ANNÉE 2002-2003

SESSION DE JANVIER 2003

GU: IUP MIAGE, MIAS 2'

UE : 301 M ANAL

Date: le Mardi 14 Janvier, 11h-12h30

Durée : 1 h 30

Documents non autorisés

Exercice 1. Soit A une matrice $n \times n$ à coefficients complexes.

a. Rappeler comment est obtenue à partir de A la matrice adjointe A^* .

b. On suppose qu'il existe un entier $N \in \mathbb{N}^*$ et des nombres complexes $a_0, ..., a_N$ tels que

$$A^* = a_0 A^N + a_1 A^{N-1} + \dots + a_{N-1} A + a_N I_n,$$

où I_n désigne la matrice de l'identité de \mathbb{C}^n dans \mathbb{C}^n . Montrer, en précisant bien quel résultat du cours vous utilisez et pourquoi il s'applique bien ici, que la matrice A est diagonalisable sur \mathbb{C} . Que peut-on dire (par rapport à la notion d'orthogonalité pour le produit scalaire canonique dans \mathbb{C}^n) de deux sous-espaces propres correspondant à deux valeurs propres distinctes de A?

Exercice 2. Soit T un \mathbb{R} -endomorphisme d'un \mathbb{R} espace vectoriel E de dimension n.

a. Rappeler la définition du polynôme caractéristique P_T et du polynôme minimal Q_T de l'endomorphisme T; lequel de ces deux polynômes divise l'autre?

b. Que signifie le fait que T soit trigonalisable comme \mathbb{R} -endomorphisme de E? Donner une condition nécessaire et suffisante portant sur le polynôme caractéristique P_T pour que ceci soit le cas.

c. Que signifie le fait que T soit diagonalisable comme \mathbb{R} -endomorphisme de E? Donner une condition nécessaire et suffisante portant sur le polynôme minimal Q_T pour que ceci soit le cas.

Exercice 3. Soit E le \mathbb{R} -espace vectoriel des fonctions polynômiales de \mathbb{R} dans \mathbb{R} de degré au plus 3, c'est-à-dire des fonctions

$$f: t \to a_0 t^3 + a_1 t^2 + a_2 t + a_3, \quad a_j \in \mathbb{R}, \ j = 0, ..., 3,$$

équipé du produit scalaire

$$\left\langle f\,,\,g\right\rangle :=\int_{-1}^{1}f(t)g(t)\,dt\,.$$

Quelle est la dimension du sous-espace F de E engendré par les éléments $t\to 1$ et $t\to t$? Déterminer une base orthonormée du sous-espace F (pour

ce produit scalaire), puis calculer la projection orthogonale de $t \to t^3$ sur F. Quel est le couple de nombres réels (α, β) tel que la quantité

$$\int_{-1}^{1} (t^3 - \alpha - \beta t)^2 dt$$

soit minimale?

Exercice 4. Soit $[f_n]_{n\geq 0}$ une série de fonctions toutes définies sur le même sous-ensemble D de $\mathbb C$ et à valeurs dans $\mathbb C$.

- a. Rappeler ce que signifient les faits suivants :
 - le fait que la série $[f_n]_{n\geq 0}$ converge simplement sur D;
 - le fait que la série $[f_n]_{n>0}$ converge normalement sur D;
 - le fait que la série $[f_n]_{n\geq 0}$ converge uniformément sur D.

b. Les assertions ci-dessous sont-elles vraies ou fausses (si une assertion est fausse, donner un contre-exemple; si elle est vraie, donner quelques mots d'explication qui relient l'assertion à un théorème du cours)?

<u>Assertion (i)</u>: "si la série $[f_n]_{n\geq 0}$ converge normalement sur D, elle converge uniformément sur D";

<u>Assertion (ii)</u>: "si la série $[f_n]_{n\geq 0}$ converge uniformément sur D, elle converge normalement sur D";

<u>Assertion (iii)</u>: "si toutes les fonctions f_n , $n \ge 0$, sont continues sur D et que la série $[f_n]_{n\ge 0}$ converge normalement sur tout sous-ensemble borné de D, alors la somme de la série est aussi une fonction continue sur D".

Exercice 5. Quels sont les rayons de convergence des séries entières suivantes :

$$\left[\frac{z^n}{n^x a^n}\right]_{n>1} \text{ (où } x \in \mathbb{R} \,, \ a \in \mathbb{C}^*) \qquad \text{et} \qquad \left[\frac{z^{n^2}}{n^n}\right]_{n>1} ?$$

Exercice 6. Montrer (en énonçant proprement le théorème du cours auquel vous faites référence) que la fonction

$$x \to \sum_{k=1}^{\infty} \frac{1}{k^x}$$

est définie et indéfiniment dérivable sur]1, $+\infty$ [et exprimer sa dérivée p-ième $(p \in \mathbb{N})$ sur cet intervalle sous la forme de la somme d'une série de fonctions.

UE : 301 M ANAL

GU: IUP MIAGE, MIAS 2', MIAS 3

CORRIGÉ

1.a. La matrice A^* est définie par $A^* = {}^t[\overline{A}]$.

- **1.b.** Si B est une matrice $n \times n$ de la forme A^k , alors B et A commutent; l'hypothèse faite sur A^* implique donc que A et A^* commutent; l'opérateur représenté par A dans la base canonique de \mathbb{C}^n commute donc avec son adjoint (le produit scalaire sur $\mathbb{C}^n \times \mathbb{C}^n$ étant le produit scalaire canonique); cet opérateur est donc normal, donc diagonalisable dans une base orthonormée de \mathbb{C}^n d'après le théorème de Fredholm (cours); deux sous-espaces propres correspondant à deux valeurs propres distinctes sont orthogonaux.
- **2.a.** Si \mathcal{B} est une base de E et $M_{T,\mathcal{B}}$ la matrice de T dans cette base, le polynôme caractéristique P_T est par définition le polynôme $P_T(X) := \det(M_{T,\mathcal{B}} XI_n)$, où I_n désigne la matrice identité. Le polynôme minimal Q_T est par définition l'unique générateur (de coefficient du terme de plus haut degré égal à 1) de l'idéal

$$\mathcal{I} = \{ Q \in \mathbb{R}[X] ; \, Q[T] = 0 \}$$

de $\mathbb{R}[X]$; comme $P_T[T] = 0$ d'après le théorème de Cayley-Hamilton, P_T est dans \mathcal{I} et donc Q_T divise P_T .

- **2.b.** Dire que T est trigonalisable équivaut à dire qu'il existe une base de E dans laquelle la matrice de T soit triangulaire supérieure ; T est trigonalisable si et seulement si le polynôme caractéristique P_T se factorise dans $\mathbb{R}[X]$ avec des polynômes du premier degré (ou, ce qui revient au même puisque \mathbb{C} est algébriquement clos, si et seulement si toutes les racines de P_T dans \mathbb{C} sont réelles) ; c'est un résultat du cours.
- **2.c.** Dire que T est diagonalisable équivaut à dire qu'il existe une base de E dans laquelle la matrice de T soit diagonale (c'est-à-dire une base constitutée de vecteurs propres); T est diagonalisable si et seulement si le polynôme minimal Q_T a toutes se factorise sous la forme

$$Q_T(X) = (X - \lambda_1) \cdots (X - \lambda_p),$$

où $\lambda_1, ..., \lambda_p$ sont des nombres réels distincts (résultat du cours).

3.a. Si une fonction polynômiale $t \to \alpha + \beta t$ (avec $\alpha, \beta \in \mathbb{R}$) est la fonction identiquement nulle, alors $\alpha = \beta = 0$; les fonctions $t \to 1$ et $t \to t$ sont donc des vecteurs linéairement indépendants de E; le sous-espace F qu'ils

engendrent est donc de dimension 2. On remarque, comme $\int_{-1}^{1} t \, dt = 0$, que $t \to 1$ et $t \to t$ forment un système orthogonal de F; il suffit de le normer pour avoir un système orthonormé, c'est-à-dire de prendre

$$\vec{v}_1 : t \to 1/\sqrt{2}, \quad \vec{v}_2 : t \to \sqrt{3/2} t$$

pour avoir (avec (\vec{v}_1, \vec{v}_2)) une base orthonormée de F. La projection orthogonale de $\vec{w}: t \to t^3$ sur F est

$$\begin{aligned} \operatorname{pr}_{F}[\vec{w}] &= \langle \vec{w}, \vec{v}_{1} \rangle \, \vec{v}_{1} + \langle \vec{w}, \vec{v}_{2} \rangle \, \vec{v}_{2} \\ &= \frac{1}{\sqrt{2}} \left(\int_{-1}^{1} t^{3} dt \right) \vec{v}_{1} + \sqrt{3/2} \left(\int_{-1}^{1} t^{4} dt \right) \vec{v}_{2} = \sqrt{3/2} \times 2/5 \, \vec{v}_{2} \, ; \end{aligned}$$

la projection orthogonale de \vec{w} sur F est donc la fonction polynômiale $t\to 3/5$ t; le couple α,β tel que $\int_{-1}^{1}(t^3-\alpha-\beta t)^2\,dt$ soit minimale est, d'après le théorème de Pythagore, celui qui est donné par

$$\operatorname{pr}_F[\vec{W}] : t \to \alpha + \beta t;$$

on a donc $\alpha = 0$ et $\beta = 3/5$.

4.a. Dire que la série $[f_n]_{n\geq 0}$ converge simplement sur D équivaut à dire que, pour chaque z dans D, la suite numérique $\left(\sum_{k=0}^n f_k(z)\right)_{n\geq 0}$ est convergente, ou encore que la série numérique $[f_n(z)]_{n\geq 0}$ est une série convergente (cours); la série $[f_n]_{n\geq 0}$ converge normalement sur D si et seulement si il existe une série numérique à termes positifs $[w_n]_{n>n_1}$, convergente, et telle que

$$\forall n \ge n_1, \ \forall z \in D, \ |f_n(z)| \le w_n$$

(cours) ; la série $[f_n]_{n\geq 0}$ converge uniformément sur D si et seulement s'il existe une fonction $S:D\to\mathbb{C}$ telle que

$$\lim_{n \to \infty} \sup_{z \in D} \left| \sum_{k=0}^{n} f_k(z) - S(z) \right| = 0$$

(cours).

4.b. La première assertion est vraie (c'est un théorème explicitement dans le cours); la seconde assertion est fausse : si par exemple f_n est la fonction constante égale à $(-1)^n/(n+1)$ sur D, il y a convergence uniforme, mais pas convergence normale car la série alternée $[(-1)^n/(n+1)]_{n\geq 0}$ converge tandis que la série harmonique $[1/(n+1)]_{n\geq 0}$ diverge; la dernière assertion est vraie car elle l'est lorsque D est borné car l'hypothèse équivaut alors à la continuité des f_n sur D et à la convergence normale de la série $[f_n]_{n\geq 0}$ sur

D, ce qui implique (théorème du cours) la continuité de la somme sur D; dans le cas où D est quelconque, l'assertion est vraie car tester la continuité d'une fonction sur D revient à la tester sur tout sous-ensemble de D du type $D \cap D(z_0, 1)$, où $D(z_0, 1)$ désigne le disque de centre z_0 et de rayon 1 (la continuité d'une fonction étant une propriété locale).

5. Pour la première série entière, on applique la règle de d'Alembert ; comme

$$\lim_{n \to \infty} \frac{n^x |a|^n}{(n+1)^x |a|^{n+1}} = \frac{1}{|a|} \lim_{n \to \infty} \left(\frac{n}{n+1}\right)^x = \frac{1}{|a|},$$

le rayon de convergence vaut |a|; pour la seconde, on applique la règle de Cauchy: cette seconde série entière est du type $[a_n z^n]_{n\geq 1}$ avec $a_n=k^{-k}$ si $n=k^2,\ k\in\mathbb{N}^*,\ a_n=0$ sinon; on a donc

$$\lim_{n \to \infty} |a_n|^{1/n} = \lim_{k \to +\infty} [k^{-k}]^{1/k^2} = \lim_{k \to +\infty} k^{-1/k} = \lim_{k \to +\infty} \exp(-\frac{\ln k}{k}) = 1;$$

le rayon de convergence de cette seconde série entière vaut donc 1/1 = 1 (règle de Cauchy).

6. Pour tout $k \in \mathbb{N}^*$, la fonction $x \to k^{-x} = \exp(-x \ln k)$ est de classe C^{∞} sur \mathbb{R} , de dérivée p-ième la fonction $x \to (-\ln k)^p k^{-x}$. Pour tout $p \in \mathbb{N}$, pour tout $x_0 > 1$, la série de fonctions $[x \to (-\ln k)^p k^{-x}]_{k \ge 1}$ est normalement convergente sur $[x_0, +\infty[$: en effet, pour tout $k \ge 1$, pour tout $x \ge x_0$, on a

$$|(-\ln k)^p k^{-x}| \le \frac{|\ln k|^p}{k^{x_0}};$$

comme la série numérique $[(\ln k)^p k^{-x_0}]_{k\geq 1}$ est convergente (par exemple en utilisant la règle de Duhamel), il y a bien convergence normale. On peut appliquer le théorème du cours qui assure que si les f_k sont de classe C^1 sur un intervalle de \mathbb{R} , que la série numérique $[f_k(t)]_{k\geq 1}$ converge en un point t de l'intervalle, et que la série $[f'_k]_{k\geq 1}$ converge normalement sur cet intervalle, alors $\sum_k f_k$ existe sur l'intervalle, définit une fonction de classe C^1 sur l'intervalle, de dérivée $\sum_k f'_k$. En appliquant ce résultat de manière itérative, on trouve que la fonction

$$x \to \sum_{k=1}^{\infty} \frac{1}{k^x}$$

est définie et indéfiniment dérivable sur $]1, +\infty[$ et que sa dérivée p-ième $(p \in \mathbb{N})$ sur cet intervalle est la fonction

$$x \to (-1)^p \sum_{k=1}^{\infty} \frac{(\ln k)^p}{k^x}.$$