for any ¢ > 0 and b € R
(given some wavelet 1) :

2
o
E[[CWTy[s(t) + B 0, b]I°] = [OWTy[s; a, b + —Il[l3

this explains why the presence of the additional noise (above some deter-
ministic signal s € L?(R)) is responsible for some ”explosion” in 1/a in the
brilliance of the positive image corresponding to the modulus of the Con-
tinuous Wavelet Transform when one goes towards small scales (a — 0).
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Moreover, the average number of local extrema for the horizontal section
b — CWTy[By;a,b] is proportional to 1/a, which means (statistically) that
one local extremum over two is lost going up from the dyadic scale level
a = 27 to the dyadic scale level g = 2771,

Taking into account these two remarks (how the stochastic coherence of the
noise behaves respect to time-scale analysis), one may propose some methods
for separation signal-noise.

Here is a very naive one : if 2/ is a scale level, one may decide that the
extrapolation at by (using for example linear regression, which is easy to
realize with MATLAB and for example the routine polyfit) of the function
b— CWTy[s + B;a,b|(27,b) from the average slope of

a(f) — log |CWTy[s + B;a(),b(0)]]

along ”crete” curves in the image |[CWTy[s + B;-, ]| (Iying in a conic sec-
tor above the point (0, by) between the scales 2/ and 2/*!) is a reasonable
candidate for a predicted value of CWTy[s + B; 2771 by]. One may decide
to affect this value at the point (27!, by) and to take into account (at the
scale level 271) only points by which correspond to a local maximum of
b — |CWTy[By;27,b]|. Thus, the ”blurred” level a = 27~ (blurred because
of the presence of the noise) is replaced by a new ”predicted” level which
should be closer to what should be the scale level a = 27=! if the noise was
absent. The routines gauss2q and gauss3q realize this quite naive (though
interesting) approach.

We will mention some less naive approach at the end of the next subsection.

8.4 Reconstructing s from local extrema of the Con-
tinuous Wavelet Transform

Let s be a real signal and ¢ a real wavelet. It may be of interest to notice that,
just keeping for each value of a > 0 the local extrema of b — CWTy[s; a, b]
and interpolating them linearly (this of course may correspond to some signi-
ficative compression of the information), one may reconstruct (thanks to the
Inverve Continuous Wavelet Transform) a quite reasonable approximation
of the signal.

Such a remark was pointed out by S. Mallat and may be helpful, though one
may show that, mathematically speaking, the reconstitution of s € L*(R)
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from the local ”horizontal” extrema of its Continuous Wavelet Transform is
impossible (as shown by Y. Meyer). The method is thus more empirical than
theoretical.

It may also be used as follows : once the local extrema of b — CWTy[s; 27, b]
have been detected (position zi, value sji, k € Z) one looks for the signal
5 in L?(R) such that, for each dyadic level 2/ (where the local extrema of
b — CWTy[s; a,b] are (xi)), the H'-norm

d o 2 o
> | OWTy[5: 2, ay]) | + [CWTy[5: 2, 28] — s
k

is minimal. Once this is done, s is reconstructed by the iterated projec-
tion algorithm assuming its orthogonal projection on the vectorial subspace
spanned by the functions

b— 2 2p((t —0)/27) = ¥y

is
Z <§7 wj,xjk>¢j,wjk .
ke

Such method (introduced by Mallat and Zhang) can be paired with the
method proposed in the last subsection for the separation signal-noise.

9 Matching Pursuit algorithms and referent
ideas inspired by statistics

9.1 Matching Pursuit algorithm

As we pointed it out, the disadvantage of redundant decompositions such as
the ones which comes from CWT is that they provide all together (in fact
through just one image) too much informations ; there is no efficient tool
which is provided to "read” in some intelligent way these informations, as
for example the Split and Merge algorithm presented in section 7.

A parade to such a disadvantage consists in using instead of such transforms
the idea based of the fact one tries to ” pursue” some given information against
a ”dictionary”. Such "matching” techniques are quite familiar to computer
scientists or statisticians. They provide naive, but quite robust, algorithms
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which can be used as soon as one has some a prior: idea about the ”atoms”
that should appear in the decomposition of a signal or an image. Good
examples are provided by medical imaging, where one is often confronted to
the problem of pursuing an image (eventually pathologic) along a dictionary
of pathological test images.

We present here the idea of the Matching Pursuit algorithm (which can be im-
plemented for example with the dictionary of atoms (a=Y/2¢((t—b)/a))a0per
involved in the definition of the Continuous Wawvelet Transform associated
to a wavelet 1), as being renewed by S. Mallat (it is certainly a very old idea,
inspired by statistics, as we will see later on).

The idea is very simple : suppose that D is a dense subset of L?(R) (one can
replace L?(R) by some Hilbert space) whose elements d have energy equal to
one, that s € L?(R), and that (dy)ren+ is a sequence of atoms in D defined
inductively (together with the sequence of coefficients (ay)ren) as :

(s, di)| = max|(s, d)
a1 = <S, d1>
Vn>1,(<s—2akdk,dn+1>‘ = rcrileeg(‘<s—2akdk,d>|
k=1 k=1

Qpp1 = <s — 2”: agdy , dk+1>;

k=1

then the sequence (s;)nen, where

n
Sn =Y agdy,
k=1

converges towards s in L?(R). We refer to the work of S. Mallat and Z.
Zhang, [Matching pursuit algorithms with time frequency dictionaries, IEEE
Transactions on Signal Processing 12, 1993, pp. 3397-3415], for a proof of
this result (involving basically the completeness of L?(R) and the density of
the dictionary).

Such an algorithm is implemented under the routine mpursl under the
MATLAB environment.

In order not to use repeatedly the same atom (note that in the above proce-
dure, the signal has to be explored with the whole dictionary ay any step of
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the algorithmic procedure), one may introduce an ”orthogonalized” version
of the Matching Pursuit Algorithm, as proposed for example by Patti and
Krischnaprasad. This algorithm, which is described here in eight steps, is
implemented as the MATLAB routine mpurs2.

e 1. Initialization at step n. One starts with a "resumed” version R,
of the input signal s, which has been obtained via n iterations of the
algorithm :

Ry=3a{dy.
k=1

e 2. Computation of the Gram matriz G, of the first n atoms slected :
this computation will be done recursively, as we will see next.

e 3. Detection of the n 4+ 1-th atom d,,1 following the principle of the
Matching Pursuit algorithm : ifr, =s— R,,

o )| = max [(r,d)].

o 4. Computation of correlations of the new selected atom d,, with

atoms dy, . .., d, which have been selected before : such a vector is de-
noted as
<dn+17 dl)
C, = :
<dn+1a dn)

e 5. Computation of B, = G,'C,.

e 6. Computation of the coefficient which affects this new atom : such a
computation is done via the formula

(n+1) <Tn> dn+1> .
a’n+1 - n ’
L= 3 Bk} de, dorr)

note that it may also be interesting to keep track of the value (r,, d, 1)
which corresponds to the coefficient of d,,; prior the re-orthonormali-
zation of the system.
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e 7. Final computation of the resumed version R, prior applying the
next step of the algorithm : one has the formula

Rosr = Y- (af") = ol Bu(k))di + 0 Vs
k=1

e 8. One starts the procedure at step 1, starting with R, .

Note that G, may be computed in some recursive way, as

Gl =
i —pB;, Pn

where
1

=1 CB,

All such operations realize a combination between the standard Matching
Pursuit Algorithm and the Gram-Schmidt orthonormalization procedure ;
the convergence of the sequence (r,), towards zero is still fulfilled in the
dictionary D is dense in L*(R).

As mentioned above, such algorithms are good canditates for treating phys-
iological signals ; they may be also combined with statistical technics (such
as Neural Networks or Proper Orthogonal Decomposition which are inspired
by statistics) which help to the construction of adequate dictionaries (see the
next subsection).

Respect to time-scale or time-frequency analysis, the most standard dictio-
naries that can be used (such as proposed by David Donoho in the logicial
Wavelab which has been developped at Stanford University) are the dictio-
nary of atoms (a=*/24((t —b)/a))a>0pcr, Where ¢ is an atom which generates
a CWT analysis, the collection (2779/%¢)(t/29 — n)), j > 0, n,j € Z, where
1 denotes the mother of a Multiresolution Analysis, the collection of local

harmonics
{t—),/ 2 sinw(k+1/2)(t_a), ke]N,b>a},
b—a b—a

or even a discrete orthonormal subfamily constructed from a segmentation
of the time line R, ---a; < a;41 < ---, multiplying each function

2 k+1/2)(t—a;
t— sin TEFI2E =) oy N
ajt1 — G Gjt+1 — aj
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by a smooth cut-off function 6; localized in [(a;_1 + a;)/2, (a;4+1 + aj12)/2]
(such as proposed by R. Coifman and Y. Meyer in Remarques sur l’analyse
de Fourier a fenétre, Comptes Rendus Acad. Sc. Paris, 312, Série I, 1991,
259-261.

9.2 The Proper Orthogonal Decomposition

To conclude this course (and to illustrate Matching Pursuit Algorithm), we
present here some important idea (inspired by statistics) in order to construct
a dictionary ready for the matching pursuit test (and adapted to some given
information).

Let s be a digital information (indexed by Z) corresponding to the measure-
ment of some phenomenon. Suppose that we have at our disposal, for some
temporal interval with length M, N realizations sV, ..., sV) of s (for exam-
ple N samples of s which correspond to distinct temporal intervals Iy, ..., Iy,
all with lenght s) ; such realizations are sometimes called ”snapshots” of the
signal s. The correlation matrix [R;;]1<i j<n, where

J LA —
Rij= 73 s9(m)sO(m), 1<ij<N
m=1
induces some hermitian operator on *({1,..., N}) :

R :®=(®(),..,°(N)) — (;leq)(j), ZIRqu)(j)>§

the eigenvalues of this positive operator can be organized in decreasing or-
der : Ay > Ay > ... > Ay. A unitary vector ®,, = (Ppp(1), ..., Ppp(N)) €
?({1,..., N}) such that (R®,,, ®,,) is maximal (that is a unitary eigen-
vector R associated to A;) provides a principal direction for the subspace of
({1, ..., M}) generated by the snapshots s(!), ..., s¥) and the realization cor-
responding to this direction (which provides the best statistical least square
approximation of the signal s on a digital temporal window with length M)
is

N
Sl = Z(I)pp(j)s(]) .
j=1

One can thus construct a collection Sy, Sy, ..., from the eigenvalues Ay, ..., (and
corresponding normalized eigenvectors ®,, ;). Such digitals signals Si, S, ...,
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are called Proper Modes of s (on temporal windows with lenght M) and (once
translated) can be used as the list of atoms of a dictionary ready for the
Matching Pursuit algorithm.

Such an idea, that we exposed here very brievely, is the basis for the Proper
Orthogonal Decomposition, which is quite performing respect to matching
problems in statistics.

10 Conclusion (so many things missing !)

We just pretended in this course propose a panel of tools inspired by Fourier
analysis, Wavelet analysis, matching ideas coming from statistics, in order to
treat digital informations. Of course, such a panel is far from beeing exhaus-
tive | We did not had time to speak for example of combination of entropy
criterion and using of local harmonics to treat speech signals (as proposed
by E. Wesfreid and V. Wickerhauser in Adapted Local Trigonometric Trans-
forms and Speech Processing, IEEE Trans. on Signal Processing, 41 (12),
1993, 3596-3600, and there are so many other important technics we did not
mention, which combine the diverse points of view presented here.
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